1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE4 version of some encoding functions.
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "./dsp.h"
15 
16 #if defined(WEBP_USE_SSE41)
17 #include <smmintrin.h>
18 #include <stdlib.h>  // for abs()
19 
20 #include "../enc/vp8enci.h"
21 
22 //------------------------------------------------------------------------------
23 // Compute susceptibility based on DCT-coeff histograms.
24 
CollectHistogram(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)25 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
26                              int start_block, int end_block,
27                              VP8Histogram* const histo) {
28   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
29   int j;
30   int distribution[MAX_COEFF_THRESH + 1] = { 0 };
31   for (j = start_block; j < end_block; ++j) {
32     int16_t out[16];
33     int k;
34 
35     VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
36 
37     // Convert coefficients to bin (within out[]).
38     {
39       // Load.
40       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
41       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
42       // v = abs(out) >> 3
43       const __m128i abs0 = _mm_abs_epi16(out0);
44       const __m128i abs1 = _mm_abs_epi16(out1);
45       const __m128i v0 = _mm_srai_epi16(abs0, 3);
46       const __m128i v1 = _mm_srai_epi16(abs1, 3);
47       // bin = min(v, MAX_COEFF_THRESH)
48       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
49       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
50       // Store.
51       _mm_storeu_si128((__m128i*)&out[0], bin0);
52       _mm_storeu_si128((__m128i*)&out[8], bin1);
53     }
54 
55     // Convert coefficients to bin.
56     for (k = 0; k < 16; ++k) {
57       ++distribution[out[k]];
58     }
59   }
60   VP8SetHistogramData(distribution, histo);
61 }
62 
63 //------------------------------------------------------------------------------
64 // Texture distortion
65 //
66 // We try to match the spectral content (weighted) between source and
67 // reconstructed samples.
68 
69 // Hadamard transform
70 // Returns the difference between the weighted sum of the absolute value of
71 // transformed coefficients.
TTransform(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)72 static int TTransform(const uint8_t* inA, const uint8_t* inB,
73                       const uint16_t* const w) {
74   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
75 
76   // Load, combine and transpose inputs.
77   {
78     const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
79     const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
80     const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
81     const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
82     const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
83     const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
84     const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
85     const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
86 
87     // Combine inA and inB (we'll do two transforms in parallel).
88     const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
89     const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
90     const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
91     const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
92     // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
93     // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
94     // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
95     // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
96 
97     // Transpose the two 4x4, discarding the filling zeroes.
98     const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
99     const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
100     // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
101     // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
102     const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
103     const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
104     // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
105     // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
106 
107     // Convert to 16b.
108     tmp_0 = _mm_cvtepu8_epi16(transpose1_0);
109     tmp_1 = _mm_cvtepu8_epi16(_mm_srli_si128(transpose1_0, 8));
110     tmp_2 = _mm_cvtepu8_epi16(transpose1_1);
111     tmp_3 = _mm_cvtepu8_epi16(_mm_srli_si128(transpose1_1, 8));
112     // a00 a10 a20 a30   b00 b10 b20 b30
113     // a01 a11 a21 a31   b01 b11 b21 b31
114     // a02 a12 a22 a32   b02 b12 b22 b32
115     // a03 a13 a23 a33   b03 b13 b23 b33
116   }
117 
118   // Horizontal pass and subsequent transpose.
119   {
120     // Calculate a and b (two 4x4 at once).
121     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
122     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
123     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
124     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
125     const __m128i b0 = _mm_add_epi16(a0, a1);
126     const __m128i b1 = _mm_add_epi16(a3, a2);
127     const __m128i b2 = _mm_sub_epi16(a3, a2);
128     const __m128i b3 = _mm_sub_epi16(a0, a1);
129     // a00 a01 a02 a03   b00 b01 b02 b03
130     // a10 a11 a12 a13   b10 b11 b12 b13
131     // a20 a21 a22 a23   b20 b21 b22 b23
132     // a30 a31 a32 a33   b30 b31 b32 b33
133 
134     // Transpose the two 4x4.
135     const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
136     const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
137     const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
138     const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
139     // a00 a10 a01 a11   a02 a12 a03 a13
140     // a20 a30 a21 a31   a22 a32 a23 a33
141     // b00 b10 b01 b11   b02 b12 b03 b13
142     // b20 b30 b21 b31   b22 b32 b23 b33
143     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
144     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
145     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
146     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
147     // a00 a10 a20 a30 a01 a11 a21 a31
148     // b00 b10 b20 b30 b01 b11 b21 b31
149     // a02 a12 a22 a32 a03 a13 a23 a33
150     // b02 b12 a22 b32 b03 b13 b23 b33
151     tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
152     tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
153     tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
154     tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
155     // a00 a10 a20 a30   b00 b10 b20 b30
156     // a01 a11 a21 a31   b01 b11 b21 b31
157     // a02 a12 a22 a32   b02 b12 b22 b32
158     // a03 a13 a23 a33   b03 b13 b23 b33
159   }
160 
161   // Vertical pass and difference of weighted sums.
162   {
163     // Load all inputs.
164     const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
165     const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
166 
167     // Calculate a and b (two 4x4 at once).
168     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
169     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
170     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
171     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
172     const __m128i b0 = _mm_add_epi16(a0, a1);
173     const __m128i b1 = _mm_add_epi16(a3, a2);
174     const __m128i b2 = _mm_sub_epi16(a3, a2);
175     const __m128i b3 = _mm_sub_epi16(a0, a1);
176 
177     // Separate the transforms of inA and inB.
178     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
179     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
180     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
181     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
182 
183     A_b0 = _mm_abs_epi16(A_b0);
184     A_b2 = _mm_abs_epi16(A_b2);
185     B_b0 = _mm_abs_epi16(B_b0);
186     B_b2 = _mm_abs_epi16(B_b2);
187 
188     // weighted sums
189     A_b0 = _mm_madd_epi16(A_b0, w_0);
190     A_b2 = _mm_madd_epi16(A_b2, w_8);
191     B_b0 = _mm_madd_epi16(B_b0, w_0);
192     B_b2 = _mm_madd_epi16(B_b2, w_8);
193     A_b0 = _mm_add_epi32(A_b0, A_b2);
194     B_b0 = _mm_add_epi32(B_b0, B_b2);
195 
196     // difference of weighted sums
197     A_b2 = _mm_sub_epi32(A_b0, B_b0);
198     // cascading summation of the differences
199     B_b0 = _mm_hadd_epi32(A_b2, A_b2);
200     B_b2 = _mm_hadd_epi32(B_b0, B_b0);
201     return _mm_cvtsi128_si32(B_b2);
202   }
203 }
204 
Disto4x4(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)205 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
206                     const uint16_t* const w) {
207   const int diff_sum = TTransform(a, b, w);
208   return abs(diff_sum) >> 5;
209 }
210 
Disto16x16(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)211 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
212                       const uint16_t* const w) {
213   int D = 0;
214   int x, y;
215   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
216     for (x = 0; x < 16; x += 4) {
217       D += Disto4x4(a + x + y, b + x + y, w);
218     }
219   }
220   return D;
221 }
222 
223 //------------------------------------------------------------------------------
224 // Quantization
225 //
226 
227 // Generates a pshufb constant for shuffling 16b words.
228 #define PSHUFB_CST(A,B,C,D,E,F,G,H) \
229   _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \
230                2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \
231                2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \
232                2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0)
233 
DoQuantizeBlock(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)234 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
235                                        const uint16_t* const sharpen,
236                                        const VP8Matrix* const mtx) {
237   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
238   const __m128i zero = _mm_setzero_si128();
239   __m128i out0, out8;
240   __m128i packed_out;
241 
242   // Load all inputs.
243   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
244   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
245   const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
246   const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
247   const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
248   const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
249 
250   // coeff = abs(in)
251   __m128i coeff0 = _mm_abs_epi16(in0);
252   __m128i coeff8 = _mm_abs_epi16(in8);
253 
254   // coeff = abs(in) + sharpen
255   if (sharpen != NULL) {
256     const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
257     const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
258     coeff0 = _mm_add_epi16(coeff0, sharpen0);
259     coeff8 = _mm_add_epi16(coeff8, sharpen8);
260   }
261 
262   // out = (coeff * iQ + B) >> QFIX
263   {
264     // doing calculations with 32b precision (QFIX=17)
265     // out = (coeff * iQ)
266     const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
267     const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
268     const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
269     const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
270     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
271     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
272     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
273     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
274     // out = (coeff * iQ + B)
275     const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
276     const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
277     const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
278     const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
279     out_00 = _mm_add_epi32(out_00, bias_00);
280     out_04 = _mm_add_epi32(out_04, bias_04);
281     out_08 = _mm_add_epi32(out_08, bias_08);
282     out_12 = _mm_add_epi32(out_12, bias_12);
283     // out = QUANTDIV(coeff, iQ, B, QFIX)
284     out_00 = _mm_srai_epi32(out_00, QFIX);
285     out_04 = _mm_srai_epi32(out_04, QFIX);
286     out_08 = _mm_srai_epi32(out_08, QFIX);
287     out_12 = _mm_srai_epi32(out_12, QFIX);
288 
289     // pack result as 16b
290     out0 = _mm_packs_epi32(out_00, out_04);
291     out8 = _mm_packs_epi32(out_08, out_12);
292 
293     // if (coeff > 2047) coeff = 2047
294     out0 = _mm_min_epi16(out0, max_coeff_2047);
295     out8 = _mm_min_epi16(out8, max_coeff_2047);
296   }
297 
298   // put sign back
299   out0 = _mm_sign_epi16(out0, in0);
300   out8 = _mm_sign_epi16(out8, in8);
301 
302   // in = out * Q
303   in0 = _mm_mullo_epi16(out0, q0);
304   in8 = _mm_mullo_epi16(out8, q8);
305 
306   _mm_storeu_si128((__m128i*)&in[0], in0);
307   _mm_storeu_si128((__m128i*)&in[8], in8);
308 
309   // zigzag the output before storing it. The re-ordering is:
310   //    0 1 2 3 4 5 6 7 | 8  9 10 11 12 13 14 15
311   // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15
312   // There's only two misplaced entries ([8] and [7]) that are crossing the
313   // reg's boundaries.
314   // We use pshufb instead of pshuflo/pshufhi.
315   {
316     const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6);
317     const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1);
318     const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo);
319     const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7);  // extract #7
320     const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7);
321     const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1);
322     const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi);
323     const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8);  // extract #8
324     const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8);
325     const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7);
326     _mm_storeu_si128((__m128i*)&out[0], out_z0);
327     _mm_storeu_si128((__m128i*)&out[8], out_z8);
328     packed_out = _mm_packs_epi16(out_z0, out_z8);
329   }
330 
331   // detect if all 'out' values are zeroes or not
332   return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
333 }
334 
335 #undef PSHUFB_CST
336 
QuantizeBlock(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)337 static int QuantizeBlock(int16_t in[16], int16_t out[16],
338                          const VP8Matrix* const mtx) {
339   return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
340 }
341 
QuantizeBlockWHT(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)342 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
343                             const VP8Matrix* const mtx) {
344   return DoQuantizeBlock(in, out, NULL, mtx);
345 }
346 
Quantize2Blocks(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)347 static int Quantize2Blocks(int16_t in[32], int16_t out[32],
348                            const VP8Matrix* const mtx) {
349   int nz;
350   const uint16_t* const sharpen = &mtx->sharpen_[0];
351   nz  = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
352   nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
353   return nz;
354 }
355 
356 //------------------------------------------------------------------------------
357 // Entry point
358 
359 extern void VP8EncDspInitSSE41(void);
VP8EncDspInitSSE41(void)360 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) {
361   VP8CollectHistogram = CollectHistogram;
362   VP8EncQuantizeBlock = QuantizeBlock;
363   VP8EncQuantize2Blocks = Quantize2Blocks;
364   VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
365   VP8TDisto4x4 = Disto4x4;
366   VP8TDisto16x16 = Disto16x16;
367 }
368 
369 #else  // !WEBP_USE_SSE41
370 
371 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41)
372 
373 #endif  // WEBP_USE_SSE41
374