1 /*
2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <stdint.h>
12 
13 #if defined(WEBRTC_POSIX)
14 #include <sys/time.h>
15 #if defined(WEBRTC_MAC)
16 #include <mach/mach_time.h>
17 #endif
18 #endif
19 
20 #if defined(WEBRTC_WIN)
21 #ifndef WIN32_LEAN_AND_MEAN
22 #define WIN32_LEAN_AND_MEAN
23 #endif
24 #include <windows.h>
25 #include <mmsystem.h>
26 #endif
27 
28 #include "webrtc/base/checks.h"
29 #include "webrtc/base/timeutils.h"
30 
31 #define EFFICIENT_IMPLEMENTATION 1
32 
33 namespace rtc {
34 
35 const uint32_t HALF = 0x80000000;
36 
TimeNanos()37 uint64_t TimeNanos() {
38   int64_t ticks = 0;
39 #if defined(WEBRTC_MAC)
40   static mach_timebase_info_data_t timebase;
41   if (timebase.denom == 0) {
42     // Get the timebase if this is the first time we run.
43     // Recommended by Apple's QA1398.
44     if (mach_timebase_info(&timebase) != KERN_SUCCESS) {
45       RTC_DCHECK(false);
46     }
47   }
48   // Use timebase to convert absolute time tick units into nanoseconds.
49   ticks = mach_absolute_time() * timebase.numer / timebase.denom;
50 #elif defined(WEBRTC_POSIX)
51   struct timespec ts;
52   // TODO: Do we need to handle the case when CLOCK_MONOTONIC
53   // is not supported?
54   clock_gettime(CLOCK_MONOTONIC, &ts);
55   ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) +
56           static_cast<int64_t>(ts.tv_nsec);
57 #elif defined(WEBRTC_WIN)
58   static volatile LONG last_timegettime = 0;
59   static volatile int64_t num_wrap_timegettime = 0;
60   volatile LONG* last_timegettime_ptr = &last_timegettime;
61   DWORD now = timeGetTime();
62   // Atomically update the last gotten time
63   DWORD old = InterlockedExchange(last_timegettime_ptr, now);
64   if (now < old) {
65     // If now is earlier than old, there may have been a race between
66     // threads.
67     // 0x0fffffff ~3.1 days, the code will not take that long to execute
68     // so it must have been a wrap around.
69     if (old > 0xf0000000 && now < 0x0fffffff) {
70       num_wrap_timegettime++;
71     }
72   }
73   ticks = now + (num_wrap_timegettime << 32);
74   // TODO: Calculate with nanosecond precision.  Otherwise, we're just
75   // wasting a multiply and divide when doing Time() on Windows.
76   ticks = ticks * kNumNanosecsPerMillisec;
77 #endif
78   return ticks;
79 }
80 
Time()81 uint32_t Time() {
82   return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec);
83 }
84 
TimeMicros()85 uint64_t TimeMicros() {
86   return static_cast<uint64_t>(TimeNanos() / kNumNanosecsPerMicrosec);
87 }
88 
89 #if defined(WEBRTC_WIN)
90 static const uint64_t kFileTimeToUnixTimeEpochOffset = 116444736000000000ULL;
91 
92 struct timeval {
93   long tv_sec, tv_usec;  // NOLINT
94 };
95 
96 // Emulate POSIX gettimeofday().
97 // Based on breakpad/src/third_party/glog/src/utilities.cc
gettimeofday(struct timeval * tv,void * tz)98 static int gettimeofday(struct timeval *tv, void *tz) {
99   // FILETIME is measured in tens of microseconds since 1601-01-01 UTC.
100   FILETIME ft;
101   GetSystemTimeAsFileTime(&ft);
102 
103   LARGE_INTEGER li;
104   li.LowPart = ft.dwLowDateTime;
105   li.HighPart = ft.dwHighDateTime;
106 
107   // Convert to seconds and microseconds since Unix time Epoch.
108   int64_t micros = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) / 10;
109   tv->tv_sec = static_cast<long>(micros / kNumMicrosecsPerSec);  // NOLINT
110   tv->tv_usec = static_cast<long>(micros % kNumMicrosecsPerSec); // NOLINT
111 
112   return 0;
113 }
114 
115 // Emulate POSIX gmtime_r().
gmtime_r(const time_t * timep,struct tm * result)116 static struct tm *gmtime_r(const time_t *timep, struct tm *result) {
117   // On Windows, gmtime is thread safe.
118   struct tm *tm = gmtime(timep);  // NOLINT
119   if (tm == NULL) {
120     return NULL;
121   }
122   *result = *tm;
123   return result;
124 }
125 #endif  // WEBRTC_WIN
126 
CurrentTmTime(struct tm * tm,int * microseconds)127 void CurrentTmTime(struct tm *tm, int *microseconds) {
128   struct timeval timeval;
129   if (gettimeofday(&timeval, NULL) < 0) {
130     // Incredibly unlikely code path.
131     timeval.tv_sec = timeval.tv_usec = 0;
132   }
133   time_t secs = timeval.tv_sec;
134   gmtime_r(&secs, tm);
135   *microseconds = timeval.tv_usec;
136 }
137 
TimeAfter(int32_t elapsed)138 uint32_t TimeAfter(int32_t elapsed) {
139   RTC_DCHECK_GE(elapsed, 0);
140   RTC_DCHECK_LT(static_cast<uint32_t>(elapsed), HALF);
141   return Time() + elapsed;
142 }
143 
TimeIsBetween(uint32_t earlier,uint32_t middle,uint32_t later)144 bool TimeIsBetween(uint32_t earlier, uint32_t middle, uint32_t later) {
145   if (earlier <= later) {
146     return ((earlier <= middle) && (middle <= later));
147   } else {
148     return !((later < middle) && (middle < earlier));
149   }
150 }
151 
TimeIsLaterOrEqual(uint32_t earlier,uint32_t later)152 bool TimeIsLaterOrEqual(uint32_t earlier, uint32_t later) {
153 #if EFFICIENT_IMPLEMENTATION
154   int32_t diff = later - earlier;
155   return (diff >= 0 && static_cast<uint32_t>(diff) < HALF);
156 #else
157   const bool later_or_equal = TimeIsBetween(earlier, later, earlier + HALF);
158   return later_or_equal;
159 #endif
160 }
161 
TimeIsLater(uint32_t earlier,uint32_t later)162 bool TimeIsLater(uint32_t earlier, uint32_t later) {
163 #if EFFICIENT_IMPLEMENTATION
164   int32_t diff = later - earlier;
165   return (diff > 0 && static_cast<uint32_t>(diff) < HALF);
166 #else
167   const bool earlier_or_equal = TimeIsBetween(later, earlier, later + HALF);
168   return !earlier_or_equal;
169 #endif
170 }
171 
TimeDiff(uint32_t later,uint32_t earlier)172 int32_t TimeDiff(uint32_t later, uint32_t earlier) {
173 #if EFFICIENT_IMPLEMENTATION
174   return later - earlier;
175 #else
176   const bool later_or_equal = TimeIsBetween(earlier, later, earlier + HALF);
177   if (later_or_equal) {
178     if (earlier <= later) {
179       return static_cast<long>(later - earlier);
180     } else {
181       return static_cast<long>(later + (UINT32_MAX - earlier) + 1);
182     }
183   } else {
184     if (later <= earlier) {
185       return -static_cast<long>(earlier - later);
186     } else {
187       return -static_cast<long>(earlier + (UINT32_MAX - later) + 1);
188     }
189   }
190 #endif
191 }
192 
TimestampWrapAroundHandler()193 TimestampWrapAroundHandler::TimestampWrapAroundHandler()
194     : last_ts_(0), num_wrap_(0) {}
195 
Unwrap(uint32_t ts)196 int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) {
197   if (ts < last_ts_) {
198     if (last_ts_ > 0xf0000000 && ts < 0x0fffffff) {
199       ++num_wrap_;
200     }
201   }
202   last_ts_ = ts;
203   int64_t unwrapped_ts = ts + (num_wrap_ << 32);
204   return unwrapped_ts;
205 }
206 
TmToSeconds(const std::tm & tm)207 int64_t TmToSeconds(const std::tm& tm) {
208   static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
209   static short int cumul_mdays[12] = {0,   31,  59,  90,  120, 151,
210                                       181, 212, 243, 273, 304, 334};
211   int year = tm.tm_year + 1900;
212   int month = tm.tm_mon;
213   int day = tm.tm_mday - 1;  // Make 0-based like the rest.
214   int hour = tm.tm_hour;
215   int min = tm.tm_min;
216   int sec = tm.tm_sec;
217 
218   bool expiry_in_leap_year = (year % 4 == 0 &&
219                               (year % 100 != 0 || year % 400 == 0));
220 
221   if (year < 1970)
222     return -1;
223   if (month < 0 || month > 11)
224     return -1;
225   if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1))
226     return -1;
227   if (hour < 0 || hour > 23)
228     return -1;
229   if (min < 0 || min > 59)
230     return -1;
231   if (sec < 0 || sec > 59)
232     return -1;
233 
234   day += cumul_mdays[month];
235 
236   // Add number of leap days between 1970 and the expiration year, inclusive.
237   day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) +
238           (year / 400 - 1970 / 400));
239 
240   // We will have added one day too much above if expiration is during a leap
241   // year, and expiration is in January or February.
242   if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based.
243     day -= 1;
244 
245   // Combine all variables into seconds from 1970-01-01 00:00 (except |month|
246   // which was accumulated into |day| above).
247   return (((static_cast<int64_t>
248             (year - 1970) * 365 + day) * 24 + hour) * 60 + min) * 60 + sec;
249 }
250 
251 } // namespace rtc
252