1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_ARM64
6
7 #include "src/bootstrapper.h"
8 #include "src/code-stubs.h"
9 #include "src/codegen.h"
10 #include "src/ic/handler-compiler.h"
11 #include "src/ic/ic.h"
12 #include "src/ic/stub-cache.h"
13 #include "src/isolate.h"
14 #include "src/regexp/jsregexp.h"
15 #include "src/regexp/regexp-macro-assembler.h"
16 #include "src/runtime/runtime.h"
17
18 #include "src/arm64/code-stubs-arm64.h"
19 #include "src/arm64/frames-arm64.h"
20
21 namespace v8 {
22 namespace internal {
23
24
InitializeArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)25 static void InitializeArrayConstructorDescriptor(
26 Isolate* isolate, CodeStubDescriptor* descriptor,
27 int constant_stack_parameter_count) {
28 // cp: context
29 // x1: function
30 // x2: allocation site with elements kind
31 // x0: number of arguments to the constructor function
32 Address deopt_handler = Runtime::FunctionForId(
33 Runtime::kArrayConstructor)->entry;
34
35 if (constant_stack_parameter_count == 0) {
36 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
37 JS_FUNCTION_STUB_MODE);
38 } else {
39 descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
40 JS_FUNCTION_STUB_MODE);
41 }
42 }
43
44
InitializeDescriptor(CodeStubDescriptor * descriptor)45 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
46 CodeStubDescriptor* descriptor) {
47 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
48 }
49
50
InitializeDescriptor(CodeStubDescriptor * descriptor)51 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
52 CodeStubDescriptor* descriptor) {
53 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
54 }
55
56
InitializeDescriptor(CodeStubDescriptor * descriptor)57 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
58 CodeStubDescriptor* descriptor) {
59 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
60 }
61
62
InitializeInternalArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)63 static void InitializeInternalArrayConstructorDescriptor(
64 Isolate* isolate, CodeStubDescriptor* descriptor,
65 int constant_stack_parameter_count) {
66 Address deopt_handler = Runtime::FunctionForId(
67 Runtime::kInternalArrayConstructor)->entry;
68
69 if (constant_stack_parameter_count == 0) {
70 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
71 JS_FUNCTION_STUB_MODE);
72 } else {
73 descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
74 JS_FUNCTION_STUB_MODE);
75 }
76 }
77
78
InitializeDescriptor(CodeStubDescriptor * descriptor)79 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
80 CodeStubDescriptor* descriptor) {
81 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
82 }
83
84
InitializeDescriptor(CodeStubDescriptor * descriptor)85 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
86 CodeStubDescriptor* descriptor) {
87 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
88 }
89
90
InitializeDescriptor(CodeStubDescriptor * descriptor)91 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
92 CodeStubDescriptor* descriptor) {
93 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
94 }
95
96
97 #define __ ACCESS_MASM(masm)
98
99
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)100 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
101 ExternalReference miss) {
102 // Update the static counter each time a new code stub is generated.
103 isolate()->counters()->code_stubs()->Increment();
104
105 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
106 int param_count = descriptor.GetRegisterParameterCount();
107 {
108 // Call the runtime system in a fresh internal frame.
109 FrameScope scope(masm, StackFrame::INTERNAL);
110 DCHECK((param_count == 0) ||
111 x0.Is(descriptor.GetRegisterParameter(param_count - 1)));
112
113 // Push arguments
114 MacroAssembler::PushPopQueue queue(masm);
115 for (int i = 0; i < param_count; ++i) {
116 queue.Queue(descriptor.GetRegisterParameter(i));
117 }
118 queue.PushQueued();
119
120 __ CallExternalReference(miss, param_count);
121 }
122
123 __ Ret();
124 }
125
126
Generate(MacroAssembler * masm)127 void DoubleToIStub::Generate(MacroAssembler* masm) {
128 Label done;
129 Register input = source();
130 Register result = destination();
131 DCHECK(is_truncating());
132
133 DCHECK(result.Is64Bits());
134 DCHECK(jssp.Is(masm->StackPointer()));
135
136 int double_offset = offset();
137
138 DoubleRegister double_scratch = d0; // only used if !skip_fastpath()
139 Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result);
140 Register scratch2 =
141 GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1);
142
143 __ Push(scratch1, scratch2);
144 // Account for saved regs if input is jssp.
145 if (input.is(jssp)) double_offset += 2 * kPointerSize;
146
147 if (!skip_fastpath()) {
148 __ Push(double_scratch);
149 if (input.is(jssp)) double_offset += 1 * kDoubleSize;
150 __ Ldr(double_scratch, MemOperand(input, double_offset));
151 // Try to convert with a FPU convert instruction. This handles all
152 // non-saturating cases.
153 __ TryConvertDoubleToInt64(result, double_scratch, &done);
154 __ Fmov(result, double_scratch);
155 } else {
156 __ Ldr(result, MemOperand(input, double_offset));
157 }
158
159 // If we reach here we need to manually convert the input to an int32.
160
161 // Extract the exponent.
162 Register exponent = scratch1;
163 __ Ubfx(exponent, result, HeapNumber::kMantissaBits,
164 HeapNumber::kExponentBits);
165
166 // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
167 // the mantissa gets shifted completely out of the int32_t result.
168 __ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
169 __ CzeroX(result, ge);
170 __ B(ge, &done);
171
172 // The Fcvtzs sequence handles all cases except where the conversion causes
173 // signed overflow in the int64_t target. Since we've already handled
174 // exponents >= 84, we can guarantee that 63 <= exponent < 84.
175
176 if (masm->emit_debug_code()) {
177 __ Cmp(exponent, HeapNumber::kExponentBias + 63);
178 // Exponents less than this should have been handled by the Fcvt case.
179 __ Check(ge, kUnexpectedValue);
180 }
181
182 // Isolate the mantissa bits, and set the implicit '1'.
183 Register mantissa = scratch2;
184 __ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
185 __ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
186
187 // Negate the mantissa if necessary.
188 __ Tst(result, kXSignMask);
189 __ Cneg(mantissa, mantissa, ne);
190
191 // Shift the mantissa bits in the correct place. We know that we have to shift
192 // it left here, because exponent >= 63 >= kMantissaBits.
193 __ Sub(exponent, exponent,
194 HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
195 __ Lsl(result, mantissa, exponent);
196
197 __ Bind(&done);
198 if (!skip_fastpath()) {
199 __ Pop(double_scratch);
200 }
201 __ Pop(scratch2, scratch1);
202 __ Ret();
203 }
204
205
206 // See call site for description.
EmitIdenticalObjectComparison(MacroAssembler * masm,Register left,Register right,Register scratch,FPRegister double_scratch,Label * slow,Condition cond,Strength strength)207 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Register left,
208 Register right, Register scratch,
209 FPRegister double_scratch,
210 Label* slow, Condition cond,
211 Strength strength) {
212 DCHECK(!AreAliased(left, right, scratch));
213 Label not_identical, return_equal, heap_number;
214 Register result = x0;
215
216 __ Cmp(right, left);
217 __ B(ne, ¬_identical);
218
219 // Test for NaN. Sadly, we can't just compare to factory::nan_value(),
220 // so we do the second best thing - test it ourselves.
221 // They are both equal and they are not both Smis so both of them are not
222 // Smis. If it's not a heap number, then return equal.
223 Register right_type = scratch;
224 if ((cond == lt) || (cond == gt)) {
225 // Call runtime on identical JSObjects. Otherwise return equal.
226 __ JumpIfObjectType(right, right_type, right_type, FIRST_JS_RECEIVER_TYPE,
227 slow, ge);
228 // Call runtime on identical symbols since we need to throw a TypeError.
229 __ Cmp(right_type, SYMBOL_TYPE);
230 __ B(eq, slow);
231 // Call runtime on identical SIMD values since we must throw a TypeError.
232 __ Cmp(right_type, SIMD128_VALUE_TYPE);
233 __ B(eq, slow);
234 if (is_strong(strength)) {
235 // Call the runtime on anything that is converted in the semantics, since
236 // we need to throw a TypeError. Smis have already been ruled out.
237 __ Cmp(right_type, Operand(HEAP_NUMBER_TYPE));
238 __ B(eq, &return_equal);
239 __ Tst(right_type, Operand(kIsNotStringMask));
240 __ B(ne, slow);
241 }
242 } else if (cond == eq) {
243 __ JumpIfHeapNumber(right, &heap_number);
244 } else {
245 __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE,
246 &heap_number);
247 // Comparing JS objects with <=, >= is complicated.
248 __ Cmp(right_type, FIRST_JS_RECEIVER_TYPE);
249 __ B(ge, slow);
250 // Call runtime on identical symbols since we need to throw a TypeError.
251 __ Cmp(right_type, SYMBOL_TYPE);
252 __ B(eq, slow);
253 // Call runtime on identical SIMD values since we must throw a TypeError.
254 __ Cmp(right_type, SIMD128_VALUE_TYPE);
255 __ B(eq, slow);
256 if (is_strong(strength)) {
257 // Call the runtime on anything that is converted in the semantics,
258 // since we need to throw a TypeError. Smis and heap numbers have
259 // already been ruled out.
260 __ Tst(right_type, Operand(kIsNotStringMask));
261 __ B(ne, slow);
262 }
263 // Normally here we fall through to return_equal, but undefined is
264 // special: (undefined == undefined) == true, but
265 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
266 if ((cond == le) || (cond == ge)) {
267 __ Cmp(right_type, ODDBALL_TYPE);
268 __ B(ne, &return_equal);
269 __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal);
270 if (cond == le) {
271 // undefined <= undefined should fail.
272 __ Mov(result, GREATER);
273 } else {
274 // undefined >= undefined should fail.
275 __ Mov(result, LESS);
276 }
277 __ Ret();
278 }
279 }
280
281 __ Bind(&return_equal);
282 if (cond == lt) {
283 __ Mov(result, GREATER); // Things aren't less than themselves.
284 } else if (cond == gt) {
285 __ Mov(result, LESS); // Things aren't greater than themselves.
286 } else {
287 __ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves.
288 }
289 __ Ret();
290
291 // Cases lt and gt have been handled earlier, and case ne is never seen, as
292 // it is handled in the parser (see Parser::ParseBinaryExpression). We are
293 // only concerned with cases ge, le and eq here.
294 if ((cond != lt) && (cond != gt)) {
295 DCHECK((cond == ge) || (cond == le) || (cond == eq));
296 __ Bind(&heap_number);
297 // Left and right are identical pointers to a heap number object. Return
298 // non-equal if the heap number is a NaN, and equal otherwise. Comparing
299 // the number to itself will set the overflow flag iff the number is NaN.
300 __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset));
301 __ Fcmp(double_scratch, double_scratch);
302 __ B(vc, &return_equal); // Not NaN, so treat as normal heap number.
303
304 if (cond == le) {
305 __ Mov(result, GREATER);
306 } else {
307 __ Mov(result, LESS);
308 }
309 __ Ret();
310 }
311
312 // No fall through here.
313 if (FLAG_debug_code) {
314 __ Unreachable();
315 }
316
317 __ Bind(¬_identical);
318 }
319
320
321 // See call site for description.
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register left,Register right,Register left_type,Register right_type,Register scratch)322 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
323 Register left,
324 Register right,
325 Register left_type,
326 Register right_type,
327 Register scratch) {
328 DCHECK(!AreAliased(left, right, left_type, right_type, scratch));
329
330 if (masm->emit_debug_code()) {
331 // We assume that the arguments are not identical.
332 __ Cmp(left, right);
333 __ Assert(ne, kExpectedNonIdenticalObjects);
334 }
335
336 // If either operand is a JS object or an oddball value, then they are not
337 // equal since their pointers are different.
338 // There is no test for undetectability in strict equality.
339 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
340 Label right_non_object;
341
342 __ Cmp(right_type, FIRST_JS_RECEIVER_TYPE);
343 __ B(lt, &right_non_object);
344
345 // Return non-zero - x0 already contains a non-zero pointer.
346 DCHECK(left.is(x0) || right.is(x0));
347 Label return_not_equal;
348 __ Bind(&return_not_equal);
349 __ Ret();
350
351 __ Bind(&right_non_object);
352
353 // Check for oddballs: true, false, null, undefined.
354 __ Cmp(right_type, ODDBALL_TYPE);
355
356 // If right is not ODDBALL, test left. Otherwise, set eq condition.
357 __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne);
358
359 // If right or left is not ODDBALL, test left >= FIRST_JS_RECEIVER_TYPE.
360 // Otherwise, right or left is ODDBALL, so set a ge condition.
361 __ Ccmp(left_type, FIRST_JS_RECEIVER_TYPE, NVFlag, ne);
362
363 __ B(ge, &return_not_equal);
364
365 // Internalized strings are unique, so they can only be equal if they are the
366 // same object. We have already tested that case, so if left and right are
367 // both internalized strings, they cannot be equal.
368 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
369 __ Orr(scratch, left_type, right_type);
370 __ TestAndBranchIfAllClear(
371 scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal);
372 }
373
374
375 // See call site for description.
EmitSmiNonsmiComparison(MacroAssembler * masm,Register left,Register right,FPRegister left_d,FPRegister right_d,Label * slow,bool strict)376 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
377 Register left,
378 Register right,
379 FPRegister left_d,
380 FPRegister right_d,
381 Label* slow,
382 bool strict) {
383 DCHECK(!AreAliased(left_d, right_d));
384 DCHECK((left.is(x0) && right.is(x1)) ||
385 (right.is(x0) && left.is(x1)));
386 Register result = x0;
387
388 Label right_is_smi, done;
389 __ JumpIfSmi(right, &right_is_smi);
390
391 // Left is the smi. Check whether right is a heap number.
392 if (strict) {
393 // If right is not a number and left is a smi, then strict equality cannot
394 // succeed. Return non-equal.
395 Label is_heap_number;
396 __ JumpIfHeapNumber(right, &is_heap_number);
397 // Register right is a non-zero pointer, which is a valid NOT_EQUAL result.
398 if (!right.is(result)) {
399 __ Mov(result, NOT_EQUAL);
400 }
401 __ Ret();
402 __ Bind(&is_heap_number);
403 } else {
404 // Smi compared non-strictly with a non-smi, non-heap-number. Call the
405 // runtime.
406 __ JumpIfNotHeapNumber(right, slow);
407 }
408
409 // Left is the smi. Right is a heap number. Load right value into right_d, and
410 // convert left smi into double in left_d.
411 __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset));
412 __ SmiUntagToDouble(left_d, left);
413 __ B(&done);
414
415 __ Bind(&right_is_smi);
416 // Right is a smi. Check whether the non-smi left is a heap number.
417 if (strict) {
418 // If left is not a number and right is a smi then strict equality cannot
419 // succeed. Return non-equal.
420 Label is_heap_number;
421 __ JumpIfHeapNumber(left, &is_heap_number);
422 // Register left is a non-zero pointer, which is a valid NOT_EQUAL result.
423 if (!left.is(result)) {
424 __ Mov(result, NOT_EQUAL);
425 }
426 __ Ret();
427 __ Bind(&is_heap_number);
428 } else {
429 // Smi compared non-strictly with a non-smi, non-heap-number. Call the
430 // runtime.
431 __ JumpIfNotHeapNumber(left, slow);
432 }
433
434 // Right is the smi. Left is a heap number. Load left value into left_d, and
435 // convert right smi into double in right_d.
436 __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset));
437 __ SmiUntagToDouble(right_d, right);
438
439 // Fall through to both_loaded_as_doubles.
440 __ Bind(&done);
441 }
442
443
444 // Fast negative check for internalized-to-internalized equality.
445 // See call site for description.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register left,Register right,Register left_map,Register right_map,Register left_type,Register right_type,Label * possible_strings,Label * not_both_strings)446 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
447 Register left,
448 Register right,
449 Register left_map,
450 Register right_map,
451 Register left_type,
452 Register right_type,
453 Label* possible_strings,
454 Label* not_both_strings) {
455 DCHECK(!AreAliased(left, right, left_map, right_map, left_type, right_type));
456 Register result = x0;
457
458 Label object_test;
459 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
460 // TODO(all): reexamine this branch sequence for optimisation wrt branch
461 // prediction.
462 __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test);
463 __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
464 __ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings);
465 __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
466
467 // Both are internalized. We already checked that they weren't the same
468 // pointer, so they are not equal.
469 __ Mov(result, NOT_EQUAL);
470 __ Ret();
471
472 __ Bind(&object_test);
473
474 __ Cmp(right_type, FIRST_JS_RECEIVER_TYPE);
475
476 // If right >= FIRST_JS_RECEIVER_TYPE, test left.
477 // Otherwise, right < FIRST_JS_RECEIVER_TYPE, so set lt condition.
478 __ Ccmp(left_type, FIRST_JS_RECEIVER_TYPE, NFlag, ge);
479
480 __ B(lt, not_both_strings);
481
482 // If both objects are undetectable, they are equal. Otherwise, they are not
483 // equal, since they are different objects and an object is not equal to
484 // undefined.
485
486 // Returning here, so we can corrupt right_type and left_type.
487 Register right_bitfield = right_type;
488 Register left_bitfield = left_type;
489 __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset));
490 __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset));
491 __ And(result, right_bitfield, left_bitfield);
492 __ And(result, result, 1 << Map::kIsUndetectable);
493 __ Eor(result, result, 1 << Map::kIsUndetectable);
494 __ Ret();
495 }
496
497
CompareICStub_CheckInputType(MacroAssembler * masm,Register input,CompareICState::State expected,Label * fail)498 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
499 CompareICState::State expected,
500 Label* fail) {
501 Label ok;
502 if (expected == CompareICState::SMI) {
503 __ JumpIfNotSmi(input, fail);
504 } else if (expected == CompareICState::NUMBER) {
505 __ JumpIfSmi(input, &ok);
506 __ JumpIfNotHeapNumber(input, fail);
507 }
508 // We could be strict about internalized/non-internalized here, but as long as
509 // hydrogen doesn't care, the stub doesn't have to care either.
510 __ Bind(&ok);
511 }
512
513
GenerateGeneric(MacroAssembler * masm)514 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
515 Register lhs = x1;
516 Register rhs = x0;
517 Register result = x0;
518 Condition cond = GetCondition();
519
520 Label miss;
521 CompareICStub_CheckInputType(masm, lhs, left(), &miss);
522 CompareICStub_CheckInputType(masm, rhs, right(), &miss);
523
524 Label slow; // Call builtin.
525 Label not_smis, both_loaded_as_doubles;
526 Label not_two_smis, smi_done;
527 __ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis);
528 __ SmiUntag(lhs);
529 __ Sub(result, lhs, Operand::UntagSmi(rhs));
530 __ Ret();
531
532 __ Bind(¬_two_smis);
533
534 // NOTICE! This code is only reached after a smi-fast-case check, so it is
535 // certain that at least one operand isn't a smi.
536
537 // Handle the case where the objects are identical. Either returns the answer
538 // or goes to slow. Only falls through if the objects were not identical.
539 EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond,
540 strength());
541
542 // If either is a smi (we know that at least one is not a smi), then they can
543 // only be strictly equal if the other is a HeapNumber.
544 __ JumpIfBothNotSmi(lhs, rhs, ¬_smis);
545
546 // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that
547 // can:
548 // 1) Return the answer.
549 // 2) Branch to the slow case.
550 // 3) Fall through to both_loaded_as_doubles.
551 // In case 3, we have found out that we were dealing with a number-number
552 // comparison. The double values of the numbers have been loaded, right into
553 // rhs_d, left into lhs_d.
554 FPRegister rhs_d = d0;
555 FPRegister lhs_d = d1;
556 EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, &slow, strict());
557
558 __ Bind(&both_loaded_as_doubles);
559 // The arguments have been converted to doubles and stored in rhs_d and
560 // lhs_d.
561 Label nan;
562 __ Fcmp(lhs_d, rhs_d);
563 __ B(vs, &nan); // Overflow flag set if either is NaN.
564 STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
565 __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
566 __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
567 __ Ret();
568
569 __ Bind(&nan);
570 // Left and/or right is a NaN. Load the result register with whatever makes
571 // the comparison fail, since comparisons with NaN always fail (except ne,
572 // which is filtered out at a higher level.)
573 DCHECK(cond != ne);
574 if ((cond == lt) || (cond == le)) {
575 __ Mov(result, GREATER);
576 } else {
577 __ Mov(result, LESS);
578 }
579 __ Ret();
580
581 __ Bind(¬_smis);
582 // At this point we know we are dealing with two different objects, and
583 // neither of them is a smi. The objects are in rhs_ and lhs_.
584
585 // Load the maps and types of the objects.
586 Register rhs_map = x10;
587 Register rhs_type = x11;
588 Register lhs_map = x12;
589 Register lhs_type = x13;
590 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
591 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
592 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
593 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
594
595 if (strict()) {
596 // This emits a non-equal return sequence for some object types, or falls
597 // through if it was not lucky.
598 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14);
599 }
600
601 Label check_for_internalized_strings;
602 Label flat_string_check;
603 // Check for heap number comparison. Branch to earlier double comparison code
604 // if they are heap numbers, otherwise, branch to internalized string check.
605 __ Cmp(rhs_type, HEAP_NUMBER_TYPE);
606 __ B(ne, &check_for_internalized_strings);
607 __ Cmp(lhs_map, rhs_map);
608
609 // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat
610 // string check.
611 __ B(ne, &flat_string_check);
612
613 // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double
614 // comparison code.
615 __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
616 __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
617 __ B(&both_loaded_as_doubles);
618
619 __ Bind(&check_for_internalized_strings);
620 // In the strict case, the EmitStrictTwoHeapObjectCompare already took care
621 // of internalized strings.
622 if ((cond == eq) && !strict()) {
623 // Returns an answer for two internalized strings or two detectable objects.
624 // Otherwise branches to the string case or not both strings case.
625 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map,
626 lhs_type, rhs_type,
627 &flat_string_check, &slow);
628 }
629
630 // Check for both being sequential one-byte strings,
631 // and inline if that is the case.
632 __ Bind(&flat_string_check);
633 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x14,
634 x15, &slow);
635
636 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10,
637 x11);
638 if (cond == eq) {
639 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
640 x12);
641 } else {
642 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
643 x12, x13);
644 }
645
646 // Never fall through to here.
647 if (FLAG_debug_code) {
648 __ Unreachable();
649 }
650
651 __ Bind(&slow);
652
653 __ Push(lhs, rhs);
654 // Figure out which native to call and setup the arguments.
655 if (cond == eq) {
656 __ TailCallRuntime(strict() ? Runtime::kStrictEquals : Runtime::kEquals);
657 } else {
658 int ncr; // NaN compare result
659 if ((cond == lt) || (cond == le)) {
660 ncr = GREATER;
661 } else {
662 DCHECK((cond == gt) || (cond == ge)); // remaining cases
663 ncr = LESS;
664 }
665 __ Mov(x10, Smi::FromInt(ncr));
666 __ Push(x10);
667
668 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
669 // tagged as a small integer.
670 __ TailCallRuntime(is_strong(strength()) ? Runtime::kCompare_Strong
671 : Runtime::kCompare);
672 }
673
674 __ Bind(&miss);
675 GenerateMiss(masm);
676 }
677
678
Generate(MacroAssembler * masm)679 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
680 CPURegList saved_regs = kCallerSaved;
681 CPURegList saved_fp_regs = kCallerSavedFP;
682
683 // We don't allow a GC during a store buffer overflow so there is no need to
684 // store the registers in any particular way, but we do have to store and
685 // restore them.
686
687 // We don't care if MacroAssembler scratch registers are corrupted.
688 saved_regs.Remove(*(masm->TmpList()));
689 saved_fp_regs.Remove(*(masm->FPTmpList()));
690
691 __ PushCPURegList(saved_regs);
692 if (save_doubles()) {
693 __ PushCPURegList(saved_fp_regs);
694 }
695
696 AllowExternalCallThatCantCauseGC scope(masm);
697 __ Mov(x0, ExternalReference::isolate_address(isolate()));
698 __ CallCFunction(
699 ExternalReference::store_buffer_overflow_function(isolate()), 1, 0);
700
701 if (save_doubles()) {
702 __ PopCPURegList(saved_fp_regs);
703 }
704 __ PopCPURegList(saved_regs);
705 __ Ret();
706 }
707
708
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)709 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
710 Isolate* isolate) {
711 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
712 stub1.GetCode();
713 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
714 stub2.GetCode();
715 }
716
717
Generate(MacroAssembler * masm)718 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
719 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
720 UseScratchRegisterScope temps(masm);
721 Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr());
722 Register return_address = temps.AcquireX();
723 __ Mov(return_address, lr);
724 // Restore lr with the value it had before the call to this stub (the value
725 // which must be pushed).
726 __ Mov(lr, saved_lr);
727 __ PushSafepointRegisters();
728 __ Ret(return_address);
729 }
730
731
Generate(MacroAssembler * masm)732 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
733 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
734 UseScratchRegisterScope temps(masm);
735 Register return_address = temps.AcquireX();
736 // Preserve the return address (lr will be clobbered by the pop).
737 __ Mov(return_address, lr);
738 __ PopSafepointRegisters();
739 __ Ret(return_address);
740 }
741
742
Generate(MacroAssembler * masm)743 void MathPowStub::Generate(MacroAssembler* masm) {
744 // Stack on entry:
745 // jssp[0]: Exponent (as a tagged value).
746 // jssp[1]: Base (as a tagged value).
747 //
748 // The (tagged) result will be returned in x0, as a heap number.
749
750 Register result_tagged = x0;
751 Register base_tagged = x10;
752 Register exponent_tagged = MathPowTaggedDescriptor::exponent();
753 DCHECK(exponent_tagged.is(x11));
754 Register exponent_integer = MathPowIntegerDescriptor::exponent();
755 DCHECK(exponent_integer.is(x12));
756 Register scratch1 = x14;
757 Register scratch0 = x15;
758 Register saved_lr = x19;
759 FPRegister result_double = d0;
760 FPRegister base_double = d0;
761 FPRegister exponent_double = d1;
762 FPRegister base_double_copy = d2;
763 FPRegister scratch1_double = d6;
764 FPRegister scratch0_double = d7;
765
766 // A fast-path for integer exponents.
767 Label exponent_is_smi, exponent_is_integer;
768 // Bail out to runtime.
769 Label call_runtime;
770 // Allocate a heap number for the result, and return it.
771 Label done;
772
773 // Unpack the inputs.
774 if (exponent_type() == ON_STACK) {
775 Label base_is_smi;
776 Label unpack_exponent;
777
778 __ Pop(exponent_tagged, base_tagged);
779
780 __ JumpIfSmi(base_tagged, &base_is_smi);
781 __ JumpIfNotHeapNumber(base_tagged, &call_runtime);
782 // base_tagged is a heap number, so load its double value.
783 __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset));
784 __ B(&unpack_exponent);
785 __ Bind(&base_is_smi);
786 // base_tagged is a SMI, so untag it and convert it to a double.
787 __ SmiUntagToDouble(base_double, base_tagged);
788
789 __ Bind(&unpack_exponent);
790 // x10 base_tagged The tagged base (input).
791 // x11 exponent_tagged The tagged exponent (input).
792 // d1 base_double The base as a double.
793 __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
794 __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime);
795 // exponent_tagged is a heap number, so load its double value.
796 __ Ldr(exponent_double,
797 FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
798 } else if (exponent_type() == TAGGED) {
799 __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
800 __ Ldr(exponent_double,
801 FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
802 }
803
804 // Handle double (heap number) exponents.
805 if (exponent_type() != INTEGER) {
806 // Detect integer exponents stored as doubles and handle those in the
807 // integer fast-path.
808 __ TryRepresentDoubleAsInt64(exponent_integer, exponent_double,
809 scratch0_double, &exponent_is_integer);
810
811 if (exponent_type() == ON_STACK) {
812 FPRegister half_double = d3;
813 FPRegister minus_half_double = d4;
814 // Detect square root case. Crankshaft detects constant +/-0.5 at compile
815 // time and uses DoMathPowHalf instead. We then skip this check for
816 // non-constant cases of +/-0.5 as these hardly occur.
817
818 __ Fmov(minus_half_double, -0.5);
819 __ Fmov(half_double, 0.5);
820 __ Fcmp(minus_half_double, exponent_double);
821 __ Fccmp(half_double, exponent_double, NZFlag, ne);
822 // Condition flags at this point:
823 // 0.5; nZCv // Identified by eq && pl
824 // -0.5: NZcv // Identified by eq && mi
825 // other: ?z?? // Identified by ne
826 __ B(ne, &call_runtime);
827
828 // The exponent is 0.5 or -0.5.
829
830 // Given that exponent is known to be either 0.5 or -0.5, the following
831 // special cases could apply (according to ECMA-262 15.8.2.13):
832 //
833 // base.isNaN(): The result is NaN.
834 // (base == +INFINITY) || (base == -INFINITY)
835 // exponent == 0.5: The result is +INFINITY.
836 // exponent == -0.5: The result is +0.
837 // (base == +0) || (base == -0)
838 // exponent == 0.5: The result is +0.
839 // exponent == -0.5: The result is +INFINITY.
840 // (base < 0) && base.isFinite(): The result is NaN.
841 //
842 // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except
843 // where base is -INFINITY or -0.
844
845 // Add +0 to base. This has no effect other than turning -0 into +0.
846 __ Fadd(base_double, base_double, fp_zero);
847 // The operation -0+0 results in +0 in all cases except where the
848 // FPCR rounding mode is 'round towards minus infinity' (RM). The
849 // ARM64 simulator does not currently simulate FPCR (where the rounding
850 // mode is set), so test the operation with some debug code.
851 if (masm->emit_debug_code()) {
852 UseScratchRegisterScope temps(masm);
853 Register temp = temps.AcquireX();
854 __ Fneg(scratch0_double, fp_zero);
855 // Verify that we correctly generated +0.0 and -0.0.
856 // bits(+0.0) = 0x0000000000000000
857 // bits(-0.0) = 0x8000000000000000
858 __ Fmov(temp, fp_zero);
859 __ CheckRegisterIsClear(temp, kCouldNotGenerateZero);
860 __ Fmov(temp, scratch0_double);
861 __ Eor(temp, temp, kDSignMask);
862 __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero);
863 // Check that -0.0 + 0.0 == +0.0.
864 __ Fadd(scratch0_double, scratch0_double, fp_zero);
865 __ Fmov(temp, scratch0_double);
866 __ CheckRegisterIsClear(temp, kExpectedPositiveZero);
867 }
868
869 // If base is -INFINITY, make it +INFINITY.
870 // * Calculate base - base: All infinities will become NaNs since both
871 // -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in ARM64.
872 // * If the result is NaN, calculate abs(base).
873 __ Fsub(scratch0_double, base_double, base_double);
874 __ Fcmp(scratch0_double, 0.0);
875 __ Fabs(scratch1_double, base_double);
876 __ Fcsel(base_double, scratch1_double, base_double, vs);
877
878 // Calculate the square root of base.
879 __ Fsqrt(result_double, base_double);
880 __ Fcmp(exponent_double, 0.0);
881 __ B(ge, &done); // Finish now for exponents of 0.5.
882 // Find the inverse for exponents of -0.5.
883 __ Fmov(scratch0_double, 1.0);
884 __ Fdiv(result_double, scratch0_double, result_double);
885 __ B(&done);
886 }
887
888 {
889 AllowExternalCallThatCantCauseGC scope(masm);
890 __ Mov(saved_lr, lr);
891 __ CallCFunction(
892 ExternalReference::power_double_double_function(isolate()),
893 0, 2);
894 __ Mov(lr, saved_lr);
895 __ B(&done);
896 }
897
898 // Handle SMI exponents.
899 __ Bind(&exponent_is_smi);
900 // x10 base_tagged The tagged base (input).
901 // x11 exponent_tagged The tagged exponent (input).
902 // d1 base_double The base as a double.
903 __ SmiUntag(exponent_integer, exponent_tagged);
904 }
905
906 __ Bind(&exponent_is_integer);
907 // x10 base_tagged The tagged base (input).
908 // x11 exponent_tagged The tagged exponent (input).
909 // x12 exponent_integer The exponent as an integer.
910 // d1 base_double The base as a double.
911
912 // Find abs(exponent). For negative exponents, we can find the inverse later.
913 Register exponent_abs = x13;
914 __ Cmp(exponent_integer, 0);
915 __ Cneg(exponent_abs, exponent_integer, mi);
916 // x13 exponent_abs The value of abs(exponent_integer).
917
918 // Repeatedly multiply to calculate the power.
919 // result = 1.0;
920 // For each bit n (exponent_integer{n}) {
921 // if (exponent_integer{n}) {
922 // result *= base;
923 // }
924 // base *= base;
925 // if (remaining bits in exponent_integer are all zero) {
926 // break;
927 // }
928 // }
929 Label power_loop, power_loop_entry, power_loop_exit;
930 __ Fmov(scratch1_double, base_double);
931 __ Fmov(base_double_copy, base_double);
932 __ Fmov(result_double, 1.0);
933 __ B(&power_loop_entry);
934
935 __ Bind(&power_loop);
936 __ Fmul(scratch1_double, scratch1_double, scratch1_double);
937 __ Lsr(exponent_abs, exponent_abs, 1);
938 __ Cbz(exponent_abs, &power_loop_exit);
939
940 __ Bind(&power_loop_entry);
941 __ Tbz(exponent_abs, 0, &power_loop);
942 __ Fmul(result_double, result_double, scratch1_double);
943 __ B(&power_loop);
944
945 __ Bind(&power_loop_exit);
946
947 // If the exponent was positive, result_double holds the result.
948 __ Tbz(exponent_integer, kXSignBit, &done);
949
950 // The exponent was negative, so find the inverse.
951 __ Fmov(scratch0_double, 1.0);
952 __ Fdiv(result_double, scratch0_double, result_double);
953 // ECMA-262 only requires Math.pow to return an 'implementation-dependent
954 // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow
955 // to calculate the subnormal value 2^-1074. This method of calculating
956 // negative powers doesn't work because 2^1074 overflows to infinity. To
957 // catch this corner-case, we bail out if the result was 0. (This can only
958 // occur if the divisor is infinity or the base is zero.)
959 __ Fcmp(result_double, 0.0);
960 __ B(&done, ne);
961
962 if (exponent_type() == ON_STACK) {
963 // Bail out to runtime code.
964 __ Bind(&call_runtime);
965 // Put the arguments back on the stack.
966 __ Push(base_tagged, exponent_tagged);
967 __ TailCallRuntime(Runtime::kMathPowRT);
968
969 // Return.
970 __ Bind(&done);
971 __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1,
972 result_double);
973 DCHECK(result_tagged.is(x0));
974 __ IncrementCounter(
975 isolate()->counters()->math_pow(), 1, scratch0, scratch1);
976 __ Ret();
977 } else {
978 AllowExternalCallThatCantCauseGC scope(masm);
979 __ Mov(saved_lr, lr);
980 __ Fmov(base_double, base_double_copy);
981 __ Scvtf(exponent_double, exponent_integer);
982 __ CallCFunction(
983 ExternalReference::power_double_double_function(isolate()),
984 0, 2);
985 __ Mov(lr, saved_lr);
986 __ Bind(&done);
987 __ IncrementCounter(
988 isolate()->counters()->math_pow(), 1, scratch0, scratch1);
989 __ Ret();
990 }
991 }
992
993
GenerateStubsAheadOfTime(Isolate * isolate)994 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
995 // It is important that the following stubs are generated in this order
996 // because pregenerated stubs can only call other pregenerated stubs.
997 // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses
998 // CEntryStub.
999 CEntryStub::GenerateAheadOfTime(isolate);
1000 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1001 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1002 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1003 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
1004 CreateWeakCellStub::GenerateAheadOfTime(isolate);
1005 BinaryOpICStub::GenerateAheadOfTime(isolate);
1006 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
1007 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
1008 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
1009 StoreFastElementStub::GenerateAheadOfTime(isolate);
1010 TypeofStub::GenerateAheadOfTime(isolate);
1011 }
1012
1013
GenerateAheadOfTime(Isolate * isolate)1014 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1015 StoreRegistersStateStub stub(isolate);
1016 stub.GetCode();
1017 }
1018
1019
GenerateAheadOfTime(Isolate * isolate)1020 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1021 RestoreRegistersStateStub stub(isolate);
1022 stub.GetCode();
1023 }
1024
1025
GenerateFPStubs(Isolate * isolate)1026 void CodeStub::GenerateFPStubs(Isolate* isolate) {
1027 // Floating-point code doesn't get special handling in ARM64, so there's
1028 // nothing to do here.
1029 USE(isolate);
1030 }
1031
1032
NeedsImmovableCode()1033 bool CEntryStub::NeedsImmovableCode() {
1034 // CEntryStub stores the return address on the stack before calling into
1035 // C++ code. In some cases, the VM accesses this address, but it is not used
1036 // when the C++ code returns to the stub because LR holds the return address
1037 // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up
1038 // returning to dead code.
1039 // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't
1040 // find any comment to confirm this, and I don't hit any crashes whatever
1041 // this function returns. The anaylsis should be properly confirmed.
1042 return true;
1043 }
1044
1045
GenerateAheadOfTime(Isolate * isolate)1046 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1047 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1048 stub.GetCode();
1049 CEntryStub stub_fp(isolate, 1, kSaveFPRegs);
1050 stub_fp.GetCode();
1051 }
1052
1053
Generate(MacroAssembler * masm)1054 void CEntryStub::Generate(MacroAssembler* masm) {
1055 // The Abort mechanism relies on CallRuntime, which in turn relies on
1056 // CEntryStub, so until this stub has been generated, we have to use a
1057 // fall-back Abort mechanism.
1058 //
1059 // Note that this stub must be generated before any use of Abort.
1060 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
1061
1062 ASM_LOCATION("CEntryStub::Generate entry");
1063 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1064
1065 // Register parameters:
1066 // x0: argc (including receiver, untagged)
1067 // x1: target
1068 // If argv_in_register():
1069 // x11: argv (pointer to first argument)
1070 //
1071 // The stack on entry holds the arguments and the receiver, with the receiver
1072 // at the highest address:
1073 //
1074 // jssp]argc-1]: receiver
1075 // jssp[argc-2]: arg[argc-2]
1076 // ... ...
1077 // jssp[1]: arg[1]
1078 // jssp[0]: arg[0]
1079 //
1080 // The arguments are in reverse order, so that arg[argc-2] is actually the
1081 // first argument to the target function and arg[0] is the last.
1082 DCHECK(jssp.Is(__ StackPointer()));
1083 const Register& argc_input = x0;
1084 const Register& target_input = x1;
1085
1086 // Calculate argv, argc and the target address, and store them in
1087 // callee-saved registers so we can retry the call without having to reload
1088 // these arguments.
1089 // TODO(jbramley): If the first call attempt succeeds in the common case (as
1090 // it should), then we might be better off putting these parameters directly
1091 // into their argument registers, rather than using callee-saved registers and
1092 // preserving them on the stack.
1093 const Register& argv = x21;
1094 const Register& argc = x22;
1095 const Register& target = x23;
1096
1097 // Derive argv from the stack pointer so that it points to the first argument
1098 // (arg[argc-2]), or just below the receiver in case there are no arguments.
1099 // - Adjust for the arg[] array.
1100 Register temp_argv = x11;
1101 if (!argv_in_register()) {
1102 __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2));
1103 // - Adjust for the receiver.
1104 __ Sub(temp_argv, temp_argv, 1 * kPointerSize);
1105 }
1106
1107 // Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved
1108 // registers.
1109 FrameScope scope(masm, StackFrame::MANUAL);
1110 __ EnterExitFrame(save_doubles(), x10, 3);
1111 DCHECK(csp.Is(__ StackPointer()));
1112
1113 // Poke callee-saved registers into reserved space.
1114 __ Poke(argv, 1 * kPointerSize);
1115 __ Poke(argc, 2 * kPointerSize);
1116 __ Poke(target, 3 * kPointerSize);
1117
1118 // We normally only keep tagged values in callee-saved registers, as they
1119 // could be pushed onto the stack by called stubs and functions, and on the
1120 // stack they can confuse the GC. However, we're only calling C functions
1121 // which can push arbitrary data onto the stack anyway, and so the GC won't
1122 // examine that part of the stack.
1123 __ Mov(argc, argc_input);
1124 __ Mov(target, target_input);
1125 __ Mov(argv, temp_argv);
1126
1127 // x21 : argv
1128 // x22 : argc
1129 // x23 : call target
1130 //
1131 // The stack (on entry) holds the arguments and the receiver, with the
1132 // receiver at the highest address:
1133 //
1134 // argv[8]: receiver
1135 // argv -> argv[0]: arg[argc-2]
1136 // ... ...
1137 // argv[...]: arg[1]
1138 // argv[...]: arg[0]
1139 //
1140 // Immediately below (after) this is the exit frame, as constructed by
1141 // EnterExitFrame:
1142 // fp[8]: CallerPC (lr)
1143 // fp -> fp[0]: CallerFP (old fp)
1144 // fp[-8]: Space reserved for SPOffset.
1145 // fp[-16]: CodeObject()
1146 // csp[...]: Saved doubles, if saved_doubles is true.
1147 // csp[32]: Alignment padding, if necessary.
1148 // csp[24]: Preserved x23 (used for target).
1149 // csp[16]: Preserved x22 (used for argc).
1150 // csp[8]: Preserved x21 (used for argv).
1151 // csp -> csp[0]: Space reserved for the return address.
1152 //
1153 // After a successful call, the exit frame, preserved registers (x21-x23) and
1154 // the arguments (including the receiver) are dropped or popped as
1155 // appropriate. The stub then returns.
1156 //
1157 // After an unsuccessful call, the exit frame and suchlike are left
1158 // untouched, and the stub either throws an exception by jumping to one of
1159 // the exception_returned label.
1160
1161 DCHECK(csp.Is(__ StackPointer()));
1162
1163 // Prepare AAPCS64 arguments to pass to the builtin.
1164 __ Mov(x0, argc);
1165 __ Mov(x1, argv);
1166 __ Mov(x2, ExternalReference::isolate_address(isolate()));
1167
1168 Label return_location;
1169 __ Adr(x12, &return_location);
1170 __ Poke(x12, 0);
1171
1172 if (__ emit_debug_code()) {
1173 // Verify that the slot below fp[kSPOffset]-8 points to the return location
1174 // (currently in x12).
1175 UseScratchRegisterScope temps(masm);
1176 Register temp = temps.AcquireX();
1177 __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset));
1178 __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize)));
1179 __ Cmp(temp, x12);
1180 __ Check(eq, kReturnAddressNotFoundInFrame);
1181 }
1182
1183 // Call the builtin.
1184 __ Blr(target);
1185 __ Bind(&return_location);
1186
1187 // x0 result The return code from the call.
1188 // x21 argv
1189 // x22 argc
1190 // x23 target
1191 const Register& result = x0;
1192
1193 // Check result for exception sentinel.
1194 Label exception_returned;
1195 __ CompareRoot(result, Heap::kExceptionRootIndex);
1196 __ B(eq, &exception_returned);
1197
1198 // The call succeeded, so unwind the stack and return.
1199
1200 // Restore callee-saved registers x21-x23.
1201 __ Mov(x11, argc);
1202
1203 __ Peek(argv, 1 * kPointerSize);
1204 __ Peek(argc, 2 * kPointerSize);
1205 __ Peek(target, 3 * kPointerSize);
1206
1207 __ LeaveExitFrame(save_doubles(), x10, true);
1208 DCHECK(jssp.Is(__ StackPointer()));
1209 if (!argv_in_register()) {
1210 // Drop the remaining stack slots and return from the stub.
1211 __ Drop(x11);
1212 }
1213 __ AssertFPCRState();
1214 __ Ret();
1215
1216 // The stack pointer is still csp if we aren't returning, and the frame
1217 // hasn't changed (except for the return address).
1218 __ SetStackPointer(csp);
1219
1220 // Handling of exception.
1221 __ Bind(&exception_returned);
1222
1223 ExternalReference pending_handler_context_address(
1224 Isolate::kPendingHandlerContextAddress, isolate());
1225 ExternalReference pending_handler_code_address(
1226 Isolate::kPendingHandlerCodeAddress, isolate());
1227 ExternalReference pending_handler_offset_address(
1228 Isolate::kPendingHandlerOffsetAddress, isolate());
1229 ExternalReference pending_handler_fp_address(
1230 Isolate::kPendingHandlerFPAddress, isolate());
1231 ExternalReference pending_handler_sp_address(
1232 Isolate::kPendingHandlerSPAddress, isolate());
1233
1234 // Ask the runtime for help to determine the handler. This will set x0 to
1235 // contain the current pending exception, don't clobber it.
1236 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1237 isolate());
1238 DCHECK(csp.Is(masm->StackPointer()));
1239 {
1240 FrameScope scope(masm, StackFrame::MANUAL);
1241 __ Mov(x0, 0); // argc.
1242 __ Mov(x1, 0); // argv.
1243 __ Mov(x2, ExternalReference::isolate_address(isolate()));
1244 __ CallCFunction(find_handler, 3);
1245 }
1246
1247 // We didn't execute a return case, so the stack frame hasn't been updated
1248 // (except for the return address slot). However, we don't need to initialize
1249 // jssp because the throw method will immediately overwrite it when it
1250 // unwinds the stack.
1251 __ SetStackPointer(jssp);
1252
1253 // Retrieve the handler context, SP and FP.
1254 __ Mov(cp, Operand(pending_handler_context_address));
1255 __ Ldr(cp, MemOperand(cp));
1256 __ Mov(jssp, Operand(pending_handler_sp_address));
1257 __ Ldr(jssp, MemOperand(jssp));
1258 __ Mov(fp, Operand(pending_handler_fp_address));
1259 __ Ldr(fp, MemOperand(fp));
1260
1261 // If the handler is a JS frame, restore the context to the frame. Note that
1262 // the context will be set to (cp == 0) for non-JS frames.
1263 Label not_js_frame;
1264 __ Cbz(cp, ¬_js_frame);
1265 __ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1266 __ Bind(¬_js_frame);
1267
1268 // Compute the handler entry address and jump to it.
1269 __ Mov(x10, Operand(pending_handler_code_address));
1270 __ Ldr(x10, MemOperand(x10));
1271 __ Mov(x11, Operand(pending_handler_offset_address));
1272 __ Ldr(x11, MemOperand(x11));
1273 __ Add(x10, x10, Code::kHeaderSize - kHeapObjectTag);
1274 __ Add(x10, x10, x11);
1275 __ Br(x10);
1276 }
1277
1278
1279 // This is the entry point from C++. 5 arguments are provided in x0-x4.
1280 // See use of the CALL_GENERATED_CODE macro for example in src/execution.cc.
1281 // Input:
1282 // x0: code entry.
1283 // x1: function.
1284 // x2: receiver.
1285 // x3: argc.
1286 // x4: argv.
1287 // Output:
1288 // x0: result.
Generate(MacroAssembler * masm)1289 void JSEntryStub::Generate(MacroAssembler* masm) {
1290 DCHECK(jssp.Is(__ StackPointer()));
1291 Register code_entry = x0;
1292
1293 // Enable instruction instrumentation. This only works on the simulator, and
1294 // will have no effect on the model or real hardware.
1295 __ EnableInstrumentation();
1296
1297 Label invoke, handler_entry, exit;
1298
1299 // Push callee-saved registers and synchronize the system stack pointer (csp)
1300 // and the JavaScript stack pointer (jssp).
1301 //
1302 // We must not write to jssp until after the PushCalleeSavedRegisters()
1303 // call, since jssp is itself a callee-saved register.
1304 __ SetStackPointer(csp);
1305 __ PushCalleeSavedRegisters();
1306 __ Mov(jssp, csp);
1307 __ SetStackPointer(jssp);
1308
1309 // Configure the FPCR. We don't restore it, so this is technically not allowed
1310 // according to AAPCS64. However, we only set default-NaN mode and this will
1311 // be harmless for most C code. Also, it works for ARM.
1312 __ ConfigureFPCR();
1313
1314 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1315
1316 // Set up the reserved register for 0.0.
1317 __ Fmov(fp_zero, 0.0);
1318
1319 // Build an entry frame (see layout below).
1320 int marker = type();
1321 int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
1322 __ Mov(x13, bad_frame_pointer);
1323 __ Mov(x12, Smi::FromInt(marker));
1324 __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
1325 __ Ldr(x10, MemOperand(x11));
1326
1327 __ Push(x13, xzr, x12, x10);
1328 // Set up fp.
1329 __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset);
1330
1331 // Push the JS entry frame marker. Also set js_entry_sp if this is the
1332 // outermost JS call.
1333 Label non_outermost_js, done;
1334 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1335 __ Mov(x10, ExternalReference(js_entry_sp));
1336 __ Ldr(x11, MemOperand(x10));
1337 __ Cbnz(x11, &non_outermost_js);
1338 __ Str(fp, MemOperand(x10));
1339 __ Mov(x12, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1340 __ Push(x12);
1341 __ B(&done);
1342 __ Bind(&non_outermost_js);
1343 // We spare one instruction by pushing xzr since the marker is 0.
1344 DCHECK(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL);
1345 __ Push(xzr);
1346 __ Bind(&done);
1347
1348 // The frame set up looks like this:
1349 // jssp[0] : JS entry frame marker.
1350 // jssp[1] : C entry FP.
1351 // jssp[2] : stack frame marker.
1352 // jssp[3] : stack frmae marker.
1353 // jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
1354
1355
1356 // Jump to a faked try block that does the invoke, with a faked catch
1357 // block that sets the pending exception.
1358 __ B(&invoke);
1359
1360 // Prevent the constant pool from being emitted between the record of the
1361 // handler_entry position and the first instruction of the sequence here.
1362 // There is no risk because Assembler::Emit() emits the instruction before
1363 // checking for constant pool emission, but we do not want to depend on
1364 // that.
1365 {
1366 Assembler::BlockPoolsScope block_pools(masm);
1367 __ bind(&handler_entry);
1368 handler_offset_ = handler_entry.pos();
1369 // Caught exception: Store result (exception) in the pending exception
1370 // field in the JSEnv and return a failure sentinel. Coming in here the
1371 // fp will be invalid because the PushTryHandler below sets it to 0 to
1372 // signal the existence of the JSEntry frame.
1373 __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1374 isolate())));
1375 }
1376 __ Str(code_entry, MemOperand(x10));
1377 __ LoadRoot(x0, Heap::kExceptionRootIndex);
1378 __ B(&exit);
1379
1380 // Invoke: Link this frame into the handler chain.
1381 __ Bind(&invoke);
1382 __ PushStackHandler();
1383 // If an exception not caught by another handler occurs, this handler
1384 // returns control to the code after the B(&invoke) above, which
1385 // restores all callee-saved registers (including cp and fp) to their
1386 // saved values before returning a failure to C.
1387
1388 // Clear any pending exceptions.
1389 __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
1390 __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1391 isolate())));
1392 __ Str(x10, MemOperand(x11));
1393
1394 // Invoke the function by calling through the JS entry trampoline builtin.
1395 // Notice that we cannot store a reference to the trampoline code directly in
1396 // this stub, because runtime stubs are not traversed when doing GC.
1397
1398 // Expected registers by Builtins::JSEntryTrampoline
1399 // x0: code entry.
1400 // x1: function.
1401 // x2: receiver.
1402 // x3: argc.
1403 // x4: argv.
1404 ExternalReference entry(type() == StackFrame::ENTRY_CONSTRUCT
1405 ? Builtins::kJSConstructEntryTrampoline
1406 : Builtins::kJSEntryTrampoline,
1407 isolate());
1408 __ Mov(x10, entry);
1409
1410 // Call the JSEntryTrampoline.
1411 __ Ldr(x11, MemOperand(x10)); // Dereference the address.
1412 __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
1413 __ Blr(x12);
1414
1415 // Unlink this frame from the handler chain.
1416 __ PopStackHandler();
1417
1418
1419 __ Bind(&exit);
1420 // x0 holds the result.
1421 // The stack pointer points to the top of the entry frame pushed on entry from
1422 // C++ (at the beginning of this stub):
1423 // jssp[0] : JS entry frame marker.
1424 // jssp[1] : C entry FP.
1425 // jssp[2] : stack frame marker.
1426 // jssp[3] : stack frmae marker.
1427 // jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
1428
1429 // Check if the current stack frame is marked as the outermost JS frame.
1430 Label non_outermost_js_2;
1431 __ Pop(x10);
1432 __ Cmp(x10, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1433 __ B(ne, &non_outermost_js_2);
1434 __ Mov(x11, ExternalReference(js_entry_sp));
1435 __ Str(xzr, MemOperand(x11));
1436 __ Bind(&non_outermost_js_2);
1437
1438 // Restore the top frame descriptors from the stack.
1439 __ Pop(x10);
1440 __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
1441 __ Str(x10, MemOperand(x11));
1442
1443 // Reset the stack to the callee saved registers.
1444 __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes);
1445 // Restore the callee-saved registers and return.
1446 DCHECK(jssp.Is(__ StackPointer()));
1447 __ Mov(csp, jssp);
1448 __ SetStackPointer(csp);
1449 __ PopCalleeSavedRegisters();
1450 // After this point, we must not modify jssp because it is a callee-saved
1451 // register which we have just restored.
1452 __ Ret();
1453 }
1454
1455
Generate(MacroAssembler * masm)1456 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1457 Label miss;
1458 Register receiver = LoadDescriptor::ReceiverRegister();
1459 // Ensure that the vector and slot registers won't be clobbered before
1460 // calling the miss handler.
1461 DCHECK(!AreAliased(x10, x11, LoadWithVectorDescriptor::VectorRegister(),
1462 LoadWithVectorDescriptor::SlotRegister()));
1463
1464 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10,
1465 x11, &miss);
1466
1467 __ Bind(&miss);
1468 PropertyAccessCompiler::TailCallBuiltin(
1469 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1470 }
1471
1472
Generate(MacroAssembler * masm)1473 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1474 // Return address is in lr.
1475 Label miss;
1476
1477 Register receiver = LoadDescriptor::ReceiverRegister();
1478 Register index = LoadDescriptor::NameRegister();
1479 Register result = x0;
1480 Register scratch = x10;
1481 DCHECK(!scratch.is(receiver) && !scratch.is(index));
1482 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
1483 result.is(LoadWithVectorDescriptor::SlotRegister()));
1484
1485 // StringCharAtGenerator doesn't use the result register until it's passed
1486 // the different miss possibilities. If it did, we would have a conflict
1487 // when FLAG_vector_ics is true.
1488 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1489 &miss, // When not a string.
1490 &miss, // When not a number.
1491 &miss, // When index out of range.
1492 STRING_INDEX_IS_ARRAY_INDEX,
1493 RECEIVER_IS_STRING);
1494 char_at_generator.GenerateFast(masm);
1495 __ Ret();
1496
1497 StubRuntimeCallHelper call_helper;
1498 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
1499
1500 __ Bind(&miss);
1501 PropertyAccessCompiler::TailCallBuiltin(
1502 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1503 }
1504
1505
Generate(MacroAssembler * masm)1506 void InstanceOfStub::Generate(MacroAssembler* masm) {
1507 Register const object = x1; // Object (lhs).
1508 Register const function = x0; // Function (rhs).
1509 Register const object_map = x2; // Map of {object}.
1510 Register const function_map = x3; // Map of {function}.
1511 Register const function_prototype = x4; // Prototype of {function}.
1512 Register const scratch = x5;
1513
1514 DCHECK(object.is(InstanceOfDescriptor::LeftRegister()));
1515 DCHECK(function.is(InstanceOfDescriptor::RightRegister()));
1516
1517 // Check if {object} is a smi.
1518 Label object_is_smi;
1519 __ JumpIfSmi(object, &object_is_smi);
1520
1521 // Lookup the {function} and the {object} map in the global instanceof cache.
1522 // Note: This is safe because we clear the global instanceof cache whenever
1523 // we change the prototype of any object.
1524 Label fast_case, slow_case;
1525 __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
1526 __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex,
1527 &fast_case);
1528 __ JumpIfNotRoot(object_map, Heap::kInstanceofCacheMapRootIndex, &fast_case);
1529 __ LoadRoot(x0, Heap::kInstanceofCacheAnswerRootIndex);
1530 __ Ret();
1531
1532 // If {object} is a smi we can safely return false if {function} is a JS
1533 // function, otherwise we have to miss to the runtime and throw an exception.
1534 __ Bind(&object_is_smi);
1535 __ JumpIfSmi(function, &slow_case);
1536 __ JumpIfNotObjectType(function, function_map, scratch, JS_FUNCTION_TYPE,
1537 &slow_case);
1538 __ LoadRoot(x0, Heap::kFalseValueRootIndex);
1539 __ Ret();
1540
1541 // Fast-case: The {function} must be a valid JSFunction.
1542 __ Bind(&fast_case);
1543 __ JumpIfSmi(function, &slow_case);
1544 __ JumpIfNotObjectType(function, function_map, scratch, JS_FUNCTION_TYPE,
1545 &slow_case);
1546
1547 // Ensure that {function} has an instance prototype.
1548 __ Ldrb(scratch, FieldMemOperand(function_map, Map::kBitFieldOffset));
1549 __ Tbnz(scratch, Map::kHasNonInstancePrototype, &slow_case);
1550
1551 // Get the "prototype" (or initial map) of the {function}.
1552 __ Ldr(function_prototype,
1553 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1554 __ AssertNotSmi(function_prototype);
1555
1556 // Resolve the prototype if the {function} has an initial map. Afterwards the
1557 // {function_prototype} will be either the JSReceiver prototype object or the
1558 // hole value, which means that no instances of the {function} were created so
1559 // far and hence we should return false.
1560 Label function_prototype_valid;
1561 __ JumpIfNotObjectType(function_prototype, scratch, scratch, MAP_TYPE,
1562 &function_prototype_valid);
1563 __ Ldr(function_prototype,
1564 FieldMemOperand(function_prototype, Map::kPrototypeOffset));
1565 __ Bind(&function_prototype_valid);
1566 __ AssertNotSmi(function_prototype);
1567
1568 // Update the global instanceof cache with the current {object} map and
1569 // {function}. The cached answer will be set when it is known below.
1570 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1571 __ StoreRoot(object_map, Heap::kInstanceofCacheMapRootIndex);
1572
1573 // Loop through the prototype chain looking for the {function} prototype.
1574 // Assume true, and change to false if not found.
1575 Register const object_instance_type = function_map;
1576 Register const map_bit_field = function_map;
1577 Register const null = scratch;
1578 Register const result = x0;
1579
1580 Label done, loop, fast_runtime_fallback;
1581 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1582 __ LoadRoot(null, Heap::kNullValueRootIndex);
1583 __ Bind(&loop);
1584
1585 // Check if the object needs to be access checked.
1586 __ Ldrb(map_bit_field, FieldMemOperand(object_map, Map::kBitFieldOffset));
1587 __ TestAndBranchIfAnySet(map_bit_field, 1 << Map::kIsAccessCheckNeeded,
1588 &fast_runtime_fallback);
1589 // Check if the current object is a Proxy.
1590 __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
1591 __ B(eq, &fast_runtime_fallback);
1592
1593 __ Ldr(object, FieldMemOperand(object_map, Map::kPrototypeOffset));
1594 __ Cmp(object, function_prototype);
1595 __ B(eq, &done);
1596 __ Cmp(object, null);
1597 __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
1598 __ B(ne, &loop);
1599 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1600 __ Bind(&done);
1601 __ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
1602 __ Ret();
1603
1604 // Found Proxy or access check needed: Call the runtime
1605 __ Bind(&fast_runtime_fallback);
1606 __ Push(object, function_prototype);
1607 // Invalidate the instanceof cache.
1608 __ Move(scratch, Smi::FromInt(0));
1609 __ StoreRoot(scratch, Heap::kInstanceofCacheFunctionRootIndex);
1610 __ TailCallRuntime(Runtime::kHasInPrototypeChain);
1611
1612 // Slow-case: Call the %InstanceOf runtime function.
1613 __ bind(&slow_case);
1614 __ Push(object, function);
1615 __ TailCallRuntime(Runtime::kInstanceOf);
1616 }
1617
1618
GenerateReadElement(MacroAssembler * masm)1619 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1620 Register arg_count = ArgumentsAccessReadDescriptor::parameter_count();
1621 Register key = ArgumentsAccessReadDescriptor::index();
1622 DCHECK(arg_count.is(x0));
1623 DCHECK(key.is(x1));
1624
1625 // The displacement is the offset of the last parameter (if any) relative
1626 // to the frame pointer.
1627 static const int kDisplacement =
1628 StandardFrameConstants::kCallerSPOffset - kPointerSize;
1629
1630 // Check that the key is a smi.
1631 Label slow;
1632 __ JumpIfNotSmi(key, &slow);
1633
1634 // Check if the calling frame is an arguments adaptor frame.
1635 Register local_fp = x11;
1636 Register caller_fp = x11;
1637 Register caller_ctx = x12;
1638 Label skip_adaptor;
1639 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1640 __ Ldr(caller_ctx, MemOperand(caller_fp,
1641 StandardFrameConstants::kContextOffset));
1642 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1643 __ Csel(local_fp, fp, caller_fp, ne);
1644 __ B(ne, &skip_adaptor);
1645
1646 // Load the actual arguments limit found in the arguments adaptor frame.
1647 __ Ldr(arg_count, MemOperand(caller_fp,
1648 ArgumentsAdaptorFrameConstants::kLengthOffset));
1649 __ Bind(&skip_adaptor);
1650
1651 // Check index against formal parameters count limit. Use unsigned comparison
1652 // to get negative check for free: branch if key < 0 or key >= arg_count.
1653 __ Cmp(key, arg_count);
1654 __ B(hs, &slow);
1655
1656 // Read the argument from the stack and return it.
1657 __ Sub(x10, arg_count, key);
1658 __ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2));
1659 __ Ldr(x0, MemOperand(x10, kDisplacement));
1660 __ Ret();
1661
1662 // Slow case: handle non-smi or out-of-bounds access to arguments by calling
1663 // the runtime system.
1664 __ Bind(&slow);
1665 __ Push(key);
1666 __ TailCallRuntime(Runtime::kArguments);
1667 }
1668
1669
GenerateNewSloppySlow(MacroAssembler * masm)1670 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1671 // x1 : function
1672 // x2 : number of parameters (tagged)
1673 // x3 : parameters pointer
1674
1675 DCHECK(x1.is(ArgumentsAccessNewDescriptor::function()));
1676 DCHECK(x2.is(ArgumentsAccessNewDescriptor::parameter_count()));
1677 DCHECK(x3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
1678
1679 // Check if the calling frame is an arguments adaptor frame.
1680 Label runtime;
1681 Register caller_fp = x10;
1682 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1683 // Load and untag the context.
1684 __ Ldr(w11, UntagSmiMemOperand(caller_fp,
1685 StandardFrameConstants::kContextOffset));
1686 __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR);
1687 __ B(ne, &runtime);
1688
1689 // Patch the arguments.length and parameters pointer in the current frame.
1690 __ Ldr(x2,
1691 MemOperand(caller_fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1692 __ Add(x3, caller_fp, Operand::UntagSmiAndScale(x2, kPointerSizeLog2));
1693 __ Add(x3, x3, StandardFrameConstants::kCallerSPOffset);
1694
1695 __ Bind(&runtime);
1696 __ Push(x1, x3, x2);
1697 __ TailCallRuntime(Runtime::kNewSloppyArguments);
1698 }
1699
1700
GenerateNewSloppyFast(MacroAssembler * masm)1701 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1702 // x1 : function
1703 // x2 : number of parameters (tagged)
1704 // x3 : parameters pointer
1705 //
1706 // Returns pointer to result object in x0.
1707
1708 DCHECK(x1.is(ArgumentsAccessNewDescriptor::function()));
1709 DCHECK(x2.is(ArgumentsAccessNewDescriptor::parameter_count()));
1710 DCHECK(x3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
1711
1712 // Make an untagged copy of the parameter count.
1713 // Note: arg_count_smi is an alias of param_count_smi.
1714 Register function = x1;
1715 Register arg_count_smi = x2;
1716 Register param_count_smi = x2;
1717 Register recv_arg = x3;
1718 Register param_count = x7;
1719 __ SmiUntag(param_count, param_count_smi);
1720
1721 // Check if the calling frame is an arguments adaptor frame.
1722 Register caller_fp = x11;
1723 Register caller_ctx = x12;
1724 Label runtime;
1725 Label adaptor_frame, try_allocate;
1726 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1727 __ Ldr(caller_ctx, MemOperand(caller_fp,
1728 StandardFrameConstants::kContextOffset));
1729 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1730 __ B(eq, &adaptor_frame);
1731
1732 // No adaptor, parameter count = argument count.
1733
1734 // x1 function function pointer
1735 // x2 arg_count_smi number of function arguments (smi)
1736 // x3 recv_arg pointer to receiver arguments
1737 // x4 mapped_params number of mapped params, min(params, args) (uninit)
1738 // x7 param_count number of function parameters
1739 // x11 caller_fp caller's frame pointer
1740 // x14 arg_count number of function arguments (uninit)
1741
1742 Register arg_count = x14;
1743 Register mapped_params = x4;
1744 __ Mov(arg_count, param_count);
1745 __ Mov(mapped_params, param_count);
1746 __ B(&try_allocate);
1747
1748 // We have an adaptor frame. Patch the parameters pointer.
1749 __ Bind(&adaptor_frame);
1750 __ Ldr(arg_count_smi,
1751 MemOperand(caller_fp,
1752 ArgumentsAdaptorFrameConstants::kLengthOffset));
1753 __ SmiUntag(arg_count, arg_count_smi);
1754 __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
1755 __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
1756
1757 // Compute the mapped parameter count = min(param_count, arg_count)
1758 __ Cmp(param_count, arg_count);
1759 __ Csel(mapped_params, param_count, arg_count, lt);
1760
1761 __ Bind(&try_allocate);
1762
1763 // x0 alloc_obj pointer to allocated objects: param map, backing
1764 // store, arguments (uninit)
1765 // x1 function function pointer
1766 // x2 arg_count_smi number of function arguments (smi)
1767 // x3 recv_arg pointer to receiver arguments
1768 // x4 mapped_params number of mapped parameters, min(params, args)
1769 // x7 param_count number of function parameters
1770 // x10 size size of objects to allocate (uninit)
1771 // x14 arg_count number of function arguments
1772
1773 // Compute the size of backing store, parameter map, and arguments object.
1774 // 1. Parameter map, has two extra words containing context and backing
1775 // store.
1776 const int kParameterMapHeaderSize =
1777 FixedArray::kHeaderSize + 2 * kPointerSize;
1778
1779 // Calculate the parameter map size, assuming it exists.
1780 Register size = x10;
1781 __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
1782 __ Add(size, size, kParameterMapHeaderSize);
1783
1784 // If there are no mapped parameters, set the running size total to zero.
1785 // Otherwise, use the parameter map size calculated earlier.
1786 __ Cmp(mapped_params, 0);
1787 __ CzeroX(size, eq);
1788
1789 // 2. Add the size of the backing store and arguments object.
1790 __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
1791 __ Add(size, size,
1792 FixedArray::kHeaderSize + Heap::kSloppyArgumentsObjectSize);
1793
1794 // Do the allocation of all three objects in one go. Assign this to x0, as it
1795 // will be returned to the caller.
1796 Register alloc_obj = x0;
1797 __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
1798
1799 // Get the arguments boilerplate from the current (global) context.
1800
1801 // x0 alloc_obj pointer to allocated objects (param map, backing
1802 // store, arguments)
1803 // x1 function function pointer
1804 // x2 arg_count_smi number of function arguments (smi)
1805 // x3 recv_arg pointer to receiver arguments
1806 // x4 mapped_params number of mapped parameters, min(params, args)
1807 // x7 param_count number of function parameters
1808 // x11 sloppy_args_map offset to args (or aliased args) map (uninit)
1809 // x14 arg_count number of function arguments
1810
1811 Register global_ctx = x10;
1812 Register sloppy_args_map = x11;
1813 Register aliased_args_map = x10;
1814 __ Ldr(global_ctx, NativeContextMemOperand());
1815
1816 __ Ldr(sloppy_args_map,
1817 ContextMemOperand(global_ctx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
1818 __ Ldr(
1819 aliased_args_map,
1820 ContextMemOperand(global_ctx, Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX));
1821 __ Cmp(mapped_params, 0);
1822 __ CmovX(sloppy_args_map, aliased_args_map, ne);
1823
1824 // Copy the JS object part.
1825 __ Str(sloppy_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
1826 __ LoadRoot(x10, Heap::kEmptyFixedArrayRootIndex);
1827 __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
1828 __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
1829
1830 // Set up the callee in-object property.
1831 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1832 const int kCalleeOffset = JSObject::kHeaderSize +
1833 Heap::kArgumentsCalleeIndex * kPointerSize;
1834 __ AssertNotSmi(function);
1835 __ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset));
1836
1837 // Use the length and set that as an in-object property.
1838 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1839 const int kLengthOffset = JSObject::kHeaderSize +
1840 Heap::kArgumentsLengthIndex * kPointerSize;
1841 __ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
1842
1843 // Set up the elements pointer in the allocated arguments object.
1844 // If we allocated a parameter map, "elements" will point there, otherwise
1845 // it will point to the backing store.
1846
1847 // x0 alloc_obj pointer to allocated objects (param map, backing
1848 // store, arguments)
1849 // x1 function function pointer
1850 // x2 arg_count_smi number of function arguments (smi)
1851 // x3 recv_arg pointer to receiver arguments
1852 // x4 mapped_params number of mapped parameters, min(params, args)
1853 // x5 elements pointer to parameter map or backing store (uninit)
1854 // x6 backing_store pointer to backing store (uninit)
1855 // x7 param_count number of function parameters
1856 // x14 arg_count number of function arguments
1857
1858 Register elements = x5;
1859 __ Add(elements, alloc_obj, Heap::kSloppyArgumentsObjectSize);
1860 __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
1861
1862 // Initialize parameter map. If there are no mapped arguments, we're done.
1863 Label skip_parameter_map;
1864 __ Cmp(mapped_params, 0);
1865 // Set up backing store address, because it is needed later for filling in
1866 // the unmapped arguments.
1867 Register backing_store = x6;
1868 __ CmovX(backing_store, elements, eq);
1869 __ B(eq, &skip_parameter_map);
1870
1871 __ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex);
1872 __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
1873 __ Add(x10, mapped_params, 2);
1874 __ SmiTag(x10);
1875 __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
1876 __ Str(cp, FieldMemOperand(elements,
1877 FixedArray::kHeaderSize + 0 * kPointerSize));
1878 __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
1879 __ Add(x10, x10, kParameterMapHeaderSize);
1880 __ Str(x10, FieldMemOperand(elements,
1881 FixedArray::kHeaderSize + 1 * kPointerSize));
1882
1883 // Copy the parameter slots and the holes in the arguments.
1884 // We need to fill in mapped_parameter_count slots. Then index the context,
1885 // where parameters are stored in reverse order, at:
1886 //
1887 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
1888 //
1889 // The mapped parameter thus needs to get indices:
1890 //
1891 // MIN_CONTEXT_SLOTS + parameter_count - 1 ..
1892 // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
1893 //
1894 // We loop from right to left.
1895
1896 // x0 alloc_obj pointer to allocated objects (param map, backing
1897 // store, arguments)
1898 // x1 function function pointer
1899 // x2 arg_count_smi number of function arguments (smi)
1900 // x3 recv_arg pointer to receiver arguments
1901 // x4 mapped_params number of mapped parameters, min(params, args)
1902 // x5 elements pointer to parameter map or backing store (uninit)
1903 // x6 backing_store pointer to backing store (uninit)
1904 // x7 param_count number of function parameters
1905 // x11 loop_count parameter loop counter (uninit)
1906 // x12 index parameter index (smi, uninit)
1907 // x13 the_hole hole value (uninit)
1908 // x14 arg_count number of function arguments
1909
1910 Register loop_count = x11;
1911 Register index = x12;
1912 Register the_hole = x13;
1913 Label parameters_loop, parameters_test;
1914 __ Mov(loop_count, mapped_params);
1915 __ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS));
1916 __ Sub(index, index, mapped_params);
1917 __ SmiTag(index);
1918 __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
1919 __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
1920 __ Add(backing_store, backing_store, kParameterMapHeaderSize);
1921
1922 __ B(¶meters_test);
1923
1924 __ Bind(¶meters_loop);
1925 __ Sub(loop_count, loop_count, 1);
1926 __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
1927 __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
1928 __ Str(index, MemOperand(elements, x10));
1929 __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
1930 __ Str(the_hole, MemOperand(backing_store, x10));
1931 __ Add(index, index, Smi::FromInt(1));
1932 __ Bind(¶meters_test);
1933 __ Cbnz(loop_count, ¶meters_loop);
1934
1935 __ Bind(&skip_parameter_map);
1936 // Copy arguments header and remaining slots (if there are any.)
1937 __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
1938 __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
1939 __ Str(arg_count_smi, FieldMemOperand(backing_store,
1940 FixedArray::kLengthOffset));
1941
1942 // x0 alloc_obj pointer to allocated objects (param map, backing
1943 // store, arguments)
1944 // x1 function function pointer
1945 // x2 arg_count_smi number of function arguments (smi)
1946 // x3 recv_arg pointer to receiver arguments
1947 // x4 mapped_params number of mapped parameters, min(params, args)
1948 // x6 backing_store pointer to backing store (uninit)
1949 // x14 arg_count number of function arguments
1950
1951 Label arguments_loop, arguments_test;
1952 __ Mov(x10, mapped_params);
1953 __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
1954 __ B(&arguments_test);
1955
1956 __ Bind(&arguments_loop);
1957 __ Sub(recv_arg, recv_arg, kPointerSize);
1958 __ Ldr(x11, MemOperand(recv_arg));
1959 __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
1960 __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
1961 __ Add(x10, x10, 1);
1962
1963 __ Bind(&arguments_test);
1964 __ Cmp(x10, arg_count);
1965 __ B(lt, &arguments_loop);
1966
1967 __ Ret();
1968
1969 // Do the runtime call to allocate the arguments object.
1970 __ Bind(&runtime);
1971 __ Push(function, recv_arg, arg_count_smi);
1972 __ TailCallRuntime(Runtime::kNewSloppyArguments);
1973 }
1974
1975
Generate(MacroAssembler * masm)1976 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1977 // Return address is in lr.
1978 Label slow;
1979
1980 Register receiver = LoadDescriptor::ReceiverRegister();
1981 Register key = LoadDescriptor::NameRegister();
1982
1983 // Check that the key is an array index, that is Uint32.
1984 __ TestAndBranchIfAnySet(key, kSmiTagMask | kSmiSignMask, &slow);
1985
1986 // Everything is fine, call runtime.
1987 __ Push(receiver, key);
1988 __ TailCallRuntime(Runtime::kLoadElementWithInterceptor);
1989
1990 __ Bind(&slow);
1991 PropertyAccessCompiler::TailCallBuiltin(
1992 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1993 }
1994
1995
GenerateNewStrict(MacroAssembler * masm)1996 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1997 // x1 : function
1998 // x2 : number of parameters (tagged)
1999 // x3 : parameters pointer
2000 //
2001 // Returns pointer to result object in x0.
2002
2003 DCHECK(x1.is(ArgumentsAccessNewDescriptor::function()));
2004 DCHECK(x2.is(ArgumentsAccessNewDescriptor::parameter_count()));
2005 DCHECK(x3.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
2006
2007 // Make an untagged copy of the parameter count.
2008 Register function = x1;
2009 Register param_count_smi = x2;
2010 Register params = x3;
2011 Register param_count = x13;
2012 __ SmiUntag(param_count, param_count_smi);
2013
2014 // Test if arguments adaptor needed.
2015 Register caller_fp = x11;
2016 Register caller_ctx = x12;
2017 Label try_allocate, runtime;
2018 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2019 __ Ldr(caller_ctx, MemOperand(caller_fp,
2020 StandardFrameConstants::kContextOffset));
2021 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2022 __ B(ne, &try_allocate);
2023
2024 // x1 function function pointer
2025 // x2 param_count_smi number of parameters passed to function (smi)
2026 // x3 params pointer to parameters
2027 // x11 caller_fp caller's frame pointer
2028 // x13 param_count number of parameters passed to function
2029
2030 // Patch the argument length and parameters pointer.
2031 __ Ldr(param_count_smi,
2032 MemOperand(caller_fp,
2033 ArgumentsAdaptorFrameConstants::kLengthOffset));
2034 __ SmiUntag(param_count, param_count_smi);
2035 __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2));
2036 __ Add(params, x10, StandardFrameConstants::kCallerSPOffset);
2037
2038 // Try the new space allocation. Start out with computing the size of the
2039 // arguments object and the elements array in words.
2040 Register size = x10;
2041 __ Bind(&try_allocate);
2042 __ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize);
2043 __ Cmp(param_count, 0);
2044 __ CzeroX(size, eq);
2045 __ Add(size, size, Heap::kStrictArgumentsObjectSize / kPointerSize);
2046
2047 // Do the allocation of both objects in one go. Assign this to x0, as it will
2048 // be returned to the caller.
2049 Register alloc_obj = x0;
2050 __ Allocate(size, alloc_obj, x11, x12, &runtime,
2051 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
2052
2053 // Get the arguments boilerplate from the current (native) context.
2054 Register strict_args_map = x4;
2055 __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX,
2056 strict_args_map);
2057
2058 // x0 alloc_obj pointer to allocated objects: parameter array and
2059 // arguments object
2060 // x1 function function pointer
2061 // x2 param_count_smi number of parameters passed to function (smi)
2062 // x3 params pointer to parameters
2063 // x4 strict_args_map offset to arguments map
2064 // x13 param_count number of parameters passed to function
2065 __ Str(strict_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
2066 __ LoadRoot(x5, Heap::kEmptyFixedArrayRootIndex);
2067 __ Str(x5, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
2068 __ Str(x5, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
2069
2070 // Set the smi-tagged length as an in-object property.
2071 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
2072 const int kLengthOffset = JSObject::kHeaderSize +
2073 Heap::kArgumentsLengthIndex * kPointerSize;
2074 __ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
2075
2076 // If there are no actual arguments, we're done.
2077 Label done;
2078 __ Cbz(param_count, &done);
2079
2080 // Set up the elements pointer in the allocated arguments object and
2081 // initialize the header in the elements fixed array.
2082 Register elements = x5;
2083 __ Add(elements, alloc_obj, Heap::kStrictArgumentsObjectSize);
2084 __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
2085 __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
2086 __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
2087 __ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset));
2088
2089 // x0 alloc_obj pointer to allocated objects: parameter array and
2090 // arguments object
2091 // x1 function function pointer
2092 // x2 param_count_smi number of parameters passed to function (smi)
2093 // x3 params pointer to parameters
2094 // x4 array pointer to array slot (uninit)
2095 // x5 elements pointer to elements array of alloc_obj
2096 // x13 param_count number of parameters passed to function
2097
2098 // Copy the fixed array slots.
2099 Label loop;
2100 Register array = x4;
2101 // Set up pointer to first array slot.
2102 __ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag);
2103
2104 __ Bind(&loop);
2105 // Pre-decrement the parameters pointer by kPointerSize on each iteration.
2106 // Pre-decrement in order to skip receiver.
2107 __ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex));
2108 // Post-increment elements by kPointerSize on each iteration.
2109 __ Str(x10, MemOperand(array, kPointerSize, PostIndex));
2110 __ Sub(param_count, param_count, 1);
2111 __ Cbnz(param_count, &loop);
2112
2113 // Return from stub.
2114 __ Bind(&done);
2115 __ Ret();
2116
2117 // Do the runtime call to allocate the arguments object.
2118 __ Bind(&runtime);
2119 __ Push(function, params, param_count_smi);
2120 __ TailCallRuntime(Runtime::kNewStrictArguments);
2121 }
2122
2123
GenerateNew(MacroAssembler * masm)2124 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
2125 // x2 : number of parameters (tagged)
2126 // x3 : parameters pointer
2127 // x4 : rest parameter index (tagged)
2128 //
2129 // Returns pointer to result object in x0.
2130
2131 DCHECK(x2.is(ArgumentsAccessNewDescriptor::parameter_count()));
2132 DCHECK(x3.is(RestParamAccessDescriptor::parameter_pointer()));
2133 DCHECK(x4.is(RestParamAccessDescriptor::rest_parameter_index()));
2134
2135 // Get the stub arguments from the frame, and make an untagged copy of the
2136 // parameter count.
2137 Register rest_index_smi = x4;
2138 Register param_count_smi = x2;
2139 Register params = x3;
2140 Register param_count = x13;
2141 __ SmiUntag(param_count, param_count_smi);
2142
2143 // Test if arguments adaptor needed.
2144 Register caller_fp = x11;
2145 Register caller_ctx = x12;
2146 Label runtime;
2147 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2148 __ Ldr(caller_ctx,
2149 MemOperand(caller_fp, StandardFrameConstants::kContextOffset));
2150 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2151 __ B(ne, &runtime);
2152
2153 // x4 rest_index_smi index of rest parameter
2154 // x2 param_count_smi number of parameters passed to function (smi)
2155 // x3 params pointer to parameters
2156 // x11 caller_fp caller's frame pointer
2157 // x13 param_count number of parameters passed to function
2158
2159 // Patch the argument length and parameters pointer.
2160 __ Ldr(param_count_smi,
2161 MemOperand(caller_fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
2162 __ SmiUntag(param_count, param_count_smi);
2163 __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2));
2164 __ Add(params, x10, StandardFrameConstants::kCallerSPOffset);
2165
2166 __ Bind(&runtime);
2167 __ Push(param_count_smi, params, rest_index_smi);
2168 __ TailCallRuntime(Runtime::kNewRestParam);
2169 }
2170
2171
Generate(MacroAssembler * masm)2172 void RegExpExecStub::Generate(MacroAssembler* masm) {
2173 #ifdef V8_INTERPRETED_REGEXP
2174 __ TailCallRuntime(Runtime::kRegExpExec);
2175 #else // V8_INTERPRETED_REGEXP
2176
2177 // Stack frame on entry.
2178 // jssp[0]: last_match_info (expected JSArray)
2179 // jssp[8]: previous index
2180 // jssp[16]: subject string
2181 // jssp[24]: JSRegExp object
2182 Label runtime;
2183
2184 // Use of registers for this function.
2185
2186 // Variable registers:
2187 // x10-x13 used as scratch registers
2188 // w0 string_type type of subject string
2189 // x2 jsstring_length subject string length
2190 // x3 jsregexp_object JSRegExp object
2191 // w4 string_encoding Latin1 or UC16
2192 // w5 sliced_string_offset if the string is a SlicedString
2193 // offset to the underlying string
2194 // w6 string_representation groups attributes of the string:
2195 // - is a string
2196 // - type of the string
2197 // - is a short external string
2198 Register string_type = w0;
2199 Register jsstring_length = x2;
2200 Register jsregexp_object = x3;
2201 Register string_encoding = w4;
2202 Register sliced_string_offset = w5;
2203 Register string_representation = w6;
2204
2205 // These are in callee save registers and will be preserved by the call
2206 // to the native RegExp code, as this code is called using the normal
2207 // C calling convention. When calling directly from generated code the
2208 // native RegExp code will not do a GC and therefore the content of
2209 // these registers are safe to use after the call.
2210
2211 // x19 subject subject string
2212 // x20 regexp_data RegExp data (FixedArray)
2213 // x21 last_match_info_elements info relative to the last match
2214 // (FixedArray)
2215 // x22 code_object generated regexp code
2216 Register subject = x19;
2217 Register regexp_data = x20;
2218 Register last_match_info_elements = x21;
2219 Register code_object = x22;
2220
2221 // Stack frame.
2222 // jssp[00]: last_match_info (JSArray)
2223 // jssp[08]: previous index
2224 // jssp[16]: subject string
2225 // jssp[24]: JSRegExp object
2226
2227 const int kLastMatchInfoOffset = 0 * kPointerSize;
2228 const int kPreviousIndexOffset = 1 * kPointerSize;
2229 const int kSubjectOffset = 2 * kPointerSize;
2230 const int kJSRegExpOffset = 3 * kPointerSize;
2231
2232 // Ensure that a RegExp stack is allocated.
2233 ExternalReference address_of_regexp_stack_memory_address =
2234 ExternalReference::address_of_regexp_stack_memory_address(isolate());
2235 ExternalReference address_of_regexp_stack_memory_size =
2236 ExternalReference::address_of_regexp_stack_memory_size(isolate());
2237 __ Mov(x10, address_of_regexp_stack_memory_size);
2238 __ Ldr(x10, MemOperand(x10));
2239 __ Cbz(x10, &runtime);
2240
2241 // Check that the first argument is a JSRegExp object.
2242 DCHECK(jssp.Is(__ StackPointer()));
2243 __ Peek(jsregexp_object, kJSRegExpOffset);
2244 __ JumpIfSmi(jsregexp_object, &runtime);
2245 __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
2246
2247 // Check that the RegExp has been compiled (data contains a fixed array).
2248 __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
2249 if (FLAG_debug_code) {
2250 STATIC_ASSERT(kSmiTag == 0);
2251 __ Tst(regexp_data, kSmiTagMask);
2252 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2253 __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
2254 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2255 }
2256
2257 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2258 __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2259 __ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
2260 __ B(ne, &runtime);
2261
2262 // Check that the number of captures fit in the static offsets vector buffer.
2263 // We have always at least one capture for the whole match, plus additional
2264 // ones due to capturing parentheses. A capture takes 2 registers.
2265 // The number of capture registers then is (number_of_captures + 1) * 2.
2266 __ Ldrsw(x10,
2267 UntagSmiFieldMemOperand(regexp_data,
2268 JSRegExp::kIrregexpCaptureCountOffset));
2269 // Check (number_of_captures + 1) * 2 <= offsets vector size
2270 // number_of_captures * 2 <= offsets vector size - 2
2271 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2272 __ Add(x10, x10, x10);
2273 __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
2274 __ B(hi, &runtime);
2275
2276 // Initialize offset for possibly sliced string.
2277 __ Mov(sliced_string_offset, 0);
2278
2279 DCHECK(jssp.Is(__ StackPointer()));
2280 __ Peek(subject, kSubjectOffset);
2281 __ JumpIfSmi(subject, &runtime);
2282
2283 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2284 __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2285
2286 __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
2287
2288 // Handle subject string according to its encoding and representation:
2289 // (1) Sequential string? If yes, go to (5).
2290 // (2) Anything but sequential or cons? If yes, go to (6).
2291 // (3) Cons string. If the string is flat, replace subject with first string.
2292 // Otherwise bailout.
2293 // (4) Is subject external? If yes, go to (7).
2294 // (5) Sequential string. Load regexp code according to encoding.
2295 // (E) Carry on.
2296 /// [...]
2297
2298 // Deferred code at the end of the stub:
2299 // (6) Not a long external string? If yes, go to (8).
2300 // (7) External string. Make it, offset-wise, look like a sequential string.
2301 // Go to (5).
2302 // (8) Short external string or not a string? If yes, bail out to runtime.
2303 // (9) Sliced string. Replace subject with parent. Go to (4).
2304
2305 Label check_underlying; // (4)
2306 Label seq_string; // (5)
2307 Label not_seq_nor_cons; // (6)
2308 Label external_string; // (7)
2309 Label not_long_external; // (8)
2310
2311 // (1) Sequential string? If yes, go to (5).
2312 __ And(string_representation,
2313 string_type,
2314 kIsNotStringMask |
2315 kStringRepresentationMask |
2316 kShortExternalStringMask);
2317 // We depend on the fact that Strings of type
2318 // SeqString and not ShortExternalString are defined
2319 // by the following pattern:
2320 // string_type: 0XX0 XX00
2321 // ^ ^ ^^
2322 // | | ||
2323 // | | is a SeqString
2324 // | is not a short external String
2325 // is a String
2326 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2327 STATIC_ASSERT(kShortExternalStringTag != 0);
2328 __ Cbz(string_representation, &seq_string); // Go to (5).
2329
2330 // (2) Anything but sequential or cons? If yes, go to (6).
2331 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2332 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2333 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2334 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2335 __ Cmp(string_representation, kExternalStringTag);
2336 __ B(ge, ¬_seq_nor_cons); // Go to (6).
2337
2338 // (3) Cons string. Check that it's flat.
2339 __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
2340 __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
2341 // Replace subject with first string.
2342 __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2343
2344 // (4) Is subject external? If yes, go to (7).
2345 __ Bind(&check_underlying);
2346 // Reload the string type.
2347 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2348 __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2349 STATIC_ASSERT(kSeqStringTag == 0);
2350 // The underlying external string is never a short external string.
2351 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2352 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2353 __ TestAndBranchIfAnySet(string_type.X(),
2354 kStringRepresentationMask,
2355 &external_string); // Go to (7).
2356
2357 // (5) Sequential string. Load regexp code according to encoding.
2358 __ Bind(&seq_string);
2359
2360 // Check that the third argument is a positive smi less than the subject
2361 // string length. A negative value will be greater (unsigned comparison).
2362 DCHECK(jssp.Is(__ StackPointer()));
2363 __ Peek(x10, kPreviousIndexOffset);
2364 __ JumpIfNotSmi(x10, &runtime);
2365 __ Cmp(jsstring_length, x10);
2366 __ B(ls, &runtime);
2367
2368 // Argument 2 (x1): We need to load argument 2 (the previous index) into x1
2369 // before entering the exit frame.
2370 __ SmiUntag(x1, x10);
2371
2372 // The third bit determines the string encoding in string_type.
2373 STATIC_ASSERT(kOneByteStringTag == 0x04);
2374 STATIC_ASSERT(kTwoByteStringTag == 0x00);
2375 STATIC_ASSERT(kStringEncodingMask == 0x04);
2376
2377 // Find the code object based on the assumptions above.
2378 // kDataOneByteCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
2379 // of kPointerSize to reach the latter.
2380 STATIC_ASSERT(JSRegExp::kDataOneByteCodeOffset + kPointerSize ==
2381 JSRegExp::kDataUC16CodeOffset);
2382 __ Mov(x10, kPointerSize);
2383 // We will need the encoding later: Latin1 = 0x04
2384 // UC16 = 0x00
2385 __ Ands(string_encoding, string_type, kStringEncodingMask);
2386 __ CzeroX(x10, ne);
2387 __ Add(x10, regexp_data, x10);
2388 __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataOneByteCodeOffset));
2389
2390 // (E) Carry on. String handling is done.
2391
2392 // Check that the irregexp code has been generated for the actual string
2393 // encoding. If it has, the field contains a code object otherwise it contains
2394 // a smi (code flushing support).
2395 __ JumpIfSmi(code_object, &runtime);
2396
2397 // All checks done. Now push arguments for native regexp code.
2398 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
2399 x10,
2400 x11);
2401
2402 // Isolates: note we add an additional parameter here (isolate pointer).
2403 __ EnterExitFrame(false, x10, 1);
2404 DCHECK(csp.Is(__ StackPointer()));
2405
2406 // We have 9 arguments to pass to the regexp code, therefore we have to pass
2407 // one on the stack and the rest as registers.
2408
2409 // Note that the placement of the argument on the stack isn't standard
2410 // AAPCS64:
2411 // csp[0]: Space for the return address placed by DirectCEntryStub.
2412 // csp[8]: Argument 9, the current isolate address.
2413
2414 __ Mov(x10, ExternalReference::isolate_address(isolate()));
2415 __ Poke(x10, kPointerSize);
2416
2417 Register length = w11;
2418 Register previous_index_in_bytes = w12;
2419 Register start = x13;
2420
2421 // Load start of the subject string.
2422 __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
2423 // Load the length from the original subject string from the previous stack
2424 // frame. Therefore we have to use fp, which points exactly to two pointer
2425 // sizes below the previous sp. (Because creating a new stack frame pushes
2426 // the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
2427 __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2428 __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
2429
2430 // Handle UC16 encoding, two bytes make one character.
2431 // string_encoding: if Latin1: 0x04
2432 // if UC16: 0x00
2433 STATIC_ASSERT(kStringEncodingMask == 0x04);
2434 __ Ubfx(string_encoding, string_encoding, 2, 1);
2435 __ Eor(string_encoding, string_encoding, 1);
2436 // string_encoding: if Latin1: 0
2437 // if UC16: 1
2438
2439 // Convert string positions from characters to bytes.
2440 // Previous index is in x1.
2441 __ Lsl(previous_index_in_bytes, w1, string_encoding);
2442 __ Lsl(length, length, string_encoding);
2443 __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
2444
2445 // Argument 1 (x0): Subject string.
2446 __ Mov(x0, subject);
2447
2448 // Argument 2 (x1): Previous index, already there.
2449
2450 // Argument 3 (x2): Get the start of input.
2451 // Start of input = start of string + previous index + substring offset
2452 // (0 if the string
2453 // is not sliced).
2454 __ Add(w10, previous_index_in_bytes, sliced_string_offset);
2455 __ Add(x2, start, Operand(w10, UXTW));
2456
2457 // Argument 4 (x3):
2458 // End of input = start of input + (length of input - previous index)
2459 __ Sub(w10, length, previous_index_in_bytes);
2460 __ Add(x3, x2, Operand(w10, UXTW));
2461
2462 // Argument 5 (x4): static offsets vector buffer.
2463 __ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
2464
2465 // Argument 6 (x5): Set the number of capture registers to zero to force
2466 // global regexps to behave as non-global. This stub is not used for global
2467 // regexps.
2468 __ Mov(x5, 0);
2469
2470 // Argument 7 (x6): Start (high end) of backtracking stack memory area.
2471 __ Mov(x10, address_of_regexp_stack_memory_address);
2472 __ Ldr(x10, MemOperand(x10));
2473 __ Mov(x11, address_of_regexp_stack_memory_size);
2474 __ Ldr(x11, MemOperand(x11));
2475 __ Add(x6, x10, x11);
2476
2477 // Argument 8 (x7): Indicate that this is a direct call from JavaScript.
2478 __ Mov(x7, 1);
2479
2480 // Locate the code entry and call it.
2481 __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
2482 DirectCEntryStub stub(isolate());
2483 stub.GenerateCall(masm, code_object);
2484
2485 __ LeaveExitFrame(false, x10, true);
2486
2487 // The generated regexp code returns an int32 in w0.
2488 Label failure, exception;
2489 __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
2490 __ CompareAndBranch(w0,
2491 NativeRegExpMacroAssembler::EXCEPTION,
2492 eq,
2493 &exception);
2494 __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
2495
2496 // Success: process the result from the native regexp code.
2497 Register number_of_capture_registers = x12;
2498
2499 // Calculate number of capture registers (number_of_captures + 1) * 2
2500 // and store it in the last match info.
2501 __ Ldrsw(x10,
2502 UntagSmiFieldMemOperand(regexp_data,
2503 JSRegExp::kIrregexpCaptureCountOffset));
2504 __ Add(x10, x10, x10);
2505 __ Add(number_of_capture_registers, x10, 2);
2506
2507 // Check that the fourth object is a JSArray object.
2508 DCHECK(jssp.Is(__ StackPointer()));
2509 __ Peek(x10, kLastMatchInfoOffset);
2510 __ JumpIfSmi(x10, &runtime);
2511 __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
2512
2513 // Check that the JSArray is the fast case.
2514 __ Ldr(last_match_info_elements,
2515 FieldMemOperand(x10, JSArray::kElementsOffset));
2516 __ Ldr(x10,
2517 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2518 __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
2519
2520 // Check that the last match info has space for the capture registers and the
2521 // additional information (overhead).
2522 // (number_of_captures + 1) * 2 + overhead <= last match info size
2523 // (number_of_captures * 2) + 2 + overhead <= last match info size
2524 // number_of_capture_registers + overhead <= last match info size
2525 __ Ldrsw(x10,
2526 UntagSmiFieldMemOperand(last_match_info_elements,
2527 FixedArray::kLengthOffset));
2528 __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
2529 __ Cmp(x11, x10);
2530 __ B(gt, &runtime);
2531
2532 // Store the capture count.
2533 __ SmiTag(x10, number_of_capture_registers);
2534 __ Str(x10,
2535 FieldMemOperand(last_match_info_elements,
2536 RegExpImpl::kLastCaptureCountOffset));
2537 // Store last subject and last input.
2538 __ Str(subject,
2539 FieldMemOperand(last_match_info_elements,
2540 RegExpImpl::kLastSubjectOffset));
2541 // Use x10 as the subject string in order to only need
2542 // one RecordWriteStub.
2543 __ Mov(x10, subject);
2544 __ RecordWriteField(last_match_info_elements,
2545 RegExpImpl::kLastSubjectOffset,
2546 x10,
2547 x11,
2548 kLRHasNotBeenSaved,
2549 kDontSaveFPRegs);
2550 __ Str(subject,
2551 FieldMemOperand(last_match_info_elements,
2552 RegExpImpl::kLastInputOffset));
2553 __ Mov(x10, subject);
2554 __ RecordWriteField(last_match_info_elements,
2555 RegExpImpl::kLastInputOffset,
2556 x10,
2557 x11,
2558 kLRHasNotBeenSaved,
2559 kDontSaveFPRegs);
2560
2561 Register last_match_offsets = x13;
2562 Register offsets_vector_index = x14;
2563 Register current_offset = x15;
2564
2565 // Get the static offsets vector filled by the native regexp code
2566 // and fill the last match info.
2567 ExternalReference address_of_static_offsets_vector =
2568 ExternalReference::address_of_static_offsets_vector(isolate());
2569 __ Mov(offsets_vector_index, address_of_static_offsets_vector);
2570
2571 Label next_capture, done;
2572 // Capture register counter starts from number of capture registers and
2573 // iterates down to zero (inclusive).
2574 __ Add(last_match_offsets,
2575 last_match_info_elements,
2576 RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
2577 __ Bind(&next_capture);
2578 __ Subs(number_of_capture_registers, number_of_capture_registers, 2);
2579 __ B(mi, &done);
2580 // Read two 32 bit values from the static offsets vector buffer into
2581 // an X register
2582 __ Ldr(current_offset,
2583 MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
2584 // Store the smi values in the last match info.
2585 __ SmiTag(x10, current_offset);
2586 // Clearing the 32 bottom bits gives us a Smi.
2587 STATIC_ASSERT(kSmiTag == 0);
2588 __ Bic(x11, current_offset, kSmiShiftMask);
2589 __ Stp(x10,
2590 x11,
2591 MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
2592 __ B(&next_capture);
2593 __ Bind(&done);
2594
2595 // Return last match info.
2596 __ Peek(x0, kLastMatchInfoOffset);
2597 // Drop the 4 arguments of the stub from the stack.
2598 __ Drop(4);
2599 __ Ret();
2600
2601 __ Bind(&exception);
2602 Register exception_value = x0;
2603 // A stack overflow (on the backtrack stack) may have occured
2604 // in the RegExp code but no exception has been created yet.
2605 // If there is no pending exception, handle that in the runtime system.
2606 __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
2607 __ Mov(x11,
2608 Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2609 isolate())));
2610 __ Ldr(exception_value, MemOperand(x11));
2611 __ Cmp(x10, exception_value);
2612 __ B(eq, &runtime);
2613
2614 // For exception, throw the exception again.
2615 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
2616
2617 __ Bind(&failure);
2618 __ Mov(x0, Operand(isolate()->factory()->null_value()));
2619 // Drop the 4 arguments of the stub from the stack.
2620 __ Drop(4);
2621 __ Ret();
2622
2623 __ Bind(&runtime);
2624 __ TailCallRuntime(Runtime::kRegExpExec);
2625
2626 // Deferred code for string handling.
2627 // (6) Not a long external string? If yes, go to (8).
2628 __ Bind(¬_seq_nor_cons);
2629 // Compare flags are still set.
2630 __ B(ne, ¬_long_external); // Go to (8).
2631
2632 // (7) External string. Make it, offset-wise, look like a sequential string.
2633 __ Bind(&external_string);
2634 if (masm->emit_debug_code()) {
2635 // Assert that we do not have a cons or slice (indirect strings) here.
2636 // Sequential strings have already been ruled out.
2637 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2638 __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2639 __ Tst(x10, kIsIndirectStringMask);
2640 __ Check(eq, kExternalStringExpectedButNotFound);
2641 __ And(x10, x10, kStringRepresentationMask);
2642 __ Cmp(x10, 0);
2643 __ Check(ne, kExternalStringExpectedButNotFound);
2644 }
2645 __ Ldr(subject,
2646 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2647 // Move the pointer so that offset-wise, it looks like a sequential string.
2648 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2649 __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
2650 __ B(&seq_string); // Go to (5).
2651
2652 // (8) If this is a short external string or not a string, bail out to
2653 // runtime.
2654 __ Bind(¬_long_external);
2655 STATIC_ASSERT(kShortExternalStringTag != 0);
2656 __ TestAndBranchIfAnySet(string_representation,
2657 kShortExternalStringMask | kIsNotStringMask,
2658 &runtime);
2659
2660 // (9) Sliced string. Replace subject with parent.
2661 __ Ldr(sliced_string_offset,
2662 UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset));
2663 __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2664 __ B(&check_underlying); // Go to (4).
2665 #endif
2666 }
2667
2668
CallStubInRecordCallTarget(MacroAssembler * masm,CodeStub * stub,Register argc,Register function,Register feedback_vector,Register index,Register new_target)2669 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub,
2670 Register argc, Register function,
2671 Register feedback_vector, Register index,
2672 Register new_target) {
2673 FrameScope scope(masm, StackFrame::INTERNAL);
2674
2675 // Number-of-arguments register must be smi-tagged to call out.
2676 __ SmiTag(argc);
2677 __ Push(argc, function, feedback_vector, index);
2678
2679 DCHECK(feedback_vector.Is(x2) && index.Is(x3));
2680 __ CallStub(stub);
2681
2682 __ Pop(index, feedback_vector, function, argc);
2683 __ SmiUntag(argc);
2684 }
2685
2686
GenerateRecordCallTarget(MacroAssembler * masm,Register argc,Register function,Register feedback_vector,Register index,Register new_target,Register scratch1,Register scratch2,Register scratch3)2687 static void GenerateRecordCallTarget(MacroAssembler* masm, Register argc,
2688 Register function,
2689 Register feedback_vector, Register index,
2690 Register new_target, Register scratch1,
2691 Register scratch2, Register scratch3) {
2692 ASM_LOCATION("GenerateRecordCallTarget");
2693 DCHECK(!AreAliased(scratch1, scratch2, scratch3, argc, function,
2694 feedback_vector, index, new_target));
2695 // Cache the called function in a feedback vector slot. Cache states are
2696 // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic.
2697 // argc : number of arguments to the construct function
2698 // function : the function to call
2699 // feedback_vector : the feedback vector
2700 // index : slot in feedback vector (smi)
2701 Label initialize, done, miss, megamorphic, not_array_function;
2702
2703 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2704 masm->isolate()->heap()->megamorphic_symbol());
2705 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2706 masm->isolate()->heap()->uninitialized_symbol());
2707
2708 // Load the cache state.
2709 Register feedback = scratch1;
2710 Register feedback_map = scratch2;
2711 Register feedback_value = scratch3;
2712 __ Add(feedback, feedback_vector,
2713 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2714 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
2715
2716 // A monomorphic cache hit or an already megamorphic state: invoke the
2717 // function without changing the state.
2718 // We don't know if feedback value is a WeakCell or a Symbol, but it's
2719 // harmless to read at this position in a symbol (see static asserts in
2720 // type-feedback-vector.h).
2721 Label check_allocation_site;
2722 __ Ldr(feedback_value, FieldMemOperand(feedback, WeakCell::kValueOffset));
2723 __ Cmp(function, feedback_value);
2724 __ B(eq, &done);
2725 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
2726 __ B(eq, &done);
2727 __ Ldr(feedback_map, FieldMemOperand(feedback, HeapObject::kMapOffset));
2728 __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
2729 __ B(ne, &check_allocation_site);
2730
2731 // If the weak cell is cleared, we have a new chance to become monomorphic.
2732 __ JumpIfSmi(feedback_value, &initialize);
2733 __ B(&megamorphic);
2734
2735 __ bind(&check_allocation_site);
2736 // If we came here, we need to see if we are the array function.
2737 // If we didn't have a matching function, and we didn't find the megamorph
2738 // sentinel, then we have in the slot either some other function or an
2739 // AllocationSite.
2740 __ JumpIfNotRoot(feedback_map, Heap::kAllocationSiteMapRootIndex, &miss);
2741
2742 // Make sure the function is the Array() function
2743 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, scratch1);
2744 __ Cmp(function, scratch1);
2745 __ B(ne, &megamorphic);
2746 __ B(&done);
2747
2748 __ Bind(&miss);
2749
2750 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2751 // megamorphic.
2752 __ JumpIfRoot(scratch1, Heap::kuninitialized_symbolRootIndex, &initialize);
2753 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2754 // write-barrier is needed.
2755 __ Bind(&megamorphic);
2756 __ Add(scratch1, feedback_vector,
2757 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2758 __ LoadRoot(scratch2, Heap::kmegamorphic_symbolRootIndex);
2759 __ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2760 __ B(&done);
2761
2762 // An uninitialized cache is patched with the function or sentinel to
2763 // indicate the ElementsKind if function is the Array constructor.
2764 __ Bind(&initialize);
2765
2766 // Make sure the function is the Array() function
2767 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, scratch1);
2768 __ Cmp(function, scratch1);
2769 __ B(ne, ¬_array_function);
2770
2771 // The target function is the Array constructor,
2772 // Create an AllocationSite if we don't already have it, store it in the
2773 // slot.
2774 CreateAllocationSiteStub create_stub(masm->isolate());
2775 CallStubInRecordCallTarget(masm, &create_stub, argc, function,
2776 feedback_vector, index, new_target);
2777 __ B(&done);
2778
2779 __ Bind(¬_array_function);
2780 CreateWeakCellStub weak_cell_stub(masm->isolate());
2781 CallStubInRecordCallTarget(masm, &weak_cell_stub, argc, function,
2782 feedback_vector, index, new_target);
2783 __ Bind(&done);
2784 }
2785
2786
Generate(MacroAssembler * masm)2787 void CallConstructStub::Generate(MacroAssembler* masm) {
2788 ASM_LOCATION("CallConstructStub::Generate");
2789 // x0 : number of arguments
2790 // x1 : the function to call
2791 // x2 : feedback vector
2792 // x3 : slot in feedback vector (Smi, for RecordCallTarget)
2793 Register function = x1;
2794
2795 Label non_function;
2796 // Check that the function is not a smi.
2797 __ JumpIfSmi(function, &non_function);
2798 // Check that the function is a JSFunction.
2799 Register object_type = x10;
2800 __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE,
2801 &non_function);
2802
2803 GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5, x11, x12);
2804
2805 __ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
2806 Label feedback_register_initialized;
2807 // Put the AllocationSite from the feedback vector into x2, or undefined.
2808 __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize));
2809 __ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset));
2810 __ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex,
2811 &feedback_register_initialized);
2812 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
2813 __ bind(&feedback_register_initialized);
2814
2815 __ AssertUndefinedOrAllocationSite(x2, x5);
2816
2817 __ Mov(x3, function);
2818
2819 // Tail call to the function-specific construct stub (still in the caller
2820 // context at this point).
2821 __ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
2822 __ Ldr(x4, FieldMemOperand(x4, SharedFunctionInfo::kConstructStubOffset));
2823 __ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag);
2824 __ Br(x4);
2825
2826 __ Bind(&non_function);
2827 __ Mov(x3, function);
2828 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
2829 }
2830
2831
HandleArrayCase(MacroAssembler * masm,Label * miss)2832 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
2833 // x1 - function
2834 // x3 - slot id
2835 // x2 - vector
2836 // x4 - allocation site (loaded from vector[slot])
2837 Register function = x1;
2838 Register feedback_vector = x2;
2839 Register index = x3;
2840 Register allocation_site = x4;
2841 Register scratch = x5;
2842
2843 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, scratch);
2844 __ Cmp(function, scratch);
2845 __ B(ne, miss);
2846
2847 __ Mov(x0, Operand(arg_count()));
2848
2849 // Increment the call count for monomorphic function calls.
2850 __ Add(feedback_vector, feedback_vector,
2851 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2852 __ Add(feedback_vector, feedback_vector,
2853 Operand(FixedArray::kHeaderSize + kPointerSize));
2854 __ Ldr(index, FieldMemOperand(feedback_vector, 0));
2855 __ Add(index, index, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2856 __ Str(index, FieldMemOperand(feedback_vector, 0));
2857
2858 // Set up arguments for the array constructor stub.
2859 Register allocation_site_arg = feedback_vector;
2860 Register new_target_arg = index;
2861 __ Mov(allocation_site_arg, allocation_site);
2862 __ Mov(new_target_arg, function);
2863 ArrayConstructorStub stub(masm->isolate(), arg_count());
2864 __ TailCallStub(&stub);
2865 }
2866
2867
Generate(MacroAssembler * masm)2868 void CallICStub::Generate(MacroAssembler* masm) {
2869 ASM_LOCATION("CallICStub");
2870
2871 // x1 - function
2872 // x3 - slot id (Smi)
2873 // x2 - vector
2874 Label extra_checks_or_miss, call, call_function;
2875 int argc = arg_count();
2876 ParameterCount actual(argc);
2877
2878 Register function = x1;
2879 Register feedback_vector = x2;
2880 Register index = x3;
2881
2882 // The checks. First, does x1 match the recorded monomorphic target?
2883 __ Add(x4, feedback_vector,
2884 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2885 __ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize));
2886
2887 // We don't know that we have a weak cell. We might have a private symbol
2888 // or an AllocationSite, but the memory is safe to examine.
2889 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2890 // FixedArray.
2891 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2892 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2893 // computed, meaning that it can't appear to be a pointer. If the low bit is
2894 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2895 // to be a pointer.
2896 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2897 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2898 WeakCell::kValueOffset &&
2899 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2900
2901 __ Ldr(x5, FieldMemOperand(x4, WeakCell::kValueOffset));
2902 __ Cmp(x5, function);
2903 __ B(ne, &extra_checks_or_miss);
2904
2905 // The compare above could have been a SMI/SMI comparison. Guard against this
2906 // convincing us that we have a monomorphic JSFunction.
2907 __ JumpIfSmi(function, &extra_checks_or_miss);
2908
2909 // Increment the call count for monomorphic function calls.
2910 __ Add(feedback_vector, feedback_vector,
2911 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2912 __ Add(feedback_vector, feedback_vector,
2913 Operand(FixedArray::kHeaderSize + kPointerSize));
2914 __ Ldr(index, FieldMemOperand(feedback_vector, 0));
2915 __ Add(index, index, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2916 __ Str(index, FieldMemOperand(feedback_vector, 0));
2917
2918 __ Bind(&call_function);
2919 __ Mov(x0, argc);
2920 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode()),
2921 RelocInfo::CODE_TARGET);
2922
2923 __ bind(&extra_checks_or_miss);
2924 Label uninitialized, miss, not_allocation_site;
2925
2926 __ JumpIfRoot(x4, Heap::kmegamorphic_symbolRootIndex, &call);
2927
2928 __ Ldr(x5, FieldMemOperand(x4, HeapObject::kMapOffset));
2929 __ JumpIfNotRoot(x5, Heap::kAllocationSiteMapRootIndex, ¬_allocation_site);
2930
2931 HandleArrayCase(masm, &miss);
2932
2933 __ bind(¬_allocation_site);
2934
2935 // The following cases attempt to handle MISS cases without going to the
2936 // runtime.
2937 if (FLAG_trace_ic) {
2938 __ jmp(&miss);
2939 }
2940
2941 __ JumpIfRoot(x4, Heap::kuninitialized_symbolRootIndex, &miss);
2942
2943 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2944 // to handle it here. More complex cases are dealt with in the runtime.
2945 __ AssertNotSmi(x4);
2946 __ JumpIfNotObjectType(x4, x5, x5, JS_FUNCTION_TYPE, &miss);
2947 __ Add(x4, feedback_vector,
2948 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2949 __ LoadRoot(x5, Heap::kmegamorphic_symbolRootIndex);
2950 __ Str(x5, FieldMemOperand(x4, FixedArray::kHeaderSize));
2951
2952 __ Bind(&call);
2953 __ Mov(x0, argc);
2954 __ Jump(masm->isolate()->builtins()->Call(convert_mode()),
2955 RelocInfo::CODE_TARGET);
2956
2957 __ bind(&uninitialized);
2958
2959 // We are going monomorphic, provided we actually have a JSFunction.
2960 __ JumpIfSmi(function, &miss);
2961
2962 // Goto miss case if we do not have a function.
2963 __ JumpIfNotObjectType(function, x5, x5, JS_FUNCTION_TYPE, &miss);
2964
2965 // Make sure the function is not the Array() function, which requires special
2966 // behavior on MISS.
2967 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, x5);
2968 __ Cmp(function, x5);
2969 __ B(eq, &miss);
2970
2971 // Make sure the function belongs to the same native context.
2972 __ Ldr(x4, FieldMemOperand(function, JSFunction::kContextOffset));
2973 __ Ldr(x4, ContextMemOperand(x4, Context::NATIVE_CONTEXT_INDEX));
2974 __ Ldr(x5, NativeContextMemOperand());
2975 __ Cmp(x4, x5);
2976 __ B(ne, &miss);
2977
2978 // Initialize the call counter.
2979 __ Mov(x5, Smi::FromInt(CallICNexus::kCallCountIncrement));
2980 __ Adds(x4, feedback_vector,
2981 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2982 __ Str(x5, FieldMemOperand(x4, FixedArray::kHeaderSize + kPointerSize));
2983
2984 // Store the function. Use a stub since we need a frame for allocation.
2985 // x2 - vector
2986 // x3 - slot
2987 // x1 - function
2988 {
2989 FrameScope scope(masm, StackFrame::INTERNAL);
2990 CreateWeakCellStub create_stub(masm->isolate());
2991 __ Push(function);
2992 __ CallStub(&create_stub);
2993 __ Pop(function);
2994 }
2995
2996 __ B(&call_function);
2997
2998 // We are here because tracing is on or we encountered a MISS case we can't
2999 // handle here.
3000 __ bind(&miss);
3001 GenerateMiss(masm);
3002
3003 __ B(&call);
3004 }
3005
3006
GenerateMiss(MacroAssembler * masm)3007 void CallICStub::GenerateMiss(MacroAssembler* masm) {
3008 ASM_LOCATION("CallICStub[Miss]");
3009
3010 FrameScope scope(masm, StackFrame::INTERNAL);
3011
3012 // Push the receiver and the function and feedback info.
3013 __ Push(x1, x2, x3);
3014
3015 // Call the entry.
3016 __ CallRuntime(Runtime::kCallIC_Miss);
3017
3018 // Move result to edi and exit the internal frame.
3019 __ Mov(x1, x0);
3020 }
3021
3022
GenerateFast(MacroAssembler * masm)3023 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
3024 // If the receiver is a smi trigger the non-string case.
3025 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
3026 __ JumpIfSmi(object_, receiver_not_string_);
3027
3028 // Fetch the instance type of the receiver into result register.
3029 __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3030 __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3031
3032 // If the receiver is not a string trigger the non-string case.
3033 __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_);
3034 }
3035
3036 // If the index is non-smi trigger the non-smi case.
3037 __ JumpIfNotSmi(index_, &index_not_smi_);
3038
3039 __ Bind(&got_smi_index_);
3040 // Check for index out of range.
3041 __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset));
3042 __ Cmp(result_, Operand::UntagSmi(index_));
3043 __ B(ls, index_out_of_range_);
3044
3045 __ SmiUntag(index_);
3046
3047 StringCharLoadGenerator::Generate(masm,
3048 object_,
3049 index_.W(),
3050 result_,
3051 &call_runtime_);
3052 __ SmiTag(result_);
3053 __ Bind(&exit_);
3054 }
3055
3056
GenerateSlow(MacroAssembler * masm,EmbedMode embed_mode,const RuntimeCallHelper & call_helper)3057 void StringCharCodeAtGenerator::GenerateSlow(
3058 MacroAssembler* masm, EmbedMode embed_mode,
3059 const RuntimeCallHelper& call_helper) {
3060 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
3061
3062 __ Bind(&index_not_smi_);
3063 // If index is a heap number, try converting it to an integer.
3064 __ JumpIfNotHeapNumber(index_, index_not_number_);
3065 call_helper.BeforeCall(masm);
3066 if (embed_mode == PART_OF_IC_HANDLER) {
3067 __ Push(LoadWithVectorDescriptor::VectorRegister(),
3068 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
3069 } else {
3070 // Save object_ on the stack and pass index_ as argument for runtime call.
3071 __ Push(object_, index_);
3072 }
3073 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
3074 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero);
3075 } else {
3076 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
3077 // NumberToSmi discards numbers that are not exact integers.
3078 __ CallRuntime(Runtime::kNumberToSmi);
3079 }
3080 // Save the conversion result before the pop instructions below
3081 // have a chance to overwrite it.
3082 __ Mov(index_, x0);
3083 if (embed_mode == PART_OF_IC_HANDLER) {
3084 __ Pop(object_, LoadWithVectorDescriptor::SlotRegister(),
3085 LoadWithVectorDescriptor::VectorRegister());
3086 } else {
3087 __ Pop(object_);
3088 }
3089 // Reload the instance type.
3090 __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3091 __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3092 call_helper.AfterCall(masm);
3093
3094 // If index is still not a smi, it must be out of range.
3095 __ JumpIfNotSmi(index_, index_out_of_range_);
3096 // Otherwise, return to the fast path.
3097 __ B(&got_smi_index_);
3098
3099 // Call runtime. We get here when the receiver is a string and the
3100 // index is a number, but the code of getting the actual character
3101 // is too complex (e.g., when the string needs to be flattened).
3102 __ Bind(&call_runtime_);
3103 call_helper.BeforeCall(masm);
3104 __ SmiTag(index_);
3105 __ Push(object_, index_);
3106 __ CallRuntime(Runtime::kStringCharCodeAtRT);
3107 __ Mov(result_, x0);
3108 call_helper.AfterCall(masm);
3109 __ B(&exit_);
3110
3111 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3112 }
3113
3114
GenerateFast(MacroAssembler * masm)3115 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3116 __ JumpIfNotSmi(code_, &slow_case_);
3117 __ Cmp(code_, Smi::FromInt(String::kMaxOneByteCharCode));
3118 __ B(hi, &slow_case_);
3119
3120 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3121 // At this point code register contains smi tagged one-byte char code.
3122 __ Add(result_, result_, Operand::UntagSmiAndScale(code_, kPointerSizeLog2));
3123 __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
3124 __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_);
3125 __ Bind(&exit_);
3126 }
3127
3128
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)3129 void StringCharFromCodeGenerator::GenerateSlow(
3130 MacroAssembler* masm,
3131 const RuntimeCallHelper& call_helper) {
3132 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3133
3134 __ Bind(&slow_case_);
3135 call_helper.BeforeCall(masm);
3136 __ Push(code_);
3137 __ CallRuntime(Runtime::kStringCharFromCode);
3138 __ Mov(result_, x0);
3139 call_helper.AfterCall(masm);
3140 __ B(&exit_);
3141
3142 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3143 }
3144
3145
GenerateBooleans(MacroAssembler * masm)3146 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
3147 // Inputs are in x0 (lhs) and x1 (rhs).
3148 DCHECK_EQ(CompareICState::BOOLEAN, state());
3149 ASM_LOCATION("CompareICStub[Booleans]");
3150 Label miss;
3151
3152 __ CheckMap(x1, x2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
3153 __ CheckMap(x0, x3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
3154 if (op() != Token::EQ_STRICT && is_strong(strength())) {
3155 __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion);
3156 } else {
3157 if (!Token::IsEqualityOp(op())) {
3158 __ Ldr(x1, FieldMemOperand(x1, Oddball::kToNumberOffset));
3159 __ AssertSmi(x1);
3160 __ Ldr(x0, FieldMemOperand(x0, Oddball::kToNumberOffset));
3161 __ AssertSmi(x0);
3162 }
3163 __ Sub(x0, x1, x0);
3164 __ Ret();
3165 }
3166
3167 __ Bind(&miss);
3168 GenerateMiss(masm);
3169 }
3170
3171
GenerateSmis(MacroAssembler * masm)3172 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3173 // Inputs are in x0 (lhs) and x1 (rhs).
3174 DCHECK(state() == CompareICState::SMI);
3175 ASM_LOCATION("CompareICStub[Smis]");
3176 Label miss;
3177 // Bail out (to 'miss') unless both x0 and x1 are smis.
3178 __ JumpIfEitherNotSmi(x0, x1, &miss);
3179
3180 if (GetCondition() == eq) {
3181 // For equality we do not care about the sign of the result.
3182 __ Sub(x0, x0, x1);
3183 } else {
3184 // Untag before subtracting to avoid handling overflow.
3185 __ SmiUntag(x1);
3186 __ Sub(x0, x1, Operand::UntagSmi(x0));
3187 }
3188 __ Ret();
3189
3190 __ Bind(&miss);
3191 GenerateMiss(masm);
3192 }
3193
3194
GenerateNumbers(MacroAssembler * masm)3195 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3196 DCHECK(state() == CompareICState::NUMBER);
3197 ASM_LOCATION("CompareICStub[HeapNumbers]");
3198
3199 Label unordered, maybe_undefined1, maybe_undefined2;
3200 Label miss, handle_lhs, values_in_d_regs;
3201 Label untag_rhs, untag_lhs;
3202
3203 Register result = x0;
3204 Register rhs = x0;
3205 Register lhs = x1;
3206 FPRegister rhs_d = d0;
3207 FPRegister lhs_d = d1;
3208
3209 if (left() == CompareICState::SMI) {
3210 __ JumpIfNotSmi(lhs, &miss);
3211 }
3212 if (right() == CompareICState::SMI) {
3213 __ JumpIfNotSmi(rhs, &miss);
3214 }
3215
3216 __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag);
3217 __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag);
3218
3219 // Load rhs if it's a heap number.
3220 __ JumpIfSmi(rhs, &handle_lhs);
3221 __ JumpIfNotHeapNumber(rhs, &maybe_undefined1);
3222 __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
3223
3224 // Load lhs if it's a heap number.
3225 __ Bind(&handle_lhs);
3226 __ JumpIfSmi(lhs, &values_in_d_regs);
3227 __ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
3228 __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
3229
3230 __ Bind(&values_in_d_regs);
3231 __ Fcmp(lhs_d, rhs_d);
3232 __ B(vs, &unordered); // Overflow flag set if either is NaN.
3233 STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
3234 __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
3235 __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
3236 __ Ret();
3237
3238 __ Bind(&unordered);
3239 CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC,
3240 CompareICState::GENERIC, CompareICState::GENERIC);
3241 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3242
3243 __ Bind(&maybe_undefined1);
3244 if (Token::IsOrderedRelationalCompareOp(op())) {
3245 __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss);
3246 __ JumpIfSmi(lhs, &unordered);
3247 __ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
3248 __ B(&unordered);
3249 }
3250
3251 __ Bind(&maybe_undefined2);
3252 if (Token::IsOrderedRelationalCompareOp(op())) {
3253 __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered);
3254 }
3255
3256 __ Bind(&miss);
3257 GenerateMiss(masm);
3258 }
3259
3260
GenerateInternalizedStrings(MacroAssembler * masm)3261 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3262 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3263 ASM_LOCATION("CompareICStub[InternalizedStrings]");
3264 Label miss;
3265
3266 Register result = x0;
3267 Register rhs = x0;
3268 Register lhs = x1;
3269
3270 // Check that both operands are heap objects.
3271 __ JumpIfEitherSmi(lhs, rhs, &miss);
3272
3273 // Check that both operands are internalized strings.
3274 Register rhs_map = x10;
3275 Register lhs_map = x11;
3276 Register rhs_type = x10;
3277 Register lhs_type = x11;
3278 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3279 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3280 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
3281 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
3282
3283 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
3284 __ Orr(x12, lhs_type, rhs_type);
3285 __ TestAndBranchIfAnySet(
3286 x12, kIsNotStringMask | kIsNotInternalizedMask, &miss);
3287
3288 // Internalized strings are compared by identity.
3289 STATIC_ASSERT(EQUAL == 0);
3290 __ Cmp(lhs, rhs);
3291 __ Cset(result, ne);
3292 __ Ret();
3293
3294 __ Bind(&miss);
3295 GenerateMiss(masm);
3296 }
3297
3298
GenerateUniqueNames(MacroAssembler * masm)3299 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3300 DCHECK(state() == CompareICState::UNIQUE_NAME);
3301 ASM_LOCATION("CompareICStub[UniqueNames]");
3302 DCHECK(GetCondition() == eq);
3303 Label miss;
3304
3305 Register result = x0;
3306 Register rhs = x0;
3307 Register lhs = x1;
3308
3309 Register lhs_instance_type = w2;
3310 Register rhs_instance_type = w3;
3311
3312 // Check that both operands are heap objects.
3313 __ JumpIfEitherSmi(lhs, rhs, &miss);
3314
3315 // Check that both operands are unique names. This leaves the instance
3316 // types loaded in tmp1 and tmp2.
3317 __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset));
3318 __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset));
3319 __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
3320 __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset));
3321
3322 // To avoid a miss, each instance type should be either SYMBOL_TYPE or it
3323 // should have kInternalizedTag set.
3324 __ JumpIfNotUniqueNameInstanceType(lhs_instance_type, &miss);
3325 __ JumpIfNotUniqueNameInstanceType(rhs_instance_type, &miss);
3326
3327 // Unique names are compared by identity.
3328 STATIC_ASSERT(EQUAL == 0);
3329 __ Cmp(lhs, rhs);
3330 __ Cset(result, ne);
3331 __ Ret();
3332
3333 __ Bind(&miss);
3334 GenerateMiss(masm);
3335 }
3336
3337
GenerateStrings(MacroAssembler * masm)3338 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3339 DCHECK(state() == CompareICState::STRING);
3340 ASM_LOCATION("CompareICStub[Strings]");
3341
3342 Label miss;
3343
3344 bool equality = Token::IsEqualityOp(op());
3345
3346 Register result = x0;
3347 Register rhs = x0;
3348 Register lhs = x1;
3349
3350 // Check that both operands are heap objects.
3351 __ JumpIfEitherSmi(rhs, lhs, &miss);
3352
3353 // Check that both operands are strings.
3354 Register rhs_map = x10;
3355 Register lhs_map = x11;
3356 Register rhs_type = x10;
3357 Register lhs_type = x11;
3358 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3359 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3360 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
3361 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
3362 STATIC_ASSERT(kNotStringTag != 0);
3363 __ Orr(x12, lhs_type, rhs_type);
3364 __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss);
3365
3366 // Fast check for identical strings.
3367 Label not_equal;
3368 __ Cmp(lhs, rhs);
3369 __ B(ne, ¬_equal);
3370 __ Mov(result, EQUAL);
3371 __ Ret();
3372
3373 __ Bind(¬_equal);
3374 // Handle not identical strings
3375
3376 // Check that both strings are internalized strings. If they are, we're done
3377 // because we already know they are not identical. We know they are both
3378 // strings.
3379 if (equality) {
3380 DCHECK(GetCondition() == eq);
3381 STATIC_ASSERT(kInternalizedTag == 0);
3382 Label not_internalized_strings;
3383 __ Orr(x12, lhs_type, rhs_type);
3384 __ TestAndBranchIfAnySet(
3385 x12, kIsNotInternalizedMask, ¬_internalized_strings);
3386 // Result is in rhs (x0), and not EQUAL, as rhs is not a smi.
3387 __ Ret();
3388 __ Bind(¬_internalized_strings);
3389 }
3390
3391 // Check that both strings are sequential one-byte.
3392 Label runtime;
3393 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x12,
3394 x13, &runtime);
3395
3396 // Compare flat one-byte strings. Returns when done.
3397 if (equality) {
3398 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
3399 x12);
3400 } else {
3401 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
3402 x12, x13);
3403 }
3404
3405 // Handle more complex cases in runtime.
3406 __ Bind(&runtime);
3407 __ Push(lhs, rhs);
3408 if (equality) {
3409 __ TailCallRuntime(Runtime::kStringEquals);
3410 } else {
3411 __ TailCallRuntime(Runtime::kStringCompare);
3412 }
3413
3414 __ Bind(&miss);
3415 GenerateMiss(masm);
3416 }
3417
3418
GenerateReceivers(MacroAssembler * masm)3419 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
3420 DCHECK_EQ(CompareICState::RECEIVER, state());
3421 ASM_LOCATION("CompareICStub[Receivers]");
3422
3423 Label miss;
3424
3425 Register result = x0;
3426 Register rhs = x0;
3427 Register lhs = x1;
3428
3429 __ JumpIfEitherSmi(rhs, lhs, &miss);
3430
3431 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
3432 __ JumpIfObjectType(rhs, x10, x10, FIRST_JS_RECEIVER_TYPE, &miss, lt);
3433 __ JumpIfObjectType(lhs, x10, x10, FIRST_JS_RECEIVER_TYPE, &miss, lt);
3434
3435 DCHECK_EQ(eq, GetCondition());
3436 __ Sub(result, rhs, lhs);
3437 __ Ret();
3438
3439 __ Bind(&miss);
3440 GenerateMiss(masm);
3441 }
3442
3443
GenerateKnownReceivers(MacroAssembler * masm)3444 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
3445 ASM_LOCATION("CompareICStub[KnownReceivers]");
3446
3447 Label miss;
3448 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3449
3450 Register result = x0;
3451 Register rhs = x0;
3452 Register lhs = x1;
3453
3454 __ JumpIfEitherSmi(rhs, lhs, &miss);
3455
3456 Register rhs_map = x10;
3457 Register lhs_map = x11;
3458 Register map = x12;
3459 __ GetWeakValue(map, cell);
3460 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3461 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3462 __ Cmp(rhs_map, map);
3463 __ B(ne, &miss);
3464 __ Cmp(lhs_map, map);
3465 __ B(ne, &miss);
3466
3467 if (Token::IsEqualityOp(op())) {
3468 __ Sub(result, rhs, lhs);
3469 __ Ret();
3470 } else if (is_strong(strength())) {
3471 __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion);
3472 } else {
3473 Register ncr = x2;
3474 if (op() == Token::LT || op() == Token::LTE) {
3475 __ Mov(ncr, Smi::FromInt(GREATER));
3476 } else {
3477 __ Mov(ncr, Smi::FromInt(LESS));
3478 }
3479 __ Push(lhs, rhs, ncr);
3480 __ TailCallRuntime(Runtime::kCompare);
3481 }
3482
3483 __ Bind(&miss);
3484 GenerateMiss(masm);
3485 }
3486
3487
3488 // This method handles the case where a compare stub had the wrong
3489 // implementation. It calls a miss handler, which re-writes the stub. All other
3490 // CompareICStub::Generate* methods should fall back into this one if their
3491 // operands were not the expected types.
GenerateMiss(MacroAssembler * masm)3492 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3493 ASM_LOCATION("CompareICStub[Miss]");
3494
3495 Register stub_entry = x11;
3496 {
3497 FrameScope scope(masm, StackFrame::INTERNAL);
3498 Register op = x10;
3499 Register left = x1;
3500 Register right = x0;
3501 // Preserve some caller-saved registers.
3502 __ Push(x1, x0, lr);
3503 // Push the arguments.
3504 __ Mov(op, Smi::FromInt(this->op()));
3505 __ Push(left, right, op);
3506
3507 // Call the miss handler. This also pops the arguments.
3508 __ CallRuntime(Runtime::kCompareIC_Miss);
3509
3510 // Compute the entry point of the rewritten stub.
3511 __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag);
3512 // Restore caller-saved registers.
3513 __ Pop(lr, x0, x1);
3514 }
3515
3516 // Tail-call to the new stub.
3517 __ Jump(stub_entry);
3518 }
3519
3520
Generate(MacroAssembler * masm)3521 void SubStringStub::Generate(MacroAssembler* masm) {
3522 ASM_LOCATION("SubStringStub::Generate");
3523 Label runtime;
3524
3525 // Stack frame on entry.
3526 // lr: return address
3527 // jssp[0]: substring "to" offset
3528 // jssp[8]: substring "from" offset
3529 // jssp[16]: pointer to string object
3530
3531 // This stub is called from the native-call %_SubString(...), so
3532 // nothing can be assumed about the arguments. It is tested that:
3533 // "string" is a sequential string,
3534 // both "from" and "to" are smis, and
3535 // 0 <= from <= to <= string.length (in debug mode.)
3536 // If any of these assumptions fail, we call the runtime system.
3537
3538 static const int kToOffset = 0 * kPointerSize;
3539 static const int kFromOffset = 1 * kPointerSize;
3540 static const int kStringOffset = 2 * kPointerSize;
3541
3542 Register to = x0;
3543 Register from = x15;
3544 Register input_string = x10;
3545 Register input_length = x11;
3546 Register input_type = x12;
3547 Register result_string = x0;
3548 Register result_length = x1;
3549 Register temp = x3;
3550
3551 __ Peek(to, kToOffset);
3552 __ Peek(from, kFromOffset);
3553
3554 // Check that both from and to are smis. If not, jump to runtime.
3555 __ JumpIfEitherNotSmi(from, to, &runtime);
3556 __ SmiUntag(from);
3557 __ SmiUntag(to);
3558
3559 // Calculate difference between from and to. If to < from, branch to runtime.
3560 __ Subs(result_length, to, from);
3561 __ B(mi, &runtime);
3562
3563 // Check from is positive.
3564 __ Tbnz(from, kWSignBit, &runtime);
3565
3566 // Make sure first argument is a string.
3567 __ Peek(input_string, kStringOffset);
3568 __ JumpIfSmi(input_string, &runtime);
3569 __ IsObjectJSStringType(input_string, input_type, &runtime);
3570
3571 Label single_char;
3572 __ Cmp(result_length, 1);
3573 __ B(eq, &single_char);
3574
3575 // Short-cut for the case of trivial substring.
3576 Label return_x0;
3577 __ Ldrsw(input_length,
3578 UntagSmiFieldMemOperand(input_string, String::kLengthOffset));
3579
3580 __ Cmp(result_length, input_length);
3581 __ CmovX(x0, input_string, eq);
3582 // Return original string.
3583 __ B(eq, &return_x0);
3584
3585 // Longer than original string's length or negative: unsafe arguments.
3586 __ B(hi, &runtime);
3587
3588 // Shorter than original string's length: an actual substring.
3589
3590 // x0 to substring end character offset
3591 // x1 result_length length of substring result
3592 // x10 input_string pointer to input string object
3593 // x10 unpacked_string pointer to unpacked string object
3594 // x11 input_length length of input string
3595 // x12 input_type instance type of input string
3596 // x15 from substring start character offset
3597
3598 // Deal with different string types: update the index if necessary and put
3599 // the underlying string into register unpacked_string.
3600 Label underlying_unpacked, sliced_string, seq_or_external_string;
3601 Label update_instance_type;
3602 // If the string is not indirect, it can only be sequential or external.
3603 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3604 STATIC_ASSERT(kIsIndirectStringMask != 0);
3605
3606 // Test for string types, and branch/fall through to appropriate unpacking
3607 // code.
3608 __ Tst(input_type, kIsIndirectStringMask);
3609 __ B(eq, &seq_or_external_string);
3610 __ Tst(input_type, kSlicedNotConsMask);
3611 __ B(ne, &sliced_string);
3612
3613 Register unpacked_string = input_string;
3614
3615 // Cons string. Check whether it is flat, then fetch first part.
3616 __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset));
3617 __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime);
3618 __ Ldr(unpacked_string,
3619 FieldMemOperand(input_string, ConsString::kFirstOffset));
3620 __ B(&update_instance_type);
3621
3622 __ Bind(&sliced_string);
3623 // Sliced string. Fetch parent and correct start index by offset.
3624 __ Ldrsw(temp,
3625 UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset));
3626 __ Add(from, from, temp);
3627 __ Ldr(unpacked_string,
3628 FieldMemOperand(input_string, SlicedString::kParentOffset));
3629
3630 __ Bind(&update_instance_type);
3631 __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset));
3632 __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset));
3633 // Now control must go to &underlying_unpacked. Since the no code is generated
3634 // before then we fall through instead of generating a useless branch.
3635
3636 __ Bind(&seq_or_external_string);
3637 // Sequential or external string. Registers unpacked_string and input_string
3638 // alias, so there's nothing to do here.
3639 // Note that if code is added here, the above code must be updated.
3640
3641 // x0 result_string pointer to result string object (uninit)
3642 // x1 result_length length of substring result
3643 // x10 unpacked_string pointer to unpacked string object
3644 // x11 input_length length of input string
3645 // x12 input_type instance type of input string
3646 // x15 from substring start character offset
3647 __ Bind(&underlying_unpacked);
3648
3649 if (FLAG_string_slices) {
3650 Label copy_routine;
3651 __ Cmp(result_length, SlicedString::kMinLength);
3652 // Short slice. Copy instead of slicing.
3653 __ B(lt, ©_routine);
3654 // Allocate new sliced string. At this point we do not reload the instance
3655 // type including the string encoding because we simply rely on the info
3656 // provided by the original string. It does not matter if the original
3657 // string's encoding is wrong because we always have to recheck encoding of
3658 // the newly created string's parent anyway due to externalized strings.
3659 Label two_byte_slice, set_slice_header;
3660 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3661 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3662 __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice);
3663 __ AllocateOneByteSlicedString(result_string, result_length, x3, x4,
3664 &runtime);
3665 __ B(&set_slice_header);
3666
3667 __ Bind(&two_byte_slice);
3668 __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4,
3669 &runtime);
3670
3671 __ Bind(&set_slice_header);
3672 __ SmiTag(from);
3673 __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset));
3674 __ Str(unpacked_string,
3675 FieldMemOperand(result_string, SlicedString::kParentOffset));
3676 __ B(&return_x0);
3677
3678 __ Bind(©_routine);
3679 }
3680
3681 // x0 result_string pointer to result string object (uninit)
3682 // x1 result_length length of substring result
3683 // x10 unpacked_string pointer to unpacked string object
3684 // x11 input_length length of input string
3685 // x12 input_type instance type of input string
3686 // x13 unpacked_char0 pointer to first char of unpacked string (uninit)
3687 // x13 substring_char0 pointer to first char of substring (uninit)
3688 // x14 result_char0 pointer to first char of result (uninit)
3689 // x15 from substring start character offset
3690 Register unpacked_char0 = x13;
3691 Register substring_char0 = x13;
3692 Register result_char0 = x14;
3693 Label two_byte_sequential, sequential_string, allocate_result;
3694 STATIC_ASSERT(kExternalStringTag != 0);
3695 STATIC_ASSERT(kSeqStringTag == 0);
3696
3697 __ Tst(input_type, kExternalStringTag);
3698 __ B(eq, &sequential_string);
3699
3700 __ Tst(input_type, kShortExternalStringTag);
3701 __ B(ne, &runtime);
3702 __ Ldr(unpacked_char0,
3703 FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset));
3704 // unpacked_char0 points to the first character of the underlying string.
3705 __ B(&allocate_result);
3706
3707 __ Bind(&sequential_string);
3708 // Locate first character of underlying subject string.
3709 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3710 __ Add(unpacked_char0, unpacked_string,
3711 SeqOneByteString::kHeaderSize - kHeapObjectTag);
3712
3713 __ Bind(&allocate_result);
3714 // Sequential one-byte string. Allocate the result.
3715 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3716 __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential);
3717
3718 // Allocate and copy the resulting one-byte string.
3719 __ AllocateOneByteString(result_string, result_length, x3, x4, x5, &runtime);
3720
3721 // Locate first character of substring to copy.
3722 __ Add(substring_char0, unpacked_char0, from);
3723
3724 // Locate first character of result.
3725 __ Add(result_char0, result_string,
3726 SeqOneByteString::kHeaderSize - kHeapObjectTag);
3727
3728 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3729 __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
3730 __ B(&return_x0);
3731
3732 // Allocate and copy the resulting two-byte string.
3733 __ Bind(&two_byte_sequential);
3734 __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime);
3735
3736 // Locate first character of substring to copy.
3737 __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1));
3738
3739 // Locate first character of result.
3740 __ Add(result_char0, result_string,
3741 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
3742
3743 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3744 __ Add(result_length, result_length, result_length);
3745 __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
3746
3747 __ Bind(&return_x0);
3748 Counters* counters = isolate()->counters();
3749 __ IncrementCounter(counters->sub_string_native(), 1, x3, x4);
3750 __ Drop(3);
3751 __ Ret();
3752
3753 __ Bind(&runtime);
3754 __ TailCallRuntime(Runtime::kSubString);
3755
3756 __ bind(&single_char);
3757 // x1: result_length
3758 // x10: input_string
3759 // x12: input_type
3760 // x15: from (untagged)
3761 __ SmiTag(from);
3762 StringCharAtGenerator generator(input_string, from, result_length, x0,
3763 &runtime, &runtime, &runtime,
3764 STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
3765 generator.GenerateFast(masm);
3766 __ Drop(3);
3767 __ Ret();
3768 generator.SkipSlow(masm, &runtime);
3769 }
3770
3771
Generate(MacroAssembler * masm)3772 void ToNumberStub::Generate(MacroAssembler* masm) {
3773 // The ToNumber stub takes one argument in x0.
3774 Label not_smi;
3775 __ JumpIfNotSmi(x0, ¬_smi);
3776 __ Ret();
3777 __ Bind(¬_smi);
3778
3779 Label not_heap_number;
3780 __ Ldr(x1, FieldMemOperand(x0, HeapObject::kMapOffset));
3781 __ Ldrb(x1, FieldMemOperand(x1, Map::kInstanceTypeOffset));
3782 // x0: object
3783 // x1: instance type
3784 __ Cmp(x1, HEAP_NUMBER_TYPE);
3785 __ B(ne, ¬_heap_number);
3786 __ Ret();
3787 __ Bind(¬_heap_number);
3788
3789 Label not_string, slow_string;
3790 __ Cmp(x1, FIRST_NONSTRING_TYPE);
3791 __ B(hs, ¬_string);
3792 // Check if string has a cached array index.
3793 __ Ldr(x2, FieldMemOperand(x0, String::kHashFieldOffset));
3794 __ Tst(x2, Operand(String::kContainsCachedArrayIndexMask));
3795 __ B(ne, &slow_string);
3796 __ IndexFromHash(x2, x0);
3797 __ Ret();
3798 __ Bind(&slow_string);
3799 __ Push(x0); // Push argument.
3800 __ TailCallRuntime(Runtime::kStringToNumber);
3801 __ Bind(¬_string);
3802
3803 Label not_oddball;
3804 __ Cmp(x1, ODDBALL_TYPE);
3805 __ B(ne, ¬_oddball);
3806 __ Ldr(x0, FieldMemOperand(x0, Oddball::kToNumberOffset));
3807 __ Ret();
3808 __ Bind(¬_oddball);
3809
3810 __ Push(x0); // Push argument.
3811 __ TailCallRuntime(Runtime::kToNumber);
3812 }
3813
3814
Generate(MacroAssembler * masm)3815 void ToLengthStub::Generate(MacroAssembler* masm) {
3816 // The ToLength stub takes one argument in x0.
3817 Label not_smi;
3818 __ JumpIfNotSmi(x0, ¬_smi);
3819 STATIC_ASSERT(kSmiTag == 0);
3820 __ Tst(x0, x0);
3821 __ Csel(x0, x0, Operand(0), ge);
3822 __ Ret();
3823 __ Bind(¬_smi);
3824
3825 __ Push(x0); // Push argument.
3826 __ TailCallRuntime(Runtime::kToLength);
3827 }
3828
3829
Generate(MacroAssembler * masm)3830 void ToStringStub::Generate(MacroAssembler* masm) {
3831 // The ToString stub takes one argument in x0.
3832 Label is_number;
3833 __ JumpIfSmi(x0, &is_number);
3834
3835 Label not_string;
3836 __ JumpIfObjectType(x0, x1, x1, FIRST_NONSTRING_TYPE, ¬_string, hs);
3837 // x0: receiver
3838 // x1: receiver instance type
3839 __ Ret();
3840 __ Bind(¬_string);
3841
3842 Label not_heap_number;
3843 __ Cmp(x1, HEAP_NUMBER_TYPE);
3844 __ B(ne, ¬_heap_number);
3845 __ Bind(&is_number);
3846 NumberToStringStub stub(isolate());
3847 __ TailCallStub(&stub);
3848 __ Bind(¬_heap_number);
3849
3850 Label not_oddball;
3851 __ Cmp(x1, ODDBALL_TYPE);
3852 __ B(ne, ¬_oddball);
3853 __ Ldr(x0, FieldMemOperand(x0, Oddball::kToStringOffset));
3854 __ Ret();
3855 __ Bind(¬_oddball);
3856
3857 __ Push(x0); // Push argument.
3858 __ TailCallRuntime(Runtime::kToString);
3859 }
3860
3861
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)3862 void StringHelper::GenerateFlatOneByteStringEquals(
3863 MacroAssembler* masm, Register left, Register right, Register scratch1,
3864 Register scratch2, Register scratch3) {
3865 DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3));
3866 Register result = x0;
3867 Register left_length = scratch1;
3868 Register right_length = scratch2;
3869
3870 // Compare lengths. If lengths differ, strings can't be equal. Lengths are
3871 // smis, and don't need to be untagged.
3872 Label strings_not_equal, check_zero_length;
3873 __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset));
3874 __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset));
3875 __ Cmp(left_length, right_length);
3876 __ B(eq, &check_zero_length);
3877
3878 __ Bind(&strings_not_equal);
3879 __ Mov(result, Smi::FromInt(NOT_EQUAL));
3880 __ Ret();
3881
3882 // Check if the length is zero. If so, the strings must be equal (and empty.)
3883 Label compare_chars;
3884 __ Bind(&check_zero_length);
3885 STATIC_ASSERT(kSmiTag == 0);
3886 __ Cbnz(left_length, &compare_chars);
3887 __ Mov(result, Smi::FromInt(EQUAL));
3888 __ Ret();
3889
3890 // Compare characters. Falls through if all characters are equal.
3891 __ Bind(&compare_chars);
3892 GenerateOneByteCharsCompareLoop(masm, left, right, left_length, scratch2,
3893 scratch3, &strings_not_equal);
3894
3895 // Characters in strings are equal.
3896 __ Mov(result, Smi::FromInt(EQUAL));
3897 __ Ret();
3898 }
3899
3900
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)3901 void StringHelper::GenerateCompareFlatOneByteStrings(
3902 MacroAssembler* masm, Register left, Register right, Register scratch1,
3903 Register scratch2, Register scratch3, Register scratch4) {
3904 DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
3905 Label result_not_equal, compare_lengths;
3906
3907 // Find minimum length and length difference.
3908 Register length_delta = scratch3;
3909 __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
3910 __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
3911 __ Subs(length_delta, scratch1, scratch2);
3912
3913 Register min_length = scratch1;
3914 __ Csel(min_length, scratch2, scratch1, gt);
3915 __ Cbz(min_length, &compare_lengths);
3916
3917 // Compare loop.
3918 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3919 scratch4, &result_not_equal);
3920
3921 // Compare lengths - strings up to min-length are equal.
3922 __ Bind(&compare_lengths);
3923
3924 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3925
3926 // Use length_delta as result if it's zero.
3927 Register result = x0;
3928 __ Subs(result, length_delta, 0);
3929
3930 __ Bind(&result_not_equal);
3931 Register greater = x10;
3932 Register less = x11;
3933 __ Mov(greater, Smi::FromInt(GREATER));
3934 __ Mov(less, Smi::FromInt(LESS));
3935 __ CmovX(result, greater, gt);
3936 __ CmovX(result, less, lt);
3937 __ Ret();
3938 }
3939
3940
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Label * chars_not_equal)3941 void StringHelper::GenerateOneByteCharsCompareLoop(
3942 MacroAssembler* masm, Register left, Register right, Register length,
3943 Register scratch1, Register scratch2, Label* chars_not_equal) {
3944 DCHECK(!AreAliased(left, right, length, scratch1, scratch2));
3945
3946 // Change index to run from -length to -1 by adding length to string
3947 // start. This means that loop ends when index reaches zero, which
3948 // doesn't need an additional compare.
3949 __ SmiUntag(length);
3950 __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3951 __ Add(left, left, scratch1);
3952 __ Add(right, right, scratch1);
3953
3954 Register index = length;
3955 __ Neg(index, length); // index = -length;
3956
3957 // Compare loop
3958 Label loop;
3959 __ Bind(&loop);
3960 __ Ldrb(scratch1, MemOperand(left, index));
3961 __ Ldrb(scratch2, MemOperand(right, index));
3962 __ Cmp(scratch1, scratch2);
3963 __ B(ne, chars_not_equal);
3964 __ Add(index, index, 1);
3965 __ Cbnz(index, &loop);
3966 }
3967
3968
Generate(MacroAssembler * masm)3969 void StringCompareStub::Generate(MacroAssembler* masm) {
3970 // ----------- S t a t e -------------
3971 // -- x1 : left
3972 // -- x0 : right
3973 // -- lr : return address
3974 // -----------------------------------
3975 __ AssertString(x1);
3976 __ AssertString(x0);
3977
3978 Label not_same;
3979 __ Cmp(x0, x1);
3980 __ B(ne, ¬_same);
3981 __ Mov(x0, Smi::FromInt(EQUAL));
3982 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x3,
3983 x4);
3984 __ Ret();
3985
3986 __ Bind(¬_same);
3987
3988 // Check that both objects are sequential one-byte strings.
3989 Label runtime;
3990 __ JumpIfEitherIsNotSequentialOneByteStrings(x1, x0, x12, x13, &runtime);
3991
3992 // Compare flat one-byte strings natively.
3993 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x3,
3994 x4);
3995 StringHelper::GenerateCompareFlatOneByteStrings(masm, x1, x0, x12, x13, x14,
3996 x15);
3997
3998 // Call the runtime.
3999 // Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer.
4000 __ Bind(&runtime);
4001 __ Push(x1, x0);
4002 __ TailCallRuntime(Runtime::kStringCompare);
4003 }
4004
4005
Generate(MacroAssembler * masm)4006 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
4007 // ----------- S t a t e -------------
4008 // -- x1 : left
4009 // -- x0 : right
4010 // -- lr : return address
4011 // -----------------------------------
4012
4013 // Load x2 with the allocation site. We stick an undefined dummy value here
4014 // and replace it with the real allocation site later when we instantiate this
4015 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
4016 __ LoadObject(x2, handle(isolate()->heap()->undefined_value()));
4017
4018 // Make sure that we actually patched the allocation site.
4019 if (FLAG_debug_code) {
4020 __ AssertNotSmi(x2, kExpectedAllocationSite);
4021 __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
4022 __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex,
4023 kExpectedAllocationSite);
4024 }
4025
4026 // Tail call into the stub that handles binary operations with allocation
4027 // sites.
4028 BinaryOpWithAllocationSiteStub stub(isolate(), state());
4029 __ TailCallStub(&stub);
4030 }
4031
4032
GenerateIncremental(MacroAssembler * masm,Mode mode)4033 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4034 // We need some extra registers for this stub, they have been allocated
4035 // but we need to save them before using them.
4036 regs_.Save(masm);
4037
4038 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4039 Label dont_need_remembered_set;
4040
4041 Register val = regs_.scratch0();
4042 __ Ldr(val, MemOperand(regs_.address()));
4043 __ JumpIfNotInNewSpace(val, &dont_need_remembered_set);
4044
4045 __ CheckPageFlagSet(regs_.object(), val, 1 << MemoryChunk::SCAN_ON_SCAVENGE,
4046 &dont_need_remembered_set);
4047
4048 // First notify the incremental marker if necessary, then update the
4049 // remembered set.
4050 CheckNeedsToInformIncrementalMarker(
4051 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4052 InformIncrementalMarker(masm);
4053 regs_.Restore(masm); // Restore the extra scratch registers we used.
4054
4055 __ RememberedSetHelper(object(), address(),
4056 value(), // scratch1
4057 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4058
4059 __ Bind(&dont_need_remembered_set);
4060 }
4061
4062 CheckNeedsToInformIncrementalMarker(
4063 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4064 InformIncrementalMarker(masm);
4065 regs_.Restore(masm); // Restore the extra scratch registers we used.
4066 __ Ret();
4067 }
4068
4069
InformIncrementalMarker(MacroAssembler * masm)4070 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4071 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4072 Register address =
4073 x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address();
4074 DCHECK(!address.Is(regs_.object()));
4075 DCHECK(!address.Is(x0));
4076 __ Mov(address, regs_.address());
4077 __ Mov(x0, regs_.object());
4078 __ Mov(x1, address);
4079 __ Mov(x2, ExternalReference::isolate_address(isolate()));
4080
4081 AllowExternalCallThatCantCauseGC scope(masm);
4082 ExternalReference function =
4083 ExternalReference::incremental_marking_record_write_function(
4084 isolate());
4085 __ CallCFunction(function, 3, 0);
4086
4087 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4088 }
4089
4090
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)4091 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4092 MacroAssembler* masm,
4093 OnNoNeedToInformIncrementalMarker on_no_need,
4094 Mode mode) {
4095 Label on_black;
4096 Label need_incremental;
4097 Label need_incremental_pop_scratch;
4098
4099 Register mem_chunk = regs_.scratch0();
4100 Register counter = regs_.scratch1();
4101 __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask);
4102 __ Ldr(counter,
4103 MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
4104 __ Subs(counter, counter, 1);
4105 __ Str(counter,
4106 MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
4107 __ B(mi, &need_incremental);
4108
4109 // If the object is not black we don't have to inform the incremental marker.
4110 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4111
4112 regs_.Restore(masm); // Restore the extra scratch registers we used.
4113 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4114 __ RememberedSetHelper(object(), address(),
4115 value(), // scratch1
4116 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4117 } else {
4118 __ Ret();
4119 }
4120
4121 __ Bind(&on_black);
4122 // Get the value from the slot.
4123 Register val = regs_.scratch0();
4124 __ Ldr(val, MemOperand(regs_.address()));
4125
4126 if (mode == INCREMENTAL_COMPACTION) {
4127 Label ensure_not_white;
4128
4129 __ CheckPageFlagClear(val, regs_.scratch1(),
4130 MemoryChunk::kEvacuationCandidateMask,
4131 &ensure_not_white);
4132
4133 __ CheckPageFlagClear(regs_.object(),
4134 regs_.scratch1(),
4135 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4136 &need_incremental);
4137
4138 __ Bind(&ensure_not_white);
4139 }
4140
4141 // We need extra registers for this, so we push the object and the address
4142 // register temporarily.
4143 __ Push(regs_.address(), regs_.object());
4144 __ JumpIfWhite(val,
4145 regs_.scratch1(), // Scratch.
4146 regs_.object(), // Scratch.
4147 regs_.address(), // Scratch.
4148 regs_.scratch2(), // Scratch.
4149 &need_incremental_pop_scratch);
4150 __ Pop(regs_.object(), regs_.address());
4151
4152 regs_.Restore(masm); // Restore the extra scratch registers we used.
4153 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4154 __ RememberedSetHelper(object(), address(),
4155 value(), // scratch1
4156 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4157 } else {
4158 __ Ret();
4159 }
4160
4161 __ Bind(&need_incremental_pop_scratch);
4162 __ Pop(regs_.object(), regs_.address());
4163
4164 __ Bind(&need_incremental);
4165 // Fall through when we need to inform the incremental marker.
4166 }
4167
4168
Generate(MacroAssembler * masm)4169 void RecordWriteStub::Generate(MacroAssembler* masm) {
4170 Label skip_to_incremental_noncompacting;
4171 Label skip_to_incremental_compacting;
4172
4173 // We patch these two first instructions back and forth between a nop and
4174 // real branch when we start and stop incremental heap marking.
4175 // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops
4176 // are generated.
4177 // See RecordWriteStub::Patch for details.
4178 {
4179 InstructionAccurateScope scope(masm, 2);
4180 __ adr(xzr, &skip_to_incremental_noncompacting);
4181 __ adr(xzr, &skip_to_incremental_compacting);
4182 }
4183
4184 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4185 __ RememberedSetHelper(object(), address(),
4186 value(), // scratch1
4187 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4188 }
4189 __ Ret();
4190
4191 __ Bind(&skip_to_incremental_noncompacting);
4192 GenerateIncremental(masm, INCREMENTAL);
4193
4194 __ Bind(&skip_to_incremental_compacting);
4195 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4196 }
4197
4198
Generate(MacroAssembler * masm)4199 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4200 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4201 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4202 int parameter_count_offset =
4203 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4204 __ Ldr(x1, MemOperand(fp, parameter_count_offset));
4205 if (function_mode() == JS_FUNCTION_STUB_MODE) {
4206 __ Add(x1, x1, 1);
4207 }
4208 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4209 __ Drop(x1);
4210 // Return to IC Miss stub, continuation still on stack.
4211 __ Ret();
4212 }
4213
4214
Generate(MacroAssembler * masm)4215 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4216 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
4217 LoadICStub stub(isolate(), state());
4218 stub.GenerateForTrampoline(masm);
4219 }
4220
4221
Generate(MacroAssembler * masm)4222 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4223 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
4224 KeyedLoadICStub stub(isolate(), state());
4225 stub.GenerateForTrampoline(masm);
4226 }
4227
4228
Generate(MacroAssembler * masm)4229 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4230 __ EmitLoadTypeFeedbackVector(x2);
4231 CallICStub stub(isolate(), state());
4232 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4233 }
4234
4235
Generate(MacroAssembler * masm)4236 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4237
4238
GenerateForTrampoline(MacroAssembler * masm)4239 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4240 GenerateImpl(masm, true);
4241 }
4242
4243
HandleArrayCases(MacroAssembler * masm,Register feedback,Register receiver_map,Register scratch1,Register scratch2,bool is_polymorphic,Label * miss)4244 static void HandleArrayCases(MacroAssembler* masm, Register feedback,
4245 Register receiver_map, Register scratch1,
4246 Register scratch2, bool is_polymorphic,
4247 Label* miss) {
4248 // feedback initially contains the feedback array
4249 Label next_loop, prepare_next;
4250 Label load_smi_map, compare_map;
4251 Label start_polymorphic;
4252
4253 Register cached_map = scratch1;
4254
4255 __ Ldr(cached_map,
4256 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4257 __ Ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4258 __ Cmp(receiver_map, cached_map);
4259 __ B(ne, &start_polymorphic);
4260 // found, now call handler.
4261 Register handler = feedback;
4262 __ Ldr(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4263 __ Add(handler, handler, Code::kHeaderSize - kHeapObjectTag);
4264 __ Jump(feedback);
4265
4266 Register length = scratch2;
4267 __ Bind(&start_polymorphic);
4268 __ Ldr(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4269 if (!is_polymorphic) {
4270 __ Cmp(length, Operand(Smi::FromInt(2)));
4271 __ B(eq, miss);
4272 }
4273
4274 Register too_far = length;
4275 Register pointer_reg = feedback;
4276
4277 // +-----+------+------+-----+-----+ ... ----+
4278 // | map | len | wm0 | h0 | wm1 | hN |
4279 // +-----+------+------+-----+-----+ ... ----+
4280 // 0 1 2 len-1
4281 // ^ ^
4282 // | |
4283 // pointer_reg too_far
4284 // aka feedback scratch2
4285 // also need receiver_map
4286 // use cached_map (scratch1) to look in the weak map values.
4287 __ Add(too_far, feedback,
4288 Operand::UntagSmiAndScale(length, kPointerSizeLog2));
4289 __ Add(too_far, too_far, FixedArray::kHeaderSize - kHeapObjectTag);
4290 __ Add(pointer_reg, feedback,
4291 FixedArray::OffsetOfElementAt(2) - kHeapObjectTag);
4292
4293 __ Bind(&next_loop);
4294 __ Ldr(cached_map, MemOperand(pointer_reg));
4295 __ Ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4296 __ Cmp(receiver_map, cached_map);
4297 __ B(ne, &prepare_next);
4298 __ Ldr(handler, MemOperand(pointer_reg, kPointerSize));
4299 __ Add(handler, handler, Code::kHeaderSize - kHeapObjectTag);
4300 __ Jump(handler);
4301
4302 __ Bind(&prepare_next);
4303 __ Add(pointer_reg, pointer_reg, kPointerSize * 2);
4304 __ Cmp(pointer_reg, too_far);
4305 __ B(lt, &next_loop);
4306
4307 // We exhausted our array of map handler pairs.
4308 __ jmp(miss);
4309 }
4310
4311
HandleMonomorphicCase(MacroAssembler * masm,Register receiver,Register receiver_map,Register feedback,Register vector,Register slot,Register scratch,Label * compare_map,Label * load_smi_map,Label * try_array)4312 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4313 Register receiver_map, Register feedback,
4314 Register vector, Register slot,
4315 Register scratch, Label* compare_map,
4316 Label* load_smi_map, Label* try_array) {
4317 __ JumpIfSmi(receiver, load_smi_map);
4318 __ Ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
4319 __ bind(compare_map);
4320 Register cached_map = scratch;
4321 // Move the weak map into the weak_cell register.
4322 __ Ldr(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
4323 __ Cmp(cached_map, receiver_map);
4324 __ B(ne, try_array);
4325
4326 Register handler = feedback;
4327 __ Add(handler, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4328 __ Ldr(handler,
4329 FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
4330 __ Add(handler, handler, Code::kHeaderSize - kHeapObjectTag);
4331 __ Jump(handler);
4332 }
4333
4334
GenerateImpl(MacroAssembler * masm,bool in_frame)4335 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4336 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // x1
4337 Register name = LoadWithVectorDescriptor::NameRegister(); // x2
4338 Register vector = LoadWithVectorDescriptor::VectorRegister(); // x3
4339 Register slot = LoadWithVectorDescriptor::SlotRegister(); // x0
4340 Register feedback = x4;
4341 Register receiver_map = x5;
4342 Register scratch1 = x6;
4343
4344 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4345 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4346
4347 // Try to quickly handle the monomorphic case without knowing for sure
4348 // if we have a weak cell in feedback. We do know it's safe to look
4349 // at WeakCell::kValueOffset.
4350 Label try_array, load_smi_map, compare_map;
4351 Label not_array, miss;
4352 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4353 scratch1, &compare_map, &load_smi_map, &try_array);
4354
4355 // Is it a fixed array?
4356 __ Bind(&try_array);
4357 __ Ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4358 __ JumpIfNotRoot(scratch1, Heap::kFixedArrayMapRootIndex, ¬_array);
4359 HandleArrayCases(masm, feedback, receiver_map, scratch1, x7, true, &miss);
4360
4361 __ Bind(¬_array);
4362 __ JumpIfNotRoot(feedback, Heap::kmegamorphic_symbolRootIndex, &miss);
4363 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4364 Code::ComputeHandlerFlags(Code::LOAD_IC));
4365 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
4366 receiver, name, feedback,
4367 receiver_map, scratch1, x7);
4368
4369 __ Bind(&miss);
4370 LoadIC::GenerateMiss(masm);
4371
4372 __ Bind(&load_smi_map);
4373 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4374 __ jmp(&compare_map);
4375 }
4376
4377
Generate(MacroAssembler * masm)4378 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4379 GenerateImpl(masm, false);
4380 }
4381
4382
GenerateForTrampoline(MacroAssembler * masm)4383 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4384 GenerateImpl(masm, true);
4385 }
4386
4387
GenerateImpl(MacroAssembler * masm,bool in_frame)4388 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4389 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // x1
4390 Register key = LoadWithVectorDescriptor::NameRegister(); // x2
4391 Register vector = LoadWithVectorDescriptor::VectorRegister(); // x3
4392 Register slot = LoadWithVectorDescriptor::SlotRegister(); // x0
4393 Register feedback = x4;
4394 Register receiver_map = x5;
4395 Register scratch1 = x6;
4396
4397 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4398 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4399
4400 // Try to quickly handle the monomorphic case without knowing for sure
4401 // if we have a weak cell in feedback. We do know it's safe to look
4402 // at WeakCell::kValueOffset.
4403 Label try_array, load_smi_map, compare_map;
4404 Label not_array, miss;
4405 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4406 scratch1, &compare_map, &load_smi_map, &try_array);
4407
4408 __ Bind(&try_array);
4409 // Is it a fixed array?
4410 __ Ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4411 __ JumpIfNotRoot(scratch1, Heap::kFixedArrayMapRootIndex, ¬_array);
4412
4413 // We have a polymorphic element handler.
4414 Label polymorphic, try_poly_name;
4415 __ Bind(&polymorphic);
4416 HandleArrayCases(masm, feedback, receiver_map, scratch1, x7, true, &miss);
4417
4418 __ Bind(¬_array);
4419 // Is it generic?
4420 __ JumpIfNotRoot(feedback, Heap::kmegamorphic_symbolRootIndex,
4421 &try_poly_name);
4422 Handle<Code> megamorphic_stub =
4423 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4424 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4425
4426 __ Bind(&try_poly_name);
4427 // We might have a name in feedback, and a fixed array in the next slot.
4428 __ Cmp(key, feedback);
4429 __ B(ne, &miss);
4430 // If the name comparison succeeded, we know we have a fixed array with
4431 // at least one map/handler pair.
4432 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4433 __ Ldr(feedback,
4434 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4435 HandleArrayCases(masm, feedback, receiver_map, scratch1, x7, false, &miss);
4436
4437 __ Bind(&miss);
4438 KeyedLoadIC::GenerateMiss(masm);
4439
4440 __ Bind(&load_smi_map);
4441 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4442 __ jmp(&compare_map);
4443 }
4444
4445
Generate(MacroAssembler * masm)4446 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4447 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
4448 VectorStoreICStub stub(isolate(), state());
4449 stub.GenerateForTrampoline(masm);
4450 }
4451
4452
Generate(MacroAssembler * masm)4453 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4454 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
4455 VectorKeyedStoreICStub stub(isolate(), state());
4456 stub.GenerateForTrampoline(masm);
4457 }
4458
4459
Generate(MacroAssembler * masm)4460 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4461 GenerateImpl(masm, false);
4462 }
4463
4464
GenerateForTrampoline(MacroAssembler * masm)4465 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4466 GenerateImpl(masm, true);
4467 }
4468
4469
GenerateImpl(MacroAssembler * masm,bool in_frame)4470 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4471 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // x1
4472 Register key = VectorStoreICDescriptor::NameRegister(); // x2
4473 Register vector = VectorStoreICDescriptor::VectorRegister(); // x3
4474 Register slot = VectorStoreICDescriptor::SlotRegister(); // x4
4475 DCHECK(VectorStoreICDescriptor::ValueRegister().is(x0)); // x0
4476 Register feedback = x5;
4477 Register receiver_map = x6;
4478 Register scratch1 = x7;
4479
4480 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4481 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4482
4483 // Try to quickly handle the monomorphic case without knowing for sure
4484 // if we have a weak cell in feedback. We do know it's safe to look
4485 // at WeakCell::kValueOffset.
4486 Label try_array, load_smi_map, compare_map;
4487 Label not_array, miss;
4488 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4489 scratch1, &compare_map, &load_smi_map, &try_array);
4490
4491 // Is it a fixed array?
4492 __ Bind(&try_array);
4493 __ Ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4494 __ JumpIfNotRoot(scratch1, Heap::kFixedArrayMapRootIndex, ¬_array);
4495 HandleArrayCases(masm, feedback, receiver_map, scratch1, x8, true, &miss);
4496
4497 __ Bind(¬_array);
4498 __ JumpIfNotRoot(feedback, Heap::kmegamorphic_symbolRootIndex, &miss);
4499 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4500 Code::ComputeHandlerFlags(Code::STORE_IC));
4501 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, code_flags,
4502 receiver, key, feedback,
4503 receiver_map, scratch1, x8);
4504
4505 __ Bind(&miss);
4506 StoreIC::GenerateMiss(masm);
4507
4508 __ Bind(&load_smi_map);
4509 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4510 __ jmp(&compare_map);
4511 }
4512
4513
Generate(MacroAssembler * masm)4514 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4515 GenerateImpl(masm, false);
4516 }
4517
4518
GenerateForTrampoline(MacroAssembler * masm)4519 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4520 GenerateImpl(masm, true);
4521 }
4522
4523
HandlePolymorphicStoreCase(MacroAssembler * masm,Register feedback,Register receiver_map,Register scratch1,Register scratch2,Label * miss)4524 static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
4525 Register receiver_map, Register scratch1,
4526 Register scratch2, Label* miss) {
4527 // feedback initially contains the feedback array
4528 Label next_loop, prepare_next;
4529 Label start_polymorphic;
4530 Label transition_call;
4531
4532 Register cached_map = scratch1;
4533 Register too_far = scratch2;
4534 Register pointer_reg = feedback;
4535
4536 __ Ldr(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4537
4538 // +-----+------+------+-----+-----+-----+ ... ----+
4539 // | map | len | wm0 | wt0 | h0 | wm1 | hN |
4540 // +-----+------+------+-----+-----+ ----+ ... ----+
4541 // 0 1 2 len-1
4542 // ^ ^
4543 // | |
4544 // pointer_reg too_far
4545 // aka feedback scratch2
4546 // also need receiver_map
4547 // use cached_map (scratch1) to look in the weak map values.
4548 __ Add(too_far, feedback,
4549 Operand::UntagSmiAndScale(too_far, kPointerSizeLog2));
4550 __ Add(too_far, too_far, FixedArray::kHeaderSize - kHeapObjectTag);
4551 __ Add(pointer_reg, feedback,
4552 FixedArray::OffsetOfElementAt(0) - kHeapObjectTag);
4553
4554 __ Bind(&next_loop);
4555 __ Ldr(cached_map, MemOperand(pointer_reg));
4556 __ Ldr(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4557 __ Cmp(receiver_map, cached_map);
4558 __ B(ne, &prepare_next);
4559 // Is it a transitioning store?
4560 __ Ldr(too_far, MemOperand(pointer_reg, kPointerSize));
4561 __ CompareRoot(too_far, Heap::kUndefinedValueRootIndex);
4562 __ B(ne, &transition_call);
4563
4564 __ Ldr(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
4565 __ Add(pointer_reg, pointer_reg, Code::kHeaderSize - kHeapObjectTag);
4566 __ Jump(pointer_reg);
4567
4568 __ Bind(&transition_call);
4569 __ Ldr(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
4570 __ JumpIfSmi(too_far, miss);
4571
4572 __ Ldr(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
4573 // Load the map into the correct register.
4574 DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister()));
4575 __ mov(feedback, too_far);
4576 __ Add(receiver_map, receiver_map, Code::kHeaderSize - kHeapObjectTag);
4577 __ Jump(receiver_map);
4578
4579 __ Bind(&prepare_next);
4580 __ Add(pointer_reg, pointer_reg, kPointerSize * 3);
4581 __ Cmp(pointer_reg, too_far);
4582 __ B(lt, &next_loop);
4583
4584 // We exhausted our array of map handler pairs.
4585 __ jmp(miss);
4586 }
4587
4588
GenerateImpl(MacroAssembler * masm,bool in_frame)4589 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4590 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // x1
4591 Register key = VectorStoreICDescriptor::NameRegister(); // x2
4592 Register vector = VectorStoreICDescriptor::VectorRegister(); // x3
4593 Register slot = VectorStoreICDescriptor::SlotRegister(); // x4
4594 DCHECK(VectorStoreICDescriptor::ValueRegister().is(x0)); // x0
4595 Register feedback = x5;
4596 Register receiver_map = x6;
4597 Register scratch1 = x7;
4598
4599 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4600 __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4601
4602 // Try to quickly handle the monomorphic case without knowing for sure
4603 // if we have a weak cell in feedback. We do know it's safe to look
4604 // at WeakCell::kValueOffset.
4605 Label try_array, load_smi_map, compare_map;
4606 Label not_array, miss;
4607 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4608 scratch1, &compare_map, &load_smi_map, &try_array);
4609
4610 __ Bind(&try_array);
4611 // Is it a fixed array?
4612 __ Ldr(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4613 __ JumpIfNotRoot(scratch1, Heap::kFixedArrayMapRootIndex, ¬_array);
4614
4615 // We have a polymorphic element handler.
4616 Label try_poly_name;
4617 HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, x8, &miss);
4618
4619 __ Bind(¬_array);
4620 // Is it generic?
4621 __ JumpIfNotRoot(feedback, Heap::kmegamorphic_symbolRootIndex,
4622 &try_poly_name);
4623 Handle<Code> megamorphic_stub =
4624 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4625 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4626
4627 __ Bind(&try_poly_name);
4628 // We might have a name in feedback, and a fixed array in the next slot.
4629 __ Cmp(key, feedback);
4630 __ B(ne, &miss);
4631 // If the name comparison succeeded, we know we have a fixed array with
4632 // at least one map/handler pair.
4633 __ Add(feedback, vector, Operand::UntagSmiAndScale(slot, kPointerSizeLog2));
4634 __ Ldr(feedback,
4635 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4636 HandleArrayCases(masm, feedback, receiver_map, scratch1, x8, false, &miss);
4637
4638 __ Bind(&miss);
4639 KeyedStoreIC::GenerateMiss(masm);
4640
4641 __ Bind(&load_smi_map);
4642 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4643 __ jmp(&compare_map);
4644 }
4645
4646
4647 // The entry hook is a "BumpSystemStackPointer" instruction (sub), followed by
4648 // a "Push lr" instruction, followed by a call.
4649 static const unsigned int kProfileEntryHookCallSize =
4650 Assembler::kCallSizeWithRelocation + (2 * kInstructionSize);
4651
4652
MaybeCallEntryHook(MacroAssembler * masm)4653 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4654 if (masm->isolate()->function_entry_hook() != NULL) {
4655 ProfileEntryHookStub stub(masm->isolate());
4656 Assembler::BlockConstPoolScope no_const_pools(masm);
4657 DontEmitDebugCodeScope no_debug_code(masm);
4658 Label entry_hook_call_start;
4659 __ Bind(&entry_hook_call_start);
4660 __ Push(lr);
4661 __ CallStub(&stub);
4662 DCHECK(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start) ==
4663 kProfileEntryHookCallSize);
4664
4665 __ Pop(lr);
4666 }
4667 }
4668
4669
Generate(MacroAssembler * masm)4670 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4671 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
4672
4673 // Save all kCallerSaved registers (including lr), since this can be called
4674 // from anywhere.
4675 // TODO(jbramley): What about FP registers?
4676 __ PushCPURegList(kCallerSaved);
4677 DCHECK(kCallerSaved.IncludesAliasOf(lr));
4678 const int kNumSavedRegs = kCallerSaved.Count();
4679
4680 // Compute the function's address as the first argument.
4681 __ Sub(x0, lr, kProfileEntryHookCallSize);
4682
4683 #if V8_HOST_ARCH_ARM64
4684 uintptr_t entry_hook =
4685 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
4686 __ Mov(x10, entry_hook);
4687 #else
4688 // Under the simulator we need to indirect the entry hook through a trampoline
4689 // function at a known address.
4690 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4691 __ Mov(x10, Operand(ExternalReference(&dispatcher,
4692 ExternalReference::BUILTIN_CALL,
4693 isolate())));
4694 // It additionally takes an isolate as a third parameter
4695 __ Mov(x2, ExternalReference::isolate_address(isolate()));
4696 #endif
4697
4698 // The caller's return address is above the saved temporaries.
4699 // Grab its location for the second argument to the hook.
4700 __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize);
4701
4702 {
4703 // Create a dummy frame, as CallCFunction requires this.
4704 FrameScope frame(masm, StackFrame::MANUAL);
4705 __ CallCFunction(x10, 2, 0);
4706 }
4707
4708 __ PopCPURegList(kCallerSaved);
4709 __ Ret();
4710 }
4711
4712
Generate(MacroAssembler * masm)4713 void DirectCEntryStub::Generate(MacroAssembler* masm) {
4714 // When calling into C++ code the stack pointer must be csp.
4715 // Therefore this code must use csp for peek/poke operations when the
4716 // stub is generated. When the stub is called
4717 // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame
4718 // and configure the stack pointer *before* doing the call.
4719 const Register old_stack_pointer = __ StackPointer();
4720 __ SetStackPointer(csp);
4721
4722 // Put return address on the stack (accessible to GC through exit frame pc).
4723 __ Poke(lr, 0);
4724 // Call the C++ function.
4725 __ Blr(x10);
4726 // Return to calling code.
4727 __ Peek(lr, 0);
4728 __ AssertFPCRState();
4729 __ Ret();
4730
4731 __ SetStackPointer(old_stack_pointer);
4732 }
4733
GenerateCall(MacroAssembler * masm,Register target)4734 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
4735 Register target) {
4736 // Make sure the caller configured the stack pointer (see comment in
4737 // DirectCEntryStub::Generate).
4738 DCHECK(csp.Is(__ StackPointer()));
4739
4740 intptr_t code =
4741 reinterpret_cast<intptr_t>(GetCode().location());
4742 __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET));
4743 __ Mov(x10, target);
4744 // Branch to the stub.
4745 __ Blr(lr);
4746 }
4747
4748
4749 // Probe the name dictionary in the 'elements' register.
4750 // Jump to the 'done' label if a property with the given name is found.
4751 // Jump to the 'miss' label otherwise.
4752 //
4753 // If lookup was successful 'scratch2' will be equal to elements + 4 * index.
4754 // 'elements' and 'name' registers are preserved on miss.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register scratch1,Register scratch2)4755 void NameDictionaryLookupStub::GeneratePositiveLookup(
4756 MacroAssembler* masm,
4757 Label* miss,
4758 Label* done,
4759 Register elements,
4760 Register name,
4761 Register scratch1,
4762 Register scratch2) {
4763 DCHECK(!AreAliased(elements, name, scratch1, scratch2));
4764
4765 // Assert that name contains a string.
4766 __ AssertName(name);
4767
4768 // Compute the capacity mask.
4769 __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset));
4770 __ Sub(scratch1, scratch1, 1);
4771
4772 // Generate an unrolled loop that performs a few probes before giving up.
4773 for (int i = 0; i < kInlinedProbes; i++) {
4774 // Compute the masked index: (hash + i + i * i) & mask.
4775 __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
4776 if (i > 0) {
4777 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4778 // the hash in a separate instruction. The value hash + i + i * i is right
4779 // shifted in the following and instruction.
4780 DCHECK(NameDictionary::GetProbeOffset(i) <
4781 1 << (32 - Name::kHashFieldOffset));
4782 __ Add(scratch2, scratch2, Operand(
4783 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4784 }
4785 __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
4786
4787 // Scale the index by multiplying by the element size.
4788 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
4789 __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
4790
4791 // Check if the key is identical to the name.
4792 UseScratchRegisterScope temps(masm);
4793 Register scratch3 = temps.AcquireX();
4794 __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
4795 __ Ldr(scratch3, FieldMemOperand(scratch2, kElementsStartOffset));
4796 __ Cmp(name, scratch3);
4797 __ B(eq, done);
4798 }
4799
4800 // The inlined probes didn't find the entry.
4801 // Call the complete stub to scan the whole dictionary.
4802
4803 CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
4804 spill_list.Combine(lr);
4805 spill_list.Remove(scratch1);
4806 spill_list.Remove(scratch2);
4807
4808 __ PushCPURegList(spill_list);
4809
4810 if (name.is(x0)) {
4811 DCHECK(!elements.is(x1));
4812 __ Mov(x1, name);
4813 __ Mov(x0, elements);
4814 } else {
4815 __ Mov(x0, elements);
4816 __ Mov(x1, name);
4817 }
4818
4819 Label not_found;
4820 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
4821 __ CallStub(&stub);
4822 __ Cbz(x0, ¬_found);
4823 __ Mov(scratch2, x2); // Move entry index into scratch2.
4824 __ PopCPURegList(spill_list);
4825 __ B(done);
4826
4827 __ Bind(¬_found);
4828 __ PopCPURegList(spill_list);
4829 __ B(miss);
4830 }
4831
4832
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)4833 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
4834 Label* miss,
4835 Label* done,
4836 Register receiver,
4837 Register properties,
4838 Handle<Name> name,
4839 Register scratch0) {
4840 DCHECK(!AreAliased(receiver, properties, scratch0));
4841 DCHECK(name->IsUniqueName());
4842 // If names of slots in range from 1 to kProbes - 1 for the hash value are
4843 // not equal to the name and kProbes-th slot is not used (its name is the
4844 // undefined value), it guarantees the hash table doesn't contain the
4845 // property. It's true even if some slots represent deleted properties
4846 // (their names are the hole value).
4847 for (int i = 0; i < kInlinedProbes; i++) {
4848 // scratch0 points to properties hash.
4849 // Compute the masked index: (hash + i + i * i) & mask.
4850 Register index = scratch0;
4851 // Capacity is smi 2^n.
4852 __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset));
4853 __ Sub(index, index, 1);
4854 __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i));
4855
4856 // Scale the index by multiplying by the entry size.
4857 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
4858 __ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
4859
4860 Register entity_name = scratch0;
4861 // Having undefined at this place means the name is not contained.
4862 Register tmp = index;
4863 __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2));
4864 __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
4865
4866 __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done);
4867
4868 // Stop if found the property.
4869 __ Cmp(entity_name, Operand(name));
4870 __ B(eq, miss);
4871
4872 Label good;
4873 __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good);
4874
4875 // Check if the entry name is not a unique name.
4876 __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
4877 __ Ldrb(entity_name,
4878 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
4879 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
4880 __ Bind(&good);
4881 }
4882
4883 CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
4884 spill_list.Combine(lr);
4885 spill_list.Remove(scratch0); // Scratch registers don't need to be preserved.
4886
4887 __ PushCPURegList(spill_list);
4888
4889 __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
4890 __ Mov(x1, Operand(name));
4891 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
4892 __ CallStub(&stub);
4893 // Move stub return value to scratch0. Note that scratch0 is not included in
4894 // spill_list and won't be clobbered by PopCPURegList.
4895 __ Mov(scratch0, x0);
4896 __ PopCPURegList(spill_list);
4897
4898 __ Cbz(scratch0, done);
4899 __ B(miss);
4900 }
4901
4902
Generate(MacroAssembler * masm)4903 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4904 // This stub overrides SometimesSetsUpAFrame() to return false. That means
4905 // we cannot call anything that could cause a GC from this stub.
4906 //
4907 // Arguments are in x0 and x1:
4908 // x0: property dictionary.
4909 // x1: the name of the property we are looking for.
4910 //
4911 // Return value is in x0 and is zero if lookup failed, non zero otherwise.
4912 // If the lookup is successful, x2 will contains the index of the entry.
4913
4914 Register result = x0;
4915 Register dictionary = x0;
4916 Register key = x1;
4917 Register index = x2;
4918 Register mask = x3;
4919 Register hash = x4;
4920 Register undefined = x5;
4921 Register entry_key = x6;
4922
4923 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4924
4925 __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset));
4926 __ Sub(mask, mask, 1);
4927
4928 __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
4929 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4930
4931 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4932 // Compute the masked index: (hash + i + i * i) & mask.
4933 // Capacity is smi 2^n.
4934 if (i > 0) {
4935 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4936 // the hash in a separate instruction. The value hash + i + i * i is right
4937 // shifted in the following and instruction.
4938 DCHECK(NameDictionary::GetProbeOffset(i) <
4939 1 << (32 - Name::kHashFieldOffset));
4940 __ Add(index, hash,
4941 NameDictionary::GetProbeOffset(i) << Name::kHashShift);
4942 } else {
4943 __ Mov(index, hash);
4944 }
4945 __ And(index, mask, Operand(index, LSR, Name::kHashShift));
4946
4947 // Scale the index by multiplying by the entry size.
4948 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
4949 __ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
4950
4951 __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2));
4952 __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
4953
4954 // Having undefined at this place means the name is not contained.
4955 __ Cmp(entry_key, undefined);
4956 __ B(eq, ¬_in_dictionary);
4957
4958 // Stop if found the property.
4959 __ Cmp(entry_key, key);
4960 __ B(eq, &in_dictionary);
4961
4962 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4963 // Check if the entry name is not a unique name.
4964 __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4965 __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4966 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4967 }
4968 }
4969
4970 __ Bind(&maybe_in_dictionary);
4971 // If we are doing negative lookup then probing failure should be
4972 // treated as a lookup success. For positive lookup, probing failure
4973 // should be treated as lookup failure.
4974 if (mode() == POSITIVE_LOOKUP) {
4975 __ Mov(result, 0);
4976 __ Ret();
4977 }
4978
4979 __ Bind(&in_dictionary);
4980 __ Mov(result, 1);
4981 __ Ret();
4982
4983 __ Bind(¬_in_dictionary);
4984 __ Mov(result, 0);
4985 __ Ret();
4986 }
4987
4988
4989 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)4990 static void CreateArrayDispatch(MacroAssembler* masm,
4991 AllocationSiteOverrideMode mode) {
4992 ASM_LOCATION("CreateArrayDispatch");
4993 if (mode == DISABLE_ALLOCATION_SITES) {
4994 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4995 __ TailCallStub(&stub);
4996
4997 } else if (mode == DONT_OVERRIDE) {
4998 Register kind = x3;
4999 int last_index =
5000 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
5001 for (int i = 0; i <= last_index; ++i) {
5002 Label next;
5003 ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
5004 // TODO(jbramley): Is this the best way to handle this? Can we make the
5005 // tail calls conditional, rather than hopping over each one?
5006 __ CompareAndBranch(kind, candidate_kind, ne, &next);
5007 T stub(masm->isolate(), candidate_kind);
5008 __ TailCallStub(&stub);
5009 __ Bind(&next);
5010 }
5011
5012 // If we reached this point there is a problem.
5013 __ Abort(kUnexpectedElementsKindInArrayConstructor);
5014
5015 } else {
5016 UNREACHABLE();
5017 }
5018 }
5019
5020
5021 // TODO(jbramley): If this needs to be a special case, make it a proper template
5022 // specialization, and not a separate function.
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)5023 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
5024 AllocationSiteOverrideMode mode) {
5025 ASM_LOCATION("CreateArrayDispatchOneArgument");
5026 // x0 - argc
5027 // x1 - constructor?
5028 // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
5029 // x3 - kind (if mode != DISABLE_ALLOCATION_SITES)
5030 // sp[0] - last argument
5031
5032 Register allocation_site = x2;
5033 Register kind = x3;
5034
5035 Label normal_sequence;
5036 if (mode == DONT_OVERRIDE) {
5037 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
5038 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
5039 STATIC_ASSERT(FAST_ELEMENTS == 2);
5040 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
5041 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
5042 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
5043
5044 // Is the low bit set? If so, the array is holey.
5045 __ Tbnz(kind, 0, &normal_sequence);
5046 }
5047
5048 // Look at the last argument.
5049 // TODO(jbramley): What does a 0 argument represent?
5050 __ Peek(x10, 0);
5051 __ Cbz(x10, &normal_sequence);
5052
5053 if (mode == DISABLE_ALLOCATION_SITES) {
5054 ElementsKind initial = GetInitialFastElementsKind();
5055 ElementsKind holey_initial = GetHoleyElementsKind(initial);
5056
5057 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
5058 holey_initial,
5059 DISABLE_ALLOCATION_SITES);
5060 __ TailCallStub(&stub_holey);
5061
5062 __ Bind(&normal_sequence);
5063 ArraySingleArgumentConstructorStub stub(masm->isolate(),
5064 initial,
5065 DISABLE_ALLOCATION_SITES);
5066 __ TailCallStub(&stub);
5067 } else if (mode == DONT_OVERRIDE) {
5068 // We are going to create a holey array, but our kind is non-holey.
5069 // Fix kind and retry (only if we have an allocation site in the slot).
5070 __ Orr(kind, kind, 1);
5071
5072 if (FLAG_debug_code) {
5073 __ Ldr(x10, FieldMemOperand(allocation_site, 0));
5074 __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex,
5075 &normal_sequence);
5076 __ Assert(eq, kExpectedAllocationSite);
5077 }
5078
5079 // Save the resulting elements kind in type info. We can't just store 'kind'
5080 // in the AllocationSite::transition_info field because elements kind is
5081 // restricted to a portion of the field; upper bits need to be left alone.
5082 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
5083 __ Ldr(x11, FieldMemOperand(allocation_site,
5084 AllocationSite::kTransitionInfoOffset));
5085 __ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley));
5086 __ Str(x11, FieldMemOperand(allocation_site,
5087 AllocationSite::kTransitionInfoOffset));
5088
5089 __ Bind(&normal_sequence);
5090 int last_index =
5091 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
5092 for (int i = 0; i <= last_index; ++i) {
5093 Label next;
5094 ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
5095 __ CompareAndBranch(kind, candidate_kind, ne, &next);
5096 ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind);
5097 __ TailCallStub(&stub);
5098 __ Bind(&next);
5099 }
5100
5101 // If we reached this point there is a problem.
5102 __ Abort(kUnexpectedElementsKindInArrayConstructor);
5103 } else {
5104 UNREACHABLE();
5105 }
5106 }
5107
5108
5109 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)5110 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
5111 int to_index = GetSequenceIndexFromFastElementsKind(
5112 TERMINAL_FAST_ELEMENTS_KIND);
5113 for (int i = 0; i <= to_index; ++i) {
5114 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
5115 T stub(isolate, kind);
5116 stub.GetCode();
5117 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
5118 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
5119 stub1.GetCode();
5120 }
5121 }
5122 }
5123
5124
GenerateStubsAheadOfTime(Isolate * isolate)5125 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
5126 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
5127 isolate);
5128 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
5129 isolate);
5130 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
5131 isolate);
5132 }
5133
5134
GenerateStubsAheadOfTime(Isolate * isolate)5135 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
5136 Isolate* isolate) {
5137 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
5138 for (int i = 0; i < 2; i++) {
5139 // For internal arrays we only need a few things
5140 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
5141 stubh1.GetCode();
5142 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
5143 stubh2.GetCode();
5144 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
5145 stubh3.GetCode();
5146 }
5147 }
5148
5149
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)5150 void ArrayConstructorStub::GenerateDispatchToArrayStub(
5151 MacroAssembler* masm,
5152 AllocationSiteOverrideMode mode) {
5153 Register argc = x0;
5154 if (argument_count() == ANY) {
5155 Label zero_case, n_case;
5156 __ Cbz(argc, &zero_case);
5157 __ Cmp(argc, 1);
5158 __ B(ne, &n_case);
5159
5160 // One argument.
5161 CreateArrayDispatchOneArgument(masm, mode);
5162
5163 __ Bind(&zero_case);
5164 // No arguments.
5165 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5166
5167 __ Bind(&n_case);
5168 // N arguments.
5169 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5170
5171 } else if (argument_count() == NONE) {
5172 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
5173 } else if (argument_count() == ONE) {
5174 CreateArrayDispatchOneArgument(masm, mode);
5175 } else if (argument_count() == MORE_THAN_ONE) {
5176 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
5177 } else {
5178 UNREACHABLE();
5179 }
5180 }
5181
5182
Generate(MacroAssembler * masm)5183 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
5184 ASM_LOCATION("ArrayConstructorStub::Generate");
5185 // ----------- S t a t e -------------
5186 // -- x0 : argc (only if argument_count() is ANY or MORE_THAN_ONE)
5187 // -- x1 : constructor
5188 // -- x2 : AllocationSite or undefined
5189 // -- x3 : new target
5190 // -- sp[0] : last argument
5191 // -----------------------------------
5192 Register constructor = x1;
5193 Register allocation_site = x2;
5194 Register new_target = x3;
5195
5196 if (FLAG_debug_code) {
5197 // The array construct code is only set for the global and natives
5198 // builtin Array functions which always have maps.
5199
5200 Label unexpected_map, map_ok;
5201 // Initial map for the builtin Array function should be a map.
5202 __ Ldr(x10, FieldMemOperand(constructor,
5203 JSFunction::kPrototypeOrInitialMapOffset));
5204 // Will both indicate a NULL and a Smi.
5205 __ JumpIfSmi(x10, &unexpected_map);
5206 __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
5207 __ Bind(&unexpected_map);
5208 __ Abort(kUnexpectedInitialMapForArrayFunction);
5209 __ Bind(&map_ok);
5210
5211 // We should either have undefined in the allocation_site register or a
5212 // valid AllocationSite.
5213 __ AssertUndefinedOrAllocationSite(allocation_site, x10);
5214 }
5215
5216 // Enter the context of the Array function.
5217 __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
5218
5219 Label subclassing;
5220 __ Cmp(new_target, constructor);
5221 __ B(ne, &subclassing);
5222
5223 Register kind = x3;
5224 Label no_info;
5225 // Get the elements kind and case on that.
5226 __ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info);
5227
5228 __ Ldrsw(kind,
5229 UntagSmiFieldMemOperand(allocation_site,
5230 AllocationSite::kTransitionInfoOffset));
5231 __ And(kind, kind, AllocationSite::ElementsKindBits::kMask);
5232 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
5233
5234 __ Bind(&no_info);
5235 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
5236
5237 // Subclassing support.
5238 __ Bind(&subclassing);
5239 switch (argument_count()) {
5240 case ANY:
5241 case MORE_THAN_ONE:
5242 __ Poke(constructor, Operand(x0, LSL, kPointerSizeLog2));
5243 __ Add(x0, x0, Operand(3));
5244 break;
5245 case NONE:
5246 __ Poke(constructor, 0 * kPointerSize);
5247 __ Mov(x0, Operand(3));
5248 break;
5249 case ONE:
5250 __ Poke(constructor, 1 * kPointerSize);
5251 __ Mov(x0, Operand(4));
5252 break;
5253 }
5254 __ Push(new_target, allocation_site);
5255 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
5256 }
5257
5258
GenerateCase(MacroAssembler * masm,ElementsKind kind)5259 void InternalArrayConstructorStub::GenerateCase(
5260 MacroAssembler* masm, ElementsKind kind) {
5261 Label zero_case, n_case;
5262 Register argc = x0;
5263
5264 __ Cbz(argc, &zero_case);
5265 __ CompareAndBranch(argc, 1, ne, &n_case);
5266
5267 // One argument.
5268 if (IsFastPackedElementsKind(kind)) {
5269 Label packed_case;
5270
5271 // We might need to create a holey array; look at the first argument.
5272 __ Peek(x10, 0);
5273 __ Cbz(x10, &packed_case);
5274
5275 InternalArraySingleArgumentConstructorStub
5276 stub1_holey(isolate(), GetHoleyElementsKind(kind));
5277 __ TailCallStub(&stub1_holey);
5278
5279 __ Bind(&packed_case);
5280 }
5281 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
5282 __ TailCallStub(&stub1);
5283
5284 __ Bind(&zero_case);
5285 // No arguments.
5286 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
5287 __ TailCallStub(&stub0);
5288
5289 __ Bind(&n_case);
5290 // N arguments.
5291 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
5292 __ TailCallStub(&stubN);
5293 }
5294
5295
Generate(MacroAssembler * masm)5296 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
5297 // ----------- S t a t e -------------
5298 // -- x0 : argc
5299 // -- x1 : constructor
5300 // -- sp[0] : return address
5301 // -- sp[4] : last argument
5302 // -----------------------------------
5303
5304 Register constructor = x1;
5305
5306 if (FLAG_debug_code) {
5307 // The array construct code is only set for the global and natives
5308 // builtin Array functions which always have maps.
5309
5310 Label unexpected_map, map_ok;
5311 // Initial map for the builtin Array function should be a map.
5312 __ Ldr(x10, FieldMemOperand(constructor,
5313 JSFunction::kPrototypeOrInitialMapOffset));
5314 // Will both indicate a NULL and a Smi.
5315 __ JumpIfSmi(x10, &unexpected_map);
5316 __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
5317 __ Bind(&unexpected_map);
5318 __ Abort(kUnexpectedInitialMapForArrayFunction);
5319 __ Bind(&map_ok);
5320 }
5321
5322 Register kind = w3;
5323 // Figure out the right elements kind
5324 __ Ldr(x10, FieldMemOperand(constructor,
5325 JSFunction::kPrototypeOrInitialMapOffset));
5326
5327 // Retrieve elements_kind from map.
5328 __ LoadElementsKindFromMap(kind, x10);
5329
5330 if (FLAG_debug_code) {
5331 Label done;
5332 __ Cmp(x3, FAST_ELEMENTS);
5333 __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne);
5334 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
5335 }
5336
5337 Label fast_elements_case;
5338 __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case);
5339 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
5340
5341 __ Bind(&fast_elements_case);
5342 GenerateCase(masm, FAST_ELEMENTS);
5343 }
5344
5345
Generate(MacroAssembler * masm)5346 void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) {
5347 Register context = cp;
5348 Register result = x0;
5349 Register slot = x2;
5350 Label slow_case;
5351
5352 // Go up the context chain to the script context.
5353 for (int i = 0; i < depth(); ++i) {
5354 __ Ldr(result, ContextMemOperand(context, Context::PREVIOUS_INDEX));
5355 context = result;
5356 }
5357
5358 // Load the PropertyCell value at the specified slot.
5359 __ Add(result, context, Operand(slot, LSL, kPointerSizeLog2));
5360 __ Ldr(result, ContextMemOperand(result));
5361 __ Ldr(result, FieldMemOperand(result, PropertyCell::kValueOffset));
5362
5363 // If the result is not the_hole, return. Otherwise, handle in the runtime.
5364 __ JumpIfRoot(result, Heap::kTheHoleValueRootIndex, &slow_case);
5365 __ Ret();
5366
5367 // Fallback to runtime.
5368 __ Bind(&slow_case);
5369 __ SmiTag(slot);
5370 __ Push(slot);
5371 __ TailCallRuntime(Runtime::kLoadGlobalViaContext);
5372 }
5373
5374
Generate(MacroAssembler * masm)5375 void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
5376 Register context = cp;
5377 Register value = x0;
5378 Register slot = x2;
5379 Register context_temp = x10;
5380 Register cell = x10;
5381 Register cell_details = x11;
5382 Register cell_value = x12;
5383 Register cell_value_map = x13;
5384 Register value_map = x14;
5385 Label fast_heapobject_case, fast_smi_case, slow_case;
5386
5387 if (FLAG_debug_code) {
5388 __ CompareRoot(value, Heap::kTheHoleValueRootIndex);
5389 __ Check(ne, kUnexpectedValue);
5390 }
5391
5392 // Go up the context chain to the script context.
5393 for (int i = 0; i < depth(); i++) {
5394 __ Ldr(context_temp, ContextMemOperand(context, Context::PREVIOUS_INDEX));
5395 context = context_temp;
5396 }
5397
5398 // Load the PropertyCell at the specified slot.
5399 __ Add(cell, context, Operand(slot, LSL, kPointerSizeLog2));
5400 __ Ldr(cell, ContextMemOperand(cell));
5401
5402 // Load PropertyDetails for the cell (actually only the cell_type and kind).
5403 __ Ldr(cell_details,
5404 UntagSmiFieldMemOperand(cell, PropertyCell::kDetailsOffset));
5405 __ And(cell_details, cell_details,
5406 PropertyDetails::PropertyCellTypeField::kMask |
5407 PropertyDetails::KindField::kMask |
5408 PropertyDetails::kAttributesReadOnlyMask);
5409
5410 // Check if PropertyCell holds mutable data.
5411 Label not_mutable_data;
5412 __ Cmp(cell_details, PropertyDetails::PropertyCellTypeField::encode(
5413 PropertyCellType::kMutable) |
5414 PropertyDetails::KindField::encode(kData));
5415 __ B(ne, ¬_mutable_data);
5416 __ JumpIfSmi(value, &fast_smi_case);
5417 __ Bind(&fast_heapobject_case);
5418 __ Str(value, FieldMemOperand(cell, PropertyCell::kValueOffset));
5419 // RecordWriteField clobbers the value register, so we copy it before the
5420 // call.
5421 __ Mov(x11, value);
5422 __ RecordWriteField(cell, PropertyCell::kValueOffset, x11, x12,
5423 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
5424 OMIT_SMI_CHECK);
5425 __ Ret();
5426
5427 __ Bind(¬_mutable_data);
5428 // Check if PropertyCell value matches the new value (relevant for Constant,
5429 // ConstantType and Undefined cells).
5430 Label not_same_value;
5431 __ Ldr(cell_value, FieldMemOperand(cell, PropertyCell::kValueOffset));
5432 __ Cmp(cell_value, value);
5433 __ B(ne, ¬_same_value);
5434
5435 // Make sure the PropertyCell is not marked READ_ONLY.
5436 __ Tst(cell_details, PropertyDetails::kAttributesReadOnlyMask);
5437 __ B(ne, &slow_case);
5438
5439 if (FLAG_debug_code) {
5440 Label done;
5441 // This can only be true for Constant, ConstantType and Undefined cells,
5442 // because we never store the_hole via this stub.
5443 __ Cmp(cell_details, PropertyDetails::PropertyCellTypeField::encode(
5444 PropertyCellType::kConstant) |
5445 PropertyDetails::KindField::encode(kData));
5446 __ B(eq, &done);
5447 __ Cmp(cell_details, PropertyDetails::PropertyCellTypeField::encode(
5448 PropertyCellType::kConstantType) |
5449 PropertyDetails::KindField::encode(kData));
5450 __ B(eq, &done);
5451 __ Cmp(cell_details, PropertyDetails::PropertyCellTypeField::encode(
5452 PropertyCellType::kUndefined) |
5453 PropertyDetails::KindField::encode(kData));
5454 __ Check(eq, kUnexpectedValue);
5455 __ Bind(&done);
5456 }
5457 __ Ret();
5458 __ Bind(¬_same_value);
5459
5460 // Check if PropertyCell contains data with constant type (and is not
5461 // READ_ONLY).
5462 __ Cmp(cell_details, PropertyDetails::PropertyCellTypeField::encode(
5463 PropertyCellType::kConstantType) |
5464 PropertyDetails::KindField::encode(kData));
5465 __ B(ne, &slow_case);
5466
5467 // Now either both old and new values must be smis or both must be heap
5468 // objects with same map.
5469 Label value_is_heap_object;
5470 __ JumpIfNotSmi(value, &value_is_heap_object);
5471 __ JumpIfNotSmi(cell_value, &slow_case);
5472 // Old and new values are smis, no need for a write barrier here.
5473 __ Bind(&fast_smi_case);
5474 __ Str(value, FieldMemOperand(cell, PropertyCell::kValueOffset));
5475 __ Ret();
5476
5477 __ Bind(&value_is_heap_object);
5478 __ JumpIfSmi(cell_value, &slow_case);
5479
5480 __ Ldr(cell_value_map, FieldMemOperand(cell_value, HeapObject::kMapOffset));
5481 __ Ldr(value_map, FieldMemOperand(value, HeapObject::kMapOffset));
5482 __ Cmp(cell_value_map, value_map);
5483 __ B(eq, &fast_heapobject_case);
5484
5485 // Fall back to the runtime.
5486 __ Bind(&slow_case);
5487 __ SmiTag(slot);
5488 __ Push(slot, value);
5489 __ TailCallRuntime(is_strict(language_mode())
5490 ? Runtime::kStoreGlobalViaContext_Strict
5491 : Runtime::kStoreGlobalViaContext_Sloppy);
5492 }
5493
5494
5495 // The number of register that CallApiFunctionAndReturn will need to save on
5496 // the stack. The space for these registers need to be allocated in the
5497 // ExitFrame before calling CallApiFunctionAndReturn.
5498 static const int kCallApiFunctionSpillSpace = 4;
5499
5500
AddressOffset(ExternalReference ref0,ExternalReference ref1)5501 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
5502 return static_cast<int>(ref0.address() - ref1.address());
5503 }
5504
5505
5506 // Calls an API function. Allocates HandleScope, extracts returned value
5507 // from handle and propagates exceptions.
5508 // 'stack_space' is the space to be unwound on exit (includes the call JS
5509 // arguments space and the additional space allocated for the fast call).
5510 // 'spill_offset' is the offset from the stack pointer where
5511 // CallApiFunctionAndReturn can spill registers.
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,int stack_space,MemOperand * stack_space_operand,int spill_offset,MemOperand return_value_operand,MemOperand * context_restore_operand)5512 static void CallApiFunctionAndReturn(
5513 MacroAssembler* masm, Register function_address,
5514 ExternalReference thunk_ref, int stack_space,
5515 MemOperand* stack_space_operand, int spill_offset,
5516 MemOperand return_value_operand, MemOperand* context_restore_operand) {
5517 ASM_LOCATION("CallApiFunctionAndReturn");
5518 Isolate* isolate = masm->isolate();
5519 ExternalReference next_address =
5520 ExternalReference::handle_scope_next_address(isolate);
5521 const int kNextOffset = 0;
5522 const int kLimitOffset = AddressOffset(
5523 ExternalReference::handle_scope_limit_address(isolate), next_address);
5524 const int kLevelOffset = AddressOffset(
5525 ExternalReference::handle_scope_level_address(isolate), next_address);
5526
5527 DCHECK(function_address.is(x1) || function_address.is(x2));
5528
5529 Label profiler_disabled;
5530 Label end_profiler_check;
5531 __ Mov(x10, ExternalReference::is_profiling_address(isolate));
5532 __ Ldrb(w10, MemOperand(x10));
5533 __ Cbz(w10, &profiler_disabled);
5534 __ Mov(x3, thunk_ref);
5535 __ B(&end_profiler_check);
5536
5537 __ Bind(&profiler_disabled);
5538 __ Mov(x3, function_address);
5539 __ Bind(&end_profiler_check);
5540
5541 // Save the callee-save registers we are going to use.
5542 // TODO(all): Is this necessary? ARM doesn't do it.
5543 STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
5544 __ Poke(x19, (spill_offset + 0) * kXRegSize);
5545 __ Poke(x20, (spill_offset + 1) * kXRegSize);
5546 __ Poke(x21, (spill_offset + 2) * kXRegSize);
5547 __ Poke(x22, (spill_offset + 3) * kXRegSize);
5548
5549 // Allocate HandleScope in callee-save registers.
5550 // We will need to restore the HandleScope after the call to the API function,
5551 // by allocating it in callee-save registers they will be preserved by C code.
5552 Register handle_scope_base = x22;
5553 Register next_address_reg = x19;
5554 Register limit_reg = x20;
5555 Register level_reg = w21;
5556
5557 __ Mov(handle_scope_base, next_address);
5558 __ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
5559 __ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
5560 __ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
5561 __ Add(level_reg, level_reg, 1);
5562 __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
5563
5564 if (FLAG_log_timer_events) {
5565 FrameScope frame(masm, StackFrame::MANUAL);
5566 __ PushSafepointRegisters();
5567 __ Mov(x0, ExternalReference::isolate_address(isolate));
5568 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5569 1);
5570 __ PopSafepointRegisters();
5571 }
5572
5573 // Native call returns to the DirectCEntry stub which redirects to the
5574 // return address pushed on stack (could have moved after GC).
5575 // DirectCEntry stub itself is generated early and never moves.
5576 DirectCEntryStub stub(isolate);
5577 stub.GenerateCall(masm, x3);
5578
5579 if (FLAG_log_timer_events) {
5580 FrameScope frame(masm, StackFrame::MANUAL);
5581 __ PushSafepointRegisters();
5582 __ Mov(x0, ExternalReference::isolate_address(isolate));
5583 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5584 1);
5585 __ PopSafepointRegisters();
5586 }
5587
5588 Label promote_scheduled_exception;
5589 Label delete_allocated_handles;
5590 Label leave_exit_frame;
5591 Label return_value_loaded;
5592
5593 // Load value from ReturnValue.
5594 __ Ldr(x0, return_value_operand);
5595 __ Bind(&return_value_loaded);
5596 // No more valid handles (the result handle was the last one). Restore
5597 // previous handle scope.
5598 __ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
5599 if (__ emit_debug_code()) {
5600 __ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
5601 __ Cmp(w1, level_reg);
5602 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
5603 }
5604 __ Sub(level_reg, level_reg, 1);
5605 __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
5606 __ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
5607 __ Cmp(limit_reg, x1);
5608 __ B(ne, &delete_allocated_handles);
5609
5610 // Leave the API exit frame.
5611 __ Bind(&leave_exit_frame);
5612 // Restore callee-saved registers.
5613 __ Peek(x19, (spill_offset + 0) * kXRegSize);
5614 __ Peek(x20, (spill_offset + 1) * kXRegSize);
5615 __ Peek(x21, (spill_offset + 2) * kXRegSize);
5616 __ Peek(x22, (spill_offset + 3) * kXRegSize);
5617
5618 bool restore_context = context_restore_operand != NULL;
5619 if (restore_context) {
5620 __ Ldr(cp, *context_restore_operand);
5621 }
5622
5623 if (stack_space_operand != NULL) {
5624 __ Ldr(w2, *stack_space_operand);
5625 }
5626
5627 __ LeaveExitFrame(false, x1, !restore_context);
5628
5629 // Check if the function scheduled an exception.
5630 __ Mov(x5, ExternalReference::scheduled_exception_address(isolate));
5631 __ Ldr(x5, MemOperand(x5));
5632 __ JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex,
5633 &promote_scheduled_exception);
5634
5635 if (stack_space_operand != NULL) {
5636 __ Drop(x2, 1);
5637 } else {
5638 __ Drop(stack_space);
5639 }
5640 __ Ret();
5641
5642 // Re-throw by promoting a scheduled exception.
5643 __ Bind(&promote_scheduled_exception);
5644 __ TailCallRuntime(Runtime::kPromoteScheduledException);
5645
5646 // HandleScope limit has changed. Delete allocated extensions.
5647 __ Bind(&delete_allocated_handles);
5648 __ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
5649 // Save the return value in a callee-save register.
5650 Register saved_result = x19;
5651 __ Mov(saved_result, x0);
5652 __ Mov(x0, ExternalReference::isolate_address(isolate));
5653 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
5654 1);
5655 __ Mov(x0, saved_result);
5656 __ B(&leave_exit_frame);
5657 }
5658
5659
CallApiFunctionStubHelper(MacroAssembler * masm,const ParameterCount & argc,bool return_first_arg,bool call_data_undefined)5660 static void CallApiFunctionStubHelper(MacroAssembler* masm,
5661 const ParameterCount& argc,
5662 bool return_first_arg,
5663 bool call_data_undefined) {
5664 // ----------- S t a t e -------------
5665 // -- x0 : callee
5666 // -- x4 : call_data
5667 // -- x2 : holder
5668 // -- x1 : api_function_address
5669 // -- x3 : number of arguments if argc is a register
5670 // -- cp : context
5671 // --
5672 // -- sp[0] : last argument
5673 // -- ...
5674 // -- sp[(argc - 1) * 8] : first argument
5675 // -- sp[argc * 8] : receiver
5676 // -----------------------------------
5677
5678 Register callee = x0;
5679 Register call_data = x4;
5680 Register holder = x2;
5681 Register api_function_address = x1;
5682 Register context = cp;
5683
5684 typedef FunctionCallbackArguments FCA;
5685
5686 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5687 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5688 STATIC_ASSERT(FCA::kDataIndex == 4);
5689 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5690 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5691 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5692 STATIC_ASSERT(FCA::kHolderIndex == 0);
5693 STATIC_ASSERT(FCA::kArgsLength == 7);
5694
5695 DCHECK(argc.is_immediate() || x3.is(argc.reg()));
5696
5697 // FunctionCallbackArguments: context, callee and call data.
5698 __ Push(context, callee, call_data);
5699
5700 // Load context from callee
5701 __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
5702
5703 if (!call_data_undefined) {
5704 __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
5705 }
5706 Register isolate_reg = x5;
5707 __ Mov(isolate_reg, ExternalReference::isolate_address(masm->isolate()));
5708
5709 // FunctionCallbackArguments:
5710 // return value, return value default, isolate, holder.
5711 __ Push(call_data, call_data, isolate_reg, holder);
5712
5713 // Prepare arguments.
5714 Register args = x6;
5715 __ Mov(args, masm->StackPointer());
5716
5717 // Allocate the v8::Arguments structure in the arguments' space, since it's
5718 // not controlled by GC.
5719 const int kApiStackSpace = 4;
5720
5721 // Allocate space for CallApiFunctionAndReturn can store some scratch
5722 // registeres on the stack.
5723 const int kCallApiFunctionSpillSpace = 4;
5724
5725 FrameScope frame_scope(masm, StackFrame::MANUAL);
5726 __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
5727
5728 DCHECK(!AreAliased(x0, api_function_address));
5729 // x0 = FunctionCallbackInfo&
5730 // Arguments is after the return address.
5731 __ Add(x0, masm->StackPointer(), 1 * kPointerSize);
5732 if (argc.is_immediate()) {
5733 // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_
5734 __ Add(x10, args,
5735 Operand((FCA::kArgsLength - 1 + argc.immediate()) * kPointerSize));
5736 __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize));
5737 // FunctionCallbackInfo::length_ = argc and
5738 // FunctionCallbackInfo::is_construct_call = 0
5739 __ Mov(x10, argc.immediate());
5740 __ Stp(x10, xzr, MemOperand(x0, 2 * kPointerSize));
5741 } else {
5742 // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_
5743 __ Add(x10, args, Operand(argc.reg(), LSL, kPointerSizeLog2));
5744 __ Add(x10, x10, (FCA::kArgsLength - 1) * kPointerSize);
5745 __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize));
5746 // FunctionCallbackInfo::length_ = argc and
5747 // FunctionCallbackInfo::is_construct_call
5748 __ Add(x10, argc.reg(), FCA::kArgsLength + 1);
5749 __ Mov(x10, Operand(x10, LSL, kPointerSizeLog2));
5750 __ Stp(argc.reg(), x10, MemOperand(x0, 2 * kPointerSize));
5751 }
5752
5753 ExternalReference thunk_ref =
5754 ExternalReference::invoke_function_callback(masm->isolate());
5755
5756 AllowExternalCallThatCantCauseGC scope(masm);
5757 MemOperand context_restore_operand(
5758 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5759 // Stores return the first js argument
5760 int return_value_offset = 0;
5761 if (return_first_arg) {
5762 return_value_offset = 2 + FCA::kArgsLength;
5763 } else {
5764 return_value_offset = 2 + FCA::kReturnValueOffset;
5765 }
5766 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
5767 int stack_space = 0;
5768 MemOperand is_construct_call_operand =
5769 MemOperand(masm->StackPointer(), 4 * kPointerSize);
5770 MemOperand* stack_space_operand = &is_construct_call_operand;
5771 if (argc.is_immediate()) {
5772 stack_space = argc.immediate() + FCA::kArgsLength + 1;
5773 stack_space_operand = NULL;
5774 }
5775
5776 const int spill_offset = 1 + kApiStackSpace;
5777 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
5778 stack_space_operand, spill_offset,
5779 return_value_operand, &context_restore_operand);
5780 }
5781
5782
Generate(MacroAssembler * masm)5783 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5784 bool call_data_undefined = this->call_data_undefined();
5785 CallApiFunctionStubHelper(masm, ParameterCount(x3), false,
5786 call_data_undefined);
5787 }
5788
5789
Generate(MacroAssembler * masm)5790 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5791 bool is_store = this->is_store();
5792 int argc = this->argc();
5793 bool call_data_undefined = this->call_data_undefined();
5794 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5795 call_data_undefined);
5796 }
5797
5798
Generate(MacroAssembler * masm)5799 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5800 // ----------- S t a t e -------------
5801 // -- sp[0] : name
5802 // -- sp[8 - kArgsLength*8] : PropertyCallbackArguments object
5803 // -- ...
5804 // -- x2 : api_function_address
5805 // -----------------------------------
5806
5807 Register api_function_address = ApiGetterDescriptor::function_address();
5808 DCHECK(api_function_address.is(x2));
5809
5810 __ Mov(x0, masm->StackPointer()); // x0 = Handle<Name>
5811 __ Add(x1, x0, 1 * kPointerSize); // x1 = PCA
5812
5813 const int kApiStackSpace = 1;
5814
5815 // Allocate space for CallApiFunctionAndReturn can store some scratch
5816 // registeres on the stack.
5817 const int kCallApiFunctionSpillSpace = 4;
5818
5819 FrameScope frame_scope(masm, StackFrame::MANUAL);
5820 __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
5821
5822 // Create PropertyAccessorInfo instance on the stack above the exit frame with
5823 // x1 (internal::Object** args_) as the data.
5824 __ Poke(x1, 1 * kPointerSize);
5825 __ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = AccessorInfo&
5826
5827 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5828
5829 ExternalReference thunk_ref =
5830 ExternalReference::invoke_accessor_getter_callback(isolate());
5831
5832 const int spill_offset = 1 + kApiStackSpace;
5833 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5834 kStackUnwindSpace, NULL, spill_offset,
5835 MemOperand(fp, 6 * kPointerSize), NULL);
5836 }
5837
5838
5839 #undef __
5840
5841 } // namespace internal
5842 } // namespace v8
5843
5844 #endif // V8_TARGET_ARCH_ARM64
5845