1 //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #ifndef LLVM_OBJECT_ELFTYPES_H 11 #define LLVM_OBJECT_ELFTYPES_H 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/Object/Error.h" 15 #include "llvm/Support/ELF.h" 16 #include "llvm/Support/Endian.h" 17 #include "llvm/Support/ErrorOr.h" 18 19 namespace llvm { 20 namespace object { 21 22 using support::endianness; 23 24 template <endianness target_endianness, bool is64Bits> struct ELFType { 25 static const endianness TargetEndianness = target_endianness; 26 static const bool Is64Bits = is64Bits; 27 }; 28 29 typedef ELFType<support::little, false> ELF32LE; 30 typedef ELFType<support::big, false> ELF32BE; 31 typedef ELFType<support::little, true> ELF64LE; 32 typedef ELFType<support::big, true> ELF64BE; 33 34 // Use an alignment of 2 for the typedefs since that is the worst case for 35 // ELF files in archives. 36 37 // Templates to choose Elf_Addr and Elf_Off depending on is64Bits. 38 template <endianness target_endianness> struct ELFDataTypeTypedefHelperCommon { 39 typedef support::detail::packed_endian_specific_integral< 40 uint16_t, target_endianness, 2> Elf_Half; 41 typedef support::detail::packed_endian_specific_integral< 42 uint32_t, target_endianness, 2> Elf_Word; 43 typedef support::detail::packed_endian_specific_integral< 44 int32_t, target_endianness, 2> Elf_Sword; 45 typedef support::detail::packed_endian_specific_integral< 46 uint64_t, target_endianness, 2> Elf_Xword; 47 typedef support::detail::packed_endian_specific_integral< 48 int64_t, target_endianness, 2> Elf_Sxword; 49 }; 50 51 template <class ELFT> struct ELFDataTypeTypedefHelper; 52 53 /// ELF 32bit types. 54 template <endianness TargetEndianness> 55 struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, false>> 56 : ELFDataTypeTypedefHelperCommon<TargetEndianness> { 57 typedef uint32_t value_type; 58 typedef support::detail::packed_endian_specific_integral< 59 value_type, TargetEndianness, 2> Elf_Addr; 60 typedef support::detail::packed_endian_specific_integral< 61 value_type, TargetEndianness, 2> Elf_Off; 62 }; 63 64 /// ELF 64bit types. 65 template <endianness TargetEndianness> 66 struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, true>> 67 : ELFDataTypeTypedefHelperCommon<TargetEndianness> { 68 typedef uint64_t value_type; 69 typedef support::detail::packed_endian_specific_integral< 70 value_type, TargetEndianness, 2> Elf_Addr; 71 typedef support::detail::packed_endian_specific_integral< 72 value_type, TargetEndianness, 2> Elf_Off; 73 }; 74 75 // I really don't like doing this, but the alternative is copypasta. 76 #define LLVM_ELF_IMPORT_TYPES(E, W) \ 77 typedef typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Addr Elf_Addr; \ 78 typedef typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Off Elf_Off; \ 79 typedef typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Half Elf_Half; \ 80 typedef typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Word Elf_Word; \ 81 typedef \ 82 typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Sword Elf_Sword; \ 83 typedef \ 84 typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Xword Elf_Xword; \ 85 typedef \ 86 typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Sxword Elf_Sxword; 87 88 #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) \ 89 LLVM_ELF_IMPORT_TYPES(ELFT::TargetEndianness, ELFT::Is64Bits) 90 91 // Section header. 92 template <class ELFT> struct Elf_Shdr_Base; 93 94 template <endianness TargetEndianness> 95 struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> { 96 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) 97 Elf_Word sh_name; // Section name (index into string table) 98 Elf_Word sh_type; // Section type (SHT_*) 99 Elf_Word sh_flags; // Section flags (SHF_*) 100 Elf_Addr sh_addr; // Address where section is to be loaded 101 Elf_Off sh_offset; // File offset of section data, in bytes 102 Elf_Word sh_size; // Size of section, in bytes 103 Elf_Word sh_link; // Section type-specific header table index link 104 Elf_Word sh_info; // Section type-specific extra information 105 Elf_Word sh_addralign; // Section address alignment 106 Elf_Word sh_entsize; // Size of records contained within the section 107 }; 108 109 template <endianness TargetEndianness> 110 struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> { 111 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) 112 Elf_Word sh_name; // Section name (index into string table) 113 Elf_Word sh_type; // Section type (SHT_*) 114 Elf_Xword sh_flags; // Section flags (SHF_*) 115 Elf_Addr sh_addr; // Address where section is to be loaded 116 Elf_Off sh_offset; // File offset of section data, in bytes 117 Elf_Xword sh_size; // Size of section, in bytes 118 Elf_Word sh_link; // Section type-specific header table index link 119 Elf_Word sh_info; // Section type-specific extra information 120 Elf_Xword sh_addralign; // Section address alignment 121 Elf_Xword sh_entsize; // Size of records contained within the section 122 }; 123 124 template <class ELFT> 125 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> { 126 using Elf_Shdr_Base<ELFT>::sh_entsize; 127 using Elf_Shdr_Base<ELFT>::sh_size; 128 129 /// @brief Get the number of entities this section contains if it has any. 130 unsigned getEntityCount() const { 131 if (sh_entsize == 0) 132 return 0; 133 return sh_size / sh_entsize; 134 } 135 }; 136 137 template <class ELFT> struct Elf_Sym_Base; 138 139 template <endianness TargetEndianness> 140 struct Elf_Sym_Base<ELFType<TargetEndianness, false>> { 141 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) 142 Elf_Word st_name; // Symbol name (index into string table) 143 Elf_Addr st_value; // Value or address associated with the symbol 144 Elf_Word st_size; // Size of the symbol 145 unsigned char st_info; // Symbol's type and binding attributes 146 unsigned char st_other; // Must be zero; reserved 147 Elf_Half st_shndx; // Which section (header table index) it's defined in 148 }; 149 150 template <endianness TargetEndianness> 151 struct Elf_Sym_Base<ELFType<TargetEndianness, true>> { 152 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) 153 Elf_Word st_name; // Symbol name (index into string table) 154 unsigned char st_info; // Symbol's type and binding attributes 155 unsigned char st_other; // Must be zero; reserved 156 Elf_Half st_shndx; // Which section (header table index) it's defined in 157 Elf_Addr st_value; // Value or address associated with the symbol 158 Elf_Xword st_size; // Size of the symbol 159 }; 160 161 template <class ELFT> 162 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> { 163 using Elf_Sym_Base<ELFT>::st_info; 164 using Elf_Sym_Base<ELFT>::st_shndx; 165 using Elf_Sym_Base<ELFT>::st_other; 166 using Elf_Sym_Base<ELFT>::st_value; 167 168 // These accessors and mutators correspond to the ELF32_ST_BIND, 169 // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: 170 unsigned char getBinding() const { return st_info >> 4; } 171 unsigned char getType() const { return st_info & 0x0f; } 172 uint64_t getValue() const { return st_value; } 173 void setBinding(unsigned char b) { setBindingAndType(b, getType()); } 174 void setType(unsigned char t) { setBindingAndType(getBinding(), t); } 175 void setBindingAndType(unsigned char b, unsigned char t) { 176 st_info = (b << 4) + (t & 0x0f); 177 } 178 179 /// Access to the STV_xxx flag stored in the first two bits of st_other. 180 /// STV_DEFAULT: 0 181 /// STV_INTERNAL: 1 182 /// STV_HIDDEN: 2 183 /// STV_PROTECTED: 3 184 unsigned char getVisibility() const { return st_other & 0x3; } 185 void setVisibility(unsigned char v) { 186 assert(v < 4 && "Invalid value for visibility"); 187 st_other = (st_other & ~0x3) | v; 188 } 189 190 bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; } 191 bool isCommon() const { 192 return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON; 193 } 194 bool isDefined() const { return !isUndefined(); } 195 bool isProcessorSpecific() const { 196 return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC; 197 } 198 bool isOSSpecific() const { 199 return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS; 200 } 201 bool isReserved() const { 202 // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always 203 // true and some compilers warn about it. 204 return st_shndx >= ELF::SHN_LORESERVE; 205 } 206 bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; } 207 bool isExternal() const { 208 return getBinding() != ELF::STB_LOCAL; 209 } 210 211 ErrorOr<StringRef> getName(StringRef StrTab) const; 212 }; 213 214 template <class ELFT> 215 ErrorOr<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const { 216 uint32_t Offset = this->st_name; 217 if (Offset >= StrTab.size()) 218 return object_error::parse_failed; 219 return StringRef(StrTab.data() + Offset); 220 } 221 222 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section 223 /// (.gnu.version). This structure is identical for ELF32 and ELF64. 224 template <class ELFT> 225 struct Elf_Versym_Impl { 226 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 227 Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN) 228 }; 229 230 template <class ELFT> struct Elf_Verdaux_Impl; 231 232 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section 233 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64. 234 template <class ELFT> 235 struct Elf_Verdef_Impl { 236 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 237 typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux; 238 Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT) 239 Elf_Half vd_flags; // Bitwise flags (VER_DEF_*) 240 Elf_Half vd_ndx; // Version index, used in .gnu.version entries 241 Elf_Half vd_cnt; // Number of Verdaux entries 242 Elf_Word vd_hash; // Hash of name 243 Elf_Word vd_aux; // Offset to the first Verdaux entry (in bytes) 244 Elf_Word vd_next; // Offset to the next Verdef entry (in bytes) 245 246 /// Get the first Verdaux entry for this Verdef. 247 const Elf_Verdaux *getAux() const { 248 return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux); 249 } 250 }; 251 252 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef 253 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64. 254 template <class ELFT> 255 struct Elf_Verdaux_Impl { 256 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 257 Elf_Word vda_name; // Version name (offset in string table) 258 Elf_Word vda_next; // Offset to next Verdaux entry (in bytes) 259 }; 260 261 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed 262 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64. 263 template <class ELFT> 264 struct Elf_Verneed_Impl { 265 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 266 Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT) 267 Elf_Half vn_cnt; // Number of associated Vernaux entries 268 Elf_Word vn_file; // Library name (string table offset) 269 Elf_Word vn_aux; // Offset to first Vernaux entry (in bytes) 270 Elf_Word vn_next; // Offset to next Verneed entry (in bytes) 271 }; 272 273 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed 274 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64. 275 template <class ELFT> 276 struct Elf_Vernaux_Impl { 277 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 278 Elf_Word vna_hash; // Hash of dependency name 279 Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*) 280 Elf_Half vna_other; // Version index, used in .gnu.version entries 281 Elf_Word vna_name; // Dependency name 282 Elf_Word vna_next; // Offset to next Vernaux entry (in bytes) 283 }; 284 285 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic 286 /// table section (.dynamic) look like. 287 template <class ELFT> struct Elf_Dyn_Base; 288 289 template <endianness TargetEndianness> 290 struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> { 291 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) 292 Elf_Sword d_tag; 293 union { 294 Elf_Word d_val; 295 Elf_Addr d_ptr; 296 } d_un; 297 }; 298 299 template <endianness TargetEndianness> 300 struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> { 301 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) 302 Elf_Sxword d_tag; 303 union { 304 Elf_Xword d_val; 305 Elf_Addr d_ptr; 306 } d_un; 307 }; 308 309 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters. 310 template <class ELFT> 311 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> { 312 using Elf_Dyn_Base<ELFT>::d_tag; 313 using Elf_Dyn_Base<ELFT>::d_un; 314 typedef typename std::conditional<ELFT::Is64Bits, 315 int64_t, int32_t>::type intX_t; 316 typedef typename std::conditional<ELFT::Is64Bits, 317 uint64_t, uint32_t>::type uintX_t; 318 intX_t getTag() const { return d_tag; } 319 uintX_t getVal() const { return d_un.d_val; } 320 uintX_t getPtr() const { return d_un.d_ptr; } 321 }; 322 323 // Elf_Rel: Elf Relocation 324 template <class ELFT, bool isRela> struct Elf_Rel_Impl; 325 326 template <endianness TargetEndianness> 327 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> { 328 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) 329 Elf_Addr r_offset; // Location (file byte offset, or program virtual addr) 330 Elf_Word r_info; // Symbol table index and type of relocation to apply 331 332 uint32_t getRInfo(bool isMips64EL) const { 333 assert(!isMips64EL); 334 return r_info; 335 } 336 void setRInfo(uint32_t R, bool IsMips64EL) { 337 assert(!IsMips64EL); 338 r_info = R; 339 } 340 341 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, 342 // and ELF32_R_INFO macros defined in the ELF specification: 343 uint32_t getSymbol(bool isMips64EL) const { 344 return this->getRInfo(isMips64EL) >> 8; 345 } 346 unsigned char getType(bool isMips64EL) const { 347 return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff); 348 } 349 void setSymbol(uint32_t s, bool IsMips64EL) { 350 setSymbolAndType(s, getType(), IsMips64EL); 351 } 352 void setType(unsigned char t, bool IsMips64EL) { 353 setSymbolAndType(getSymbol(), t, IsMips64EL); 354 } 355 void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) { 356 this->setRInfo((s << 8) + t, IsMips64EL); 357 } 358 }; 359 360 template <endianness TargetEndianness> 361 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true> 362 : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> { 363 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) 364 Elf_Sword r_addend; // Compute value for relocatable field by adding this 365 }; 366 367 template <endianness TargetEndianness> 368 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> { 369 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) 370 Elf_Addr r_offset; // Location (file byte offset, or program virtual addr) 371 Elf_Xword r_info; // Symbol table index and type of relocation to apply 372 373 uint64_t getRInfo(bool isMips64EL) const { 374 uint64_t t = r_info; 375 if (!isMips64EL) 376 return t; 377 // Mips64 little endian has a "special" encoding of r_info. Instead of one 378 // 64 bit little endian number, it is a little endian 32 bit number followed 379 // by a 32 bit big endian number. 380 return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) | 381 ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff); 382 } 383 void setRInfo(uint64_t R, bool IsMips64EL) { 384 if (IsMips64EL) 385 r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) | 386 ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56); 387 else 388 r_info = R; 389 } 390 391 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, 392 // and ELF64_R_INFO macros defined in the ELF specification: 393 uint32_t getSymbol(bool isMips64EL) const { 394 return (uint32_t)(this->getRInfo(isMips64EL) >> 32); 395 } 396 uint32_t getType(bool isMips64EL) const { 397 return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL); 398 } 399 void setSymbol(uint32_t s, bool IsMips64EL) { 400 setSymbolAndType(s, getType(), IsMips64EL); 401 } 402 void setType(uint32_t t, bool IsMips64EL) { 403 setSymbolAndType(getSymbol(), t, IsMips64EL); 404 } 405 void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) { 406 this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL); 407 } 408 }; 409 410 template <endianness TargetEndianness> 411 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true> 412 : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> { 413 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) 414 Elf_Sxword r_addend; // Compute value for relocatable field by adding this. 415 }; 416 417 template <class ELFT> 418 struct Elf_Ehdr_Impl { 419 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 420 unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes 421 Elf_Half e_type; // Type of file (see ET_*) 422 Elf_Half e_machine; // Required architecture for this file (see EM_*) 423 Elf_Word e_version; // Must be equal to 1 424 Elf_Addr e_entry; // Address to jump to in order to start program 425 Elf_Off e_phoff; // Program header table's file offset, in bytes 426 Elf_Off e_shoff; // Section header table's file offset, in bytes 427 Elf_Word e_flags; // Processor-specific flags 428 Elf_Half e_ehsize; // Size of ELF header, in bytes 429 Elf_Half e_phentsize; // Size of an entry in the program header table 430 Elf_Half e_phnum; // Number of entries in the program header table 431 Elf_Half e_shentsize; // Size of an entry in the section header table 432 Elf_Half e_shnum; // Number of entries in the section header table 433 Elf_Half e_shstrndx; // Section header table index of section name 434 // string table 435 bool checkMagic() const { 436 return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0; 437 } 438 unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; } 439 unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; } 440 }; 441 442 template <class ELFT> struct Elf_Phdr_Impl; 443 444 template <endianness TargetEndianness> 445 struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> { 446 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) 447 Elf_Word p_type; // Type of segment 448 Elf_Off p_offset; // FileOffset where segment is located, in bytes 449 Elf_Addr p_vaddr; // Virtual Address of beginning of segment 450 Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific) 451 Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero) 452 Elf_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) 453 Elf_Word p_flags; // Segment flags 454 Elf_Word p_align; // Segment alignment constraint 455 }; 456 457 template <endianness TargetEndianness> 458 struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> { 459 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) 460 Elf_Word p_type; // Type of segment 461 Elf_Word p_flags; // Segment flags 462 Elf_Off p_offset; // FileOffset where segment is located, in bytes 463 Elf_Addr p_vaddr; // Virtual Address of beginning of segment 464 Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific) 465 Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) 466 Elf_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) 467 Elf_Xword p_align; // Segment alignment constraint 468 }; 469 470 // ELFT needed for endianess. 471 template <class ELFT> 472 struct Elf_Hash_Impl { 473 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 474 Elf_Word nbucket; 475 Elf_Word nchain; 476 477 ArrayRef<Elf_Word> buckets() const { 478 return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket); 479 } 480 481 ArrayRef<Elf_Word> chains() const { 482 return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket, 483 &nbucket + 2 + nbucket + nchain); 484 } 485 }; 486 487 // .gnu.hash section 488 template <class ELFT> 489 struct Elf_GnuHash_Impl { 490 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 491 Elf_Word nbuckets; 492 Elf_Word symndx; 493 Elf_Word maskwords; 494 Elf_Word shift2; 495 496 ArrayRef<Elf_Off> filter() const { 497 return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1), 498 maskwords); 499 } 500 501 ArrayRef<Elf_Word> buckets() const { 502 return ArrayRef<Elf_Word>( 503 reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets); 504 } 505 506 ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const { 507 return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx); 508 } 509 }; 510 511 // MIPS .reginfo section 512 template <class ELFT> 513 struct Elf_Mips_RegInfo; 514 515 template <llvm::support::endianness TargetEndianness> 516 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> { 517 LLVM_ELF_IMPORT_TYPES(TargetEndianness, false) 518 Elf_Word ri_gprmask; // bit-mask of used general registers 519 Elf_Word ri_cprmask[4]; // bit-mask of used co-processor registers 520 Elf_Addr ri_gp_value; // gp register value 521 }; 522 523 template <llvm::support::endianness TargetEndianness> 524 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> { 525 LLVM_ELF_IMPORT_TYPES(TargetEndianness, true) 526 Elf_Word ri_gprmask; // bit-mask of used general registers 527 Elf_Word ri_pad; // unused padding field 528 Elf_Word ri_cprmask[4]; // bit-mask of used co-processor registers 529 Elf_Addr ri_gp_value; // gp register value 530 }; 531 532 // .MIPS.options section 533 template <class ELFT> struct Elf_Mips_Options { 534 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 535 uint8_t kind; // Determines interpretation of variable part of descriptor 536 uint8_t size; // Byte size of descriptor, including this header 537 Elf_Half section; // Section header index of section affected, 538 // or 0 for global options 539 Elf_Word info; // Kind-specific information 540 541 const Elf_Mips_RegInfo<ELFT> &getRegInfo() const { 542 assert(kind == llvm::ELF::ODK_REGINFO); 543 return *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>( 544 (const uint8_t *)this + sizeof(Elf_Mips_Options)); 545 } 546 }; 547 548 // .MIPS.abiflags section content 549 template <class ELFT> struct Elf_Mips_ABIFlags { 550 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 551 Elf_Half version; // Version of the structure 552 uint8_t isa_level; // ISA level: 1-5, 32, and 64 553 uint8_t isa_rev; // ISA revision (0 for MIPS I - MIPS V) 554 uint8_t gpr_size; // General purpose registers size 555 uint8_t cpr1_size; // Co-processor 1 registers size 556 uint8_t cpr2_size; // Co-processor 2 registers size 557 uint8_t fp_abi; // Floating-point ABI flag 558 Elf_Word isa_ext; // Processor-specific extension 559 Elf_Word ases; // ASEs flags 560 Elf_Word flags1; // General flags 561 Elf_Word flags2; // General flags 562 }; 563 564 } // end namespace object. 565 } // end namespace llvm. 566 567 #endif 568