1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 #include "llvm/Transforms/Vectorize.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/CodeMetrics.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/Verifier.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Analysis/VectorUtils.h"
48 #include <algorithm>
49 #include <map>
50 #include <memory>
51
52 using namespace llvm;
53
54 #define SV_NAME "slp-vectorizer"
55 #define DEBUG_TYPE "SLP"
56
57 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
58
59 static cl::opt<int>
60 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
61 cl::desc("Only vectorize if you gain more than this "
62 "number "));
63
64 static cl::opt<bool>
65 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
66 cl::desc("Attempt to vectorize horizontal reductions"));
67
68 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
69 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
70 cl::desc(
71 "Attempt to vectorize horizontal reductions feeding into a store"));
72
73 static cl::opt<int>
74 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
75 cl::desc("Attempt to vectorize for this register size in bits"));
76
77 /// Limits the size of scheduling regions in a block.
78 /// It avoid long compile times for _very_ large blocks where vector
79 /// instructions are spread over a wide range.
80 /// This limit is way higher than needed by real-world functions.
81 static cl::opt<int>
82 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
83 cl::desc("Limit the size of the SLP scheduling region per block"));
84
85 namespace {
86
87 // FIXME: Set this via cl::opt to allow overriding.
88 static const unsigned MinVecRegSize = 128;
89
90 static const unsigned RecursionMaxDepth = 12;
91
92 // Limit the number of alias checks. The limit is chosen so that
93 // it has no negative effect on the llvm benchmarks.
94 static const unsigned AliasedCheckLimit = 10;
95
96 // Another limit for the alias checks: The maximum distance between load/store
97 // instructions where alias checks are done.
98 // This limit is useful for very large basic blocks.
99 static const unsigned MaxMemDepDistance = 160;
100
101 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
102 /// regions to be handled.
103 static const int MinScheduleRegionSize = 16;
104
105 /// \brief Predicate for the element types that the SLP vectorizer supports.
106 ///
107 /// The most important thing to filter here are types which are invalid in LLVM
108 /// vectors. We also filter target specific types which have absolutely no
109 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
110 /// avoids spending time checking the cost model and realizing that they will
111 /// be inevitably scalarized.
isValidElementType(Type * Ty)112 static bool isValidElementType(Type *Ty) {
113 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
114 !Ty->isPPC_FP128Ty();
115 }
116
117 /// \returns the parent basic block if all of the instructions in \p VL
118 /// are in the same block or null otherwise.
getSameBlock(ArrayRef<Value * > VL)119 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
120 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
121 if (!I0)
122 return nullptr;
123 BasicBlock *BB = I0->getParent();
124 for (int i = 1, e = VL.size(); i < e; i++) {
125 Instruction *I = dyn_cast<Instruction>(VL[i]);
126 if (!I)
127 return nullptr;
128
129 if (BB != I->getParent())
130 return nullptr;
131 }
132 return BB;
133 }
134
135 /// \returns True if all of the values in \p VL are constants.
allConstant(ArrayRef<Value * > VL)136 static bool allConstant(ArrayRef<Value *> VL) {
137 for (unsigned i = 0, e = VL.size(); i < e; ++i)
138 if (!isa<Constant>(VL[i]))
139 return false;
140 return true;
141 }
142
143 /// \returns True if all of the values in \p VL are identical.
isSplat(ArrayRef<Value * > VL)144 static bool isSplat(ArrayRef<Value *> VL) {
145 for (unsigned i = 1, e = VL.size(); i < e; ++i)
146 if (VL[i] != VL[0])
147 return false;
148 return true;
149 }
150
151 ///\returns Opcode that can be clubbed with \p Op to create an alternate
152 /// sequence which can later be merged as a ShuffleVector instruction.
getAltOpcode(unsigned Op)153 static unsigned getAltOpcode(unsigned Op) {
154 switch (Op) {
155 case Instruction::FAdd:
156 return Instruction::FSub;
157 case Instruction::FSub:
158 return Instruction::FAdd;
159 case Instruction::Add:
160 return Instruction::Sub;
161 case Instruction::Sub:
162 return Instruction::Add;
163 default:
164 return 0;
165 }
166 }
167
168 ///\returns bool representing if Opcode \p Op can be part
169 /// of an alternate sequence which can later be merged as
170 /// a ShuffleVector instruction.
canCombineAsAltInst(unsigned Op)171 static bool canCombineAsAltInst(unsigned Op) {
172 return Op == Instruction::FAdd || Op == Instruction::FSub ||
173 Op == Instruction::Sub || Op == Instruction::Add;
174 }
175
176 /// \returns ShuffleVector instruction if instructions in \p VL have
177 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
178 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
isAltInst(ArrayRef<Value * > VL)179 static unsigned isAltInst(ArrayRef<Value *> VL) {
180 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
181 unsigned Opcode = I0->getOpcode();
182 unsigned AltOpcode = getAltOpcode(Opcode);
183 for (int i = 1, e = VL.size(); i < e; i++) {
184 Instruction *I = dyn_cast<Instruction>(VL[i]);
185 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
186 return 0;
187 }
188 return Instruction::ShuffleVector;
189 }
190
191 /// \returns The opcode if all of the Instructions in \p VL have the same
192 /// opcode, or zero.
getSameOpcode(ArrayRef<Value * > VL)193 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
194 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
195 if (!I0)
196 return 0;
197 unsigned Opcode = I0->getOpcode();
198 for (int i = 1, e = VL.size(); i < e; i++) {
199 Instruction *I = dyn_cast<Instruction>(VL[i]);
200 if (!I || Opcode != I->getOpcode()) {
201 if (canCombineAsAltInst(Opcode) && i == 1)
202 return isAltInst(VL);
203 return 0;
204 }
205 }
206 return Opcode;
207 }
208
209 /// Get the intersection (logical and) of all of the potential IR flags
210 /// of each scalar operation (VL) that will be converted into a vector (I).
211 /// Flag set: NSW, NUW, exact, and all of fast-math.
propagateIRFlags(Value * I,ArrayRef<Value * > VL)212 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
213 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
214 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
215 // Intersection is initialized to the 0th scalar,
216 // so start counting from index '1'.
217 for (int i = 1, e = VL.size(); i < e; ++i) {
218 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
219 Intersection->andIRFlags(Scalar);
220 }
221 VecOp->copyIRFlags(Intersection);
222 }
223 }
224 }
225
226 /// \returns \p I after propagating metadata from \p VL.
propagateMetadata(Instruction * I,ArrayRef<Value * > VL)227 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
228 Instruction *I0 = cast<Instruction>(VL[0]);
229 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
230 I0->getAllMetadataOtherThanDebugLoc(Metadata);
231
232 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
233 unsigned Kind = Metadata[i].first;
234 MDNode *MD = Metadata[i].second;
235
236 for (int i = 1, e = VL.size(); MD && i != e; i++) {
237 Instruction *I = cast<Instruction>(VL[i]);
238 MDNode *IMD = I->getMetadata(Kind);
239
240 switch (Kind) {
241 default:
242 MD = nullptr; // Remove unknown metadata
243 break;
244 case LLVMContext::MD_tbaa:
245 MD = MDNode::getMostGenericTBAA(MD, IMD);
246 break;
247 case LLVMContext::MD_alias_scope:
248 MD = MDNode::getMostGenericAliasScope(MD, IMD);
249 break;
250 case LLVMContext::MD_noalias:
251 MD = MDNode::intersect(MD, IMD);
252 break;
253 case LLVMContext::MD_fpmath:
254 MD = MDNode::getMostGenericFPMath(MD, IMD);
255 break;
256 case LLVMContext::MD_nontemporal:
257 MD = MDNode::intersect(MD, IMD);
258 break;
259 }
260 }
261 I->setMetadata(Kind, MD);
262 }
263 return I;
264 }
265
266 /// \returns The type that all of the values in \p VL have or null if there
267 /// are different types.
getSameType(ArrayRef<Value * > VL)268 static Type* getSameType(ArrayRef<Value *> VL) {
269 Type *Ty = VL[0]->getType();
270 for (int i = 1, e = VL.size(); i < e; i++)
271 if (VL[i]->getType() != Ty)
272 return nullptr;
273
274 return Ty;
275 }
276
277 /// \returns True if the ExtractElement instructions in VL can be vectorized
278 /// to use the original vector.
CanReuseExtract(ArrayRef<Value * > VL)279 static bool CanReuseExtract(ArrayRef<Value *> VL) {
280 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
281 // Check if all of the extracts come from the same vector and from the
282 // correct offset.
283 Value *VL0 = VL[0];
284 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
285 Value *Vec = E0->getOperand(0);
286
287 // We have to extract from the same vector type.
288 unsigned NElts = Vec->getType()->getVectorNumElements();
289
290 if (NElts != VL.size())
291 return false;
292
293 // Check that all of the indices extract from the correct offset.
294 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
295 if (!CI || CI->getZExtValue())
296 return false;
297
298 for (unsigned i = 1, e = VL.size(); i < e; ++i) {
299 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
300 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
301
302 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
303 return false;
304 }
305
306 return true;
307 }
308
309 /// \returns True if in-tree use also needs extract. This refers to
310 /// possible scalar operand in vectorized instruction.
InTreeUserNeedToExtract(Value * Scalar,Instruction * UserInst,TargetLibraryInfo * TLI)311 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
312 TargetLibraryInfo *TLI) {
313
314 unsigned Opcode = UserInst->getOpcode();
315 switch (Opcode) {
316 case Instruction::Load: {
317 LoadInst *LI = cast<LoadInst>(UserInst);
318 return (LI->getPointerOperand() == Scalar);
319 }
320 case Instruction::Store: {
321 StoreInst *SI = cast<StoreInst>(UserInst);
322 return (SI->getPointerOperand() == Scalar);
323 }
324 case Instruction::Call: {
325 CallInst *CI = cast<CallInst>(UserInst);
326 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
327 if (hasVectorInstrinsicScalarOpd(ID, 1)) {
328 return (CI->getArgOperand(1) == Scalar);
329 }
330 }
331 default:
332 return false;
333 }
334 }
335
336 /// \returns the AA location that is being access by the instruction.
getLocation(Instruction * I,AliasAnalysis * AA)337 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
338 if (StoreInst *SI = dyn_cast<StoreInst>(I))
339 return MemoryLocation::get(SI);
340 if (LoadInst *LI = dyn_cast<LoadInst>(I))
341 return MemoryLocation::get(LI);
342 return MemoryLocation();
343 }
344
345 /// \returns True if the instruction is not a volatile or atomic load/store.
isSimple(Instruction * I)346 static bool isSimple(Instruction *I) {
347 if (LoadInst *LI = dyn_cast<LoadInst>(I))
348 return LI->isSimple();
349 if (StoreInst *SI = dyn_cast<StoreInst>(I))
350 return SI->isSimple();
351 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
352 return !MI->isVolatile();
353 return true;
354 }
355
356 /// Bottom Up SLP Vectorizer.
357 class BoUpSLP {
358 public:
359 typedef SmallVector<Value *, 8> ValueList;
360 typedef SmallVector<Instruction *, 16> InstrList;
361 typedef SmallPtrSet<Value *, 16> ValueSet;
362 typedef SmallVector<StoreInst *, 8> StoreList;
363
BoUpSLP(Function * Func,ScalarEvolution * Se,TargetTransformInfo * Tti,TargetLibraryInfo * TLi,AliasAnalysis * Aa,LoopInfo * Li,DominatorTree * Dt,AssumptionCache * AC)364 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
365 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
366 DominatorTree *Dt, AssumptionCache *AC)
367 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
368 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
369 Builder(Se->getContext()) {
370 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
371 }
372
373 /// \brief Vectorize the tree that starts with the elements in \p VL.
374 /// Returns the vectorized root.
375 Value *vectorizeTree();
376
377 /// \returns the cost incurred by unwanted spills and fills, caused by
378 /// holding live values over call sites.
379 int getSpillCost();
380
381 /// \returns the vectorization cost of the subtree that starts at \p VL.
382 /// A negative number means that this is profitable.
383 int getTreeCost();
384
385 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
386 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
387 void buildTree(ArrayRef<Value *> Roots,
388 ArrayRef<Value *> UserIgnoreLst = None);
389
390 /// Clear the internal data structures that are created by 'buildTree'.
deleteTree()391 void deleteTree() {
392 VectorizableTree.clear();
393 ScalarToTreeEntry.clear();
394 MustGather.clear();
395 ExternalUses.clear();
396 NumLoadsWantToKeepOrder = 0;
397 NumLoadsWantToChangeOrder = 0;
398 for (auto &Iter : BlocksSchedules) {
399 BlockScheduling *BS = Iter.second.get();
400 BS->clear();
401 }
402 }
403
404 /// \returns true if the memory operations A and B are consecutive.
405 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL);
406
407 /// \brief Perform LICM and CSE on the newly generated gather sequences.
408 void optimizeGatherSequence();
409
410 /// \returns true if it is beneficial to reverse the vector order.
shouldReorder() const411 bool shouldReorder() const {
412 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
413 }
414
415 private:
416 struct TreeEntry;
417
418 /// \returns the cost of the vectorizable entry.
419 int getEntryCost(TreeEntry *E);
420
421 /// This is the recursive part of buildTree.
422 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
423
424 /// Vectorize a single entry in the tree.
425 Value *vectorizeTree(TreeEntry *E);
426
427 /// Vectorize a single entry in the tree, starting in \p VL.
428 Value *vectorizeTree(ArrayRef<Value *> VL);
429
430 /// \returns the pointer to the vectorized value if \p VL is already
431 /// vectorized, or NULL. They may happen in cycles.
432 Value *alreadyVectorized(ArrayRef<Value *> VL) const;
433
434 /// \brief Take the pointer operand from the Load/Store instruction.
435 /// \returns NULL if this is not a valid Load/Store instruction.
436 static Value *getPointerOperand(Value *I);
437
438 /// \brief Take the address space operand from the Load/Store instruction.
439 /// \returns -1 if this is not a valid Load/Store instruction.
440 static unsigned getAddressSpaceOperand(Value *I);
441
442 /// \returns the scalarization cost for this type. Scalarization in this
443 /// context means the creation of vectors from a group of scalars.
444 int getGatherCost(Type *Ty);
445
446 /// \returns the scalarization cost for this list of values. Assuming that
447 /// this subtree gets vectorized, we may need to extract the values from the
448 /// roots. This method calculates the cost of extracting the values.
449 int getGatherCost(ArrayRef<Value *> VL);
450
451 /// \brief Set the Builder insert point to one after the last instruction in
452 /// the bundle
453 void setInsertPointAfterBundle(ArrayRef<Value *> VL);
454
455 /// \returns a vector from a collection of scalars in \p VL.
456 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
457
458 /// \returns whether the VectorizableTree is fully vectorizable and will
459 /// be beneficial even the tree height is tiny.
460 bool isFullyVectorizableTinyTree();
461
462 /// \reorder commutative operands in alt shuffle if they result in
463 /// vectorized code.
464 void reorderAltShuffleOperands(ArrayRef<Value *> VL,
465 SmallVectorImpl<Value *> &Left,
466 SmallVectorImpl<Value *> &Right);
467 /// \reorder commutative operands to get better probability of
468 /// generating vectorized code.
469 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
470 SmallVectorImpl<Value *> &Left,
471 SmallVectorImpl<Value *> &Right);
472 struct TreeEntry {
TreeEntry__anonf9942ad60111::BoUpSLP::TreeEntry473 TreeEntry() : Scalars(), VectorizedValue(nullptr),
474 NeedToGather(0) {}
475
476 /// \returns true if the scalars in VL are equal to this entry.
isSame__anonf9942ad60111::BoUpSLP::TreeEntry477 bool isSame(ArrayRef<Value *> VL) const {
478 assert(VL.size() == Scalars.size() && "Invalid size");
479 return std::equal(VL.begin(), VL.end(), Scalars.begin());
480 }
481
482 /// A vector of scalars.
483 ValueList Scalars;
484
485 /// The Scalars are vectorized into this value. It is initialized to Null.
486 Value *VectorizedValue;
487
488 /// Do we need to gather this sequence ?
489 bool NeedToGather;
490 };
491
492 /// Create a new VectorizableTree entry.
newTreeEntry(ArrayRef<Value * > VL,bool Vectorized)493 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
494 VectorizableTree.emplace_back();
495 int idx = VectorizableTree.size() - 1;
496 TreeEntry *Last = &VectorizableTree[idx];
497 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
498 Last->NeedToGather = !Vectorized;
499 if (Vectorized) {
500 for (int i = 0, e = VL.size(); i != e; ++i) {
501 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
502 ScalarToTreeEntry[VL[i]] = idx;
503 }
504 } else {
505 MustGather.insert(VL.begin(), VL.end());
506 }
507 return Last;
508 }
509
510 /// -- Vectorization State --
511 /// Holds all of the tree entries.
512 std::vector<TreeEntry> VectorizableTree;
513
514 /// Maps a specific scalar to its tree entry.
515 SmallDenseMap<Value*, int> ScalarToTreeEntry;
516
517 /// A list of scalars that we found that we need to keep as scalars.
518 ValueSet MustGather;
519
520 /// This POD struct describes one external user in the vectorized tree.
521 struct ExternalUser {
ExternalUser__anonf9942ad60111::BoUpSLP::ExternalUser522 ExternalUser (Value *S, llvm::User *U, int L) :
523 Scalar(S), User(U), Lane(L){}
524 // Which scalar in our function.
525 Value *Scalar;
526 // Which user that uses the scalar.
527 llvm::User *User;
528 // Which lane does the scalar belong to.
529 int Lane;
530 };
531 typedef SmallVector<ExternalUser, 16> UserList;
532
533 /// Checks if two instructions may access the same memory.
534 ///
535 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
536 /// is invariant in the calling loop.
isAliased(const MemoryLocation & Loc1,Instruction * Inst1,Instruction * Inst2)537 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
538 Instruction *Inst2) {
539
540 // First check if the result is already in the cache.
541 AliasCacheKey key = std::make_pair(Inst1, Inst2);
542 Optional<bool> &result = AliasCache[key];
543 if (result.hasValue()) {
544 return result.getValue();
545 }
546 MemoryLocation Loc2 = getLocation(Inst2, AA);
547 bool aliased = true;
548 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
549 // Do the alias check.
550 aliased = AA->alias(Loc1, Loc2);
551 }
552 // Store the result in the cache.
553 result = aliased;
554 return aliased;
555 }
556
557 typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
558
559 /// Cache for alias results.
560 /// TODO: consider moving this to the AliasAnalysis itself.
561 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
562
563 /// Removes an instruction from its block and eventually deletes it.
564 /// It's like Instruction::eraseFromParent() except that the actual deletion
565 /// is delayed until BoUpSLP is destructed.
566 /// This is required to ensure that there are no incorrect collisions in the
567 /// AliasCache, which can happen if a new instruction is allocated at the
568 /// same address as a previously deleted instruction.
eraseInstruction(Instruction * I)569 void eraseInstruction(Instruction *I) {
570 I->removeFromParent();
571 I->dropAllReferences();
572 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
573 }
574
575 /// Temporary store for deleted instructions. Instructions will be deleted
576 /// eventually when the BoUpSLP is destructed.
577 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
578
579 /// A list of values that need to extracted out of the tree.
580 /// This list holds pairs of (Internal Scalar : External User).
581 UserList ExternalUses;
582
583 /// Values used only by @llvm.assume calls.
584 SmallPtrSet<const Value *, 32> EphValues;
585
586 /// Holds all of the instructions that we gathered.
587 SetVector<Instruction *> GatherSeq;
588 /// A list of blocks that we are going to CSE.
589 SetVector<BasicBlock *> CSEBlocks;
590
591 /// Contains all scheduling relevant data for an instruction.
592 /// A ScheduleData either represents a single instruction or a member of an
593 /// instruction bundle (= a group of instructions which is combined into a
594 /// vector instruction).
595 struct ScheduleData {
596
597 // The initial value for the dependency counters. It means that the
598 // dependencies are not calculated yet.
599 enum { InvalidDeps = -1 };
600
ScheduleData__anonf9942ad60111::BoUpSLP::ScheduleData601 ScheduleData()
602 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
603 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
604 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
605 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
606
init__anonf9942ad60111::BoUpSLP::ScheduleData607 void init(int BlockSchedulingRegionID) {
608 FirstInBundle = this;
609 NextInBundle = nullptr;
610 NextLoadStore = nullptr;
611 IsScheduled = false;
612 SchedulingRegionID = BlockSchedulingRegionID;
613 UnscheduledDepsInBundle = UnscheduledDeps;
614 clearDependencies();
615 }
616
617 /// Returns true if the dependency information has been calculated.
hasValidDependencies__anonf9942ad60111::BoUpSLP::ScheduleData618 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
619
620 /// Returns true for single instructions and for bundle representatives
621 /// (= the head of a bundle).
isSchedulingEntity__anonf9942ad60111::BoUpSLP::ScheduleData622 bool isSchedulingEntity() const { return FirstInBundle == this; }
623
624 /// Returns true if it represents an instruction bundle and not only a
625 /// single instruction.
isPartOfBundle__anonf9942ad60111::BoUpSLP::ScheduleData626 bool isPartOfBundle() const {
627 return NextInBundle != nullptr || FirstInBundle != this;
628 }
629
630 /// Returns true if it is ready for scheduling, i.e. it has no more
631 /// unscheduled depending instructions/bundles.
isReady__anonf9942ad60111::BoUpSLP::ScheduleData632 bool isReady() const {
633 assert(isSchedulingEntity() &&
634 "can't consider non-scheduling entity for ready list");
635 return UnscheduledDepsInBundle == 0 && !IsScheduled;
636 }
637
638 /// Modifies the number of unscheduled dependencies, also updating it for
639 /// the whole bundle.
incrementUnscheduledDeps__anonf9942ad60111::BoUpSLP::ScheduleData640 int incrementUnscheduledDeps(int Incr) {
641 UnscheduledDeps += Incr;
642 return FirstInBundle->UnscheduledDepsInBundle += Incr;
643 }
644
645 /// Sets the number of unscheduled dependencies to the number of
646 /// dependencies.
resetUnscheduledDeps__anonf9942ad60111::BoUpSLP::ScheduleData647 void resetUnscheduledDeps() {
648 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
649 }
650
651 /// Clears all dependency information.
clearDependencies__anonf9942ad60111::BoUpSLP::ScheduleData652 void clearDependencies() {
653 Dependencies = InvalidDeps;
654 resetUnscheduledDeps();
655 MemoryDependencies.clear();
656 }
657
dump__anonf9942ad60111::BoUpSLP::ScheduleData658 void dump(raw_ostream &os) const {
659 if (!isSchedulingEntity()) {
660 os << "/ " << *Inst;
661 } else if (NextInBundle) {
662 os << '[' << *Inst;
663 ScheduleData *SD = NextInBundle;
664 while (SD) {
665 os << ';' << *SD->Inst;
666 SD = SD->NextInBundle;
667 }
668 os << ']';
669 } else {
670 os << *Inst;
671 }
672 }
673
674 Instruction *Inst;
675
676 /// Points to the head in an instruction bundle (and always to this for
677 /// single instructions).
678 ScheduleData *FirstInBundle;
679
680 /// Single linked list of all instructions in a bundle. Null if it is a
681 /// single instruction.
682 ScheduleData *NextInBundle;
683
684 /// Single linked list of all memory instructions (e.g. load, store, call)
685 /// in the block - until the end of the scheduling region.
686 ScheduleData *NextLoadStore;
687
688 /// The dependent memory instructions.
689 /// This list is derived on demand in calculateDependencies().
690 SmallVector<ScheduleData *, 4> MemoryDependencies;
691
692 /// This ScheduleData is in the current scheduling region if this matches
693 /// the current SchedulingRegionID of BlockScheduling.
694 int SchedulingRegionID;
695
696 /// Used for getting a "good" final ordering of instructions.
697 int SchedulingPriority;
698
699 /// The number of dependencies. Constitutes of the number of users of the
700 /// instruction plus the number of dependent memory instructions (if any).
701 /// This value is calculated on demand.
702 /// If InvalidDeps, the number of dependencies is not calculated yet.
703 ///
704 int Dependencies;
705
706 /// The number of dependencies minus the number of dependencies of scheduled
707 /// instructions. As soon as this is zero, the instruction/bundle gets ready
708 /// for scheduling.
709 /// Note that this is negative as long as Dependencies is not calculated.
710 int UnscheduledDeps;
711
712 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
713 /// single instructions.
714 int UnscheduledDepsInBundle;
715
716 /// True if this instruction is scheduled (or considered as scheduled in the
717 /// dry-run).
718 bool IsScheduled;
719 };
720
721 #ifndef NDEBUG
722 friend raw_ostream &operator<<(raw_ostream &os,
723 const BoUpSLP::ScheduleData &SD);
724 #endif
725
726 /// Contains all scheduling data for a basic block.
727 ///
728 struct BlockScheduling {
729
BlockScheduling__anonf9942ad60111::BoUpSLP::BlockScheduling730 BlockScheduling(BasicBlock *BB)
731 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
732 ScheduleStart(nullptr), ScheduleEnd(nullptr),
733 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
734 ScheduleRegionSize(0),
735 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
736 // Make sure that the initial SchedulingRegionID is greater than the
737 // initial SchedulingRegionID in ScheduleData (which is 0).
738 SchedulingRegionID(1) {}
739
clear__anonf9942ad60111::BoUpSLP::BlockScheduling740 void clear() {
741 ReadyInsts.clear();
742 ScheduleStart = nullptr;
743 ScheduleEnd = nullptr;
744 FirstLoadStoreInRegion = nullptr;
745 LastLoadStoreInRegion = nullptr;
746
747 // Reduce the maximum schedule region size by the size of the
748 // previous scheduling run.
749 ScheduleRegionSizeLimit -= ScheduleRegionSize;
750 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
751 ScheduleRegionSizeLimit = MinScheduleRegionSize;
752 ScheduleRegionSize = 0;
753
754 // Make a new scheduling region, i.e. all existing ScheduleData is not
755 // in the new region yet.
756 ++SchedulingRegionID;
757 }
758
getScheduleData__anonf9942ad60111::BoUpSLP::BlockScheduling759 ScheduleData *getScheduleData(Value *V) {
760 ScheduleData *SD = ScheduleDataMap[V];
761 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
762 return SD;
763 return nullptr;
764 }
765
isInSchedulingRegion__anonf9942ad60111::BoUpSLP::BlockScheduling766 bool isInSchedulingRegion(ScheduleData *SD) {
767 return SD->SchedulingRegionID == SchedulingRegionID;
768 }
769
770 /// Marks an instruction as scheduled and puts all dependent ready
771 /// instructions into the ready-list.
772 template <typename ReadyListType>
schedule__anonf9942ad60111::BoUpSLP::BlockScheduling773 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
774 SD->IsScheduled = true;
775 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
776
777 ScheduleData *BundleMember = SD;
778 while (BundleMember) {
779 // Handle the def-use chain dependencies.
780 for (Use &U : BundleMember->Inst->operands()) {
781 ScheduleData *OpDef = getScheduleData(U.get());
782 if (OpDef && OpDef->hasValidDependencies() &&
783 OpDef->incrementUnscheduledDeps(-1) == 0) {
784 // There are no more unscheduled dependencies after decrementing,
785 // so we can put the dependent instruction into the ready list.
786 ScheduleData *DepBundle = OpDef->FirstInBundle;
787 assert(!DepBundle->IsScheduled &&
788 "already scheduled bundle gets ready");
789 ReadyList.insert(DepBundle);
790 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n");
791 }
792 }
793 // Handle the memory dependencies.
794 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
795 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
796 // There are no more unscheduled dependencies after decrementing,
797 // so we can put the dependent instruction into the ready list.
798 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
799 assert(!DepBundle->IsScheduled &&
800 "already scheduled bundle gets ready");
801 ReadyList.insert(DepBundle);
802 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n");
803 }
804 }
805 BundleMember = BundleMember->NextInBundle;
806 }
807 }
808
809 /// Put all instructions into the ReadyList which are ready for scheduling.
810 template <typename ReadyListType>
initialFillReadyList__anonf9942ad60111::BoUpSLP::BlockScheduling811 void initialFillReadyList(ReadyListType &ReadyList) {
812 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
813 ScheduleData *SD = getScheduleData(I);
814 if (SD->isSchedulingEntity() && SD->isReady()) {
815 ReadyList.insert(SD);
816 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n");
817 }
818 }
819 }
820
821 /// Checks if a bundle of instructions can be scheduled, i.e. has no
822 /// cyclic dependencies. This is only a dry-run, no instructions are
823 /// actually moved at this stage.
824 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
825
826 /// Un-bundles a group of instructions.
827 void cancelScheduling(ArrayRef<Value *> VL);
828
829 /// Extends the scheduling region so that V is inside the region.
830 /// \returns true if the region size is within the limit.
831 bool extendSchedulingRegion(Value *V);
832
833 /// Initialize the ScheduleData structures for new instructions in the
834 /// scheduling region.
835 void initScheduleData(Instruction *FromI, Instruction *ToI,
836 ScheduleData *PrevLoadStore,
837 ScheduleData *NextLoadStore);
838
839 /// Updates the dependency information of a bundle and of all instructions/
840 /// bundles which depend on the original bundle.
841 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
842 BoUpSLP *SLP);
843
844 /// Sets all instruction in the scheduling region to un-scheduled.
845 void resetSchedule();
846
847 BasicBlock *BB;
848
849 /// Simple memory allocation for ScheduleData.
850 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
851
852 /// The size of a ScheduleData array in ScheduleDataChunks.
853 int ChunkSize;
854
855 /// The allocator position in the current chunk, which is the last entry
856 /// of ScheduleDataChunks.
857 int ChunkPos;
858
859 /// Attaches ScheduleData to Instruction.
860 /// Note that the mapping survives during all vectorization iterations, i.e.
861 /// ScheduleData structures are recycled.
862 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
863
864 struct ReadyList : SmallVector<ScheduleData *, 8> {
insert__anonf9942ad60111::BoUpSLP::BlockScheduling::ReadyList865 void insert(ScheduleData *SD) { push_back(SD); }
866 };
867
868 /// The ready-list for scheduling (only used for the dry-run).
869 ReadyList ReadyInsts;
870
871 /// The first instruction of the scheduling region.
872 Instruction *ScheduleStart;
873
874 /// The first instruction _after_ the scheduling region.
875 Instruction *ScheduleEnd;
876
877 /// The first memory accessing instruction in the scheduling region
878 /// (can be null).
879 ScheduleData *FirstLoadStoreInRegion;
880
881 /// The last memory accessing instruction in the scheduling region
882 /// (can be null).
883 ScheduleData *LastLoadStoreInRegion;
884
885 /// The current size of the scheduling region.
886 int ScheduleRegionSize;
887
888 /// The maximum size allowed for the scheduling region.
889 int ScheduleRegionSizeLimit;
890
891 /// The ID of the scheduling region. For a new vectorization iteration this
892 /// is incremented which "removes" all ScheduleData from the region.
893 int SchedulingRegionID;
894 };
895
896 /// Attaches the BlockScheduling structures to basic blocks.
897 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
898
899 /// Performs the "real" scheduling. Done before vectorization is actually
900 /// performed in a basic block.
901 void scheduleBlock(BlockScheduling *BS);
902
903 /// List of users to ignore during scheduling and that don't need extracting.
904 ArrayRef<Value *> UserIgnoreList;
905
906 // Number of load-bundles, which contain consecutive loads.
907 int NumLoadsWantToKeepOrder;
908
909 // Number of load-bundles of size 2, which are consecutive loads if reversed.
910 int NumLoadsWantToChangeOrder;
911
912 // Analysis and block reference.
913 Function *F;
914 ScalarEvolution *SE;
915 TargetTransformInfo *TTI;
916 TargetLibraryInfo *TLI;
917 AliasAnalysis *AA;
918 LoopInfo *LI;
919 DominatorTree *DT;
920 /// Instruction builder to construct the vectorized tree.
921 IRBuilder<> Builder;
922 };
923
924 #ifndef NDEBUG
operator <<(raw_ostream & os,const BoUpSLP::ScheduleData & SD)925 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
926 SD.dump(os);
927 return os;
928 }
929 #endif
930
buildTree(ArrayRef<Value * > Roots,ArrayRef<Value * > UserIgnoreLst)931 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
932 ArrayRef<Value *> UserIgnoreLst) {
933 deleteTree();
934 UserIgnoreList = UserIgnoreLst;
935 if (!getSameType(Roots))
936 return;
937 buildTree_rec(Roots, 0);
938
939 // Collect the values that we need to extract from the tree.
940 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
941 TreeEntry *Entry = &VectorizableTree[EIdx];
942
943 // For each lane:
944 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
945 Value *Scalar = Entry->Scalars[Lane];
946
947 // No need to handle users of gathered values.
948 if (Entry->NeedToGather)
949 continue;
950
951 for (User *U : Scalar->users()) {
952 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
953
954 Instruction *UserInst = dyn_cast<Instruction>(U);
955 if (!UserInst)
956 continue;
957
958 // Skip in-tree scalars that become vectors
959 if (ScalarToTreeEntry.count(U)) {
960 int Idx = ScalarToTreeEntry[U];
961 TreeEntry *UseEntry = &VectorizableTree[Idx];
962 Value *UseScalar = UseEntry->Scalars[0];
963 // Some in-tree scalars will remain as scalar in vectorized
964 // instructions. If that is the case, the one in Lane 0 will
965 // be used.
966 if (UseScalar != U ||
967 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
968 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
969 << ".\n");
970 assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
971 continue;
972 }
973 }
974
975 // Ignore users in the user ignore list.
976 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
977 UserIgnoreList.end())
978 continue;
979
980 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
981 Lane << " from " << *Scalar << ".\n");
982 ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
983 }
984 }
985 }
986 }
987
988
buildTree_rec(ArrayRef<Value * > VL,unsigned Depth)989 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
990 bool SameTy = getSameType(VL); (void)SameTy;
991 bool isAltShuffle = false;
992 assert(SameTy && "Invalid types!");
993
994 if (Depth == RecursionMaxDepth) {
995 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
996 newTreeEntry(VL, false);
997 return;
998 }
999
1000 // Don't handle vectors.
1001 if (VL[0]->getType()->isVectorTy()) {
1002 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
1003 newTreeEntry(VL, false);
1004 return;
1005 }
1006
1007 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1008 if (SI->getValueOperand()->getType()->isVectorTy()) {
1009 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
1010 newTreeEntry(VL, false);
1011 return;
1012 }
1013 unsigned Opcode = getSameOpcode(VL);
1014
1015 // Check that this shuffle vector refers to the alternate
1016 // sequence of opcodes.
1017 if (Opcode == Instruction::ShuffleVector) {
1018 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
1019 unsigned Op = I0->getOpcode();
1020 if (Op != Instruction::ShuffleVector)
1021 isAltShuffle = true;
1022 }
1023
1024 // If all of the operands are identical or constant we have a simple solution.
1025 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
1026 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
1027 newTreeEntry(VL, false);
1028 return;
1029 }
1030
1031 // We now know that this is a vector of instructions of the same type from
1032 // the same block.
1033
1034 // Don't vectorize ephemeral values.
1035 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1036 if (EphValues.count(VL[i])) {
1037 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1038 ") is ephemeral.\n");
1039 newTreeEntry(VL, false);
1040 return;
1041 }
1042 }
1043
1044 // Check if this is a duplicate of another entry.
1045 if (ScalarToTreeEntry.count(VL[0])) {
1046 int Idx = ScalarToTreeEntry[VL[0]];
1047 TreeEntry *E = &VectorizableTree[Idx];
1048 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1049 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
1050 if (E->Scalars[i] != VL[i]) {
1051 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1052 newTreeEntry(VL, false);
1053 return;
1054 }
1055 }
1056 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
1057 return;
1058 }
1059
1060 // Check that none of the instructions in the bundle are already in the tree.
1061 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1062 if (ScalarToTreeEntry.count(VL[i])) {
1063 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1064 ") is already in tree.\n");
1065 newTreeEntry(VL, false);
1066 return;
1067 }
1068 }
1069
1070 // If any of the scalars is marked as a value that needs to stay scalar then
1071 // we need to gather the scalars.
1072 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1073 if (MustGather.count(VL[i])) {
1074 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1075 newTreeEntry(VL, false);
1076 return;
1077 }
1078 }
1079
1080 // Check that all of the users of the scalars that we want to vectorize are
1081 // schedulable.
1082 Instruction *VL0 = cast<Instruction>(VL[0]);
1083 BasicBlock *BB = cast<Instruction>(VL0)->getParent();
1084
1085 if (!DT->isReachableFromEntry(BB)) {
1086 // Don't go into unreachable blocks. They may contain instructions with
1087 // dependency cycles which confuse the final scheduling.
1088 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1089 newTreeEntry(VL, false);
1090 return;
1091 }
1092
1093 // Check that every instructions appears once in this bundle.
1094 for (unsigned i = 0, e = VL.size(); i < e; ++i)
1095 for (unsigned j = i+1; j < e; ++j)
1096 if (VL[i] == VL[j]) {
1097 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1098 newTreeEntry(VL, false);
1099 return;
1100 }
1101
1102 auto &BSRef = BlocksSchedules[BB];
1103 if (!BSRef) {
1104 BSRef = llvm::make_unique<BlockScheduling>(BB);
1105 }
1106 BlockScheduling &BS = *BSRef.get();
1107
1108 if (!BS.tryScheduleBundle(VL, this)) {
1109 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1110 assert((!BS.getScheduleData(VL[0]) ||
1111 !BS.getScheduleData(VL[0])->isPartOfBundle()) &&
1112 "tryScheduleBundle should cancelScheduling on failure");
1113 newTreeEntry(VL, false);
1114 return;
1115 }
1116 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1117
1118 switch (Opcode) {
1119 case Instruction::PHI: {
1120 PHINode *PH = dyn_cast<PHINode>(VL0);
1121
1122 // Check for terminator values (e.g. invoke).
1123 for (unsigned j = 0; j < VL.size(); ++j)
1124 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1125 TerminatorInst *Term = dyn_cast<TerminatorInst>(
1126 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1127 if (Term) {
1128 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
1129 BS.cancelScheduling(VL);
1130 newTreeEntry(VL, false);
1131 return;
1132 }
1133 }
1134
1135 newTreeEntry(VL, true);
1136 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1137
1138 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1139 ValueList Operands;
1140 // Prepare the operand vector.
1141 for (unsigned j = 0; j < VL.size(); ++j)
1142 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
1143 PH->getIncomingBlock(i)));
1144
1145 buildTree_rec(Operands, Depth + 1);
1146 }
1147 return;
1148 }
1149 case Instruction::ExtractElement: {
1150 bool Reuse = CanReuseExtract(VL);
1151 if (Reuse) {
1152 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
1153 } else {
1154 BS.cancelScheduling(VL);
1155 }
1156 newTreeEntry(VL, Reuse);
1157 return;
1158 }
1159 case Instruction::Load: {
1160 // Check that a vectorized load would load the same memory as a scalar
1161 // load.
1162 // For example we don't want vectorize loads that are smaller than 8 bit.
1163 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
1164 // loading/storing it as an i8 struct. If we vectorize loads/stores from
1165 // such a struct we read/write packed bits disagreeing with the
1166 // unvectorized version.
1167 const DataLayout &DL = F->getParent()->getDataLayout();
1168 Type *ScalarTy = VL[0]->getType();
1169
1170 if (DL.getTypeSizeInBits(ScalarTy) !=
1171 DL.getTypeAllocSizeInBits(ScalarTy)) {
1172 BS.cancelScheduling(VL);
1173 newTreeEntry(VL, false);
1174 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
1175 return;
1176 }
1177 // Check if the loads are consecutive or of we need to swizzle them.
1178 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1179 LoadInst *L = cast<LoadInst>(VL[i]);
1180 if (!L->isSimple()) {
1181 BS.cancelScheduling(VL);
1182 newTreeEntry(VL, false);
1183 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1184 return;
1185 }
1186
1187 if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
1188 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) {
1189 ++NumLoadsWantToChangeOrder;
1190 }
1191 BS.cancelScheduling(VL);
1192 newTreeEntry(VL, false);
1193 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1194 return;
1195 }
1196 }
1197 ++NumLoadsWantToKeepOrder;
1198 newTreeEntry(VL, true);
1199 DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1200 return;
1201 }
1202 case Instruction::ZExt:
1203 case Instruction::SExt:
1204 case Instruction::FPToUI:
1205 case Instruction::FPToSI:
1206 case Instruction::FPExt:
1207 case Instruction::PtrToInt:
1208 case Instruction::IntToPtr:
1209 case Instruction::SIToFP:
1210 case Instruction::UIToFP:
1211 case Instruction::Trunc:
1212 case Instruction::FPTrunc:
1213 case Instruction::BitCast: {
1214 Type *SrcTy = VL0->getOperand(0)->getType();
1215 for (unsigned i = 0; i < VL.size(); ++i) {
1216 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1217 if (Ty != SrcTy || !isValidElementType(Ty)) {
1218 BS.cancelScheduling(VL);
1219 newTreeEntry(VL, false);
1220 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
1221 return;
1222 }
1223 }
1224 newTreeEntry(VL, true);
1225 DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1226
1227 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1228 ValueList Operands;
1229 // Prepare the operand vector.
1230 for (unsigned j = 0; j < VL.size(); ++j)
1231 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1232
1233 buildTree_rec(Operands, Depth+1);
1234 }
1235 return;
1236 }
1237 case Instruction::ICmp:
1238 case Instruction::FCmp: {
1239 // Check that all of the compares have the same predicate.
1240 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1241 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
1242 for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1243 CmpInst *Cmp = cast<CmpInst>(VL[i]);
1244 if (Cmp->getPredicate() != P0 ||
1245 Cmp->getOperand(0)->getType() != ComparedTy) {
1246 BS.cancelScheduling(VL);
1247 newTreeEntry(VL, false);
1248 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
1249 return;
1250 }
1251 }
1252
1253 newTreeEntry(VL, true);
1254 DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1255
1256 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1257 ValueList Operands;
1258 // Prepare the operand vector.
1259 for (unsigned j = 0; j < VL.size(); ++j)
1260 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1261
1262 buildTree_rec(Operands, Depth+1);
1263 }
1264 return;
1265 }
1266 case Instruction::Select:
1267 case Instruction::Add:
1268 case Instruction::FAdd:
1269 case Instruction::Sub:
1270 case Instruction::FSub:
1271 case Instruction::Mul:
1272 case Instruction::FMul:
1273 case Instruction::UDiv:
1274 case Instruction::SDiv:
1275 case Instruction::FDiv:
1276 case Instruction::URem:
1277 case Instruction::SRem:
1278 case Instruction::FRem:
1279 case Instruction::Shl:
1280 case Instruction::LShr:
1281 case Instruction::AShr:
1282 case Instruction::And:
1283 case Instruction::Or:
1284 case Instruction::Xor: {
1285 newTreeEntry(VL, true);
1286 DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1287
1288 // Sort operands of the instructions so that each side is more likely to
1289 // have the same opcode.
1290 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1291 ValueList Left, Right;
1292 reorderInputsAccordingToOpcode(VL, Left, Right);
1293 buildTree_rec(Left, Depth + 1);
1294 buildTree_rec(Right, Depth + 1);
1295 return;
1296 }
1297
1298 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1299 ValueList Operands;
1300 // Prepare the operand vector.
1301 for (unsigned j = 0; j < VL.size(); ++j)
1302 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1303
1304 buildTree_rec(Operands, Depth+1);
1305 }
1306 return;
1307 }
1308 case Instruction::GetElementPtr: {
1309 // We don't combine GEPs with complicated (nested) indexing.
1310 for (unsigned j = 0; j < VL.size(); ++j) {
1311 if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1312 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1313 BS.cancelScheduling(VL);
1314 newTreeEntry(VL, false);
1315 return;
1316 }
1317 }
1318
1319 // We can't combine several GEPs into one vector if they operate on
1320 // different types.
1321 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
1322 for (unsigned j = 0; j < VL.size(); ++j) {
1323 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1324 if (Ty0 != CurTy) {
1325 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1326 BS.cancelScheduling(VL);
1327 newTreeEntry(VL, false);
1328 return;
1329 }
1330 }
1331
1332 // We don't combine GEPs with non-constant indexes.
1333 for (unsigned j = 0; j < VL.size(); ++j) {
1334 auto Op = cast<Instruction>(VL[j])->getOperand(1);
1335 if (!isa<ConstantInt>(Op)) {
1336 DEBUG(
1337 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1338 BS.cancelScheduling(VL);
1339 newTreeEntry(VL, false);
1340 return;
1341 }
1342 }
1343
1344 newTreeEntry(VL, true);
1345 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1346 for (unsigned i = 0, e = 2; i < e; ++i) {
1347 ValueList Operands;
1348 // Prepare the operand vector.
1349 for (unsigned j = 0; j < VL.size(); ++j)
1350 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1351
1352 buildTree_rec(Operands, Depth + 1);
1353 }
1354 return;
1355 }
1356 case Instruction::Store: {
1357 const DataLayout &DL = F->getParent()->getDataLayout();
1358 // Check if the stores are consecutive or of we need to swizzle them.
1359 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1360 if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
1361 BS.cancelScheduling(VL);
1362 newTreeEntry(VL, false);
1363 DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1364 return;
1365 }
1366
1367 newTreeEntry(VL, true);
1368 DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1369
1370 ValueList Operands;
1371 for (unsigned j = 0; j < VL.size(); ++j)
1372 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
1373
1374 buildTree_rec(Operands, Depth + 1);
1375 return;
1376 }
1377 case Instruction::Call: {
1378 // Check if the calls are all to the same vectorizable intrinsic.
1379 CallInst *CI = cast<CallInst>(VL[0]);
1380 // Check if this is an Intrinsic call or something that can be
1381 // represented by an intrinsic call
1382 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1383 if (!isTriviallyVectorizable(ID)) {
1384 BS.cancelScheduling(VL);
1385 newTreeEntry(VL, false);
1386 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1387 return;
1388 }
1389 Function *Int = CI->getCalledFunction();
1390 Value *A1I = nullptr;
1391 if (hasVectorInstrinsicScalarOpd(ID, 1))
1392 A1I = CI->getArgOperand(1);
1393 for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1394 CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1395 if (!CI2 || CI2->getCalledFunction() != Int ||
1396 getIntrinsicIDForCall(CI2, TLI) != ID) {
1397 BS.cancelScheduling(VL);
1398 newTreeEntry(VL, false);
1399 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1400 << "\n");
1401 return;
1402 }
1403 // ctlz,cttz and powi are special intrinsics whose second argument
1404 // should be same in order for them to be vectorized.
1405 if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1406 Value *A1J = CI2->getArgOperand(1);
1407 if (A1I != A1J) {
1408 BS.cancelScheduling(VL);
1409 newTreeEntry(VL, false);
1410 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1411 << " argument "<< A1I<<"!=" << A1J
1412 << "\n");
1413 return;
1414 }
1415 }
1416 }
1417
1418 newTreeEntry(VL, true);
1419 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1420 ValueList Operands;
1421 // Prepare the operand vector.
1422 for (unsigned j = 0; j < VL.size(); ++j) {
1423 CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
1424 Operands.push_back(CI2->getArgOperand(i));
1425 }
1426 buildTree_rec(Operands, Depth + 1);
1427 }
1428 return;
1429 }
1430 case Instruction::ShuffleVector: {
1431 // If this is not an alternate sequence of opcode like add-sub
1432 // then do not vectorize this instruction.
1433 if (!isAltShuffle) {
1434 BS.cancelScheduling(VL);
1435 newTreeEntry(VL, false);
1436 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1437 return;
1438 }
1439 newTreeEntry(VL, true);
1440 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1441
1442 // Reorder operands if reordering would enable vectorization.
1443 if (isa<BinaryOperator>(VL0)) {
1444 ValueList Left, Right;
1445 reorderAltShuffleOperands(VL, Left, Right);
1446 buildTree_rec(Left, Depth + 1);
1447 buildTree_rec(Right, Depth + 1);
1448 return;
1449 }
1450
1451 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1452 ValueList Operands;
1453 // Prepare the operand vector.
1454 for (unsigned j = 0; j < VL.size(); ++j)
1455 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1456
1457 buildTree_rec(Operands, Depth + 1);
1458 }
1459 return;
1460 }
1461 default:
1462 BS.cancelScheduling(VL);
1463 newTreeEntry(VL, false);
1464 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1465 return;
1466 }
1467 }
1468
getEntryCost(TreeEntry * E)1469 int BoUpSLP::getEntryCost(TreeEntry *E) {
1470 ArrayRef<Value*> VL = E->Scalars;
1471
1472 Type *ScalarTy = VL[0]->getType();
1473 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1474 ScalarTy = SI->getValueOperand()->getType();
1475 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1476
1477 if (E->NeedToGather) {
1478 if (allConstant(VL))
1479 return 0;
1480 if (isSplat(VL)) {
1481 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1482 }
1483 return getGatherCost(E->Scalars);
1484 }
1485 unsigned Opcode = getSameOpcode(VL);
1486 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
1487 Instruction *VL0 = cast<Instruction>(VL[0]);
1488 switch (Opcode) {
1489 case Instruction::PHI: {
1490 return 0;
1491 }
1492 case Instruction::ExtractElement: {
1493 if (CanReuseExtract(VL)) {
1494 int DeadCost = 0;
1495 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1496 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
1497 if (E->hasOneUse())
1498 // Take credit for instruction that will become dead.
1499 DeadCost +=
1500 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1501 }
1502 return -DeadCost;
1503 }
1504 return getGatherCost(VecTy);
1505 }
1506 case Instruction::ZExt:
1507 case Instruction::SExt:
1508 case Instruction::FPToUI:
1509 case Instruction::FPToSI:
1510 case Instruction::FPExt:
1511 case Instruction::PtrToInt:
1512 case Instruction::IntToPtr:
1513 case Instruction::SIToFP:
1514 case Instruction::UIToFP:
1515 case Instruction::Trunc:
1516 case Instruction::FPTrunc:
1517 case Instruction::BitCast: {
1518 Type *SrcTy = VL0->getOperand(0)->getType();
1519
1520 // Calculate the cost of this instruction.
1521 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1522 VL0->getType(), SrcTy);
1523
1524 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1525 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1526 return VecCost - ScalarCost;
1527 }
1528 case Instruction::FCmp:
1529 case Instruction::ICmp:
1530 case Instruction::Select:
1531 case Instruction::Add:
1532 case Instruction::FAdd:
1533 case Instruction::Sub:
1534 case Instruction::FSub:
1535 case Instruction::Mul:
1536 case Instruction::FMul:
1537 case Instruction::UDiv:
1538 case Instruction::SDiv:
1539 case Instruction::FDiv:
1540 case Instruction::URem:
1541 case Instruction::SRem:
1542 case Instruction::FRem:
1543 case Instruction::Shl:
1544 case Instruction::LShr:
1545 case Instruction::AShr:
1546 case Instruction::And:
1547 case Instruction::Or:
1548 case Instruction::Xor: {
1549 // Calculate the cost of this instruction.
1550 int ScalarCost = 0;
1551 int VecCost = 0;
1552 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1553 Opcode == Instruction::Select) {
1554 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1555 ScalarCost = VecTy->getNumElements() *
1556 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1557 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1558 } else {
1559 // Certain instructions can be cheaper to vectorize if they have a
1560 // constant second vector operand.
1561 TargetTransformInfo::OperandValueKind Op1VK =
1562 TargetTransformInfo::OK_AnyValue;
1563 TargetTransformInfo::OperandValueKind Op2VK =
1564 TargetTransformInfo::OK_UniformConstantValue;
1565 TargetTransformInfo::OperandValueProperties Op1VP =
1566 TargetTransformInfo::OP_None;
1567 TargetTransformInfo::OperandValueProperties Op2VP =
1568 TargetTransformInfo::OP_None;
1569
1570 // If all operands are exactly the same ConstantInt then set the
1571 // operand kind to OK_UniformConstantValue.
1572 // If instead not all operands are constants, then set the operand kind
1573 // to OK_AnyValue. If all operands are constants but not the same,
1574 // then set the operand kind to OK_NonUniformConstantValue.
1575 ConstantInt *CInt = nullptr;
1576 for (unsigned i = 0; i < VL.size(); ++i) {
1577 const Instruction *I = cast<Instruction>(VL[i]);
1578 if (!isa<ConstantInt>(I->getOperand(1))) {
1579 Op2VK = TargetTransformInfo::OK_AnyValue;
1580 break;
1581 }
1582 if (i == 0) {
1583 CInt = cast<ConstantInt>(I->getOperand(1));
1584 continue;
1585 }
1586 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1587 CInt != cast<ConstantInt>(I->getOperand(1)))
1588 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1589 }
1590 // FIXME: Currently cost of model modification for division by
1591 // power of 2 is handled only for X86. Add support for other targets.
1592 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
1593 CInt->getValue().isPowerOf2())
1594 Op2VP = TargetTransformInfo::OP_PowerOf2;
1595
1596 ScalarCost = VecTy->getNumElements() *
1597 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
1598 Op1VP, Op2VP);
1599 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
1600 Op1VP, Op2VP);
1601 }
1602 return VecCost - ScalarCost;
1603 }
1604 case Instruction::GetElementPtr: {
1605 TargetTransformInfo::OperandValueKind Op1VK =
1606 TargetTransformInfo::OK_AnyValue;
1607 TargetTransformInfo::OperandValueKind Op2VK =
1608 TargetTransformInfo::OK_UniformConstantValue;
1609
1610 int ScalarCost =
1611 VecTy->getNumElements() *
1612 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
1613 int VecCost =
1614 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
1615
1616 return VecCost - ScalarCost;
1617 }
1618 case Instruction::Load: {
1619 // Cost of wide load - cost of scalar loads.
1620 int ScalarLdCost = VecTy->getNumElements() *
1621 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1622 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1623 return VecLdCost - ScalarLdCost;
1624 }
1625 case Instruction::Store: {
1626 // We know that we can merge the stores. Calculate the cost.
1627 int ScalarStCost = VecTy->getNumElements() *
1628 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1629 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1630 return VecStCost - ScalarStCost;
1631 }
1632 case Instruction::Call: {
1633 CallInst *CI = cast<CallInst>(VL0);
1634 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1635
1636 // Calculate the cost of the scalar and vector calls.
1637 SmallVector<Type*, 4> ScalarTys, VecTys;
1638 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
1639 ScalarTys.push_back(CI->getArgOperand(op)->getType());
1640 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
1641 VecTy->getNumElements()));
1642 }
1643
1644 int ScalarCallCost = VecTy->getNumElements() *
1645 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
1646
1647 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
1648
1649 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
1650 << " (" << VecCallCost << "-" << ScalarCallCost << ")"
1651 << " for " << *CI << "\n");
1652
1653 return VecCallCost - ScalarCallCost;
1654 }
1655 case Instruction::ShuffleVector: {
1656 TargetTransformInfo::OperandValueKind Op1VK =
1657 TargetTransformInfo::OK_AnyValue;
1658 TargetTransformInfo::OperandValueKind Op2VK =
1659 TargetTransformInfo::OK_AnyValue;
1660 int ScalarCost = 0;
1661 int VecCost = 0;
1662 for (unsigned i = 0; i < VL.size(); ++i) {
1663 Instruction *I = cast<Instruction>(VL[i]);
1664 if (!I)
1665 break;
1666 ScalarCost +=
1667 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
1668 }
1669 // VecCost is equal to sum of the cost of creating 2 vectors
1670 // and the cost of creating shuffle.
1671 Instruction *I0 = cast<Instruction>(VL[0]);
1672 VecCost =
1673 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
1674 Instruction *I1 = cast<Instruction>(VL[1]);
1675 VecCost +=
1676 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
1677 VecCost +=
1678 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
1679 return VecCost - ScalarCost;
1680 }
1681 default:
1682 llvm_unreachable("Unknown instruction");
1683 }
1684 }
1685
isFullyVectorizableTinyTree()1686 bool BoUpSLP::isFullyVectorizableTinyTree() {
1687 DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1688 VectorizableTree.size() << " is fully vectorizable .\n");
1689
1690 // We only handle trees of height 2.
1691 if (VectorizableTree.size() != 2)
1692 return false;
1693
1694 // Handle splat and all-constants stores.
1695 if (!VectorizableTree[0].NeedToGather &&
1696 (allConstant(VectorizableTree[1].Scalars) ||
1697 isSplat(VectorizableTree[1].Scalars)))
1698 return true;
1699
1700 // Gathering cost would be too much for tiny trees.
1701 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1702 return false;
1703
1704 return true;
1705 }
1706
getSpillCost()1707 int BoUpSLP::getSpillCost() {
1708 // Walk from the bottom of the tree to the top, tracking which values are
1709 // live. When we see a call instruction that is not part of our tree,
1710 // query TTI to see if there is a cost to keeping values live over it
1711 // (for example, if spills and fills are required).
1712 unsigned BundleWidth = VectorizableTree.front().Scalars.size();
1713 int Cost = 0;
1714
1715 SmallPtrSet<Instruction*, 4> LiveValues;
1716 Instruction *PrevInst = nullptr;
1717
1718 for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
1719 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
1720 if (!Inst)
1721 continue;
1722
1723 if (!PrevInst) {
1724 PrevInst = Inst;
1725 continue;
1726 }
1727
1728 DEBUG(
1729 dbgs() << "SLP: #LV: " << LiveValues.size();
1730 for (auto *X : LiveValues)
1731 dbgs() << " " << X->getName();
1732 dbgs() << ", Looking at ";
1733 Inst->dump();
1734 );
1735
1736 // Update LiveValues.
1737 LiveValues.erase(PrevInst);
1738 for (auto &J : PrevInst->operands()) {
1739 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
1740 LiveValues.insert(cast<Instruction>(&*J));
1741 }
1742
1743 // Now find the sequence of instructions between PrevInst and Inst.
1744 BasicBlock::reverse_iterator InstIt(Inst->getIterator()),
1745 PrevInstIt(PrevInst->getIterator());
1746 --PrevInstIt;
1747 while (InstIt != PrevInstIt) {
1748 if (PrevInstIt == PrevInst->getParent()->rend()) {
1749 PrevInstIt = Inst->getParent()->rbegin();
1750 continue;
1751 }
1752
1753 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
1754 SmallVector<Type*, 4> V;
1755 for (auto *II : LiveValues)
1756 V.push_back(VectorType::get(II->getType(), BundleWidth));
1757 Cost += TTI->getCostOfKeepingLiveOverCall(V);
1758 }
1759
1760 ++PrevInstIt;
1761 }
1762
1763 PrevInst = Inst;
1764 }
1765
1766 DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n");
1767 return Cost;
1768 }
1769
getTreeCost()1770 int BoUpSLP::getTreeCost() {
1771 int Cost = 0;
1772 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1773 VectorizableTree.size() << ".\n");
1774
1775 // We only vectorize tiny trees if it is fully vectorizable.
1776 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1777 if (VectorizableTree.empty()) {
1778 assert(!ExternalUses.size() && "We should not have any external users");
1779 }
1780 return INT_MAX;
1781 }
1782
1783 unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1784
1785 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1786 int C = getEntryCost(&VectorizableTree[i]);
1787 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1788 << *VectorizableTree[i].Scalars[0] << " .\n");
1789 Cost += C;
1790 }
1791
1792 SmallSet<Value *, 16> ExtractCostCalculated;
1793 int ExtractCost = 0;
1794 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1795 I != E; ++I) {
1796 // We only add extract cost once for the same scalar.
1797 if (!ExtractCostCalculated.insert(I->Scalar).second)
1798 continue;
1799
1800 // Uses by ephemeral values are free (because the ephemeral value will be
1801 // removed prior to code generation, and so the extraction will be
1802 // removed as well).
1803 if (EphValues.count(I->User))
1804 continue;
1805
1806 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1807 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1808 I->Lane);
1809 }
1810
1811 Cost += getSpillCost();
1812
1813 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1814 return Cost + ExtractCost;
1815 }
1816
getGatherCost(Type * Ty)1817 int BoUpSLP::getGatherCost(Type *Ty) {
1818 int Cost = 0;
1819 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1820 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1821 return Cost;
1822 }
1823
getGatherCost(ArrayRef<Value * > VL)1824 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1825 // Find the type of the operands in VL.
1826 Type *ScalarTy = VL[0]->getType();
1827 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1828 ScalarTy = SI->getValueOperand()->getType();
1829 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1830 // Find the cost of inserting/extracting values from the vector.
1831 return getGatherCost(VecTy);
1832 }
1833
getPointerOperand(Value * I)1834 Value *BoUpSLP::getPointerOperand(Value *I) {
1835 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1836 return LI->getPointerOperand();
1837 if (StoreInst *SI = dyn_cast<StoreInst>(I))
1838 return SI->getPointerOperand();
1839 return nullptr;
1840 }
1841
getAddressSpaceOperand(Value * I)1842 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1843 if (LoadInst *L = dyn_cast<LoadInst>(I))
1844 return L->getPointerAddressSpace();
1845 if (StoreInst *S = dyn_cast<StoreInst>(I))
1846 return S->getPointerAddressSpace();
1847 return -1;
1848 }
1849
isConsecutiveAccess(Value * A,Value * B,const DataLayout & DL)1850 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) {
1851 Value *PtrA = getPointerOperand(A);
1852 Value *PtrB = getPointerOperand(B);
1853 unsigned ASA = getAddressSpaceOperand(A);
1854 unsigned ASB = getAddressSpaceOperand(B);
1855
1856 // Check that the address spaces match and that the pointers are valid.
1857 if (!PtrA || !PtrB || (ASA != ASB))
1858 return false;
1859
1860 // Make sure that A and B are different pointers of the same type.
1861 if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1862 return false;
1863
1864 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1865 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1866 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1867
1868 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1869 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1870 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1871
1872 APInt OffsetDelta = OffsetB - OffsetA;
1873
1874 // Check if they are based on the same pointer. That makes the offsets
1875 // sufficient.
1876 if (PtrA == PtrB)
1877 return OffsetDelta == Size;
1878
1879 // Compute the necessary base pointer delta to have the necessary final delta
1880 // equal to the size.
1881 APInt BaseDelta = Size - OffsetDelta;
1882
1883 // Otherwise compute the distance with SCEV between the base pointers.
1884 const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1885 const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1886 const SCEV *C = SE->getConstant(BaseDelta);
1887 const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1888 return X == PtrSCEVB;
1889 }
1890
1891 // Reorder commutative operations in alternate shuffle if the resulting vectors
1892 // are consecutive loads. This would allow us to vectorize the tree.
1893 // If we have something like-
1894 // load a[0] - load b[0]
1895 // load b[1] + load a[1]
1896 // load a[2] - load b[2]
1897 // load a[3] + load b[3]
1898 // Reordering the second load b[1] load a[1] would allow us to vectorize this
1899 // code.
reorderAltShuffleOperands(ArrayRef<Value * > VL,SmallVectorImpl<Value * > & Left,SmallVectorImpl<Value * > & Right)1900 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
1901 SmallVectorImpl<Value *> &Left,
1902 SmallVectorImpl<Value *> &Right) {
1903 const DataLayout &DL = F->getParent()->getDataLayout();
1904
1905 // Push left and right operands of binary operation into Left and Right
1906 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1907 Left.push_back(cast<Instruction>(VL[i])->getOperand(0));
1908 Right.push_back(cast<Instruction>(VL[i])->getOperand(1));
1909 }
1910
1911 // Reorder if we have a commutative operation and consecutive access
1912 // are on either side of the alternate instructions.
1913 for (unsigned j = 0; j < VL.size() - 1; ++j) {
1914 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
1915 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
1916 Instruction *VL1 = cast<Instruction>(VL[j]);
1917 Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1918 if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
1919 std::swap(Left[j], Right[j]);
1920 continue;
1921 } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
1922 std::swap(Left[j + 1], Right[j + 1]);
1923 continue;
1924 }
1925 // else unchanged
1926 }
1927 }
1928 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
1929 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
1930 Instruction *VL1 = cast<Instruction>(VL[j]);
1931 Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1932 if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
1933 std::swap(Left[j], Right[j]);
1934 continue;
1935 } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
1936 std::swap(Left[j + 1], Right[j + 1]);
1937 continue;
1938 }
1939 // else unchanged
1940 }
1941 }
1942 }
1943 }
1944
1945 // Return true if I should be commuted before adding it's left and right
1946 // operands to the arrays Left and Right.
1947 //
1948 // The vectorizer is trying to either have all elements one side being
1949 // instruction with the same opcode to enable further vectorization, or having
1950 // a splat to lower the vectorizing cost.
shouldReorderOperands(int i,Instruction & I,SmallVectorImpl<Value * > & Left,SmallVectorImpl<Value * > & Right,bool AllSameOpcodeLeft,bool AllSameOpcodeRight,bool SplatLeft,bool SplatRight)1951 static bool shouldReorderOperands(int i, Instruction &I,
1952 SmallVectorImpl<Value *> &Left,
1953 SmallVectorImpl<Value *> &Right,
1954 bool AllSameOpcodeLeft,
1955 bool AllSameOpcodeRight, bool SplatLeft,
1956 bool SplatRight) {
1957 Value *VLeft = I.getOperand(0);
1958 Value *VRight = I.getOperand(1);
1959 // If we have "SplatRight", try to see if commuting is needed to preserve it.
1960 if (SplatRight) {
1961 if (VRight == Right[i - 1])
1962 // Preserve SplatRight
1963 return false;
1964 if (VLeft == Right[i - 1]) {
1965 // Commuting would preserve SplatRight, but we don't want to break
1966 // SplatLeft either, i.e. preserve the original order if possible.
1967 // (FIXME: why do we care?)
1968 if (SplatLeft && VLeft == Left[i - 1])
1969 return false;
1970 return true;
1971 }
1972 }
1973 // Symmetrically handle Right side.
1974 if (SplatLeft) {
1975 if (VLeft == Left[i - 1])
1976 // Preserve SplatLeft
1977 return false;
1978 if (VRight == Left[i - 1])
1979 return true;
1980 }
1981
1982 Instruction *ILeft = dyn_cast<Instruction>(VLeft);
1983 Instruction *IRight = dyn_cast<Instruction>(VRight);
1984
1985 // If we have "AllSameOpcodeRight", try to see if the left operands preserves
1986 // it and not the right, in this case we want to commute.
1987 if (AllSameOpcodeRight) {
1988 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
1989 if (IRight && RightPrevOpcode == IRight->getOpcode())
1990 // Do not commute, a match on the right preserves AllSameOpcodeRight
1991 return false;
1992 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
1993 // We have a match and may want to commute, but first check if there is
1994 // not also a match on the existing operands on the Left to preserve
1995 // AllSameOpcodeLeft, i.e. preserve the original order if possible.
1996 // (FIXME: why do we care?)
1997 if (AllSameOpcodeLeft && ILeft &&
1998 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
1999 return false;
2000 return true;
2001 }
2002 }
2003 // Symmetrically handle Left side.
2004 if (AllSameOpcodeLeft) {
2005 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
2006 if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
2007 return false;
2008 if (IRight && LeftPrevOpcode == IRight->getOpcode())
2009 return true;
2010 }
2011 return false;
2012 }
2013
reorderInputsAccordingToOpcode(ArrayRef<Value * > VL,SmallVectorImpl<Value * > & Left,SmallVectorImpl<Value * > & Right)2014 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2015 SmallVectorImpl<Value *> &Left,
2016 SmallVectorImpl<Value *> &Right) {
2017
2018 if (VL.size()) {
2019 // Peel the first iteration out of the loop since there's nothing
2020 // interesting to do anyway and it simplifies the checks in the loop.
2021 auto VLeft = cast<Instruction>(VL[0])->getOperand(0);
2022 auto VRight = cast<Instruction>(VL[0])->getOperand(1);
2023 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
2024 // Favor having instruction to the right. FIXME: why?
2025 std::swap(VLeft, VRight);
2026 Left.push_back(VLeft);
2027 Right.push_back(VRight);
2028 }
2029
2030 // Keep track if we have instructions with all the same opcode on one side.
2031 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
2032 bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
2033 // Keep track if we have one side with all the same value (broadcast).
2034 bool SplatLeft = true;
2035 bool SplatRight = true;
2036
2037 for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2038 Instruction *I = cast<Instruction>(VL[i]);
2039 assert(I->isCommutative() && "Can only process commutative instruction");
2040 // Commute to favor either a splat or maximizing having the same opcodes on
2041 // one side.
2042 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft,
2043 AllSameOpcodeRight, SplatLeft, SplatRight)) {
2044 Left.push_back(I->getOperand(1));
2045 Right.push_back(I->getOperand(0));
2046 } else {
2047 Left.push_back(I->getOperand(0));
2048 Right.push_back(I->getOperand(1));
2049 }
2050 // Update Splat* and AllSameOpcode* after the insertion.
2051 SplatRight = SplatRight && (Right[i - 1] == Right[i]);
2052 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
2053 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
2054 (cast<Instruction>(Left[i - 1])->getOpcode() ==
2055 cast<Instruction>(Left[i])->getOpcode());
2056 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
2057 (cast<Instruction>(Right[i - 1])->getOpcode() ==
2058 cast<Instruction>(Right[i])->getOpcode());
2059 }
2060
2061 // If one operand end up being broadcast, return this operand order.
2062 if (SplatRight || SplatLeft)
2063 return;
2064
2065 const DataLayout &DL = F->getParent()->getDataLayout();
2066
2067 // Finally check if we can get longer vectorizable chain by reordering
2068 // without breaking the good operand order detected above.
2069 // E.g. If we have something like-
2070 // load a[0] load b[0]
2071 // load b[1] load a[1]
2072 // load a[2] load b[2]
2073 // load a[3] load b[3]
2074 // Reordering the second load b[1] load a[1] would allow us to vectorize
2075 // this code and we still retain AllSameOpcode property.
2076 // FIXME: This load reordering might break AllSameOpcode in some rare cases
2077 // such as-
2078 // add a[0],c[0] load b[0]
2079 // add a[1],c[2] load b[1]
2080 // b[2] load b[2]
2081 // add a[3],c[3] load b[3]
2082 for (unsigned j = 0; j < VL.size() - 1; ++j) {
2083 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2084 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2085 if (isConsecutiveAccess(L, L1, DL)) {
2086 std::swap(Left[j + 1], Right[j + 1]);
2087 continue;
2088 }
2089 }
2090 }
2091 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2092 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2093 if (isConsecutiveAccess(L, L1, DL)) {
2094 std::swap(Left[j + 1], Right[j + 1]);
2095 continue;
2096 }
2097 }
2098 }
2099 // else unchanged
2100 }
2101 }
2102
setInsertPointAfterBundle(ArrayRef<Value * > VL)2103 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
2104 Instruction *VL0 = cast<Instruction>(VL[0]);
2105 BasicBlock::iterator NextInst(VL0);
2106 ++NextInst;
2107 Builder.SetInsertPoint(VL0->getParent(), NextInst);
2108 Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
2109 }
2110
Gather(ArrayRef<Value * > VL,VectorType * Ty)2111 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2112 Value *Vec = UndefValue::get(Ty);
2113 // Generate the 'InsertElement' instruction.
2114 for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2115 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2116 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2117 GatherSeq.insert(Insrt);
2118 CSEBlocks.insert(Insrt->getParent());
2119
2120 // Add to our 'need-to-extract' list.
2121 if (ScalarToTreeEntry.count(VL[i])) {
2122 int Idx = ScalarToTreeEntry[VL[i]];
2123 TreeEntry *E = &VectorizableTree[Idx];
2124 // Find which lane we need to extract.
2125 int FoundLane = -1;
2126 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
2127 // Is this the lane of the scalar that we are looking for ?
2128 if (E->Scalars[Lane] == VL[i]) {
2129 FoundLane = Lane;
2130 break;
2131 }
2132 }
2133 assert(FoundLane >= 0 && "Could not find the correct lane");
2134 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2135 }
2136 }
2137 }
2138
2139 return Vec;
2140 }
2141
alreadyVectorized(ArrayRef<Value * > VL) const2142 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
2143 SmallDenseMap<Value*, int>::const_iterator Entry
2144 = ScalarToTreeEntry.find(VL[0]);
2145 if (Entry != ScalarToTreeEntry.end()) {
2146 int Idx = Entry->second;
2147 const TreeEntry *En = &VectorizableTree[Idx];
2148 if (En->isSame(VL) && En->VectorizedValue)
2149 return En->VectorizedValue;
2150 }
2151 return nullptr;
2152 }
2153
vectorizeTree(ArrayRef<Value * > VL)2154 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2155 if (ScalarToTreeEntry.count(VL[0])) {
2156 int Idx = ScalarToTreeEntry[VL[0]];
2157 TreeEntry *E = &VectorizableTree[Idx];
2158 if (E->isSame(VL))
2159 return vectorizeTree(E);
2160 }
2161
2162 Type *ScalarTy = VL[0]->getType();
2163 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2164 ScalarTy = SI->getValueOperand()->getType();
2165 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2166
2167 return Gather(VL, VecTy);
2168 }
2169
vectorizeTree(TreeEntry * E)2170 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2171 IRBuilder<>::InsertPointGuard Guard(Builder);
2172
2173 if (E->VectorizedValue) {
2174 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
2175 return E->VectorizedValue;
2176 }
2177
2178 Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2179 Type *ScalarTy = VL0->getType();
2180 if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
2181 ScalarTy = SI->getValueOperand()->getType();
2182 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2183
2184 if (E->NeedToGather) {
2185 setInsertPointAfterBundle(E->Scalars);
2186 return Gather(E->Scalars, VecTy);
2187 }
2188
2189 const DataLayout &DL = F->getParent()->getDataLayout();
2190 unsigned Opcode = getSameOpcode(E->Scalars);
2191
2192 switch (Opcode) {
2193 case Instruction::PHI: {
2194 PHINode *PH = dyn_cast<PHINode>(VL0);
2195 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2196 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2197 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2198 E->VectorizedValue = NewPhi;
2199
2200 // PHINodes may have multiple entries from the same block. We want to
2201 // visit every block once.
2202 SmallSet<BasicBlock*, 4> VisitedBBs;
2203
2204 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2205 ValueList Operands;
2206 BasicBlock *IBB = PH->getIncomingBlock(i);
2207
2208 if (!VisitedBBs.insert(IBB).second) {
2209 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2210 continue;
2211 }
2212
2213 // Prepare the operand vector.
2214 for (Value *V : E->Scalars)
2215 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2216
2217 Builder.SetInsertPoint(IBB->getTerminator());
2218 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2219 Value *Vec = vectorizeTree(Operands);
2220 NewPhi->addIncoming(Vec, IBB);
2221 }
2222
2223 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
2224 "Invalid number of incoming values");
2225 return NewPhi;
2226 }
2227
2228 case Instruction::ExtractElement: {
2229 if (CanReuseExtract(E->Scalars)) {
2230 Value *V = VL0->getOperand(0);
2231 E->VectorizedValue = V;
2232 return V;
2233 }
2234 return Gather(E->Scalars, VecTy);
2235 }
2236 case Instruction::ZExt:
2237 case Instruction::SExt:
2238 case Instruction::FPToUI:
2239 case Instruction::FPToSI:
2240 case Instruction::FPExt:
2241 case Instruction::PtrToInt:
2242 case Instruction::IntToPtr:
2243 case Instruction::SIToFP:
2244 case Instruction::UIToFP:
2245 case Instruction::Trunc:
2246 case Instruction::FPTrunc:
2247 case Instruction::BitCast: {
2248 ValueList INVL;
2249 for (Value *V : E->Scalars)
2250 INVL.push_back(cast<Instruction>(V)->getOperand(0));
2251
2252 setInsertPointAfterBundle(E->Scalars);
2253
2254 Value *InVec = vectorizeTree(INVL);
2255
2256 if (Value *V = alreadyVectorized(E->Scalars))
2257 return V;
2258
2259 CastInst *CI = dyn_cast<CastInst>(VL0);
2260 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
2261 E->VectorizedValue = V;
2262 ++NumVectorInstructions;
2263 return V;
2264 }
2265 case Instruction::FCmp:
2266 case Instruction::ICmp: {
2267 ValueList LHSV, RHSV;
2268 for (Value *V : E->Scalars) {
2269 LHSV.push_back(cast<Instruction>(V)->getOperand(0));
2270 RHSV.push_back(cast<Instruction>(V)->getOperand(1));
2271 }
2272
2273 setInsertPointAfterBundle(E->Scalars);
2274
2275 Value *L = vectorizeTree(LHSV);
2276 Value *R = vectorizeTree(RHSV);
2277
2278 if (Value *V = alreadyVectorized(E->Scalars))
2279 return V;
2280
2281 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2282 Value *V;
2283 if (Opcode == Instruction::FCmp)
2284 V = Builder.CreateFCmp(P0, L, R);
2285 else
2286 V = Builder.CreateICmp(P0, L, R);
2287
2288 E->VectorizedValue = V;
2289 ++NumVectorInstructions;
2290 return V;
2291 }
2292 case Instruction::Select: {
2293 ValueList TrueVec, FalseVec, CondVec;
2294 for (Value *V : E->Scalars) {
2295 CondVec.push_back(cast<Instruction>(V)->getOperand(0));
2296 TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
2297 FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
2298 }
2299
2300 setInsertPointAfterBundle(E->Scalars);
2301
2302 Value *Cond = vectorizeTree(CondVec);
2303 Value *True = vectorizeTree(TrueVec);
2304 Value *False = vectorizeTree(FalseVec);
2305
2306 if (Value *V = alreadyVectorized(E->Scalars))
2307 return V;
2308
2309 Value *V = Builder.CreateSelect(Cond, True, False);
2310 E->VectorizedValue = V;
2311 ++NumVectorInstructions;
2312 return V;
2313 }
2314 case Instruction::Add:
2315 case Instruction::FAdd:
2316 case Instruction::Sub:
2317 case Instruction::FSub:
2318 case Instruction::Mul:
2319 case Instruction::FMul:
2320 case Instruction::UDiv:
2321 case Instruction::SDiv:
2322 case Instruction::FDiv:
2323 case Instruction::URem:
2324 case Instruction::SRem:
2325 case Instruction::FRem:
2326 case Instruction::Shl:
2327 case Instruction::LShr:
2328 case Instruction::AShr:
2329 case Instruction::And:
2330 case Instruction::Or:
2331 case Instruction::Xor: {
2332 ValueList LHSVL, RHSVL;
2333 if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
2334 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
2335 else
2336 for (Value *V : E->Scalars) {
2337 LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
2338 RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
2339 }
2340
2341 setInsertPointAfterBundle(E->Scalars);
2342
2343 Value *LHS = vectorizeTree(LHSVL);
2344 Value *RHS = vectorizeTree(RHSVL);
2345
2346 if (LHS == RHS && isa<Instruction>(LHS)) {
2347 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
2348 }
2349
2350 if (Value *V = alreadyVectorized(E->Scalars))
2351 return V;
2352
2353 BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
2354 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
2355 E->VectorizedValue = V;
2356 propagateIRFlags(E->VectorizedValue, E->Scalars);
2357 ++NumVectorInstructions;
2358
2359 if (Instruction *I = dyn_cast<Instruction>(V))
2360 return propagateMetadata(I, E->Scalars);
2361
2362 return V;
2363 }
2364 case Instruction::Load: {
2365 // Loads are inserted at the head of the tree because we don't want to
2366 // sink them all the way down past store instructions.
2367 setInsertPointAfterBundle(E->Scalars);
2368
2369 LoadInst *LI = cast<LoadInst>(VL0);
2370 Type *ScalarLoadTy = LI->getType();
2371 unsigned AS = LI->getPointerAddressSpace();
2372
2373 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
2374 VecTy->getPointerTo(AS));
2375
2376 // The pointer operand uses an in-tree scalar so we add the new BitCast to
2377 // ExternalUses list to make sure that an extract will be generated in the
2378 // future.
2379 if (ScalarToTreeEntry.count(LI->getPointerOperand()))
2380 ExternalUses.push_back(
2381 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
2382
2383 unsigned Alignment = LI->getAlignment();
2384 LI = Builder.CreateLoad(VecPtr);
2385 if (!Alignment) {
2386 Alignment = DL.getABITypeAlignment(ScalarLoadTy);
2387 }
2388 LI->setAlignment(Alignment);
2389 E->VectorizedValue = LI;
2390 ++NumVectorInstructions;
2391 return propagateMetadata(LI, E->Scalars);
2392 }
2393 case Instruction::Store: {
2394 StoreInst *SI = cast<StoreInst>(VL0);
2395 unsigned Alignment = SI->getAlignment();
2396 unsigned AS = SI->getPointerAddressSpace();
2397
2398 ValueList ValueOp;
2399 for (Value *V : E->Scalars)
2400 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
2401
2402 setInsertPointAfterBundle(E->Scalars);
2403
2404 Value *VecValue = vectorizeTree(ValueOp);
2405 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
2406 VecTy->getPointerTo(AS));
2407 StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
2408
2409 // The pointer operand uses an in-tree scalar so we add the new BitCast to
2410 // ExternalUses list to make sure that an extract will be generated in the
2411 // future.
2412 if (ScalarToTreeEntry.count(SI->getPointerOperand()))
2413 ExternalUses.push_back(
2414 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
2415
2416 if (!Alignment) {
2417 Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType());
2418 }
2419 S->setAlignment(Alignment);
2420 E->VectorizedValue = S;
2421 ++NumVectorInstructions;
2422 return propagateMetadata(S, E->Scalars);
2423 }
2424 case Instruction::GetElementPtr: {
2425 setInsertPointAfterBundle(E->Scalars);
2426
2427 ValueList Op0VL;
2428 for (Value *V : E->Scalars)
2429 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
2430
2431 Value *Op0 = vectorizeTree(Op0VL);
2432
2433 std::vector<Value *> OpVecs;
2434 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
2435 ++j) {
2436 ValueList OpVL;
2437 for (Value *V : E->Scalars)
2438 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
2439
2440 Value *OpVec = vectorizeTree(OpVL);
2441 OpVecs.push_back(OpVec);
2442 }
2443
2444 Value *V = Builder.CreateGEP(
2445 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
2446 E->VectorizedValue = V;
2447 ++NumVectorInstructions;
2448
2449 if (Instruction *I = dyn_cast<Instruction>(V))
2450 return propagateMetadata(I, E->Scalars);
2451
2452 return V;
2453 }
2454 case Instruction::Call: {
2455 CallInst *CI = cast<CallInst>(VL0);
2456 setInsertPointAfterBundle(E->Scalars);
2457 Function *FI;
2458 Intrinsic::ID IID = Intrinsic::not_intrinsic;
2459 Value *ScalarArg = nullptr;
2460 if (CI && (FI = CI->getCalledFunction())) {
2461 IID = FI->getIntrinsicID();
2462 }
2463 std::vector<Value *> OpVecs;
2464 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
2465 ValueList OpVL;
2466 // ctlz,cttz and powi are special intrinsics whose second argument is
2467 // a scalar. This argument should not be vectorized.
2468 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
2469 CallInst *CEI = cast<CallInst>(E->Scalars[0]);
2470 ScalarArg = CEI->getArgOperand(j);
2471 OpVecs.push_back(CEI->getArgOperand(j));
2472 continue;
2473 }
2474 for (Value *V : E->Scalars) {
2475 CallInst *CEI = cast<CallInst>(V);
2476 OpVL.push_back(CEI->getArgOperand(j));
2477 }
2478
2479 Value *OpVec = vectorizeTree(OpVL);
2480 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
2481 OpVecs.push_back(OpVec);
2482 }
2483
2484 Module *M = F->getParent();
2485 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2486 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
2487 Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
2488 Value *V = Builder.CreateCall(CF, OpVecs);
2489
2490 // The scalar argument uses an in-tree scalar so we add the new vectorized
2491 // call to ExternalUses list to make sure that an extract will be
2492 // generated in the future.
2493 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
2494 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
2495
2496 E->VectorizedValue = V;
2497 ++NumVectorInstructions;
2498 return V;
2499 }
2500 case Instruction::ShuffleVector: {
2501 ValueList LHSVL, RHSVL;
2502 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
2503 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
2504 setInsertPointAfterBundle(E->Scalars);
2505
2506 Value *LHS = vectorizeTree(LHSVL);
2507 Value *RHS = vectorizeTree(RHSVL);
2508
2509 if (Value *V = alreadyVectorized(E->Scalars))
2510 return V;
2511
2512 // Create a vector of LHS op1 RHS
2513 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
2514 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
2515
2516 // Create a vector of LHS op2 RHS
2517 Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
2518 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
2519 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
2520
2521 // Create shuffle to take alternate operations from the vector.
2522 // Also, gather up odd and even scalar ops to propagate IR flags to
2523 // each vector operation.
2524 ValueList OddScalars, EvenScalars;
2525 unsigned e = E->Scalars.size();
2526 SmallVector<Constant *, 8> Mask(e);
2527 for (unsigned i = 0; i < e; ++i) {
2528 if (i & 1) {
2529 Mask[i] = Builder.getInt32(e + i);
2530 OddScalars.push_back(E->Scalars[i]);
2531 } else {
2532 Mask[i] = Builder.getInt32(i);
2533 EvenScalars.push_back(E->Scalars[i]);
2534 }
2535 }
2536
2537 Value *ShuffleMask = ConstantVector::get(Mask);
2538 propagateIRFlags(V0, EvenScalars);
2539 propagateIRFlags(V1, OddScalars);
2540
2541 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
2542 E->VectorizedValue = V;
2543 ++NumVectorInstructions;
2544 if (Instruction *I = dyn_cast<Instruction>(V))
2545 return propagateMetadata(I, E->Scalars);
2546
2547 return V;
2548 }
2549 default:
2550 llvm_unreachable("unknown inst");
2551 }
2552 return nullptr;
2553 }
2554
vectorizeTree()2555 Value *BoUpSLP::vectorizeTree() {
2556
2557 // All blocks must be scheduled before any instructions are inserted.
2558 for (auto &BSIter : BlocksSchedules) {
2559 scheduleBlock(BSIter.second.get());
2560 }
2561
2562 Builder.SetInsertPoint(&F->getEntryBlock().front());
2563 vectorizeTree(&VectorizableTree[0]);
2564
2565 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
2566
2567 // Extract all of the elements with the external uses.
2568 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
2569 it != e; ++it) {
2570 Value *Scalar = it->Scalar;
2571 llvm::User *User = it->User;
2572
2573 // Skip users that we already RAUW. This happens when one instruction
2574 // has multiple uses of the same value.
2575 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
2576 Scalar->user_end())
2577 continue;
2578 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
2579
2580 int Idx = ScalarToTreeEntry[Scalar];
2581 TreeEntry *E = &VectorizableTree[Idx];
2582 assert(!E->NeedToGather && "Extracting from a gather list");
2583
2584 Value *Vec = E->VectorizedValue;
2585 assert(Vec && "Can't find vectorizable value");
2586
2587 Value *Lane = Builder.getInt32(it->Lane);
2588 // Generate extracts for out-of-tree users.
2589 // Find the insertion point for the extractelement lane.
2590 if (isa<Instruction>(Vec)){
2591 if (PHINode *PH = dyn_cast<PHINode>(User)) {
2592 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
2593 if (PH->getIncomingValue(i) == Scalar) {
2594 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
2595 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2596 CSEBlocks.insert(PH->getIncomingBlock(i));
2597 PH->setOperand(i, Ex);
2598 }
2599 }
2600 } else {
2601 Builder.SetInsertPoint(cast<Instruction>(User));
2602 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2603 CSEBlocks.insert(cast<Instruction>(User)->getParent());
2604 User->replaceUsesOfWith(Scalar, Ex);
2605 }
2606 } else {
2607 Builder.SetInsertPoint(&F->getEntryBlock().front());
2608 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2609 CSEBlocks.insert(&F->getEntryBlock());
2610 User->replaceUsesOfWith(Scalar, Ex);
2611 }
2612
2613 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
2614 }
2615
2616 // For each vectorized value:
2617 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
2618 TreeEntry *Entry = &VectorizableTree[EIdx];
2619
2620 // For each lane:
2621 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2622 Value *Scalar = Entry->Scalars[Lane];
2623 // No need to handle users of gathered values.
2624 if (Entry->NeedToGather)
2625 continue;
2626
2627 assert(Entry->VectorizedValue && "Can't find vectorizable value");
2628
2629 Type *Ty = Scalar->getType();
2630 if (!Ty->isVoidTy()) {
2631 #ifndef NDEBUG
2632 for (User *U : Scalar->users()) {
2633 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
2634
2635 assert((ScalarToTreeEntry.count(U) ||
2636 // It is legal to replace users in the ignorelist by undef.
2637 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
2638 UserIgnoreList.end())) &&
2639 "Replacing out-of-tree value with undef");
2640 }
2641 #endif
2642 Value *Undef = UndefValue::get(Ty);
2643 Scalar->replaceAllUsesWith(Undef);
2644 }
2645 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
2646 eraseInstruction(cast<Instruction>(Scalar));
2647 }
2648 }
2649
2650 Builder.ClearInsertionPoint();
2651
2652 return VectorizableTree[0].VectorizedValue;
2653 }
2654
optimizeGatherSequence()2655 void BoUpSLP::optimizeGatherSequence() {
2656 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
2657 << " gather sequences instructions.\n");
2658 // LICM InsertElementInst sequences.
2659 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
2660 e = GatherSeq.end(); it != e; ++it) {
2661 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
2662
2663 if (!Insert)
2664 continue;
2665
2666 // Check if this block is inside a loop.
2667 Loop *L = LI->getLoopFor(Insert->getParent());
2668 if (!L)
2669 continue;
2670
2671 // Check if it has a preheader.
2672 BasicBlock *PreHeader = L->getLoopPreheader();
2673 if (!PreHeader)
2674 continue;
2675
2676 // If the vector or the element that we insert into it are
2677 // instructions that are defined in this basic block then we can't
2678 // hoist this instruction.
2679 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
2680 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
2681 if (CurrVec && L->contains(CurrVec))
2682 continue;
2683 if (NewElem && L->contains(NewElem))
2684 continue;
2685
2686 // We can hoist this instruction. Move it to the pre-header.
2687 Insert->moveBefore(PreHeader->getTerminator());
2688 }
2689
2690 // Make a list of all reachable blocks in our CSE queue.
2691 SmallVector<const DomTreeNode *, 8> CSEWorkList;
2692 CSEWorkList.reserve(CSEBlocks.size());
2693 for (BasicBlock *BB : CSEBlocks)
2694 if (DomTreeNode *N = DT->getNode(BB)) {
2695 assert(DT->isReachableFromEntry(N));
2696 CSEWorkList.push_back(N);
2697 }
2698
2699 // Sort blocks by domination. This ensures we visit a block after all blocks
2700 // dominating it are visited.
2701 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
2702 [this](const DomTreeNode *A, const DomTreeNode *B) {
2703 return DT->properlyDominates(A, B);
2704 });
2705
2706 // Perform O(N^2) search over the gather sequences and merge identical
2707 // instructions. TODO: We can further optimize this scan if we split the
2708 // instructions into different buckets based on the insert lane.
2709 SmallVector<Instruction *, 16> Visited;
2710 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
2711 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
2712 "Worklist not sorted properly!");
2713 BasicBlock *BB = (*I)->getBlock();
2714 // For all instructions in blocks containing gather sequences:
2715 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
2716 Instruction *In = &*it++;
2717 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
2718 continue;
2719
2720 // Check if we can replace this instruction with any of the
2721 // visited instructions.
2722 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
2723 ve = Visited.end();
2724 v != ve; ++v) {
2725 if (In->isIdenticalTo(*v) &&
2726 DT->dominates((*v)->getParent(), In->getParent())) {
2727 In->replaceAllUsesWith(*v);
2728 eraseInstruction(In);
2729 In = nullptr;
2730 break;
2731 }
2732 }
2733 if (In) {
2734 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
2735 Visited.push_back(In);
2736 }
2737 }
2738 }
2739 CSEBlocks.clear();
2740 GatherSeq.clear();
2741 }
2742
2743 // Groups the instructions to a bundle (which is then a single scheduling entity)
2744 // and schedules instructions until the bundle gets ready.
tryScheduleBundle(ArrayRef<Value * > VL,BoUpSLP * SLP)2745 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
2746 BoUpSLP *SLP) {
2747 if (isa<PHINode>(VL[0]))
2748 return true;
2749
2750 // Initialize the instruction bundle.
2751 Instruction *OldScheduleEnd = ScheduleEnd;
2752 ScheduleData *PrevInBundle = nullptr;
2753 ScheduleData *Bundle = nullptr;
2754 bool ReSchedule = false;
2755 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n");
2756
2757 // Make sure that the scheduling region contains all
2758 // instructions of the bundle.
2759 for (Value *V : VL) {
2760 if (!extendSchedulingRegion(V))
2761 return false;
2762 }
2763
2764 for (Value *V : VL) {
2765 ScheduleData *BundleMember = getScheduleData(V);
2766 assert(BundleMember &&
2767 "no ScheduleData for bundle member (maybe not in same basic block)");
2768 if (BundleMember->IsScheduled) {
2769 // A bundle member was scheduled as single instruction before and now
2770 // needs to be scheduled as part of the bundle. We just get rid of the
2771 // existing schedule.
2772 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
2773 << " was already scheduled\n");
2774 ReSchedule = true;
2775 }
2776 assert(BundleMember->isSchedulingEntity() &&
2777 "bundle member already part of other bundle");
2778 if (PrevInBundle) {
2779 PrevInBundle->NextInBundle = BundleMember;
2780 } else {
2781 Bundle = BundleMember;
2782 }
2783 BundleMember->UnscheduledDepsInBundle = 0;
2784 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
2785
2786 // Group the instructions to a bundle.
2787 BundleMember->FirstInBundle = Bundle;
2788 PrevInBundle = BundleMember;
2789 }
2790 if (ScheduleEnd != OldScheduleEnd) {
2791 // The scheduling region got new instructions at the lower end (or it is a
2792 // new region for the first bundle). This makes it necessary to
2793 // recalculate all dependencies.
2794 // It is seldom that this needs to be done a second time after adding the
2795 // initial bundle to the region.
2796 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2797 ScheduleData *SD = getScheduleData(I);
2798 SD->clearDependencies();
2799 }
2800 ReSchedule = true;
2801 }
2802 if (ReSchedule) {
2803 resetSchedule();
2804 initialFillReadyList(ReadyInsts);
2805 }
2806
2807 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
2808 << BB->getName() << "\n");
2809
2810 calculateDependencies(Bundle, true, SLP);
2811
2812 // Now try to schedule the new bundle. As soon as the bundle is "ready" it
2813 // means that there are no cyclic dependencies and we can schedule it.
2814 // Note that's important that we don't "schedule" the bundle yet (see
2815 // cancelScheduling).
2816 while (!Bundle->isReady() && !ReadyInsts.empty()) {
2817
2818 ScheduleData *pickedSD = ReadyInsts.back();
2819 ReadyInsts.pop_back();
2820
2821 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
2822 schedule(pickedSD, ReadyInsts);
2823 }
2824 }
2825 if (!Bundle->isReady()) {
2826 cancelScheduling(VL);
2827 return false;
2828 }
2829 return true;
2830 }
2831
cancelScheduling(ArrayRef<Value * > VL)2832 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
2833 if (isa<PHINode>(VL[0]))
2834 return;
2835
2836 ScheduleData *Bundle = getScheduleData(VL[0]);
2837 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
2838 assert(!Bundle->IsScheduled &&
2839 "Can't cancel bundle which is already scheduled");
2840 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
2841 "tried to unbundle something which is not a bundle");
2842
2843 // Un-bundle: make single instructions out of the bundle.
2844 ScheduleData *BundleMember = Bundle;
2845 while (BundleMember) {
2846 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
2847 BundleMember->FirstInBundle = BundleMember;
2848 ScheduleData *Next = BundleMember->NextInBundle;
2849 BundleMember->NextInBundle = nullptr;
2850 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
2851 if (BundleMember->UnscheduledDepsInBundle == 0) {
2852 ReadyInsts.insert(BundleMember);
2853 }
2854 BundleMember = Next;
2855 }
2856 }
2857
extendSchedulingRegion(Value * V)2858 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
2859 if (getScheduleData(V))
2860 return true;
2861 Instruction *I = dyn_cast<Instruction>(V);
2862 assert(I && "bundle member must be an instruction");
2863 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
2864 if (!ScheduleStart) {
2865 // It's the first instruction in the new region.
2866 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
2867 ScheduleStart = I;
2868 ScheduleEnd = I->getNextNode();
2869 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2870 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
2871 return true;
2872 }
2873 // Search up and down at the same time, because we don't know if the new
2874 // instruction is above or below the existing scheduling region.
2875 BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator());
2876 BasicBlock::reverse_iterator UpperEnd = BB->rend();
2877 BasicBlock::iterator DownIter(ScheduleEnd);
2878 BasicBlock::iterator LowerEnd = BB->end();
2879 for (;;) {
2880 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
2881 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
2882 return false;
2883 }
2884
2885 if (UpIter != UpperEnd) {
2886 if (&*UpIter == I) {
2887 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
2888 ScheduleStart = I;
2889 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n");
2890 return true;
2891 }
2892 UpIter++;
2893 }
2894 if (DownIter != LowerEnd) {
2895 if (&*DownIter == I) {
2896 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
2897 nullptr);
2898 ScheduleEnd = I->getNextNode();
2899 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
2900 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n");
2901 return true;
2902 }
2903 DownIter++;
2904 }
2905 assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
2906 "instruction not found in block");
2907 }
2908 return true;
2909 }
2910
initScheduleData(Instruction * FromI,Instruction * ToI,ScheduleData * PrevLoadStore,ScheduleData * NextLoadStore)2911 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
2912 Instruction *ToI,
2913 ScheduleData *PrevLoadStore,
2914 ScheduleData *NextLoadStore) {
2915 ScheduleData *CurrentLoadStore = PrevLoadStore;
2916 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
2917 ScheduleData *SD = ScheduleDataMap[I];
2918 if (!SD) {
2919 // Allocate a new ScheduleData for the instruction.
2920 if (ChunkPos >= ChunkSize) {
2921 ScheduleDataChunks.push_back(
2922 llvm::make_unique<ScheduleData[]>(ChunkSize));
2923 ChunkPos = 0;
2924 }
2925 SD = &(ScheduleDataChunks.back()[ChunkPos++]);
2926 ScheduleDataMap[I] = SD;
2927 SD->Inst = I;
2928 }
2929 assert(!isInSchedulingRegion(SD) &&
2930 "new ScheduleData already in scheduling region");
2931 SD->init(SchedulingRegionID);
2932
2933 if (I->mayReadOrWriteMemory()) {
2934 // Update the linked list of memory accessing instructions.
2935 if (CurrentLoadStore) {
2936 CurrentLoadStore->NextLoadStore = SD;
2937 } else {
2938 FirstLoadStoreInRegion = SD;
2939 }
2940 CurrentLoadStore = SD;
2941 }
2942 }
2943 if (NextLoadStore) {
2944 if (CurrentLoadStore)
2945 CurrentLoadStore->NextLoadStore = NextLoadStore;
2946 } else {
2947 LastLoadStoreInRegion = CurrentLoadStore;
2948 }
2949 }
2950
calculateDependencies(ScheduleData * SD,bool InsertInReadyList,BoUpSLP * SLP)2951 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
2952 bool InsertInReadyList,
2953 BoUpSLP *SLP) {
2954 assert(SD->isSchedulingEntity());
2955
2956 SmallVector<ScheduleData *, 10> WorkList;
2957 WorkList.push_back(SD);
2958
2959 while (!WorkList.empty()) {
2960 ScheduleData *SD = WorkList.back();
2961 WorkList.pop_back();
2962
2963 ScheduleData *BundleMember = SD;
2964 while (BundleMember) {
2965 assert(isInSchedulingRegion(BundleMember));
2966 if (!BundleMember->hasValidDependencies()) {
2967
2968 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n");
2969 BundleMember->Dependencies = 0;
2970 BundleMember->resetUnscheduledDeps();
2971
2972 // Handle def-use chain dependencies.
2973 for (User *U : BundleMember->Inst->users()) {
2974 if (isa<Instruction>(U)) {
2975 ScheduleData *UseSD = getScheduleData(U);
2976 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
2977 BundleMember->Dependencies++;
2978 ScheduleData *DestBundle = UseSD->FirstInBundle;
2979 if (!DestBundle->IsScheduled) {
2980 BundleMember->incrementUnscheduledDeps(1);
2981 }
2982 if (!DestBundle->hasValidDependencies()) {
2983 WorkList.push_back(DestBundle);
2984 }
2985 }
2986 } else {
2987 // I'm not sure if this can ever happen. But we need to be safe.
2988 // This lets the instruction/bundle never be scheduled and
2989 // eventually disable vectorization.
2990 BundleMember->Dependencies++;
2991 BundleMember->incrementUnscheduledDeps(1);
2992 }
2993 }
2994
2995 // Handle the memory dependencies.
2996 ScheduleData *DepDest = BundleMember->NextLoadStore;
2997 if (DepDest) {
2998 Instruction *SrcInst = BundleMember->Inst;
2999 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
3000 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
3001 unsigned numAliased = 0;
3002 unsigned DistToSrc = 1;
3003
3004 while (DepDest) {
3005 assert(isInSchedulingRegion(DepDest));
3006
3007 // We have two limits to reduce the complexity:
3008 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
3009 // SLP->isAliased (which is the expensive part in this loop).
3010 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
3011 // the whole loop (even if the loop is fast, it's quadratic).
3012 // It's important for the loop break condition (see below) to
3013 // check this limit even between two read-only instructions.
3014 if (DistToSrc >= MaxMemDepDistance ||
3015 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
3016 (numAliased >= AliasedCheckLimit ||
3017 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
3018
3019 // We increment the counter only if the locations are aliased
3020 // (instead of counting all alias checks). This gives a better
3021 // balance between reduced runtime and accurate dependencies.
3022 numAliased++;
3023
3024 DepDest->MemoryDependencies.push_back(BundleMember);
3025 BundleMember->Dependencies++;
3026 ScheduleData *DestBundle = DepDest->FirstInBundle;
3027 if (!DestBundle->IsScheduled) {
3028 BundleMember->incrementUnscheduledDeps(1);
3029 }
3030 if (!DestBundle->hasValidDependencies()) {
3031 WorkList.push_back(DestBundle);
3032 }
3033 }
3034 DepDest = DepDest->NextLoadStore;
3035
3036 // Example, explaining the loop break condition: Let's assume our
3037 // starting instruction is i0 and MaxMemDepDistance = 3.
3038 //
3039 // +--------v--v--v
3040 // i0,i1,i2,i3,i4,i5,i6,i7,i8
3041 // +--------^--^--^
3042 //
3043 // MaxMemDepDistance let us stop alias-checking at i3 and we add
3044 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
3045 // Previously we already added dependencies from i3 to i6,i7,i8
3046 // (because of MaxMemDepDistance). As we added a dependency from
3047 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
3048 // and we can abort this loop at i6.
3049 if (DistToSrc >= 2 * MaxMemDepDistance)
3050 break;
3051 DistToSrc++;
3052 }
3053 }
3054 }
3055 BundleMember = BundleMember->NextInBundle;
3056 }
3057 if (InsertInReadyList && SD->isReady()) {
3058 ReadyInsts.push_back(SD);
3059 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n");
3060 }
3061 }
3062 }
3063
resetSchedule()3064 void BoUpSLP::BlockScheduling::resetSchedule() {
3065 assert(ScheduleStart &&
3066 "tried to reset schedule on block which has not been scheduled");
3067 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3068 ScheduleData *SD = getScheduleData(I);
3069 assert(isInSchedulingRegion(SD));
3070 SD->IsScheduled = false;
3071 SD->resetUnscheduledDeps();
3072 }
3073 ReadyInsts.clear();
3074 }
3075
scheduleBlock(BlockScheduling * BS)3076 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
3077
3078 if (!BS->ScheduleStart)
3079 return;
3080
3081 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
3082
3083 BS->resetSchedule();
3084
3085 // For the real scheduling we use a more sophisticated ready-list: it is
3086 // sorted by the original instruction location. This lets the final schedule
3087 // be as close as possible to the original instruction order.
3088 struct ScheduleDataCompare {
3089 bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
3090 return SD2->SchedulingPriority < SD1->SchedulingPriority;
3091 }
3092 };
3093 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
3094
3095 // Ensure that all dependency data is updated and fill the ready-list with
3096 // initial instructions.
3097 int Idx = 0;
3098 int NumToSchedule = 0;
3099 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
3100 I = I->getNextNode()) {
3101 ScheduleData *SD = BS->getScheduleData(I);
3102 assert(
3103 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
3104 "scheduler and vectorizer have different opinion on what is a bundle");
3105 SD->FirstInBundle->SchedulingPriority = Idx++;
3106 if (SD->isSchedulingEntity()) {
3107 BS->calculateDependencies(SD, false, this);
3108 NumToSchedule++;
3109 }
3110 }
3111 BS->initialFillReadyList(ReadyInsts);
3112
3113 Instruction *LastScheduledInst = BS->ScheduleEnd;
3114
3115 // Do the "real" scheduling.
3116 while (!ReadyInsts.empty()) {
3117 ScheduleData *picked = *ReadyInsts.begin();
3118 ReadyInsts.erase(ReadyInsts.begin());
3119
3120 // Move the scheduled instruction(s) to their dedicated places, if not
3121 // there yet.
3122 ScheduleData *BundleMember = picked;
3123 while (BundleMember) {
3124 Instruction *pickedInst = BundleMember->Inst;
3125 if (LastScheduledInst->getNextNode() != pickedInst) {
3126 BS->BB->getInstList().remove(pickedInst);
3127 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
3128 pickedInst);
3129 }
3130 LastScheduledInst = pickedInst;
3131 BundleMember = BundleMember->NextInBundle;
3132 }
3133
3134 BS->schedule(picked, ReadyInsts);
3135 NumToSchedule--;
3136 }
3137 assert(NumToSchedule == 0 && "could not schedule all instructions");
3138
3139 // Avoid duplicate scheduling of the block.
3140 BS->ScheduleStart = nullptr;
3141 }
3142
3143 /// The SLPVectorizer Pass.
3144 struct SLPVectorizer : public FunctionPass {
3145 typedef SmallVector<StoreInst *, 8> StoreList;
3146 typedef MapVector<Value *, StoreList> StoreListMap;
3147
3148 /// Pass identification, replacement for typeid
3149 static char ID;
3150
SLPVectorizer__anonf9942ad60111::SLPVectorizer3151 explicit SLPVectorizer() : FunctionPass(ID) {
3152 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
3153 }
3154
3155 ScalarEvolution *SE;
3156 TargetTransformInfo *TTI;
3157 TargetLibraryInfo *TLI;
3158 AliasAnalysis *AA;
3159 LoopInfo *LI;
3160 DominatorTree *DT;
3161 AssumptionCache *AC;
3162
runOnFunction__anonf9942ad60111::SLPVectorizer3163 bool runOnFunction(Function &F) override {
3164 if (skipOptnoneFunction(F))
3165 return false;
3166
3167 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3168 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3169 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
3170 TLI = TLIP ? &TLIP->getTLI() : nullptr;
3171 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3172 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3173 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3174 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3175
3176 StoreRefs.clear();
3177 bool Changed = false;
3178
3179 // If the target claims to have no vector registers don't attempt
3180 // vectorization.
3181 if (!TTI->getNumberOfRegisters(true))
3182 return false;
3183
3184 // Use the vector register size specified by the target unless overridden
3185 // by a command-line option.
3186 // TODO: It would be better to limit the vectorization factor based on
3187 // data type rather than just register size. For example, x86 AVX has
3188 // 256-bit registers, but it does not support integer operations
3189 // at that width (that requires AVX2).
3190 if (MaxVectorRegSizeOption.getNumOccurrences())
3191 MaxVecRegSize = MaxVectorRegSizeOption;
3192 else
3193 MaxVecRegSize = TTI->getRegisterBitWidth(true);
3194
3195 // Don't vectorize when the attribute NoImplicitFloat is used.
3196 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
3197 return false;
3198
3199 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
3200
3201 // Use the bottom up slp vectorizer to construct chains that start with
3202 // store instructions.
3203 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC);
3204
3205 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
3206 // delete instructions.
3207
3208 // Scan the blocks in the function in post order.
3209 for (auto BB : post_order(&F.getEntryBlock())) {
3210 // Vectorize trees that end at stores.
3211 if (unsigned count = collectStores(BB, R)) {
3212 (void)count;
3213 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
3214 Changed |= vectorizeStoreChains(R);
3215 }
3216
3217 // Vectorize trees that end at reductions.
3218 Changed |= vectorizeChainsInBlock(BB, R);
3219 }
3220
3221 if (Changed) {
3222 R.optimizeGatherSequence();
3223 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
3224 DEBUG(verifyFunction(F));
3225 }
3226 return Changed;
3227 }
3228
getAnalysisUsage__anonf9942ad60111::SLPVectorizer3229 void getAnalysisUsage(AnalysisUsage &AU) const override {
3230 FunctionPass::getAnalysisUsage(AU);
3231 AU.addRequired<AssumptionCacheTracker>();
3232 AU.addRequired<ScalarEvolutionWrapperPass>();
3233 AU.addRequired<AAResultsWrapperPass>();
3234 AU.addRequired<TargetTransformInfoWrapperPass>();
3235 AU.addRequired<LoopInfoWrapperPass>();
3236 AU.addRequired<DominatorTreeWrapperPass>();
3237 AU.addPreserved<LoopInfoWrapperPass>();
3238 AU.addPreserved<DominatorTreeWrapperPass>();
3239 AU.addPreserved<AAResultsWrapperPass>();
3240 AU.addPreserved<GlobalsAAWrapperPass>();
3241 AU.setPreservesCFG();
3242 }
3243
3244 private:
3245
3246 /// \brief Collect memory references and sort them according to their base
3247 /// object. We sort the stores to their base objects to reduce the cost of the
3248 /// quadratic search on the stores. TODO: We can further reduce this cost
3249 /// if we flush the chain creation every time we run into a memory barrier.
3250 unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
3251
3252 /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
3253 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
3254
3255 /// \brief Try to vectorize a list of operands.
3256 /// \@param BuildVector A list of users to ignore for the purpose of
3257 /// scheduling and that don't need extracting.
3258 /// \returns true if a value was vectorized.
3259 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3260 ArrayRef<Value *> BuildVector = None,
3261 bool allowReorder = false);
3262
3263 /// \brief Try to vectorize a chain that may start at the operands of \V;
3264 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
3265
3266 /// \brief Vectorize the stores that were collected in StoreRefs.
3267 bool vectorizeStoreChains(BoUpSLP &R);
3268
3269 /// \brief Scan the basic block and look for patterns that are likely to start
3270 /// a vectorization chain.
3271 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
3272
3273 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
3274 BoUpSLP &R, unsigned VecRegSize);
3275
3276 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
3277 BoUpSLP &R);
3278 private:
3279 StoreListMap StoreRefs;
3280 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3281 };
3282
3283 /// \brief Check that the Values in the slice in VL array are still existent in
3284 /// the WeakVH array.
3285 /// Vectorization of part of the VL array may cause later values in the VL array
3286 /// to become invalid. We track when this has happened in the WeakVH array.
hasValueBeenRAUWed(ArrayRef<Value * > VL,ArrayRef<WeakVH> VH,unsigned SliceBegin,unsigned SliceSize)3287 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
3288 unsigned SliceBegin, unsigned SliceSize) {
3289 VL = VL.slice(SliceBegin, SliceSize);
3290 VH = VH.slice(SliceBegin, SliceSize);
3291 return !std::equal(VL.begin(), VL.end(), VH.begin());
3292 }
3293
vectorizeStoreChain(ArrayRef<Value * > Chain,int CostThreshold,BoUpSLP & R,unsigned VecRegSize)3294 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
3295 int CostThreshold, BoUpSLP &R,
3296 unsigned VecRegSize) {
3297 unsigned ChainLen = Chain.size();
3298 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
3299 << "\n");
3300 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
3301 auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout();
3302 unsigned Sz = DL.getTypeSizeInBits(StoreTy);
3303 unsigned VF = VecRegSize / Sz;
3304
3305 if (!isPowerOf2_32(Sz) || VF < 2)
3306 return false;
3307
3308 // Keep track of values that were deleted by vectorizing in the loop below.
3309 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
3310
3311 bool Changed = false;
3312 // Look for profitable vectorizable trees at all offsets, starting at zero.
3313 for (unsigned i = 0, e = ChainLen; i < e; ++i) {
3314 if (i + VF > e)
3315 break;
3316
3317 // Check that a previous iteration of this loop did not delete the Value.
3318 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
3319 continue;
3320
3321 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
3322 << "\n");
3323 ArrayRef<Value *> Operands = Chain.slice(i, VF);
3324
3325 R.buildTree(Operands);
3326
3327 int Cost = R.getTreeCost();
3328
3329 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
3330 if (Cost < CostThreshold) {
3331 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
3332 R.vectorizeTree();
3333
3334 // Move to the next bundle.
3335 i += VF - 1;
3336 Changed = true;
3337 }
3338 }
3339
3340 return Changed;
3341 }
3342
vectorizeStores(ArrayRef<StoreInst * > Stores,int costThreshold,BoUpSLP & R)3343 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
3344 int costThreshold, BoUpSLP &R) {
3345 SetVector<StoreInst *> Heads, Tails;
3346 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
3347
3348 // We may run into multiple chains that merge into a single chain. We mark the
3349 // stores that we vectorized so that we don't visit the same store twice.
3350 BoUpSLP::ValueSet VectorizedStores;
3351 bool Changed = false;
3352
3353 // Do a quadratic search on all of the given stores and find
3354 // all of the pairs of stores that follow each other.
3355 SmallVector<unsigned, 16> IndexQueue;
3356 for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
3357 const DataLayout &DL = Stores[i]->getModule()->getDataLayout();
3358 IndexQueue.clear();
3359 // If a store has multiple consecutive store candidates, search Stores
3360 // array according to the sequence: from i+1 to e, then from i-1 to 0.
3361 // This is because usually pairing with immediate succeeding or preceding
3362 // candidate create the best chance to find slp vectorization opportunity.
3363 unsigned j = 0;
3364 for (j = i + 1; j < e; ++j)
3365 IndexQueue.push_back(j);
3366 for (j = i; j > 0; --j)
3367 IndexQueue.push_back(j - 1);
3368
3369 for (auto &k : IndexQueue) {
3370 if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) {
3371 Tails.insert(Stores[k]);
3372 Heads.insert(Stores[i]);
3373 ConsecutiveChain[Stores[i]] = Stores[k];
3374 break;
3375 }
3376 }
3377 }
3378
3379 // For stores that start but don't end a link in the chain:
3380 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
3381 it != e; ++it) {
3382 if (Tails.count(*it))
3383 continue;
3384
3385 // We found a store instr that starts a chain. Now follow the chain and try
3386 // to vectorize it.
3387 BoUpSLP::ValueList Operands;
3388 StoreInst *I = *it;
3389 // Collect the chain into a list.
3390 while (Tails.count(I) || Heads.count(I)) {
3391 if (VectorizedStores.count(I))
3392 break;
3393 Operands.push_back(I);
3394 // Move to the next value in the chain.
3395 I = ConsecutiveChain[I];
3396 }
3397
3398 // FIXME: Is division-by-2 the correct step? Should we assert that the
3399 // register size is a power-of-2?
3400 for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) {
3401 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
3402 // Mark the vectorized stores so that we don't vectorize them again.
3403 VectorizedStores.insert(Operands.begin(), Operands.end());
3404 Changed = true;
3405 break;
3406 }
3407 }
3408 }
3409
3410 return Changed;
3411 }
3412
3413
collectStores(BasicBlock * BB,BoUpSLP & R)3414 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
3415 unsigned count = 0;
3416 StoreRefs.clear();
3417 const DataLayout &DL = BB->getModule()->getDataLayout();
3418 for (Instruction &I : *BB) {
3419 StoreInst *SI = dyn_cast<StoreInst>(&I);
3420 if (!SI)
3421 continue;
3422
3423 // Don't touch volatile stores.
3424 if (!SI->isSimple())
3425 continue;
3426
3427 // Check that the pointer points to scalars.
3428 Type *Ty = SI->getValueOperand()->getType();
3429 if (!isValidElementType(Ty))
3430 continue;
3431
3432 // Find the base pointer.
3433 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
3434
3435 // Save the store locations.
3436 StoreRefs[Ptr].push_back(SI);
3437 count++;
3438 }
3439 return count;
3440 }
3441
tryToVectorizePair(Value * A,Value * B,BoUpSLP & R)3442 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
3443 if (!A || !B)
3444 return false;
3445 Value *VL[] = { A, B };
3446 return tryToVectorizeList(VL, R, None, true);
3447 }
3448
tryToVectorizeList(ArrayRef<Value * > VL,BoUpSLP & R,ArrayRef<Value * > BuildVector,bool allowReorder)3449 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3450 ArrayRef<Value *> BuildVector,
3451 bool allowReorder) {
3452 if (VL.size() < 2)
3453 return false;
3454
3455 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
3456
3457 // Check that all of the parts are scalar instructions of the same type.
3458 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
3459 if (!I0)
3460 return false;
3461
3462 unsigned Opcode0 = I0->getOpcode();
3463 const DataLayout &DL = I0->getModule()->getDataLayout();
3464
3465 Type *Ty0 = I0->getType();
3466 unsigned Sz = DL.getTypeSizeInBits(Ty0);
3467 // FIXME: Register size should be a parameter to this function, so we can
3468 // try different vectorization factors.
3469 unsigned VF = MinVecRegSize / Sz;
3470
3471 for (Value *V : VL) {
3472 Type *Ty = V->getType();
3473 if (!isValidElementType(Ty))
3474 return false;
3475 Instruction *Inst = dyn_cast<Instruction>(V);
3476 if (!Inst || Inst->getOpcode() != Opcode0)
3477 return false;
3478 }
3479
3480 bool Changed = false;
3481
3482 // Keep track of values that were deleted by vectorizing in the loop below.
3483 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
3484
3485 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3486 unsigned OpsWidth = 0;
3487
3488 if (i + VF > e)
3489 OpsWidth = e - i;
3490 else
3491 OpsWidth = VF;
3492
3493 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
3494 break;
3495
3496 // Check that a previous iteration of this loop did not delete the Value.
3497 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
3498 continue;
3499
3500 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
3501 << "\n");
3502 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
3503
3504 ArrayRef<Value *> BuildVectorSlice;
3505 if (!BuildVector.empty())
3506 BuildVectorSlice = BuildVector.slice(i, OpsWidth);
3507
3508 R.buildTree(Ops, BuildVectorSlice);
3509 // TODO: check if we can allow reordering also for other cases than
3510 // tryToVectorizePair()
3511 if (allowReorder && R.shouldReorder()) {
3512 assert(Ops.size() == 2);
3513 assert(BuildVectorSlice.empty());
3514 Value *ReorderedOps[] = { Ops[1], Ops[0] };
3515 R.buildTree(ReorderedOps, None);
3516 }
3517 int Cost = R.getTreeCost();
3518
3519 if (Cost < -SLPCostThreshold) {
3520 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
3521 Value *VectorizedRoot = R.vectorizeTree();
3522
3523 // Reconstruct the build vector by extracting the vectorized root. This
3524 // way we handle the case where some elements of the vector are undefined.
3525 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
3526 if (!BuildVectorSlice.empty()) {
3527 // The insert point is the last build vector instruction. The vectorized
3528 // root will precede it. This guarantees that we get an instruction. The
3529 // vectorized tree could have been constant folded.
3530 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
3531 unsigned VecIdx = 0;
3532 for (auto &V : BuildVectorSlice) {
3533 IRBuilder<true, NoFolder> Builder(
3534 InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter));
3535 InsertElementInst *IE = cast<InsertElementInst>(V);
3536 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
3537 VectorizedRoot, Builder.getInt32(VecIdx++)));
3538 IE->setOperand(1, Extract);
3539 IE->removeFromParent();
3540 IE->insertAfter(Extract);
3541 InsertAfter = IE;
3542 }
3543 }
3544 // Move to the next bundle.
3545 i += VF - 1;
3546 Changed = true;
3547 }
3548 }
3549
3550 return Changed;
3551 }
3552
tryToVectorize(BinaryOperator * V,BoUpSLP & R)3553 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
3554 if (!V)
3555 return false;
3556
3557 // Try to vectorize V.
3558 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
3559 return true;
3560
3561 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
3562 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
3563 // Try to skip B.
3564 if (B && B->hasOneUse()) {
3565 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
3566 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
3567 if (tryToVectorizePair(A, B0, R)) {
3568 return true;
3569 }
3570 if (tryToVectorizePair(A, B1, R)) {
3571 return true;
3572 }
3573 }
3574
3575 // Try to skip A.
3576 if (A && A->hasOneUse()) {
3577 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
3578 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
3579 if (tryToVectorizePair(A0, B, R)) {
3580 return true;
3581 }
3582 if (tryToVectorizePair(A1, B, R)) {
3583 return true;
3584 }
3585 }
3586 return 0;
3587 }
3588
3589 /// \brief Generate a shuffle mask to be used in a reduction tree.
3590 ///
3591 /// \param VecLen The length of the vector to be reduced.
3592 /// \param NumEltsToRdx The number of elements that should be reduced in the
3593 /// vector.
3594 /// \param IsPairwise Whether the reduction is a pairwise or splitting
3595 /// reduction. A pairwise reduction will generate a mask of
3596 /// <0,2,...> or <1,3,..> while a splitting reduction will generate
3597 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
3598 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
createRdxShuffleMask(unsigned VecLen,unsigned NumEltsToRdx,bool IsPairwise,bool IsLeft,IRBuilder<> & Builder)3599 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
3600 bool IsPairwise, bool IsLeft,
3601 IRBuilder<> &Builder) {
3602 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
3603
3604 SmallVector<Constant *, 32> ShuffleMask(
3605 VecLen, UndefValue::get(Builder.getInt32Ty()));
3606
3607 if (IsPairwise)
3608 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
3609 for (unsigned i = 0; i != NumEltsToRdx; ++i)
3610 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
3611 else
3612 // Move the upper half of the vector to the lower half.
3613 for (unsigned i = 0; i != NumEltsToRdx; ++i)
3614 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
3615
3616 return ConstantVector::get(ShuffleMask);
3617 }
3618
3619
3620 /// Model horizontal reductions.
3621 ///
3622 /// A horizontal reduction is a tree of reduction operations (currently add and
3623 /// fadd) that has operations that can be put into a vector as its leaf.
3624 /// For example, this tree:
3625 ///
3626 /// mul mul mul mul
3627 /// \ / \ /
3628 /// + +
3629 /// \ /
3630 /// +
3631 /// This tree has "mul" as its reduced values and "+" as its reduction
3632 /// operations. A reduction might be feeding into a store or a binary operation
3633 /// feeding a phi.
3634 /// ...
3635 /// \ /
3636 /// +
3637 /// |
3638 /// phi +=
3639 ///
3640 /// Or:
3641 /// ...
3642 /// \ /
3643 /// +
3644 /// |
3645 /// *p =
3646 ///
3647 class HorizontalReduction {
3648 SmallVector<Value *, 16> ReductionOps;
3649 SmallVector<Value *, 32> ReducedVals;
3650
3651 BinaryOperator *ReductionRoot;
3652 PHINode *ReductionPHI;
3653
3654 /// The opcode of the reduction.
3655 unsigned ReductionOpcode;
3656 /// The opcode of the values we perform a reduction on.
3657 unsigned ReducedValueOpcode;
3658 /// Should we model this reduction as a pairwise reduction tree or a tree that
3659 /// splits the vector in halves and adds those halves.
3660 bool IsPairwiseReduction;
3661
3662 public:
3663 /// The width of one full horizontal reduction operation.
3664 unsigned ReduxWidth;
3665
HorizontalReduction()3666 HorizontalReduction()
3667 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
3668 ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0) {}
3669
3670 /// \brief Try to find a reduction tree.
matchAssociativeReduction(PHINode * Phi,BinaryOperator * B)3671 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
3672 assert((!Phi ||
3673 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
3674 "Thi phi needs to use the binary operator");
3675
3676 // We could have a initial reductions that is not an add.
3677 // r *= v1 + v2 + v3 + v4
3678 // In such a case start looking for a tree rooted in the first '+'.
3679 if (Phi) {
3680 if (B->getOperand(0) == Phi) {
3681 Phi = nullptr;
3682 B = dyn_cast<BinaryOperator>(B->getOperand(1));
3683 } else if (B->getOperand(1) == Phi) {
3684 Phi = nullptr;
3685 B = dyn_cast<BinaryOperator>(B->getOperand(0));
3686 }
3687 }
3688
3689 if (!B)
3690 return false;
3691
3692 Type *Ty = B->getType();
3693 if (!isValidElementType(Ty))
3694 return false;
3695
3696 const DataLayout &DL = B->getModule()->getDataLayout();
3697 ReductionOpcode = B->getOpcode();
3698 ReducedValueOpcode = 0;
3699 // FIXME: Register size should be a parameter to this function, so we can
3700 // try different vectorization factors.
3701 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
3702 ReductionRoot = B;
3703 ReductionPHI = Phi;
3704
3705 if (ReduxWidth < 4)
3706 return false;
3707
3708 // We currently only support adds.
3709 if (ReductionOpcode != Instruction::Add &&
3710 ReductionOpcode != Instruction::FAdd)
3711 return false;
3712
3713 // Post order traverse the reduction tree starting at B. We only handle true
3714 // trees containing only binary operators or selects.
3715 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
3716 Stack.push_back(std::make_pair(B, 0));
3717 while (!Stack.empty()) {
3718 Instruction *TreeN = Stack.back().first;
3719 unsigned EdgeToVist = Stack.back().second++;
3720 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
3721
3722 // Only handle trees in the current basic block.
3723 if (TreeN->getParent() != B->getParent())
3724 return false;
3725
3726 // Each tree node needs to have one user except for the ultimate
3727 // reduction.
3728 if (!TreeN->hasOneUse() && TreeN != B)
3729 return false;
3730
3731 // Postorder vist.
3732 if (EdgeToVist == 2 || IsReducedValue) {
3733 if (IsReducedValue) {
3734 // Make sure that the opcodes of the operations that we are going to
3735 // reduce match.
3736 if (!ReducedValueOpcode)
3737 ReducedValueOpcode = TreeN->getOpcode();
3738 else if (ReducedValueOpcode != TreeN->getOpcode())
3739 return false;
3740 ReducedVals.push_back(TreeN);
3741 } else {
3742 // We need to be able to reassociate the adds.
3743 if (!TreeN->isAssociative())
3744 return false;
3745 ReductionOps.push_back(TreeN);
3746 }
3747 // Retract.
3748 Stack.pop_back();
3749 continue;
3750 }
3751
3752 // Visit left or right.
3753 Value *NextV = TreeN->getOperand(EdgeToVist);
3754 // We currently only allow BinaryOperator's and SelectInst's as reduction
3755 // values in our tree.
3756 if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV))
3757 Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0));
3758 else if (NextV != Phi)
3759 return false;
3760 }
3761 return true;
3762 }
3763
3764 /// \brief Attempt to vectorize the tree found by
3765 /// matchAssociativeReduction.
tryToReduce(BoUpSLP & V,TargetTransformInfo * TTI)3766 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
3767 if (ReducedVals.empty())
3768 return false;
3769
3770 unsigned NumReducedVals = ReducedVals.size();
3771 if (NumReducedVals < ReduxWidth)
3772 return false;
3773
3774 Value *VectorizedTree = nullptr;
3775 IRBuilder<> Builder(ReductionRoot);
3776 FastMathFlags Unsafe;
3777 Unsafe.setUnsafeAlgebra();
3778 Builder.SetFastMathFlags(Unsafe);
3779 unsigned i = 0;
3780
3781 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
3782 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
3783
3784 // Estimate cost.
3785 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
3786 if (Cost >= -SLPCostThreshold)
3787 break;
3788
3789 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
3790 << ". (HorRdx)\n");
3791
3792 // Vectorize a tree.
3793 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
3794 Value *VectorizedRoot = V.vectorizeTree();
3795
3796 // Emit a reduction.
3797 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
3798 if (VectorizedTree) {
3799 Builder.SetCurrentDebugLocation(Loc);
3800 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
3801 ReducedSubTree, "bin.rdx");
3802 } else
3803 VectorizedTree = ReducedSubTree;
3804 }
3805
3806 if (VectorizedTree) {
3807 // Finish the reduction.
3808 for (; i < NumReducedVals; ++i) {
3809 Builder.SetCurrentDebugLocation(
3810 cast<Instruction>(ReducedVals[i])->getDebugLoc());
3811 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
3812 ReducedVals[i]);
3813 }
3814 // Update users.
3815 if (ReductionPHI) {
3816 assert(ReductionRoot && "Need a reduction operation");
3817 ReductionRoot->setOperand(0, VectorizedTree);
3818 ReductionRoot->setOperand(1, ReductionPHI);
3819 } else
3820 ReductionRoot->replaceAllUsesWith(VectorizedTree);
3821 }
3822 return VectorizedTree != nullptr;
3823 }
3824
numReductionValues() const3825 unsigned numReductionValues() const {
3826 return ReducedVals.size();
3827 }
3828
3829 private:
3830 /// \brief Calculate the cost of a reduction.
getReductionCost(TargetTransformInfo * TTI,Value * FirstReducedVal)3831 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
3832 Type *ScalarTy = FirstReducedVal->getType();
3833 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
3834
3835 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
3836 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
3837
3838 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
3839 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
3840
3841 int ScalarReduxCost =
3842 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
3843
3844 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
3845 << " for reduction that starts with " << *FirstReducedVal
3846 << " (It is a "
3847 << (IsPairwiseReduction ? "pairwise" : "splitting")
3848 << " reduction)\n");
3849
3850 return VecReduxCost - ScalarReduxCost;
3851 }
3852
createBinOp(IRBuilder<> & Builder,unsigned Opcode,Value * L,Value * R,const Twine & Name="")3853 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
3854 Value *R, const Twine &Name = "") {
3855 if (Opcode == Instruction::FAdd)
3856 return Builder.CreateFAdd(L, R, Name);
3857 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
3858 }
3859
3860 /// \brief Emit a horizontal reduction of the vectorized value.
emitReduction(Value * VectorizedValue,IRBuilder<> & Builder)3861 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
3862 assert(VectorizedValue && "Need to have a vectorized tree node");
3863 assert(isPowerOf2_32(ReduxWidth) &&
3864 "We only handle power-of-two reductions for now");
3865
3866 Value *TmpVec = VectorizedValue;
3867 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
3868 if (IsPairwiseReduction) {
3869 Value *LeftMask =
3870 createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
3871 Value *RightMask =
3872 createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
3873
3874 Value *LeftShuf = Builder.CreateShuffleVector(
3875 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
3876 Value *RightShuf = Builder.CreateShuffleVector(
3877 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
3878 "rdx.shuf.r");
3879 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
3880 "bin.rdx");
3881 } else {
3882 Value *UpperHalf =
3883 createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
3884 Value *Shuf = Builder.CreateShuffleVector(
3885 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
3886 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
3887 }
3888 }
3889
3890 // The result is in the first element of the vector.
3891 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
3892 }
3893 };
3894
3895 /// \brief Recognize construction of vectors like
3896 /// %ra = insertelement <4 x float> undef, float %s0, i32 0
3897 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
3898 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
3899 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
3900 ///
3901 /// Returns true if it matches
3902 ///
findBuildVector(InsertElementInst * FirstInsertElem,SmallVectorImpl<Value * > & BuildVector,SmallVectorImpl<Value * > & BuildVectorOpds)3903 static bool findBuildVector(InsertElementInst *FirstInsertElem,
3904 SmallVectorImpl<Value *> &BuildVector,
3905 SmallVectorImpl<Value *> &BuildVectorOpds) {
3906 if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
3907 return false;
3908
3909 InsertElementInst *IE = FirstInsertElem;
3910 while (true) {
3911 BuildVector.push_back(IE);
3912 BuildVectorOpds.push_back(IE->getOperand(1));
3913
3914 if (IE->use_empty())
3915 return false;
3916
3917 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
3918 if (!NextUse)
3919 return true;
3920
3921 // If this isn't the final use, make sure the next insertelement is the only
3922 // use. It's OK if the final constructed vector is used multiple times
3923 if (!IE->hasOneUse())
3924 return false;
3925
3926 IE = NextUse;
3927 }
3928
3929 return false;
3930 }
3931
PhiTypeSorterFunc(Value * V,Value * V2)3932 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
3933 return V->getType() < V2->getType();
3934 }
3935
3936 /// \brief Try and get a reduction value from a phi node.
3937 ///
3938 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
3939 /// if they come from either \p ParentBB or a containing loop latch.
3940 ///
3941 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
3942 /// if not possible.
getReductionValue(const DominatorTree * DT,PHINode * P,BasicBlock * ParentBB,LoopInfo * LI)3943 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
3944 BasicBlock *ParentBB, LoopInfo *LI) {
3945 // There are situations where the reduction value is not dominated by the
3946 // reduction phi. Vectorizing such cases has been reported to cause
3947 // miscompiles. See PR25787.
3948 auto DominatedReduxValue = [&](Value *R) {
3949 return (
3950 dyn_cast<Instruction>(R) &&
3951 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
3952 };
3953
3954 Value *Rdx = nullptr;
3955
3956 // Return the incoming value if it comes from the same BB as the phi node.
3957 if (P->getIncomingBlock(0) == ParentBB) {
3958 Rdx = P->getIncomingValue(0);
3959 } else if (P->getIncomingBlock(1) == ParentBB) {
3960 Rdx = P->getIncomingValue(1);
3961 }
3962
3963 if (Rdx && DominatedReduxValue(Rdx))
3964 return Rdx;
3965
3966 // Otherwise, check whether we have a loop latch to look at.
3967 Loop *BBL = LI->getLoopFor(ParentBB);
3968 if (!BBL)
3969 return nullptr;
3970 BasicBlock *BBLatch = BBL->getLoopLatch();
3971 if (!BBLatch)
3972 return nullptr;
3973
3974 // There is a loop latch, return the incoming value if it comes from
3975 // that. This reduction pattern occassionaly turns up.
3976 if (P->getIncomingBlock(0) == BBLatch) {
3977 Rdx = P->getIncomingValue(0);
3978 } else if (P->getIncomingBlock(1) == BBLatch) {
3979 Rdx = P->getIncomingValue(1);
3980 }
3981
3982 if (Rdx && DominatedReduxValue(Rdx))
3983 return Rdx;
3984
3985 return nullptr;
3986 }
3987
3988 /// \brief Attempt to reduce a horizontal reduction.
3989 /// If it is legal to match a horizontal reduction feeding
3990 /// the phi node P with reduction operators BI, then check if it
3991 /// can be done.
3992 /// \returns true if a horizontal reduction was matched and reduced.
3993 /// \returns false if a horizontal reduction was not matched.
canMatchHorizontalReduction(PHINode * P,BinaryOperator * BI,BoUpSLP & R,TargetTransformInfo * TTI)3994 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI,
3995 BoUpSLP &R, TargetTransformInfo *TTI) {
3996 if (!ShouldVectorizeHor)
3997 return false;
3998
3999 HorizontalReduction HorRdx;
4000 if (!HorRdx.matchAssociativeReduction(P, BI))
4001 return false;
4002
4003 // If there is a sufficient number of reduction values, reduce
4004 // to a nearby power-of-2. Can safely generate oversized
4005 // vectors and rely on the backend to split them to legal sizes.
4006 HorRdx.ReduxWidth =
4007 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues()));
4008
4009 return HorRdx.tryToReduce(R, TTI);
4010 }
4011
vectorizeChainsInBlock(BasicBlock * BB,BoUpSLP & R)4012 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
4013 bool Changed = false;
4014 SmallVector<Value *, 4> Incoming;
4015 SmallSet<Value *, 16> VisitedInstrs;
4016
4017 bool HaveVectorizedPhiNodes = true;
4018 while (HaveVectorizedPhiNodes) {
4019 HaveVectorizedPhiNodes = false;
4020
4021 // Collect the incoming values from the PHIs.
4022 Incoming.clear();
4023 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
4024 ++instr) {
4025 PHINode *P = dyn_cast<PHINode>(instr);
4026 if (!P)
4027 break;
4028
4029 if (!VisitedInstrs.count(P))
4030 Incoming.push_back(P);
4031 }
4032
4033 // Sort by type.
4034 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
4035
4036 // Try to vectorize elements base on their type.
4037 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
4038 E = Incoming.end();
4039 IncIt != E;) {
4040
4041 // Look for the next elements with the same type.
4042 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
4043 while (SameTypeIt != E &&
4044 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
4045 VisitedInstrs.insert(*SameTypeIt);
4046 ++SameTypeIt;
4047 }
4048
4049 // Try to vectorize them.
4050 unsigned NumElts = (SameTypeIt - IncIt);
4051 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
4052 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
4053 // Success start over because instructions might have been changed.
4054 HaveVectorizedPhiNodes = true;
4055 Changed = true;
4056 break;
4057 }
4058
4059 // Start over at the next instruction of a different type (or the end).
4060 IncIt = SameTypeIt;
4061 }
4062 }
4063
4064 VisitedInstrs.clear();
4065
4066 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
4067 // We may go through BB multiple times so skip the one we have checked.
4068 if (!VisitedInstrs.insert(&*it).second)
4069 continue;
4070
4071 if (isa<DbgInfoIntrinsic>(it))
4072 continue;
4073
4074 // Try to vectorize reductions that use PHINodes.
4075 if (PHINode *P = dyn_cast<PHINode>(it)) {
4076 // Check that the PHI is a reduction PHI.
4077 if (P->getNumIncomingValues() != 2)
4078 return Changed;
4079
4080 Value *Rdx = getReductionValue(DT, P, BB, LI);
4081
4082 // Check if this is a Binary Operator.
4083 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
4084 if (!BI)
4085 continue;
4086
4087 // Try to match and vectorize a horizontal reduction.
4088 if (canMatchHorizontalReduction(P, BI, R, TTI)) {
4089 Changed = true;
4090 it = BB->begin();
4091 e = BB->end();
4092 continue;
4093 }
4094
4095 Value *Inst = BI->getOperand(0);
4096 if (Inst == P)
4097 Inst = BI->getOperand(1);
4098
4099 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
4100 // We would like to start over since some instructions are deleted
4101 // and the iterator may become invalid value.
4102 Changed = true;
4103 it = BB->begin();
4104 e = BB->end();
4105 continue;
4106 }
4107
4108 continue;
4109 }
4110
4111 if (ShouldStartVectorizeHorAtStore)
4112 if (StoreInst *SI = dyn_cast<StoreInst>(it))
4113 if (BinaryOperator *BinOp =
4114 dyn_cast<BinaryOperator>(SI->getValueOperand())) {
4115 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI) ||
4116 tryToVectorize(BinOp, R)) {
4117 Changed = true;
4118 it = BB->begin();
4119 e = BB->end();
4120 continue;
4121 }
4122 }
4123
4124 // Try to vectorize horizontal reductions feeding into a return.
4125 if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
4126 if (RI->getNumOperands() != 0)
4127 if (BinaryOperator *BinOp =
4128 dyn_cast<BinaryOperator>(RI->getOperand(0))) {
4129 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
4130 if (tryToVectorizePair(BinOp->getOperand(0),
4131 BinOp->getOperand(1), R)) {
4132 Changed = true;
4133 it = BB->begin();
4134 e = BB->end();
4135 continue;
4136 }
4137 }
4138
4139 // Try to vectorize trees that start at compare instructions.
4140 if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
4141 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
4142 Changed = true;
4143 // We would like to start over since some instructions are deleted
4144 // and the iterator may become invalid value.
4145 it = BB->begin();
4146 e = BB->end();
4147 continue;
4148 }
4149
4150 for (int i = 0; i < 2; ++i) {
4151 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
4152 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
4153 Changed = true;
4154 // We would like to start over since some instructions are deleted
4155 // and the iterator may become invalid value.
4156 it = BB->begin();
4157 e = BB->end();
4158 break;
4159 }
4160 }
4161 }
4162 continue;
4163 }
4164
4165 // Try to vectorize trees that start at insertelement instructions.
4166 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
4167 SmallVector<Value *, 16> BuildVector;
4168 SmallVector<Value *, 16> BuildVectorOpds;
4169 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
4170 continue;
4171
4172 // Vectorize starting with the build vector operands ignoring the
4173 // BuildVector instructions for the purpose of scheduling and user
4174 // extraction.
4175 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
4176 Changed = true;
4177 it = BB->begin();
4178 e = BB->end();
4179 }
4180
4181 continue;
4182 }
4183 }
4184
4185 return Changed;
4186 }
4187
vectorizeStoreChains(BoUpSLP & R)4188 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
4189 bool Changed = false;
4190 // Attempt to sort and vectorize each of the store-groups.
4191 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
4192 it != e; ++it) {
4193 if (it->second.size() < 2)
4194 continue;
4195
4196 DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
4197 << it->second.size() << ".\n");
4198
4199 // Process the stores in chunks of 16.
4200 // TODO: The limit of 16 inhibits greater vectorization factors.
4201 // For example, AVX2 supports v32i8. Increasing this limit, however,
4202 // may cause a significant compile-time increase.
4203 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
4204 unsigned Len = std::min<unsigned>(CE - CI, 16);
4205 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
4206 -SLPCostThreshold, R);
4207 }
4208 }
4209 return Changed;
4210 }
4211
4212 } // end anonymous namespace
4213
4214 char SLPVectorizer::ID = 0;
4215 static const char lv_name[] = "SLP Vectorizer";
4216 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
4217 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4218 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4219 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4220 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4221 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4222 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
4223
4224 namespace llvm {
createSLPVectorizerPass()4225 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
4226 }
4227