1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE4 version of some encoding functions.
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13
14 #include "./dsp.h"
15
16 #if defined(WEBP_USE_SSE41)
17 #include <smmintrin.h>
18 #include <stdlib.h> // for abs()
19
20 #include "../enc/vp8enci.h"
21
22 //------------------------------------------------------------------------------
23 // Compute susceptibility based on DCT-coeff histograms.
24
CollectHistogram(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)25 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
26 int start_block, int end_block,
27 VP8Histogram* const histo) {
28 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
29 int j;
30 int distribution[MAX_COEFF_THRESH + 1] = { 0 };
31 for (j = start_block; j < end_block; ++j) {
32 int16_t out[16];
33 int k;
34
35 VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
36
37 // Convert coefficients to bin (within out[]).
38 {
39 // Load.
40 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
41 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
42 // v = abs(out) >> 3
43 const __m128i abs0 = _mm_abs_epi16(out0);
44 const __m128i abs1 = _mm_abs_epi16(out1);
45 const __m128i v0 = _mm_srai_epi16(abs0, 3);
46 const __m128i v1 = _mm_srai_epi16(abs1, 3);
47 // bin = min(v, MAX_COEFF_THRESH)
48 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
49 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
50 // Store.
51 _mm_storeu_si128((__m128i*)&out[0], bin0);
52 _mm_storeu_si128((__m128i*)&out[8], bin1);
53 }
54
55 // Convert coefficients to bin.
56 for (k = 0; k < 16; ++k) {
57 ++distribution[out[k]];
58 }
59 }
60 VP8SetHistogramData(distribution, histo);
61 }
62
63 //------------------------------------------------------------------------------
64 // Texture distortion
65 //
66 // We try to match the spectral content (weighted) between source and
67 // reconstructed samples.
68
69 // Hadamard transform
70 // Returns the difference between the weighted sum of the absolute value of
71 // transformed coefficients.
TTransform(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)72 static int TTransform(const uint8_t* inA, const uint8_t* inB,
73 const uint16_t* const w) {
74 __m128i tmp_0, tmp_1, tmp_2, tmp_3;
75
76 // Load, combine and transpose inputs.
77 {
78 const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
79 const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
80 const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
81 const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
82 const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
83 const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
84 const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
85 const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
86
87 // Combine inA and inB (we'll do two transforms in parallel).
88 const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
89 const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
90 const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
91 const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
92 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
93 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
94 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
95 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
96
97 // Transpose the two 4x4, discarding the filling zeroes.
98 const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
99 const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
100 // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
101 // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
102 const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
103 const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
104 // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
105 // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
106
107 // Convert to 16b.
108 tmp_0 = _mm_cvtepu8_epi16(transpose1_0);
109 tmp_1 = _mm_cvtepu8_epi16(_mm_srli_si128(transpose1_0, 8));
110 tmp_2 = _mm_cvtepu8_epi16(transpose1_1);
111 tmp_3 = _mm_cvtepu8_epi16(_mm_srli_si128(transpose1_1, 8));
112 // a00 a10 a20 a30 b00 b10 b20 b30
113 // a01 a11 a21 a31 b01 b11 b21 b31
114 // a02 a12 a22 a32 b02 b12 b22 b32
115 // a03 a13 a23 a33 b03 b13 b23 b33
116 }
117
118 // Horizontal pass and subsequent transpose.
119 {
120 // Calculate a and b (two 4x4 at once).
121 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
122 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
123 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
124 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
125 const __m128i b0 = _mm_add_epi16(a0, a1);
126 const __m128i b1 = _mm_add_epi16(a3, a2);
127 const __m128i b2 = _mm_sub_epi16(a3, a2);
128 const __m128i b3 = _mm_sub_epi16(a0, a1);
129 // a00 a01 a02 a03 b00 b01 b02 b03
130 // a10 a11 a12 a13 b10 b11 b12 b13
131 // a20 a21 a22 a23 b20 b21 b22 b23
132 // a30 a31 a32 a33 b30 b31 b32 b33
133
134 // Transpose the two 4x4.
135 const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
136 const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
137 const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
138 const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
139 // a00 a10 a01 a11 a02 a12 a03 a13
140 // a20 a30 a21 a31 a22 a32 a23 a33
141 // b00 b10 b01 b11 b02 b12 b03 b13
142 // b20 b30 b21 b31 b22 b32 b23 b33
143 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
144 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
145 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
146 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
147 // a00 a10 a20 a30 a01 a11 a21 a31
148 // b00 b10 b20 b30 b01 b11 b21 b31
149 // a02 a12 a22 a32 a03 a13 a23 a33
150 // b02 b12 a22 b32 b03 b13 b23 b33
151 tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
152 tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
153 tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
154 tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
155 // a00 a10 a20 a30 b00 b10 b20 b30
156 // a01 a11 a21 a31 b01 b11 b21 b31
157 // a02 a12 a22 a32 b02 b12 b22 b32
158 // a03 a13 a23 a33 b03 b13 b23 b33
159 }
160
161 // Vertical pass and difference of weighted sums.
162 {
163 // Load all inputs.
164 const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
165 const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
166
167 // Calculate a and b (two 4x4 at once).
168 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
169 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
170 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
171 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
172 const __m128i b0 = _mm_add_epi16(a0, a1);
173 const __m128i b1 = _mm_add_epi16(a3, a2);
174 const __m128i b2 = _mm_sub_epi16(a3, a2);
175 const __m128i b3 = _mm_sub_epi16(a0, a1);
176
177 // Separate the transforms of inA and inB.
178 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
179 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
180 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
181 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
182
183 A_b0 = _mm_abs_epi16(A_b0);
184 A_b2 = _mm_abs_epi16(A_b2);
185 B_b0 = _mm_abs_epi16(B_b0);
186 B_b2 = _mm_abs_epi16(B_b2);
187
188 // weighted sums
189 A_b0 = _mm_madd_epi16(A_b0, w_0);
190 A_b2 = _mm_madd_epi16(A_b2, w_8);
191 B_b0 = _mm_madd_epi16(B_b0, w_0);
192 B_b2 = _mm_madd_epi16(B_b2, w_8);
193 A_b0 = _mm_add_epi32(A_b0, A_b2);
194 B_b0 = _mm_add_epi32(B_b0, B_b2);
195
196 // difference of weighted sums
197 A_b2 = _mm_sub_epi32(A_b0, B_b0);
198 // cascading summation of the differences
199 B_b0 = _mm_hadd_epi32(A_b2, A_b2);
200 B_b2 = _mm_hadd_epi32(B_b0, B_b0);
201 return _mm_cvtsi128_si32(B_b2);
202 }
203 }
204
Disto4x4(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)205 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
206 const uint16_t* const w) {
207 const int diff_sum = TTransform(a, b, w);
208 return abs(diff_sum) >> 5;
209 }
210
Disto16x16(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)211 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
212 const uint16_t* const w) {
213 int D = 0;
214 int x, y;
215 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
216 for (x = 0; x < 16; x += 4) {
217 D += Disto4x4(a + x + y, b + x + y, w);
218 }
219 }
220 return D;
221 }
222
223 //------------------------------------------------------------------------------
224 // Quantization
225 //
226
227 // Generates a pshufb constant for shuffling 16b words.
228 #define PSHUFB_CST(A,B,C,D,E,F,G,H) \
229 _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \
230 2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \
231 2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \
232 2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0)
233
DoQuantizeBlock(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)234 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
235 const uint16_t* const sharpen,
236 const VP8Matrix* const mtx) {
237 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
238 const __m128i zero = _mm_setzero_si128();
239 __m128i out0, out8;
240 __m128i packed_out;
241
242 // Load all inputs.
243 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
244 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
245 const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
246 const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
247 const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
248 const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
249
250 // coeff = abs(in)
251 __m128i coeff0 = _mm_abs_epi16(in0);
252 __m128i coeff8 = _mm_abs_epi16(in8);
253
254 // coeff = abs(in) + sharpen
255 if (sharpen != NULL) {
256 const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
257 const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
258 coeff0 = _mm_add_epi16(coeff0, sharpen0);
259 coeff8 = _mm_add_epi16(coeff8, sharpen8);
260 }
261
262 // out = (coeff * iQ + B) >> QFIX
263 {
264 // doing calculations with 32b precision (QFIX=17)
265 // out = (coeff * iQ)
266 const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
267 const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
268 const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
269 const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
270 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
271 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
272 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
273 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
274 // out = (coeff * iQ + B)
275 const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
276 const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
277 const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
278 const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
279 out_00 = _mm_add_epi32(out_00, bias_00);
280 out_04 = _mm_add_epi32(out_04, bias_04);
281 out_08 = _mm_add_epi32(out_08, bias_08);
282 out_12 = _mm_add_epi32(out_12, bias_12);
283 // out = QUANTDIV(coeff, iQ, B, QFIX)
284 out_00 = _mm_srai_epi32(out_00, QFIX);
285 out_04 = _mm_srai_epi32(out_04, QFIX);
286 out_08 = _mm_srai_epi32(out_08, QFIX);
287 out_12 = _mm_srai_epi32(out_12, QFIX);
288
289 // pack result as 16b
290 out0 = _mm_packs_epi32(out_00, out_04);
291 out8 = _mm_packs_epi32(out_08, out_12);
292
293 // if (coeff > 2047) coeff = 2047
294 out0 = _mm_min_epi16(out0, max_coeff_2047);
295 out8 = _mm_min_epi16(out8, max_coeff_2047);
296 }
297
298 // put sign back
299 out0 = _mm_sign_epi16(out0, in0);
300 out8 = _mm_sign_epi16(out8, in8);
301
302 // in = out * Q
303 in0 = _mm_mullo_epi16(out0, q0);
304 in8 = _mm_mullo_epi16(out8, q8);
305
306 _mm_storeu_si128((__m128i*)&in[0], in0);
307 _mm_storeu_si128((__m128i*)&in[8], in8);
308
309 // zigzag the output before storing it. The re-ordering is:
310 // 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15
311 // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15
312 // There's only two misplaced entries ([8] and [7]) that are crossing the
313 // reg's boundaries.
314 // We use pshufb instead of pshuflo/pshufhi.
315 {
316 const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6);
317 const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1);
318 const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo);
319 const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7); // extract #7
320 const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7);
321 const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1);
322 const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi);
323 const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8); // extract #8
324 const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8);
325 const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7);
326 _mm_storeu_si128((__m128i*)&out[0], out_z0);
327 _mm_storeu_si128((__m128i*)&out[8], out_z8);
328 packed_out = _mm_packs_epi16(out_z0, out_z8);
329 }
330
331 // detect if all 'out' values are zeroes or not
332 return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
333 }
334
335 #undef PSHUFB_CST
336
QuantizeBlock(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)337 static int QuantizeBlock(int16_t in[16], int16_t out[16],
338 const VP8Matrix* const mtx) {
339 return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
340 }
341
QuantizeBlockWHT(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)342 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
343 const VP8Matrix* const mtx) {
344 return DoQuantizeBlock(in, out, NULL, mtx);
345 }
346
Quantize2Blocks(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)347 static int Quantize2Blocks(int16_t in[32], int16_t out[32],
348 const VP8Matrix* const mtx) {
349 int nz;
350 const uint16_t* const sharpen = &mtx->sharpen_[0];
351 nz = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
352 nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
353 return nz;
354 }
355
356 //------------------------------------------------------------------------------
357 // Entry point
358
359 extern void VP8EncDspInitSSE41(void);
VP8EncDspInitSSE41(void)360 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) {
361 VP8CollectHistogram = CollectHistogram;
362 VP8EncQuantizeBlock = QuantizeBlock;
363 VP8EncQuantize2Blocks = Quantize2Blocks;
364 VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
365 VP8TDisto4x4 = Disto4x4;
366 VP8TDisto16x16 = Disto16x16;
367 }
368
369 #else // !WEBP_USE_SSE41
370
371 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41)
372
373 #endif // WEBP_USE_SSE41
374