1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "test_precomp.hpp"
44
45 namespace
46 {
47 // http://www.christian-seiler.de/projekte/fpmath/
48 class FpuControl
49 {
50 public:
51 FpuControl();
52 ~FpuControl();
53
54 private:
55 #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__)
56 fpu_control_t fpu_oldcw, fpu_cw;
57 #elif defined(_WIN32) && !defined(_WIN64)
58 unsigned int fpu_oldcw, fpu_cw;
59 #endif
60 };
61
FpuControl()62 FpuControl::FpuControl()
63 {
64 #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__)
65 _FPU_GETCW(fpu_oldcw);
66 fpu_cw = (fpu_oldcw & ~_FPU_EXTENDED & ~_FPU_DOUBLE & ~_FPU_SINGLE) | _FPU_SINGLE;
67 _FPU_SETCW(fpu_cw);
68 #elif defined(_WIN32) && !defined(_WIN64)
69 _controlfp_s(&fpu_cw, 0, 0);
70 fpu_oldcw = fpu_cw;
71 _controlfp_s(&fpu_cw, _PC_24, _MCW_PC);
72 #endif
73 }
74
~FpuControl()75 FpuControl::~FpuControl()
76 {
77 #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__)
78 _FPU_SETCW(fpu_oldcw);
79 #elif defined(_WIN32) && !defined(_WIN64)
80 _controlfp_s(&fpu_cw, fpu_oldcw, _MCW_PC);
81 #endif
82 }
83 }
84
TestHaarCascadeApplication(std::string testName_,NCVTestSourceProvider<Ncv8u> & src_,std::string cascadeName_,Ncv32u width_,Ncv32u height_)85 TestHaarCascadeApplication::TestHaarCascadeApplication(std::string testName_, NCVTestSourceProvider<Ncv8u> &src_,
86 std::string cascadeName_, Ncv32u width_, Ncv32u height_)
87 :
88 NCVTestProvider(testName_),
89 src(src_),
90 cascadeName(cascadeName_),
91 width(width_),
92 height(height_)
93 {
94 }
95
96
toString(std::ofstream & strOut)97 bool TestHaarCascadeApplication::toString(std::ofstream &strOut)
98 {
99 strOut << "cascadeName=" << cascadeName << std::endl;
100 strOut << "width=" << width << std::endl;
101 strOut << "height=" << height << std::endl;
102 return true;
103 }
104
105
init()106 bool TestHaarCascadeApplication::init()
107 {
108 return true;
109 }
110
process()111 bool TestHaarCascadeApplication::process()
112 {
113 NCVStatus ncvStat;
114 bool rcode = false;
115
116 Ncv32u numStages, numNodes, numFeatures;
117
118 ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures);
119 ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
120
121 NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages);
122 ncvAssertReturn(h_HaarStages.isMemAllocated(), false);
123 NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes);
124 ncvAssertReturn(h_HaarNodes.isMemAllocated(), false);
125 NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures);
126 ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false);
127
128 NCVVectorAlloc<HaarStage64> d_HaarStages(*this->allocatorGPU.get(), numStages);
129 ncvAssertReturn(d_HaarStages.isMemAllocated(), false);
130 NCVVectorAlloc<HaarClassifierNode128> d_HaarNodes(*this->allocatorGPU.get(), numNodes);
131 ncvAssertReturn(d_HaarNodes.isMemAllocated(), false);
132 NCVVectorAlloc<HaarFeature64> d_HaarFeatures(*this->allocatorGPU.get(), numFeatures);
133 ncvAssertReturn(d_HaarFeatures.isMemAllocated(), false);
134
135 HaarClassifierCascadeDescriptor haar;
136 haar.ClassifierSize.width = haar.ClassifierSize.height = 1;
137 haar.bNeedsTiltedII = false;
138 haar.NumClassifierRootNodes = numNodes;
139 haar.NumClassifierTotalNodes = numNodes;
140 haar.NumFeatures = numFeatures;
141 haar.NumStages = numStages;
142
143 NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
144 NCV_SKIP_COND_BEGIN
145
146 ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
147 ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
148
149 ncvAssertReturn(NCV_SUCCESS == h_HaarStages.copySolid(d_HaarStages, 0), false);
150 ncvAssertReturn(NCV_SUCCESS == h_HaarNodes.copySolid(d_HaarNodes, 0), false);
151 ncvAssertReturn(NCV_SUCCESS == h_HaarFeatures.copySolid(d_HaarFeatures, 0), false);
152 ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);
153
154 NCV_SKIP_COND_END
155
156 NcvSize32s srcRoi, srcIIRoi, searchRoi;
157 srcRoi.width = this->width;
158 srcRoi.height = this->height;
159 srcIIRoi.width = srcRoi.width + 1;
160 srcIIRoi.height = srcRoi.height + 1;
161 searchRoi.width = srcIIRoi.width - haar.ClassifierSize.width;
162 searchRoi.height = srcIIRoi.height - haar.ClassifierSize.height;
163 if (searchRoi.width <= 0 || searchRoi.height <= 0)
164 {
165 return false;
166 }
167 NcvSize32u searchRoiU(searchRoi.width, searchRoi.height);
168
169 NCVMatrixAlloc<Ncv8u> d_img(*this->allocatorGPU.get(), this->width, this->height);
170 ncvAssertReturn(d_img.isMemAllocated(), false);
171 NCVMatrixAlloc<Ncv8u> h_img(*this->allocatorCPU.get(), this->width, this->height);
172 ncvAssertReturn(h_img.isMemAllocated(), false);
173
174 Ncv32u integralWidth = this->width + 1;
175 Ncv32u integralHeight = this->height + 1;
176
177 NCVMatrixAlloc<Ncv32u> d_integralImage(*this->allocatorGPU.get(), integralWidth, integralHeight);
178 ncvAssertReturn(d_integralImage.isMemAllocated(), false);
179 NCVMatrixAlloc<Ncv64u> d_sqIntegralImage(*this->allocatorGPU.get(), integralWidth, integralHeight);
180 ncvAssertReturn(d_sqIntegralImage.isMemAllocated(), false);
181 NCVMatrixAlloc<Ncv32u> h_integralImage(*this->allocatorCPU.get(), integralWidth, integralHeight);
182 ncvAssertReturn(h_integralImage.isMemAllocated(), false);
183 NCVMatrixAlloc<Ncv64u> h_sqIntegralImage(*this->allocatorCPU.get(), integralWidth, integralHeight);
184 ncvAssertReturn(h_sqIntegralImage.isMemAllocated(), false);
185
186 NCVMatrixAlloc<Ncv32f> d_rectStdDev(*this->allocatorGPU.get(), this->width, this->height);
187 ncvAssertReturn(d_rectStdDev.isMemAllocated(), false);
188 NCVMatrixAlloc<Ncv32u> d_pixelMask(*this->allocatorGPU.get(), this->width, this->height);
189 ncvAssertReturn(d_pixelMask.isMemAllocated(), false);
190 NCVMatrixAlloc<Ncv32f> h_rectStdDev(*this->allocatorCPU.get(), this->width, this->height);
191 ncvAssertReturn(h_rectStdDev.isMemAllocated(), false);
192 NCVMatrixAlloc<Ncv32u> h_pixelMask(*this->allocatorCPU.get(), this->width, this->height);
193 ncvAssertReturn(h_pixelMask.isMemAllocated(), false);
194
195 NCVVectorAlloc<NcvRect32u> d_hypotheses(*this->allocatorGPU.get(), this->width * this->height);
196 ncvAssertReturn(d_hypotheses.isMemAllocated(), false);
197 NCVVectorAlloc<NcvRect32u> h_hypotheses(*this->allocatorCPU.get(), this->width * this->height);
198 ncvAssertReturn(h_hypotheses.isMemAllocated(), false);
199
200 NCVStatus nppStat;
201 Ncv32u szTmpBufIntegral, szTmpBufSqIntegral;
202 nppStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &szTmpBufIntegral, this->devProp);
203 ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
204 nppStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(this->width, this->height), &szTmpBufSqIntegral, this->devProp);
205 ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
206 NCVVectorAlloc<Ncv8u> d_tmpIIbuf(*this->allocatorGPU.get(), std::max(szTmpBufIntegral, szTmpBufSqIntegral));
207 ncvAssertReturn(d_tmpIIbuf.isMemAllocated(), false);
208
209 Ncv32u detectionsOnThisScale_d = 0;
210 Ncv32u detectionsOnThisScale_h = 0;
211
212 NCV_SKIP_COND_BEGIN
213
214 ncvAssertReturn(this->src.fill(h_img), false);
215 ncvStat = h_img.copySolid(d_img, 0);
216 ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
217 ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);
218
219 nppStat = nppiStIntegral_8u32u_C1R(d_img.ptr(), d_img.pitch(),
220 d_integralImage.ptr(), d_integralImage.pitch(),
221 NcvSize32u(d_img.width(), d_img.height()),
222 d_tmpIIbuf.ptr(), szTmpBufIntegral, this->devProp);
223 ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
224
225 nppStat = nppiStSqrIntegral_8u64u_C1R(d_img.ptr(), d_img.pitch(),
226 d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
227 NcvSize32u(d_img.width(), d_img.height()),
228 d_tmpIIbuf.ptr(), szTmpBufSqIntegral, this->devProp);
229 ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
230
231 const NcvRect32u rect(
232 HAAR_STDDEV_BORDER,
233 HAAR_STDDEV_BORDER,
234 haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER,
235 haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER);
236 nppStat = nppiStRectStdDev_32f_C1R(
237 d_integralImage.ptr(), d_integralImage.pitch(),
238 d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
239 d_rectStdDev.ptr(), d_rectStdDev.pitch(),
240 NcvSize32u(searchRoi.width, searchRoi.height), rect,
241 1.0f, true);
242 ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
243
244 ncvStat = d_integralImage.copySolid(h_integralImage, 0);
245 ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
246 ncvStat = d_rectStdDev.copySolid(h_rectStdDev, 0);
247 ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
248
249 for (Ncv32u i=0; i<searchRoiU.height; i++)
250 {
251 for (Ncv32u j=0; j<h_pixelMask.stride(); j++)
252 {
253 if (j<searchRoiU.width)
254 {
255 h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = (i << 16) | j;
256 }
257 else
258 {
259 h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = OBJDET_MASK_ELEMENT_INVALID_32U;
260 }
261 }
262 }
263 ncvAssertReturn(cudaSuccess == cudaStreamSynchronize(0), false);
264
265 {
266 // calculations here
267 FpuControl fpu;
268 (void) fpu;
269
270 ncvStat = ncvApplyHaarClassifierCascade_host(
271 h_integralImage, h_rectStdDev, h_pixelMask,
272 detectionsOnThisScale_h,
273 haar, h_HaarStages, h_HaarNodes, h_HaarFeatures, false,
274 searchRoiU, 1, 1.0f);
275 ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
276 }
277
278 NCV_SKIP_COND_END
279
280 int devId;
281 ncvAssertCUDAReturn(cudaGetDevice(&devId), false);
282 cudaDeviceProp _devProp;
283 ncvAssertCUDAReturn(cudaGetDeviceProperties(&_devProp, devId), false);
284
285 ncvStat = ncvApplyHaarClassifierCascade_device(
286 d_integralImage, d_rectStdDev, d_pixelMask,
287 detectionsOnThisScale_d,
288 haar, h_HaarStages, d_HaarStages, d_HaarNodes, d_HaarFeatures, false,
289 searchRoiU, 1, 1.0f,
290 *this->allocatorGPU.get(), *this->allocatorCPU.get(),
291 _devProp, 0);
292 ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
293
294 NCVMatrixAlloc<Ncv32u> h_pixelMask_d(*this->allocatorCPU.get(), this->width, this->height);
295 ncvAssertReturn(h_pixelMask_d.isMemAllocated(), false);
296
297 //bit-to-bit check
298 bool bLoopVirgin = true;
299
300 NCV_SKIP_COND_BEGIN
301
302 ncvStat = d_pixelMask.copySolid(h_pixelMask_d, 0);
303 ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
304
305 if (detectionsOnThisScale_d != detectionsOnThisScale_h)
306 {
307 bLoopVirgin = false;
308 }
309 else
310 {
311 std::sort(h_pixelMask_d.ptr(), h_pixelMask_d.ptr() + detectionsOnThisScale_d);
312 for (Ncv32u i=0; i<detectionsOnThisScale_d && bLoopVirgin; i++)
313 {
314 if (h_pixelMask.ptr()[i] != h_pixelMask_d.ptr()[i])
315 {
316 bLoopVirgin = false;
317 }
318 }
319 }
320
321 NCV_SKIP_COND_END
322
323 if (bLoopVirgin)
324 {
325 rcode = true;
326 }
327
328 return rcode;
329 }
330
331
deinit()332 bool TestHaarCascadeApplication::deinit()
333 {
334 return true;
335 }
336