1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "reg_type_cache-inl.h"
18 
19 #include "base/arena_bit_vector.h"
20 #include "base/bit_vector-inl.h"
21 #include "base/casts.h"
22 #include "base/scoped_arena_allocator.h"
23 #include "base/stl_util.h"
24 #include "class_linker-inl.h"
25 #include "dex_file-inl.h"
26 #include "mirror/class-inl.h"
27 #include "mirror/object-inl.h"
28 #include "reg_type-inl.h"
29 
30 namespace art {
31 namespace verifier {
32 
33 bool RegTypeCache::primitive_initialized_ = false;
34 uint16_t RegTypeCache::primitive_count_ = 0;
35 const PreciseConstType* RegTypeCache::small_precise_constants_[kMaxSmallConstant -
36                                                                kMinSmallConstant + 1];
37 
MatchingPrecisionForClass(const RegType * entry,bool precise)38 ALWAYS_INLINE static inline bool MatchingPrecisionForClass(const RegType* entry, bool precise)
39     SHARED_REQUIRES(Locks::mutator_lock_) {
40   if (entry->IsPreciseReference() == precise) {
41     // We were or weren't looking for a precise reference and we found what we need.
42     return true;
43   } else {
44     if (!precise && entry->GetClass()->CannotBeAssignedFromOtherTypes()) {
45       // We weren't looking for a precise reference, as we're looking up based on a descriptor, but
46       // we found a matching entry based on the descriptor. Return the precise entry in that case.
47       return true;
48     }
49     return false;
50   }
51 }
52 
FillPrimitiveAndSmallConstantTypes()53 void RegTypeCache::FillPrimitiveAndSmallConstantTypes() {
54   entries_.push_back(UndefinedType::GetInstance());
55   entries_.push_back(ConflictType::GetInstance());
56   entries_.push_back(BooleanType::GetInstance());
57   entries_.push_back(ByteType::GetInstance());
58   entries_.push_back(ShortType::GetInstance());
59   entries_.push_back(CharType::GetInstance());
60   entries_.push_back(IntegerType::GetInstance());
61   entries_.push_back(LongLoType::GetInstance());
62   entries_.push_back(LongHiType::GetInstance());
63   entries_.push_back(FloatType::GetInstance());
64   entries_.push_back(DoubleLoType::GetInstance());
65   entries_.push_back(DoubleHiType::GetInstance());
66   for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
67     int32_t i = value - kMinSmallConstant;
68     DCHECK_EQ(entries_.size(), small_precise_constants_[i]->GetId());
69     entries_.push_back(small_precise_constants_[i]);
70   }
71   DCHECK_EQ(entries_.size(), primitive_count_);
72 }
73 
FromDescriptor(mirror::ClassLoader * loader,const char * descriptor,bool precise)74 const RegType& RegTypeCache::FromDescriptor(mirror::ClassLoader* loader,
75                                             const char* descriptor,
76                                             bool precise) {
77   DCHECK(RegTypeCache::primitive_initialized_);
78   if (descriptor[1] == '\0') {
79     switch (descriptor[0]) {
80       case 'Z':
81         return Boolean();
82       case 'B':
83         return Byte();
84       case 'S':
85         return Short();
86       case 'C':
87         return Char();
88       case 'I':
89         return Integer();
90       case 'J':
91         return LongLo();
92       case 'F':
93         return Float();
94       case 'D':
95         return DoubleLo();
96       case 'V':  // For void types, conflict types.
97       default:
98         return Conflict();
99     }
100   } else if (descriptor[0] == 'L' || descriptor[0] == '[') {
101     return From(loader, descriptor, precise);
102   } else {
103     return Conflict();
104   }
105 }
106 
RegTypeFromPrimitiveType(Primitive::Type prim_type) const107 const RegType& RegTypeCache::RegTypeFromPrimitiveType(Primitive::Type prim_type) const {
108   DCHECK(RegTypeCache::primitive_initialized_);
109   switch (prim_type) {
110     case Primitive::kPrimBoolean:
111       return *BooleanType::GetInstance();
112     case Primitive::kPrimByte:
113       return *ByteType::GetInstance();
114     case Primitive::kPrimShort:
115       return *ShortType::GetInstance();
116     case Primitive::kPrimChar:
117       return *CharType::GetInstance();
118     case Primitive::kPrimInt:
119       return *IntegerType::GetInstance();
120     case Primitive::kPrimLong:
121       return *LongLoType::GetInstance();
122     case Primitive::kPrimFloat:
123       return *FloatType::GetInstance();
124     case Primitive::kPrimDouble:
125       return *DoubleLoType::GetInstance();
126     case Primitive::kPrimVoid:
127     default:
128       return *ConflictType::GetInstance();
129   }
130 }
131 
MatchDescriptor(size_t idx,const StringPiece & descriptor,bool precise)132 bool RegTypeCache::MatchDescriptor(size_t idx, const StringPiece& descriptor, bool precise) {
133   const RegType* entry = entries_[idx];
134   if (descriptor != entry->descriptor_) {
135     return false;
136   }
137   if (entry->HasClass()) {
138     return MatchingPrecisionForClass(entry, precise);
139   }
140   // There is no notion of precise unresolved references, the precise information is just dropped
141   // on the floor.
142   DCHECK(entry->IsUnresolvedReference());
143   return true;
144 }
145 
ResolveClass(const char * descriptor,mirror::ClassLoader * loader)146 mirror::Class* RegTypeCache::ResolveClass(const char* descriptor, mirror::ClassLoader* loader) {
147   // Class was not found, must create new type.
148   // Try resolving class
149   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
150   Thread* self = Thread::Current();
151   StackHandleScope<1> hs(self);
152   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(loader));
153   mirror::Class* klass = nullptr;
154   if (can_load_classes_) {
155     klass = class_linker->FindClass(self, descriptor, class_loader);
156   } else {
157     klass = class_linker->LookupClass(self, descriptor, ComputeModifiedUtf8Hash(descriptor),
158                                       loader);
159     if (klass != nullptr && !klass->IsResolved()) {
160       // We found the class but without it being loaded its not safe for use.
161       klass = nullptr;
162     }
163   }
164   return klass;
165 }
166 
AddString(const StringPiece & string_piece)167 StringPiece RegTypeCache::AddString(const StringPiece& string_piece) {
168   char* ptr = arena_.AllocArray<char>(string_piece.length());
169   memcpy(ptr, string_piece.data(), string_piece.length());
170   return StringPiece(ptr, string_piece.length());
171 }
172 
From(mirror::ClassLoader * loader,const char * descriptor,bool precise)173 const RegType& RegTypeCache::From(mirror::ClassLoader* loader,
174                                   const char* descriptor,
175                                   bool precise) {
176   StringPiece sp_descriptor(descriptor);
177   // Try looking up the class in the cache first. We use a StringPiece to avoid continual strlen
178   // operations on the descriptor.
179   for (size_t i = primitive_count_; i < entries_.size(); i++) {
180     if (MatchDescriptor(i, sp_descriptor, precise)) {
181       return *(entries_[i]);
182     }
183   }
184   // Class not found in the cache, will create a new type for that.
185   // Try resolving class.
186   mirror::Class* klass = ResolveClass(descriptor, loader);
187   if (klass != nullptr) {
188     // Class resolved, first look for the class in the list of entries
189     // Class was not found, must create new type.
190     // To pass the verification, the type should be imprecise,
191     // instantiable or an interface with the precise type set to false.
192     DCHECK(!precise || klass->IsInstantiable());
193     // Create a precise type if:
194     // 1- Class is final and NOT an interface. a precise interface is meaningless !!
195     // 2- Precise Flag passed as true.
196     RegType* entry;
197     // Create an imprecise type if we can't tell for a fact that it is precise.
198     if (klass->CannotBeAssignedFromOtherTypes() || precise) {
199       DCHECK(!(klass->IsAbstract()) || klass->IsArrayClass());
200       DCHECK(!klass->IsInterface());
201       entry = new (&arena_) PreciseReferenceType(klass, AddString(sp_descriptor), entries_.size());
202     } else {
203       entry = new (&arena_) ReferenceType(klass, AddString(sp_descriptor), entries_.size());
204     }
205     return AddEntry(entry);
206   } else {  // Class not resolved.
207     // We tried loading the class and failed, this might get an exception raised
208     // so we want to clear it before we go on.
209     if (can_load_classes_) {
210       DCHECK(Thread::Current()->IsExceptionPending());
211       Thread::Current()->ClearException();
212     } else {
213       DCHECK(!Thread::Current()->IsExceptionPending());
214     }
215     if (IsValidDescriptor(descriptor)) {
216       return AddEntry(
217           new (&arena_) UnresolvedReferenceType(AddString(sp_descriptor), entries_.size()));
218     } else {
219       // The descriptor is broken return the unknown type as there's nothing sensible that
220       // could be done at runtime
221       return Conflict();
222     }
223   }
224 }
225 
FindClass(mirror::Class * klass,bool precise) const226 const RegType* RegTypeCache::FindClass(mirror::Class* klass, bool precise) const {
227   DCHECK(klass != nullptr);
228   if (klass->IsPrimitive()) {
229     // Note: precise isn't used for primitive classes. A char is assignable to an int. All
230     // primitive classes are final.
231     return &RegTypeFromPrimitiveType(klass->GetPrimitiveType());
232   }
233   for (auto& pair : klass_entries_) {
234     mirror::Class* const reg_klass = pair.first.Read();
235     if (reg_klass == klass) {
236       const RegType* reg_type = pair.second;
237       if (MatchingPrecisionForClass(reg_type, precise)) {
238         return reg_type;
239       }
240     }
241   }
242   return nullptr;
243 }
244 
InsertClass(const StringPiece & descriptor,mirror::Class * klass,bool precise)245 const RegType* RegTypeCache::InsertClass(const StringPiece& descriptor,
246                                          mirror::Class* klass,
247                                          bool precise) {
248   // No reference to the class was found, create new reference.
249   DCHECK(FindClass(klass, precise) == nullptr);
250   RegType* const reg_type = precise
251       ? static_cast<RegType*>(
252           new (&arena_) PreciseReferenceType(klass, descriptor, entries_.size()))
253       : new (&arena_) ReferenceType(klass, descriptor, entries_.size());
254   return &AddEntry(reg_type);
255 }
256 
FromClass(const char * descriptor,mirror::Class * klass,bool precise)257 const RegType& RegTypeCache::FromClass(const char* descriptor, mirror::Class* klass, bool precise) {
258   DCHECK(klass != nullptr);
259   const RegType* reg_type = FindClass(klass, precise);
260   if (reg_type == nullptr) {
261     reg_type = InsertClass(AddString(StringPiece(descriptor)), klass, precise);
262   }
263   return *reg_type;
264 }
265 
RegTypeCache(bool can_load_classes,ScopedArenaAllocator & arena)266 RegTypeCache::RegTypeCache(bool can_load_classes, ScopedArenaAllocator& arena)
267     : entries_(arena.Adapter(kArenaAllocVerifier)),
268       klass_entries_(arena.Adapter(kArenaAllocVerifier)),
269       can_load_classes_(can_load_classes),
270       arena_(arena) {
271   if (kIsDebugBuild) {
272     Thread::Current()->AssertThreadSuspensionIsAllowable(gAborting == 0);
273   }
274   // The klass_entries_ array does not have primitives or small constants.
275   static constexpr size_t kNumReserveEntries = 32;
276   klass_entries_.reserve(kNumReserveEntries);
277   // We want to have room for additional entries after inserting primitives and small
278   // constants.
279   entries_.reserve(kNumReserveEntries + kNumPrimitivesAndSmallConstants);
280   FillPrimitiveAndSmallConstantTypes();
281 }
282 
~RegTypeCache()283 RegTypeCache::~RegTypeCache() {
284   DCHECK_LE(primitive_count_, entries_.size());
285 }
286 
ShutDown()287 void RegTypeCache::ShutDown() {
288   if (RegTypeCache::primitive_initialized_) {
289     UndefinedType::Destroy();
290     ConflictType::Destroy();
291     BooleanType::Destroy();
292     ByteType::Destroy();
293     ShortType::Destroy();
294     CharType::Destroy();
295     IntegerType::Destroy();
296     LongLoType::Destroy();
297     LongHiType::Destroy();
298     FloatType::Destroy();
299     DoubleLoType::Destroy();
300     DoubleHiType::Destroy();
301     for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
302       const PreciseConstType* type = small_precise_constants_[value - kMinSmallConstant];
303       delete type;
304       small_precise_constants_[value - kMinSmallConstant] = nullptr;
305     }
306     RegTypeCache::primitive_initialized_ = false;
307     RegTypeCache::primitive_count_ = 0;
308   }
309 }
310 
311 template <class Type>
CreatePrimitiveTypeInstance(const std::string & descriptor)312 const Type* RegTypeCache::CreatePrimitiveTypeInstance(const std::string& descriptor) {
313   mirror::Class* klass = nullptr;
314   // Try loading the class from linker.
315   if (!descriptor.empty()) {
316     klass = art::Runtime::Current()->GetClassLinker()->FindSystemClass(Thread::Current(),
317                                                                        descriptor.c_str());
318     DCHECK(klass != nullptr);
319   }
320   const Type* entry = Type::CreateInstance(klass, descriptor, RegTypeCache::primitive_count_);
321   RegTypeCache::primitive_count_++;
322   return entry;
323 }
324 
CreatePrimitiveAndSmallConstantTypes()325 void RegTypeCache::CreatePrimitiveAndSmallConstantTypes() {
326   CreatePrimitiveTypeInstance<UndefinedType>("");
327   CreatePrimitiveTypeInstance<ConflictType>("");
328   CreatePrimitiveTypeInstance<BooleanType>("Z");
329   CreatePrimitiveTypeInstance<ByteType>("B");
330   CreatePrimitiveTypeInstance<ShortType>("S");
331   CreatePrimitiveTypeInstance<CharType>("C");
332   CreatePrimitiveTypeInstance<IntegerType>("I");
333   CreatePrimitiveTypeInstance<LongLoType>("J");
334   CreatePrimitiveTypeInstance<LongHiType>("J");
335   CreatePrimitiveTypeInstance<FloatType>("F");
336   CreatePrimitiveTypeInstance<DoubleLoType>("D");
337   CreatePrimitiveTypeInstance<DoubleHiType>("D");
338   for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
339     PreciseConstType* type = new PreciseConstType(value, primitive_count_);
340     small_precise_constants_[value - kMinSmallConstant] = type;
341     primitive_count_++;
342   }
343 }
344 
FromUnresolvedMerge(const RegType & left,const RegType & right)345 const RegType& RegTypeCache::FromUnresolvedMerge(const RegType& left, const RegType& right) {
346   ArenaBitVector types(&arena_,
347                        kDefaultArenaBitVectorBytes * kBitsPerByte,  // Allocate at least 8 bytes.
348                        true);                                       // Is expandable.
349   const RegType* left_resolved;
350   bool left_unresolved_is_array;
351   if (left.IsUnresolvedMergedReference()) {
352     const UnresolvedMergedType& left_merge = *down_cast<const UnresolvedMergedType*>(&left);
353 
354     types.Copy(&left_merge.GetUnresolvedTypes());
355     left_resolved = &left_merge.GetResolvedPart();
356     left_unresolved_is_array = left.IsArrayTypes();
357   } else if (left.IsUnresolvedTypes()) {
358     types.ClearAllBits();
359     types.SetBit(left.GetId());
360     left_resolved = &Zero();
361     left_unresolved_is_array = left.IsArrayTypes();
362   } else {
363     types.ClearAllBits();
364     left_resolved = &left;
365     left_unresolved_is_array = false;
366   }
367 
368   const RegType* right_resolved;
369   bool right_unresolved_is_array;
370   if (right.IsUnresolvedMergedReference()) {
371     const UnresolvedMergedType& right_merge = *down_cast<const UnresolvedMergedType*>(&right);
372 
373     types.Union(&right_merge.GetUnresolvedTypes());
374     right_resolved = &right_merge.GetResolvedPart();
375     right_unresolved_is_array = right.IsArrayTypes();
376   } else if (right.IsUnresolvedTypes()) {
377     types.SetBit(right.GetId());
378     right_resolved = &Zero();
379     right_unresolved_is_array = right.IsArrayTypes();
380   } else {
381     right_resolved = &right;
382     right_unresolved_is_array = false;
383   }
384 
385   // Merge the resolved parts. Left and right might be equal, so use SafeMerge.
386   const RegType& resolved_parts_merged = left_resolved->SafeMerge(*right_resolved, this);
387   // If we get a conflict here, the merge result is a conflict, not an unresolved merge type.
388   if (resolved_parts_merged.IsConflict()) {
389     return Conflict();
390   }
391 
392   bool resolved_merged_is_array = resolved_parts_merged.IsArrayTypes();
393   if (left_unresolved_is_array || right_unresolved_is_array || resolved_merged_is_array) {
394     // Arrays involved, see if we need to merge to Object.
395 
396     // Is the resolved part a primitive array?
397     if (resolved_merged_is_array && !resolved_parts_merged.IsObjectArrayTypes()) {
398       return JavaLangObject(false /* precise */);
399     }
400 
401     // Is any part not an array (but exists)?
402     if ((!left_unresolved_is_array && left_resolved != &left) ||
403         (!right_unresolved_is_array && right_resolved != &right) ||
404         !resolved_merged_is_array) {
405       return JavaLangObject(false /* precise */);
406     }
407   }
408 
409   // Check if entry already exists.
410   for (size_t i = primitive_count_; i < entries_.size(); i++) {
411     const RegType* cur_entry = entries_[i];
412     if (cur_entry->IsUnresolvedMergedReference()) {
413       const UnresolvedMergedType* cmp_type = down_cast<const UnresolvedMergedType*>(cur_entry);
414       const RegType& resolved_part = cmp_type->GetResolvedPart();
415       const BitVector& unresolved_part = cmp_type->GetUnresolvedTypes();
416       // Use SameBitsSet. "types" is expandable to allow merging in the components, but the
417       // BitVector in the final RegType will be made non-expandable.
418       if (&resolved_part == &resolved_parts_merged && types.SameBitsSet(&unresolved_part)) {
419         return *cur_entry;
420       }
421     }
422   }
423   return AddEntry(new (&arena_) UnresolvedMergedType(resolved_parts_merged,
424                                                      types,
425                                                      this,
426                                                      entries_.size()));
427 }
428 
FromUnresolvedSuperClass(const RegType & child)429 const RegType& RegTypeCache::FromUnresolvedSuperClass(const RegType& child) {
430   // Check if entry already exists.
431   for (size_t i = primitive_count_; i < entries_.size(); i++) {
432     const RegType* cur_entry = entries_[i];
433     if (cur_entry->IsUnresolvedSuperClass()) {
434       const UnresolvedSuperClass* tmp_entry =
435           down_cast<const UnresolvedSuperClass*>(cur_entry);
436       uint16_t unresolved_super_child_id =
437           tmp_entry->GetUnresolvedSuperClassChildId();
438       if (unresolved_super_child_id == child.GetId()) {
439         return *cur_entry;
440       }
441     }
442   }
443   return AddEntry(new (&arena_) UnresolvedSuperClass(child.GetId(), this, entries_.size()));
444 }
445 
Uninitialized(const RegType & type,uint32_t allocation_pc)446 const UninitializedType& RegTypeCache::Uninitialized(const RegType& type, uint32_t allocation_pc) {
447   UninitializedType* entry = nullptr;
448   const StringPiece& descriptor(type.GetDescriptor());
449   if (type.IsUnresolvedTypes()) {
450     for (size_t i = primitive_count_; i < entries_.size(); i++) {
451       const RegType* cur_entry = entries_[i];
452       if (cur_entry->IsUnresolvedAndUninitializedReference() &&
453           down_cast<const UnresolvedUninitializedRefType*>(cur_entry)->GetAllocationPc()
454               == allocation_pc &&
455           (cur_entry->GetDescriptor() == descriptor)) {
456         return *down_cast<const UnresolvedUninitializedRefType*>(cur_entry);
457       }
458     }
459     entry = new (&arena_) UnresolvedUninitializedRefType(descriptor,
460                                                          allocation_pc,
461                                                          entries_.size());
462   } else {
463     mirror::Class* klass = type.GetClass();
464     for (size_t i = primitive_count_; i < entries_.size(); i++) {
465       const RegType* cur_entry = entries_[i];
466       if (cur_entry->IsUninitializedReference() &&
467           down_cast<const UninitializedReferenceType*>(cur_entry)
468               ->GetAllocationPc() == allocation_pc &&
469           cur_entry->GetClass() == klass) {
470         return *down_cast<const UninitializedReferenceType*>(cur_entry);
471       }
472     }
473     entry = new (&arena_) UninitializedReferenceType(klass,
474                                                      descriptor,
475                                                      allocation_pc,
476                                                      entries_.size());
477   }
478   return AddEntry(entry);
479 }
480 
FromUninitialized(const RegType & uninit_type)481 const RegType& RegTypeCache::FromUninitialized(const RegType& uninit_type) {
482   RegType* entry;
483 
484   if (uninit_type.IsUnresolvedTypes()) {
485     const StringPiece& descriptor(uninit_type.GetDescriptor());
486     for (size_t i = primitive_count_; i < entries_.size(); i++) {
487       const RegType* cur_entry = entries_[i];
488       if (cur_entry->IsUnresolvedReference() &&
489           cur_entry->GetDescriptor() == descriptor) {
490         return *cur_entry;
491       }
492     }
493     entry = new (&arena_) UnresolvedReferenceType(descriptor, entries_.size());
494   } else {
495     mirror::Class* klass = uninit_type.GetClass();
496     if (uninit_type.IsUninitializedThisReference() && !klass->IsFinal()) {
497       // For uninitialized "this reference" look for reference types that are not precise.
498       for (size_t i = primitive_count_; i < entries_.size(); i++) {
499         const RegType* cur_entry = entries_[i];
500         if (cur_entry->IsReference() && cur_entry->GetClass() == klass) {
501           return *cur_entry;
502         }
503       }
504       entry = new (&arena_) ReferenceType(klass, "", entries_.size());
505     } else if (!klass->IsPrimitive()) {
506       // We're uninitialized because of allocation, look or create a precise type as allocations
507       // may only create objects of that type.
508       // Note: we do not check whether the given klass is actually instantiable (besides being
509       //       primitive), that is, we allow interfaces and abstract classes here. The reasoning is
510       //       twofold:
511       //       1) The "new-instance" instruction to generate the uninitialized type will already
512       //          queue an instantiation error. This is a soft error that must be thrown at runtime,
513       //          and could potentially change if the class is resolved differently at runtime.
514       //       2) Checking whether the klass is instantiable and using conflict may produce a hard
515       //          error when the value is used, which leads to a VerifyError, which is not the
516       //          correct semantics.
517       for (size_t i = primitive_count_; i < entries_.size(); i++) {
518         const RegType* cur_entry = entries_[i];
519         if (cur_entry->IsPreciseReference() && cur_entry->GetClass() == klass) {
520           return *cur_entry;
521         }
522       }
523       entry = new (&arena_) PreciseReferenceType(klass,
524                                                  uninit_type.GetDescriptor(),
525                                                  entries_.size());
526     } else {
527       return Conflict();
528     }
529   }
530   return AddEntry(entry);
531 }
532 
UninitializedThisArgument(const RegType & type)533 const UninitializedType& RegTypeCache::UninitializedThisArgument(const RegType& type) {
534   UninitializedType* entry;
535   const StringPiece& descriptor(type.GetDescriptor());
536   if (type.IsUnresolvedTypes()) {
537     for (size_t i = primitive_count_; i < entries_.size(); i++) {
538       const RegType* cur_entry = entries_[i];
539       if (cur_entry->IsUnresolvedAndUninitializedThisReference() &&
540           cur_entry->GetDescriptor() == descriptor) {
541         return *down_cast<const UninitializedType*>(cur_entry);
542       }
543     }
544     entry = new (&arena_) UnresolvedUninitializedThisRefType(descriptor, entries_.size());
545   } else {
546     mirror::Class* klass = type.GetClass();
547     for (size_t i = primitive_count_; i < entries_.size(); i++) {
548       const RegType* cur_entry = entries_[i];
549       if (cur_entry->IsUninitializedThisReference() && cur_entry->GetClass() == klass) {
550         return *down_cast<const UninitializedType*>(cur_entry);
551       }
552     }
553     entry = new (&arena_) UninitializedThisReferenceType(klass, descriptor, entries_.size());
554   }
555   return AddEntry(entry);
556 }
557 
FromCat1NonSmallConstant(int32_t value,bool precise)558 const ConstantType& RegTypeCache::FromCat1NonSmallConstant(int32_t value, bool precise) {
559   for (size_t i = primitive_count_; i < entries_.size(); i++) {
560     const RegType* cur_entry = entries_[i];
561     if (cur_entry->klass_.IsNull() && cur_entry->IsConstant() &&
562         cur_entry->IsPreciseConstant() == precise &&
563         (down_cast<const ConstantType*>(cur_entry))->ConstantValue() == value) {
564       return *down_cast<const ConstantType*>(cur_entry);
565     }
566   }
567   ConstantType* entry;
568   if (precise) {
569     entry = new (&arena_) PreciseConstType(value, entries_.size());
570   } else {
571     entry = new (&arena_) ImpreciseConstType(value, entries_.size());
572   }
573   return AddEntry(entry);
574 }
575 
FromCat2ConstLo(int32_t value,bool precise)576 const ConstantType& RegTypeCache::FromCat2ConstLo(int32_t value, bool precise) {
577   for (size_t i = primitive_count_; i < entries_.size(); i++) {
578     const RegType* cur_entry = entries_[i];
579     if (cur_entry->IsConstantLo() && (cur_entry->IsPrecise() == precise) &&
580         (down_cast<const ConstantType*>(cur_entry))->ConstantValueLo() == value) {
581       return *down_cast<const ConstantType*>(cur_entry);
582     }
583   }
584   ConstantType* entry;
585   if (precise) {
586     entry = new (&arena_) PreciseConstLoType(value, entries_.size());
587   } else {
588     entry = new (&arena_) ImpreciseConstLoType(value, entries_.size());
589   }
590   return AddEntry(entry);
591 }
592 
FromCat2ConstHi(int32_t value,bool precise)593 const ConstantType& RegTypeCache::FromCat2ConstHi(int32_t value, bool precise) {
594   for (size_t i = primitive_count_; i < entries_.size(); i++) {
595     const RegType* cur_entry = entries_[i];
596     if (cur_entry->IsConstantHi() && (cur_entry->IsPrecise() == precise) &&
597         (down_cast<const ConstantType*>(cur_entry))->ConstantValueHi() == value) {
598       return *down_cast<const ConstantType*>(cur_entry);
599     }
600   }
601   ConstantType* entry;
602   if (precise) {
603     entry = new (&arena_) PreciseConstHiType(value, entries_.size());
604   } else {
605     entry = new (&arena_) ImpreciseConstHiType(value, entries_.size());
606   }
607   return AddEntry(entry);
608 }
609 
GetComponentType(const RegType & array,mirror::ClassLoader * loader)610 const RegType& RegTypeCache::GetComponentType(const RegType& array, mirror::ClassLoader* loader) {
611   if (!array.IsArrayTypes()) {
612     return Conflict();
613   } else if (array.IsUnresolvedTypes()) {
614     DCHECK(!array.IsUnresolvedMergedReference());  // Caller must make sure not to ask for this.
615     const std::string descriptor(array.GetDescriptor().as_string());
616     return FromDescriptor(loader, descriptor.c_str() + 1, false);
617   } else {
618     mirror::Class* klass = array.GetClass()->GetComponentType();
619     std::string temp;
620     const char* descriptor = klass->GetDescriptor(&temp);
621     if (klass->IsErroneous()) {
622       // Arrays may have erroneous component types, use unresolved in that case.
623       // We assume that the primitive classes are not erroneous, so we know it is a
624       // reference type.
625       return FromDescriptor(loader, descriptor, false);
626     } else {
627       return FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
628     }
629   }
630 }
631 
Dump(std::ostream & os)632 void RegTypeCache::Dump(std::ostream& os) {
633   for (size_t i = 0; i < entries_.size(); i++) {
634     const RegType* cur_entry = entries_[i];
635     if (cur_entry != nullptr) {
636       os << i << ": " << cur_entry->Dump() << "\n";
637     }
638   }
639 }
640 
VisitStaticRoots(RootVisitor * visitor)641 void RegTypeCache::VisitStaticRoots(RootVisitor* visitor) {
642   // Visit the primitive types, this is required since if there are no active verifiers they wont
643   // be in the entries array, and therefore not visited as roots.
644   if (primitive_initialized_) {
645     RootInfo ri(kRootUnknown);
646     UndefinedType::GetInstance()->VisitRoots(visitor, ri);
647     ConflictType::GetInstance()->VisitRoots(visitor, ri);
648     BooleanType::GetInstance()->VisitRoots(visitor, ri);
649     ByteType::GetInstance()->VisitRoots(visitor, ri);
650     ShortType::GetInstance()->VisitRoots(visitor, ri);
651     CharType::GetInstance()->VisitRoots(visitor, ri);
652     IntegerType::GetInstance()->VisitRoots(visitor, ri);
653     LongLoType::GetInstance()->VisitRoots(visitor, ri);
654     LongHiType::GetInstance()->VisitRoots(visitor, ri);
655     FloatType::GetInstance()->VisitRoots(visitor, ri);
656     DoubleLoType::GetInstance()->VisitRoots(visitor, ri);
657     DoubleHiType::GetInstance()->VisitRoots(visitor, ri);
658     for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
659       small_precise_constants_[value - kMinSmallConstant]->VisitRoots(visitor, ri);
660     }
661   }
662 }
663 
VisitRoots(RootVisitor * visitor,const RootInfo & root_info)664 void RegTypeCache::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
665   // Exclude the static roots that are visited by VisitStaticRoots().
666   for (size_t i = primitive_count_; i < entries_.size(); ++i) {
667     entries_[i]->VisitRoots(visitor, root_info);
668   }
669   for (auto& pair : klass_entries_) {
670     GcRoot<mirror::Class>& root = pair.first;
671     root.VisitRoot(visitor, root_info);
672   }
673 }
674 
675 }  // namespace verifier
676 }  // namespace art
677