1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches. This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
39 using namespace llvm;
40
41 #define DEBUG_TYPE "loop-unroll"
42
43 // TODO: Should these be here or in LoopUnroll?
44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
46
47 /// RemapInstruction - Convert the instruction operands from referencing the
48 /// current values into those specified by VMap.
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap)49 static inline void RemapInstruction(Instruction *I,
50 ValueToValueMapTy &VMap) {
51 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
52 Value *Op = I->getOperand(op);
53 ValueToValueMapTy::iterator It = VMap.find(Op);
54 if (It != VMap.end())
55 I->setOperand(op, It->second);
56 }
57
58 if (PHINode *PN = dyn_cast<PHINode>(I)) {
59 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
60 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
61 if (It != VMap.end())
62 PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
63 }
64 }
65 }
66
67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
68 /// only has one predecessor, and that predecessor only has one successor.
69 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is
70 /// successful references to the containing loop must be removed from
71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
72 /// references to the eliminated BB. The argument ForgottenLoops contains a set
73 /// of loops that have already been forgotten to prevent redundant, expensive
74 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block.
75 static BasicBlock *
FoldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,ScalarEvolution * SE,SmallPtrSetImpl<Loop * > & ForgottenLoops)76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, ScalarEvolution *SE,
77 SmallPtrSetImpl<Loop *> &ForgottenLoops) {
78 // Merge basic blocks into their predecessor if there is only one distinct
79 // pred, and if there is only one distinct successor of the predecessor, and
80 // if there are no PHI nodes.
81 BasicBlock *OnlyPred = BB->getSinglePredecessor();
82 if (!OnlyPred) return nullptr;
83
84 if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
85 return nullptr;
86
87 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
88
89 // Resolve any PHI nodes at the start of the block. They are all
90 // guaranteed to have exactly one entry if they exist, unless there are
91 // multiple duplicate (but guaranteed to be equal) entries for the
92 // incoming edges. This occurs when there are multiple edges from
93 // OnlyPred to OnlySucc.
94 FoldSingleEntryPHINodes(BB);
95
96 // Delete the unconditional branch from the predecessor...
97 OnlyPred->getInstList().pop_back();
98
99 // Make all PHI nodes that referred to BB now refer to Pred as their
100 // source...
101 BB->replaceAllUsesWith(OnlyPred);
102
103 // Move all definitions in the successor to the predecessor...
104 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
105
106 // OldName will be valid until erased.
107 StringRef OldName = BB->getName();
108
109 // Erase basic block from the function...
110
111 // ScalarEvolution holds references to loop exit blocks.
112 if (SE) {
113 if (Loop *L = LI->getLoopFor(BB)) {
114 if (ForgottenLoops.insert(L).second)
115 SE->forgetLoop(L);
116 }
117 }
118 LI->removeBlock(BB);
119
120 // Inherit predecessor's name if it exists...
121 if (!OldName.empty() && !OnlyPred->hasName())
122 OnlyPred->setName(OldName);
123
124 BB->eraseFromParent();
125
126 return OnlyPred;
127 }
128
129 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
130 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
131 /// can only fail when the loop's latch block is not terminated by a conditional
132 /// branch instruction. However, if the trip count (and multiple) are not known,
133 /// loop unrolling will mostly produce more code that is no faster.
134 ///
135 /// TripCount is generally defined as the number of times the loop header
136 /// executes. UnrollLoop relaxes the definition to permit early exits: here
137 /// TripCount is the iteration on which control exits LatchBlock if no early
138 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
139 /// terminates LatchBlock in order to remove unnecesssary instances of the
140 /// test. In other words, control may exit the loop prior to TripCount
141 /// iterations via an early branch, but control may not exit the loop from the
142 /// LatchBlock's terminator prior to TripCount iterations.
143 ///
144 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
145 /// execute without exiting the loop.
146 ///
147 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
148 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these
149 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
150 /// iterations before branching into the unrolled loop. UnrollLoop will not
151 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
152 /// AllowExpensiveTripCount is false.
153 ///
154 /// The LoopInfo Analysis that is passed will be kept consistent.
155 ///
156 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
157 /// DominatorTree if they are non-null.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,bool AllowRuntime,bool AllowExpensiveTripCount,unsigned TripMultiple,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,bool PreserveLCSSA)158 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
159 bool AllowRuntime, bool AllowExpensiveTripCount,
160 unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
161 DominatorTree *DT, AssumptionCache *AC,
162 bool PreserveLCSSA) {
163 BasicBlock *Preheader = L->getLoopPreheader();
164 if (!Preheader) {
165 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
166 return false;
167 }
168
169 BasicBlock *LatchBlock = L->getLoopLatch();
170 if (!LatchBlock) {
171 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
172 return false;
173 }
174
175 // Loops with indirectbr cannot be cloned.
176 if (!L->isSafeToClone()) {
177 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
178 return false;
179 }
180
181 BasicBlock *Header = L->getHeader();
182 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
183
184 if (!BI || BI->isUnconditional()) {
185 // The loop-rotate pass can be helpful to avoid this in many cases.
186 DEBUG(dbgs() <<
187 " Can't unroll; loop not terminated by a conditional branch.\n");
188 return false;
189 }
190
191 if (Header->hasAddressTaken()) {
192 // The loop-rotate pass can be helpful to avoid this in many cases.
193 DEBUG(dbgs() <<
194 " Won't unroll loop: address of header block is taken.\n");
195 return false;
196 }
197
198 if (TripCount != 0)
199 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
200 if (TripMultiple != 1)
201 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
202
203 // Effectively "DCE" unrolled iterations that are beyond the tripcount
204 // and will never be executed.
205 if (TripCount != 0 && Count > TripCount)
206 Count = TripCount;
207
208 // Don't enter the unroll code if there is nothing to do. This way we don't
209 // need to support "partial unrolling by 1".
210 if (TripCount == 0 && Count < 2)
211 return false;
212
213 assert(Count > 0);
214 assert(TripMultiple > 0);
215 assert(TripCount == 0 || TripCount % TripMultiple == 0);
216
217 // Are we eliminating the loop control altogether?
218 bool CompletelyUnroll = Count == TripCount;
219 SmallVector<BasicBlock *, 4> ExitBlocks;
220 L->getExitBlocks(ExitBlocks);
221 Loop *ParentL = L->getParentLoop();
222 bool AllExitsAreInsideParentLoop = !ParentL ||
223 std::all_of(ExitBlocks.begin(), ExitBlocks.end(),
224 [&](BasicBlock *BB) { return ParentL->contains(BB); });
225
226 // We assume a run-time trip count if the compiler cannot
227 // figure out the loop trip count and the unroll-runtime
228 // flag is specified.
229 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
230
231 if (RuntimeTripCount &&
232 !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, SE, DT,
233 PreserveLCSSA))
234 return false;
235
236 // Notify ScalarEvolution that the loop will be substantially changed,
237 // if not outright eliminated.
238 if (SE)
239 SE->forgetLoop(L);
240
241 // If we know the trip count, we know the multiple...
242 unsigned BreakoutTrip = 0;
243 if (TripCount != 0) {
244 BreakoutTrip = TripCount % Count;
245 TripMultiple = 0;
246 } else {
247 // Figure out what multiple to use.
248 BreakoutTrip = TripMultiple =
249 (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
250 }
251
252 // Report the unrolling decision.
253 DebugLoc LoopLoc = L->getStartLoc();
254 Function *F = Header->getParent();
255 LLVMContext &Ctx = F->getContext();
256
257 if (CompletelyUnroll) {
258 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
259 << " with trip count " << TripCount << "!\n");
260 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
261 Twine("completely unrolled loop with ") +
262 Twine(TripCount) + " iterations");
263 } else {
264 auto EmitDiag = [&](const Twine &T) {
265 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
266 "unrolled loop by a factor of " + Twine(Count) +
267 T);
268 };
269
270 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
271 << " by " << Count);
272 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
273 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
274 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
275 } else if (TripMultiple != 1) {
276 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
277 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
278 } else if (RuntimeTripCount) {
279 DEBUG(dbgs() << " with run-time trip count");
280 EmitDiag(" with run-time trip count");
281 }
282 DEBUG(dbgs() << "!\n");
283 }
284
285 bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
286 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
287
288 // For the first iteration of the loop, we should use the precloned values for
289 // PHI nodes. Insert associations now.
290 ValueToValueMapTy LastValueMap;
291 std::vector<PHINode*> OrigPHINode;
292 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
293 OrigPHINode.push_back(cast<PHINode>(I));
294 }
295
296 std::vector<BasicBlock*> Headers;
297 std::vector<BasicBlock*> Latches;
298 Headers.push_back(Header);
299 Latches.push_back(LatchBlock);
300
301 // The current on-the-fly SSA update requires blocks to be processed in
302 // reverse postorder so that LastValueMap contains the correct value at each
303 // exit.
304 LoopBlocksDFS DFS(L);
305 DFS.perform(LI);
306
307 // Stash the DFS iterators before adding blocks to the loop.
308 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
309 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
310
311 for (unsigned It = 1; It != Count; ++It) {
312 std::vector<BasicBlock*> NewBlocks;
313 SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
314 NewLoops[L] = L;
315
316 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
317 ValueToValueMapTy VMap;
318 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
319 Header->getParent()->getBasicBlockList().push_back(New);
320
321 // Tell LI about New.
322 if (*BB == Header) {
323 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
324 L->addBasicBlockToLoop(New, *LI);
325 } else {
326 // Figure out which loop New is in.
327 const Loop *OldLoop = LI->getLoopFor(*BB);
328 assert(OldLoop && "Should (at least) be in the loop being unrolled!");
329
330 Loop *&NewLoop = NewLoops[OldLoop];
331 if (!NewLoop) {
332 // Found a new sub-loop.
333 assert(*BB == OldLoop->getHeader() &&
334 "Header should be first in RPO");
335
336 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
337 assert(NewLoopParent &&
338 "Expected parent loop before sub-loop in RPO");
339 NewLoop = new Loop;
340 NewLoopParent->addChildLoop(NewLoop);
341
342 // Forget the old loop, since its inputs may have changed.
343 if (SE)
344 SE->forgetLoop(OldLoop);
345 }
346 NewLoop->addBasicBlockToLoop(New, *LI);
347 }
348
349 if (*BB == Header)
350 // Loop over all of the PHI nodes in the block, changing them to use
351 // the incoming values from the previous block.
352 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
353 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
354 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
355 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
356 if (It > 1 && L->contains(InValI))
357 InVal = LastValueMap[InValI];
358 VMap[OrigPHINode[i]] = InVal;
359 New->getInstList().erase(NewPHI);
360 }
361
362 // Update our running map of newest clones
363 LastValueMap[*BB] = New;
364 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
365 VI != VE; ++VI)
366 LastValueMap[VI->first] = VI->second;
367
368 // Add phi entries for newly created values to all exit blocks.
369 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
370 SI != SE; ++SI) {
371 if (L->contains(*SI))
372 continue;
373 for (BasicBlock::iterator BBI = (*SI)->begin();
374 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
375 Value *Incoming = phi->getIncomingValueForBlock(*BB);
376 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
377 if (It != LastValueMap.end())
378 Incoming = It->second;
379 phi->addIncoming(Incoming, New);
380 }
381 }
382 // Keep track of new headers and latches as we create them, so that
383 // we can insert the proper branches later.
384 if (*BB == Header)
385 Headers.push_back(New);
386 if (*BB == LatchBlock)
387 Latches.push_back(New);
388
389 NewBlocks.push_back(New);
390 }
391
392 // Remap all instructions in the most recent iteration
393 for (unsigned i = 0; i < NewBlocks.size(); ++i)
394 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
395 E = NewBlocks[i]->end(); I != E; ++I)
396 ::RemapInstruction(&*I, LastValueMap);
397 }
398
399 // Loop over the PHI nodes in the original block, setting incoming values.
400 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
401 PHINode *PN = OrigPHINode[i];
402 if (CompletelyUnroll) {
403 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
404 Header->getInstList().erase(PN);
405 }
406 else if (Count > 1) {
407 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
408 // If this value was defined in the loop, take the value defined by the
409 // last iteration of the loop.
410 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
411 if (L->contains(InValI))
412 InVal = LastValueMap[InVal];
413 }
414 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
415 PN->addIncoming(InVal, Latches.back());
416 }
417 }
418
419 // Now that all the basic blocks for the unrolled iterations are in place,
420 // set up the branches to connect them.
421 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
422 // The original branch was replicated in each unrolled iteration.
423 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
424
425 // The branch destination.
426 unsigned j = (i + 1) % e;
427 BasicBlock *Dest = Headers[j];
428 bool NeedConditional = true;
429
430 if (RuntimeTripCount && j != 0) {
431 NeedConditional = false;
432 }
433
434 // For a complete unroll, make the last iteration end with a branch
435 // to the exit block.
436 if (CompletelyUnroll) {
437 if (j == 0)
438 Dest = LoopExit;
439 NeedConditional = false;
440 }
441
442 // If we know the trip count or a multiple of it, we can safely use an
443 // unconditional branch for some iterations.
444 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
445 NeedConditional = false;
446 }
447
448 if (NeedConditional) {
449 // Update the conditional branch's successor for the following
450 // iteration.
451 Term->setSuccessor(!ContinueOnTrue, Dest);
452 } else {
453 // Remove phi operands at this loop exit
454 if (Dest != LoopExit) {
455 BasicBlock *BB = Latches[i];
456 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
457 SI != SE; ++SI) {
458 if (*SI == Headers[i])
459 continue;
460 for (BasicBlock::iterator BBI = (*SI)->begin();
461 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
462 Phi->removeIncomingValue(BB, false);
463 }
464 }
465 }
466 // Replace the conditional branch with an unconditional one.
467 BranchInst::Create(Dest, Term);
468 Term->eraseFromParent();
469 }
470 }
471
472 // Merge adjacent basic blocks, if possible.
473 SmallPtrSet<Loop *, 4> ForgottenLoops;
474 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
475 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
476 if (Term->isUnconditional()) {
477 BasicBlock *Dest = Term->getSuccessor(0);
478 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, SE,
479 ForgottenLoops))
480 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
481 }
482 }
483
484 // FIXME: We could register any cloned assumptions instead of clearing the
485 // whole function's cache.
486 AC->clear();
487
488 // FIXME: Reconstruct dom info, because it is not preserved properly.
489 // Incrementally updating domtree after loop unrolling would be easy.
490 if (DT)
491 DT->recalculate(*L->getHeader()->getParent());
492
493 // Simplify any new induction variables in the partially unrolled loop.
494 if (SE && !CompletelyUnroll) {
495 SmallVector<WeakVH, 16> DeadInsts;
496 simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
497
498 // Aggressively clean up dead instructions that simplifyLoopIVs already
499 // identified. Any remaining should be cleaned up below.
500 while (!DeadInsts.empty())
501 if (Instruction *Inst =
502 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
503 RecursivelyDeleteTriviallyDeadInstructions(Inst);
504 }
505
506 // At this point, the code is well formed. We now do a quick sweep over the
507 // inserted code, doing constant propagation and dead code elimination as we
508 // go.
509 const DataLayout &DL = Header->getModule()->getDataLayout();
510 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
511 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
512 BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
513 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
514 Instruction *Inst = &*I++;
515
516 if (isInstructionTriviallyDead(Inst))
517 (*BB)->getInstList().erase(Inst);
518 else if (Value *V = SimplifyInstruction(Inst, DL))
519 if (LI->replacementPreservesLCSSAForm(Inst, V)) {
520 Inst->replaceAllUsesWith(V);
521 (*BB)->getInstList().erase(Inst);
522 }
523 }
524
525 NumCompletelyUnrolled += CompletelyUnroll;
526 ++NumUnrolled;
527
528 Loop *OuterL = L->getParentLoop();
529 // Update LoopInfo if the loop is completely removed.
530 if (CompletelyUnroll)
531 LI->updateUnloop(L);;
532
533 // If we have a pass and a DominatorTree we should re-simplify impacted loops
534 // to ensure subsequent analyses can rely on this form. We want to simplify
535 // at least one layer outside of the loop that was unrolled so that any
536 // changes to the parent loop exposed by the unrolling are considered.
537 if (DT) {
538 if (!OuterL && !CompletelyUnroll)
539 OuterL = L;
540 if (OuterL) {
541 bool Simplified = simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
542
543 // LCSSA must be performed on the outermost affected loop. The unrolled
544 // loop's last loop latch is guaranteed to be in the outermost loop after
545 // LoopInfo's been updated by updateUnloop.
546 Loop *LatchLoop = LI->getLoopFor(Latches.back());
547 if (!OuterL->contains(LatchLoop))
548 while (OuterL->getParentLoop() != LatchLoop)
549 OuterL = OuterL->getParentLoop();
550
551 if (CompletelyUnroll && (!AllExitsAreInsideParentLoop || Simplified))
552 formLCSSARecursively(*OuterL, *DT, LI, SE);
553 else
554 assert(OuterL->isLCSSAForm(*DT) &&
555 "Loops should be in LCSSA form after loop-unroll.");
556 }
557 }
558
559 return true;
560 }
561
562 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
563 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
564 /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)565 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
566 // First operand should refer to the loop id itself.
567 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
568 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
569
570 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
571 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
572 if (!MD)
573 continue;
574
575 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
576 if (!S)
577 continue;
578
579 if (Name.equals(S->getString()))
580 return MD;
581 }
582 return nullptr;
583 }
584