1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "test_precomp.hpp"
44 
45 
TestHaarCascadeLoader(std::string testName_,std::string cascadeName_)46 TestHaarCascadeLoader::TestHaarCascadeLoader(std::string testName_, std::string cascadeName_)
47     :
48     NCVTestProvider(testName_),
49     cascadeName(cascadeName_)
50 {
51 }
52 
53 
toString(std::ofstream & strOut)54 bool TestHaarCascadeLoader::toString(std::ofstream &strOut)
55 {
56     strOut << "cascadeName=" << cascadeName << std::endl;
57     return true;
58 }
59 
60 
init()61 bool TestHaarCascadeLoader::init()
62 {
63     return true;
64 }
65 
66 
process()67 bool TestHaarCascadeLoader::process()
68 {
69     NCVStatus ncvStat;
70     bool rcode = false;
71 
72     Ncv32u numStages, numNodes, numFeatures;
73     Ncv32u numStages_2 = 0, numNodes_2 = 0, numFeatures_2 = 0;
74 
75     ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures);
76     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
77 
78     NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages);
79     ncvAssertReturn(h_HaarStages.isMemAllocated(), false);
80     NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes);
81     ncvAssertReturn(h_HaarNodes.isMemAllocated(), false);
82     NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures);
83     ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false);
84 
85     NCVVectorAlloc<HaarStage64> h_HaarStages_2(*this->allocatorCPU.get(), numStages);
86     ncvAssertReturn(h_HaarStages_2.isMemAllocated(), false);
87     NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes_2(*this->allocatorCPU.get(), numNodes);
88     ncvAssertReturn(h_HaarNodes_2.isMemAllocated(), false);
89     NCVVectorAlloc<HaarFeature64> h_HaarFeatures_2(*this->allocatorCPU.get(), numFeatures);
90     ncvAssertReturn(h_HaarFeatures_2.isMemAllocated(), false);
91 
92     HaarClassifierCascadeDescriptor haar;
93     HaarClassifierCascadeDescriptor haar_2;
94 
95     NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
96     NCV_SKIP_COND_BEGIN
97 
98     const std::string testNvbinName = cv::tempfile("test.nvbin");
99     ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
100     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
101 
102     ncvStat = ncvHaarStoreNVBIN_host(testNvbinName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
103     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
104 
105     ncvStat = ncvHaarGetClassifierSize(testNvbinName, numStages_2, numNodes_2, numFeatures_2);
106     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
107 
108     ncvStat = ncvHaarLoadFromFile_host(testNvbinName, haar_2, h_HaarStages_2, h_HaarNodes_2, h_HaarFeatures_2);
109     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
110 
111     NCV_SKIP_COND_END
112 
113     //bit-to-bit check
114     bool bLoopVirgin = true;
115 
116     NCV_SKIP_COND_BEGIN
117 
118     if (
119     numStages_2 != numStages                                       ||
120     numNodes_2 != numNodes                                         ||
121     numFeatures_2 != numFeatures                                   ||
122     haar.NumStages               != haar_2.NumStages               ||
123     haar.NumClassifierRootNodes  != haar_2.NumClassifierRootNodes  ||
124     haar.NumClassifierTotalNodes != haar_2.NumClassifierTotalNodes ||
125     haar.NumFeatures             != haar_2.NumFeatures             ||
126     haar.ClassifierSize.width    != haar_2.ClassifierSize.width    ||
127     haar.ClassifierSize.height   != haar_2.ClassifierSize.height   ||
128     haar.bNeedsTiltedII          != haar_2.bNeedsTiltedII          ||
129     haar.bHasStumpsOnly          != haar_2.bHasStumpsOnly          )
130     {
131         bLoopVirgin = false;
132     }
133     if (memcmp(h_HaarStages.ptr(), h_HaarStages_2.ptr(), haar.NumStages * sizeof(HaarStage64)) ||
134         memcmp(h_HaarNodes.ptr(), h_HaarNodes_2.ptr(), haar.NumClassifierTotalNodes * sizeof(HaarClassifierNode128)) ||
135         memcmp(h_HaarFeatures.ptr(), h_HaarFeatures_2.ptr(), haar.NumFeatures * sizeof(HaarFeature64)) )
136     {
137         bLoopVirgin = false;
138     }
139     NCV_SKIP_COND_END
140 
141     if (bLoopVirgin)
142     {
143         rcode = true;
144     }
145 
146     return rcode;
147 }
148 
149 
deinit()150 bool TestHaarCascadeLoader::deinit()
151 {
152     return true;
153 }
154