1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the decoder
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 //          Jyrki Alakuijala (jyrki@google.com)
14 
15 #include <stdlib.h>
16 
17 #include "./alphai.h"
18 #include "./vp8li.h"
19 #include "../dsp/dsp.h"
20 #include "../dsp/lossless.h"
21 #include "../dsp/yuv.h"
22 #include "../utils/endian_inl.h"
23 #include "../utils/huffman.h"
24 #include "../utils/utils.h"
25 
26 #define NUM_ARGB_CACHE_ROWS          16
27 
28 static const int kCodeLengthLiterals = 16;
29 static const int kCodeLengthRepeatCode = 16;
30 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
31 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
32 
33 // -----------------------------------------------------------------------------
34 //  Five Huffman codes are used at each meta code:
35 //  1. green + length prefix codes + color cache codes,
36 //  2. alpha,
37 //  3. red,
38 //  4. blue, and,
39 //  5. distance prefix codes.
40 typedef enum {
41   GREEN = 0,
42   RED   = 1,
43   BLUE  = 2,
44   ALPHA = 3,
45   DIST  = 4
46 } HuffIndex;
47 
48 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
49   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
50   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
51   NUM_DISTANCE_CODES
52 };
53 
54 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
55   0, 1, 1, 1, 0
56 };
57 
58 #define NUM_CODE_LENGTH_CODES       19
59 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
60   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
61 };
62 
63 #define CODE_TO_PLANE_CODES        120
64 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
65   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
66   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
67   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
68   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
69   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
70   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
71   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
72   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
73   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
74   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
75   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
76   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
77 };
78 
79 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
80 // and distance alphabets are constant (256 for red, blue and alpha, 40 for
81 // distance) and lookup table sizes for them in worst case are 630 and 410
82 // respectively. Size of green alphabet depends on color cache size and is equal
83 // to 256 (green component values) + 24 (length prefix values)
84 // + color_cache_size (between 0 and 2048).
85 // All values computed for 8-bit first level lookup with Mark Adler's tool:
86 // http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c
87 #define FIXED_TABLE_SIZE (630 * 3 + 410)
88 static const int kTableSize[12] = {
89   FIXED_TABLE_SIZE + 654,
90   FIXED_TABLE_SIZE + 656,
91   FIXED_TABLE_SIZE + 658,
92   FIXED_TABLE_SIZE + 662,
93   FIXED_TABLE_SIZE + 670,
94   FIXED_TABLE_SIZE + 686,
95   FIXED_TABLE_SIZE + 718,
96   FIXED_TABLE_SIZE + 782,
97   FIXED_TABLE_SIZE + 912,
98   FIXED_TABLE_SIZE + 1168,
99   FIXED_TABLE_SIZE + 1680,
100   FIXED_TABLE_SIZE + 2704
101 };
102 
103 static int DecodeImageStream(int xsize, int ysize,
104                              int is_level0,
105                              VP8LDecoder* const dec,
106                              uint32_t** const decoded_data);
107 
108 //------------------------------------------------------------------------------
109 
VP8LCheckSignature(const uint8_t * const data,size_t size)110 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
111   return (size >= VP8L_FRAME_HEADER_SIZE &&
112           data[0] == VP8L_MAGIC_BYTE &&
113           (data[4] >> 5) == 0);  // version
114 }
115 
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)116 static int ReadImageInfo(VP8LBitReader* const br,
117                          int* const width, int* const height,
118                          int* const has_alpha) {
119   if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
120   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
121   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
122   *has_alpha = VP8LReadBits(br, 1);
123   if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
124   return !br->eos_;
125 }
126 
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)127 int VP8LGetInfo(const uint8_t* data, size_t data_size,
128                 int* const width, int* const height, int* const has_alpha) {
129   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
130     return 0;         // not enough data
131   } else if (!VP8LCheckSignature(data, data_size)) {
132     return 0;         // bad signature
133   } else {
134     int w, h, a;
135     VP8LBitReader br;
136     VP8LInitBitReader(&br, data, data_size);
137     if (!ReadImageInfo(&br, &w, &h, &a)) {
138       return 0;
139     }
140     if (width != NULL) *width = w;
141     if (height != NULL) *height = h;
142     if (has_alpha != NULL) *has_alpha = a;
143     return 1;
144   }
145 }
146 
147 //------------------------------------------------------------------------------
148 
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)149 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
150                                        VP8LBitReader* const br) {
151   int extra_bits, offset;
152   if (distance_symbol < 4) {
153     return distance_symbol + 1;
154   }
155   extra_bits = (distance_symbol - 2) >> 1;
156   offset = (2 + (distance_symbol & 1)) << extra_bits;
157   return offset + VP8LReadBits(br, extra_bits) + 1;
158 }
159 
GetCopyLength(int length_symbol,VP8LBitReader * const br)160 static WEBP_INLINE int GetCopyLength(int length_symbol,
161                                      VP8LBitReader* const br) {
162   // Length and distance prefixes are encoded the same way.
163   return GetCopyDistance(length_symbol, br);
164 }
165 
PlaneCodeToDistance(int xsize,int plane_code)166 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
167   if (plane_code > CODE_TO_PLANE_CODES) {
168     return plane_code - CODE_TO_PLANE_CODES;
169   } else {
170     const int dist_code = kCodeToPlane[plane_code - 1];
171     const int yoffset = dist_code >> 4;
172     const int xoffset = 8 - (dist_code & 0xf);
173     const int dist = yoffset * xsize + xoffset;
174     return (dist >= 1) ? dist : 1;  // dist<1 can happen if xsize is very small
175   }
176 }
177 
178 //------------------------------------------------------------------------------
179 // Decodes the next Huffman code from bit-stream.
180 // FillBitWindow(br) needs to be called at minimum every second call
181 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanCode * table,VP8LBitReader * const br)182 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
183                                   VP8LBitReader* const br) {
184   int nbits;
185   uint32_t val = VP8LPrefetchBits(br);
186   table += val & HUFFMAN_TABLE_MASK;
187   nbits = table->bits - HUFFMAN_TABLE_BITS;
188   if (nbits > 0) {
189     VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
190     val = VP8LPrefetchBits(br);
191     table += table->value;
192     table += val & ((1 << nbits) - 1);
193   }
194   VP8LSetBitPos(br, br->bit_pos_ + table->bits);
195   return table->value;
196 }
197 
198 // Reads packed symbol depending on GREEN channel
199 #define BITS_SPECIAL_MARKER 0x100  // something large enough (and a bit-mask)
200 #define PACKED_NON_LITERAL_CODE 0  // must be < NUM_LITERAL_CODES
ReadPackedSymbols(const HTreeGroup * group,VP8LBitReader * const br,uint32_t * const dst)201 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
202                                          VP8LBitReader* const br,
203                                          uint32_t* const dst) {
204   const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
205   const HuffmanCode32 code = group->packed_table[val];
206   assert(group->use_packed_table);
207   if (code.bits < BITS_SPECIAL_MARKER) {
208     VP8LSetBitPos(br, br->bit_pos_ + code.bits);
209     *dst = code.value;
210     return PACKED_NON_LITERAL_CODE;
211   } else {
212     VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
213     assert(code.value >= NUM_LITERAL_CODES);
214     return code.value;
215   }
216 }
217 
AccumulateHCode(HuffmanCode hcode,int shift,HuffmanCode32 * const huff)218 static int AccumulateHCode(HuffmanCode hcode, int shift,
219                            HuffmanCode32* const huff) {
220   huff->bits += hcode.bits;
221   huff->value |= (uint32_t)hcode.value << shift;
222   assert(huff->bits <= HUFFMAN_TABLE_BITS);
223   return hcode.bits;
224 }
225 
BuildPackedTable(HTreeGroup * const htree_group)226 static void BuildPackedTable(HTreeGroup* const htree_group) {
227   uint32_t code;
228   for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
229     uint32_t bits = code;
230     HuffmanCode32* const huff = &htree_group->packed_table[bits];
231     HuffmanCode hcode = htree_group->htrees[GREEN][bits];
232     if (hcode.value >= NUM_LITERAL_CODES) {
233       huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
234       huff->value = hcode.value;
235     } else {
236       huff->bits = 0;
237       huff->value = 0;
238       bits >>= AccumulateHCode(hcode, 8, huff);
239       bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
240       bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
241       bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
242       (void)bits;
243     }
244   }
245 }
246 
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)247 static int ReadHuffmanCodeLengths(
248     VP8LDecoder* const dec, const int* const code_length_code_lengths,
249     int num_symbols, int* const code_lengths) {
250   int ok = 0;
251   VP8LBitReader* const br = &dec->br_;
252   int symbol;
253   int max_symbol;
254   int prev_code_len = DEFAULT_CODE_LENGTH;
255   HuffmanCode table[1 << LENGTHS_TABLE_BITS];
256 
257   if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
258                              code_length_code_lengths,
259                              NUM_CODE_LENGTH_CODES)) {
260     goto End;
261   }
262 
263   if (VP8LReadBits(br, 1)) {    // use length
264     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
265     max_symbol = 2 + VP8LReadBits(br, length_nbits);
266     if (max_symbol > num_symbols) {
267       goto End;
268     }
269   } else {
270     max_symbol = num_symbols;
271   }
272 
273   symbol = 0;
274   while (symbol < num_symbols) {
275     const HuffmanCode* p;
276     int code_len;
277     if (max_symbol-- == 0) break;
278     VP8LFillBitWindow(br);
279     p = &table[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
280     VP8LSetBitPos(br, br->bit_pos_ + p->bits);
281     code_len = p->value;
282     if (code_len < kCodeLengthLiterals) {
283       code_lengths[symbol++] = code_len;
284       if (code_len != 0) prev_code_len = code_len;
285     } else {
286       const int use_prev = (code_len == kCodeLengthRepeatCode);
287       const int slot = code_len - kCodeLengthLiterals;
288       const int extra_bits = kCodeLengthExtraBits[slot];
289       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
290       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
291       if (symbol + repeat > num_symbols) {
292         goto End;
293       } else {
294         const int length = use_prev ? prev_code_len : 0;
295         while (repeat-- > 0) code_lengths[symbol++] = length;
296       }
297     }
298   }
299   ok = 1;
300 
301  End:
302   if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
303   return ok;
304 }
305 
306 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
307 // tree.
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,int * const code_lengths,HuffmanCode * const table)308 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
309                            int* const code_lengths, HuffmanCode* const table) {
310   int ok = 0;
311   int size = 0;
312   VP8LBitReader* const br = &dec->br_;
313   const int simple_code = VP8LReadBits(br, 1);
314 
315   memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
316 
317   if (simple_code) {  // Read symbols, codes & code lengths directly.
318     const int num_symbols = VP8LReadBits(br, 1) + 1;
319     const int first_symbol_len_code = VP8LReadBits(br, 1);
320     // The first code is either 1 bit or 8 bit code.
321     int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
322     code_lengths[symbol] = 1;
323     // The second code (if present), is always 8 bit long.
324     if (num_symbols == 2) {
325       symbol = VP8LReadBits(br, 8);
326       code_lengths[symbol] = 1;
327     }
328     ok = 1;
329   } else {  // Decode Huffman-coded code lengths.
330     int i;
331     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
332     const int num_codes = VP8LReadBits(br, 4) + 4;
333     if (num_codes > NUM_CODE_LENGTH_CODES) {
334       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
335       return 0;
336     }
337 
338     for (i = 0; i < num_codes; ++i) {
339       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
340     }
341     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
342                                 code_lengths);
343   }
344 
345   ok = ok && !br->eos_;
346   if (ok) {
347     size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
348                                  code_lengths, alphabet_size);
349   }
350   if (!ok || size == 0) {
351     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
352     return 0;
353   }
354   return size;
355 }
356 
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)357 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
358                             int color_cache_bits, int allow_recursion) {
359   int i, j;
360   VP8LBitReader* const br = &dec->br_;
361   VP8LMetadata* const hdr = &dec->hdr_;
362   uint32_t* huffman_image = NULL;
363   HTreeGroup* htree_groups = NULL;
364   HuffmanCode* huffman_tables = NULL;
365   HuffmanCode* next = NULL;
366   int num_htree_groups = 1;
367   int max_alphabet_size = 0;
368   int* code_lengths = NULL;
369   const int table_size = kTableSize[color_cache_bits];
370 
371   if (allow_recursion && VP8LReadBits(br, 1)) {
372     // use meta Huffman codes.
373     const int huffman_precision = VP8LReadBits(br, 3) + 2;
374     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
375     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
376     const int huffman_pixs = huffman_xsize * huffman_ysize;
377     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
378                            &huffman_image)) {
379       goto Error;
380     }
381     hdr->huffman_subsample_bits_ = huffman_precision;
382     for (i = 0; i < huffman_pixs; ++i) {
383       // The huffman data is stored in red and green bytes.
384       const int group = (huffman_image[i] >> 8) & 0xffff;
385       huffman_image[i] = group;
386       if (group >= num_htree_groups) {
387         num_htree_groups = group + 1;
388       }
389     }
390   }
391 
392   if (br->eos_) goto Error;
393 
394   // Find maximum alphabet size for the htree group.
395   for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
396     int alphabet_size = kAlphabetSize[j];
397     if (j == 0 && color_cache_bits > 0) {
398       alphabet_size += 1 << color_cache_bits;
399     }
400     if (max_alphabet_size < alphabet_size) {
401       max_alphabet_size = alphabet_size;
402     }
403   }
404 
405   huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
406                                                 sizeof(*huffman_tables));
407   htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
408   code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
409                                       sizeof(*code_lengths));
410 
411   if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
412     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
413     goto Error;
414   }
415 
416   next = huffman_tables;
417   for (i = 0; i < num_htree_groups; ++i) {
418     HTreeGroup* const htree_group = &htree_groups[i];
419     HuffmanCode** const htrees = htree_group->htrees;
420     int size;
421     int total_size = 0;
422     int is_trivial_literal = 1;
423     int max_bits = 0;
424     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
425       int alphabet_size = kAlphabetSize[j];
426       htrees[j] = next;
427       if (j == 0 && color_cache_bits > 0) {
428         alphabet_size += 1 << color_cache_bits;
429       }
430       size = ReadHuffmanCode(alphabet_size, dec, code_lengths, next);
431       if (size == 0) {
432         goto Error;
433       }
434       if (is_trivial_literal && kLiteralMap[j] == 1) {
435         is_trivial_literal = (next->bits == 0);
436       }
437       total_size += next->bits;
438       next += size;
439       if (j <= ALPHA) {
440         int local_max_bits = code_lengths[0];
441         int k;
442         for (k = 1; k < alphabet_size; ++k) {
443           if (code_lengths[k] > local_max_bits) {
444             local_max_bits = code_lengths[k];
445           }
446         }
447         max_bits += local_max_bits;
448       }
449     }
450     htree_group->is_trivial_literal = is_trivial_literal;
451     htree_group->is_trivial_code = 0;
452     if (is_trivial_literal) {
453       const int red = htrees[RED][0].value;
454       const int blue = htrees[BLUE][0].value;
455       const int alpha = htrees[ALPHA][0].value;
456       htree_group->literal_arb =
457           ((uint32_t)alpha << 24) | (red << 16) | blue;
458       if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
459         htree_group->is_trivial_code = 1;
460         htree_group->literal_arb |= htrees[GREEN][0].value << 8;
461       }
462     }
463     htree_group->use_packed_table = !htree_group->is_trivial_code &&
464                                     (max_bits < HUFFMAN_PACKED_BITS);
465     if (htree_group->use_packed_table) BuildPackedTable(htree_group);
466   }
467   WebPSafeFree(code_lengths);
468 
469   // All OK. Finalize pointers and return.
470   hdr->huffman_image_ = huffman_image;
471   hdr->num_htree_groups_ = num_htree_groups;
472   hdr->htree_groups_ = htree_groups;
473   hdr->huffman_tables_ = huffman_tables;
474   return 1;
475 
476  Error:
477   WebPSafeFree(code_lengths);
478   WebPSafeFree(huffman_image);
479   WebPSafeFree(huffman_tables);
480   VP8LHtreeGroupsFree(htree_groups);
481   return 0;
482 }
483 
484 //------------------------------------------------------------------------------
485 // Scaling.
486 
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)487 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
488   const int num_channels = 4;
489   const int in_width = io->mb_w;
490   const int out_width = io->scaled_width;
491   const int in_height = io->mb_h;
492   const int out_height = io->scaled_height;
493   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
494   rescaler_t* work;        // Rescaler work area.
495   const uint64_t scaled_data_size = (uint64_t)out_width;
496   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
497   const uint64_t memory_size = sizeof(*dec->rescaler) +
498                                work_size * sizeof(*work) +
499                                scaled_data_size * sizeof(*scaled_data);
500   uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
501   if (memory == NULL) {
502     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
503     return 0;
504   }
505   assert(dec->rescaler_memory == NULL);
506   dec->rescaler_memory = memory;
507 
508   dec->rescaler = (WebPRescaler*)memory;
509   memory += sizeof(*dec->rescaler);
510   work = (rescaler_t*)memory;
511   memory += work_size * sizeof(*work);
512   scaled_data = (uint32_t*)memory;
513 
514   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
515                    out_width, out_height, 0, num_channels, work);
516   return 1;
517 }
518 
519 //------------------------------------------------------------------------------
520 // Export to ARGB
521 
522 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)523 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
524                   int rgba_stride, uint8_t* const rgba) {
525   uint32_t* const src = (uint32_t*)rescaler->dst;
526   const int dst_width = rescaler->dst_width;
527   int num_lines_out = 0;
528   while (WebPRescalerHasPendingOutput(rescaler)) {
529     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
530     WebPRescalerExportRow(rescaler);
531     WebPMultARGBRow(src, dst_width, 1);
532     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
533     ++num_lines_out;
534   }
535   return num_lines_out;
536 }
537 
538 // Emit scaled rows.
EmitRescaledRowsRGBA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h,uint8_t * const out,int out_stride)539 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
540                                 uint8_t* in, int in_stride, int mb_h,
541                                 uint8_t* const out, int out_stride) {
542   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
543   int num_lines_in = 0;
544   int num_lines_out = 0;
545   while (num_lines_in < mb_h) {
546     uint8_t* const row_in = in + num_lines_in * in_stride;
547     uint8_t* const row_out = out + num_lines_out * out_stride;
548     const int lines_left = mb_h - num_lines_in;
549     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
550     assert(needed_lines > 0 && needed_lines <= lines_left);
551     WebPMultARGBRows(row_in, in_stride,
552                      dec->rescaler->src_width, needed_lines, 0);
553     WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
554     num_lines_in += needed_lines;
555     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
556   }
557   return num_lines_out;
558 }
559 
560 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint8_t * row_in,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)561 static int EmitRows(WEBP_CSP_MODE colorspace,
562                     const uint8_t* row_in, int in_stride,
563                     int mb_w, int mb_h,
564                     uint8_t* const out, int out_stride) {
565   int lines = mb_h;
566   uint8_t* row_out = out;
567   while (lines-- > 0) {
568     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
569     row_in += in_stride;
570     row_out += out_stride;
571   }
572   return mb_h;  // Num rows out == num rows in.
573 }
574 
575 //------------------------------------------------------------------------------
576 // Export to YUVA
577 
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)578 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
579                           const WebPDecBuffer* const output) {
580   const WebPYUVABuffer* const buf = &output->u.YUVA;
581 
582   // first, the luma plane
583   WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
584 
585   // then U/V planes
586   {
587     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
588     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
589     // even lines: store values
590     // odd lines: average with previous values
591     WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
592   }
593   // Lastly, store alpha if needed.
594   if (buf->a != NULL) {
595     uint8_t* const a = buf->a + y_pos * buf->a_stride;
596 #if defined(WORDS_BIGENDIAN)
597     WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
598 #else
599     WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
600 #endif
601   }
602 }
603 
ExportYUVA(const VP8LDecoder * const dec,int y_pos)604 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
605   WebPRescaler* const rescaler = dec->rescaler;
606   uint32_t* const src = (uint32_t*)rescaler->dst;
607   const int dst_width = rescaler->dst_width;
608   int num_lines_out = 0;
609   while (WebPRescalerHasPendingOutput(rescaler)) {
610     WebPRescalerExportRow(rescaler);
611     WebPMultARGBRow(src, dst_width, 1);
612     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
613     ++y_pos;
614     ++num_lines_out;
615   }
616   return num_lines_out;
617 }
618 
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h)619 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
620                                 uint8_t* in, int in_stride, int mb_h) {
621   int num_lines_in = 0;
622   int y_pos = dec->last_out_row_;
623   while (num_lines_in < mb_h) {
624     const int lines_left = mb_h - num_lines_in;
625     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
626     WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
627     WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
628     num_lines_in += needed_lines;
629     in += needed_lines * in_stride;
630     y_pos += ExportYUVA(dec, y_pos);
631   }
632   return y_pos;
633 }
634 
EmitRowsYUVA(const VP8LDecoder * const dec,const uint8_t * in,int in_stride,int mb_w,int num_rows)635 static int EmitRowsYUVA(const VP8LDecoder* const dec,
636                         const uint8_t* in, int in_stride,
637                         int mb_w, int num_rows) {
638   int y_pos = dec->last_out_row_;
639   while (num_rows-- > 0) {
640     ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
641     in += in_stride;
642     ++y_pos;
643   }
644   return y_pos;
645 }
646 
647 //------------------------------------------------------------------------------
648 // Cropping.
649 
650 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
651 // crop options. Also updates the input data pointer, so that it points to the
652 // start of the cropped window. Note that pixels are in ARGB format even if
653 // 'in_data' is uint8_t*.
654 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,uint8_t ** const in_data,int pixel_stride)655 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
656                          uint8_t** const in_data, int pixel_stride) {
657   assert(y_start < y_end);
658   assert(io->crop_left < io->crop_right);
659   if (y_end > io->crop_bottom) {
660     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
661   }
662   if (y_start < io->crop_top) {
663     const int delta = io->crop_top - y_start;
664     y_start = io->crop_top;
665     *in_data += delta * pixel_stride;
666   }
667   if (y_start >= y_end) return 0;  // Crop window is empty.
668 
669   *in_data += io->crop_left * sizeof(uint32_t);
670 
671   io->mb_y = y_start - io->crop_top;
672   io->mb_w = io->crop_right - io->crop_left;
673   io->mb_h = y_end - y_start;
674   return 1;  // Non-empty crop window.
675 }
676 
677 //------------------------------------------------------------------------------
678 
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)679 static WEBP_INLINE int GetMetaIndex(
680     const uint32_t* const image, int xsize, int bits, int x, int y) {
681   if (bits == 0) return 0;
682   return image[xsize * (y >> bits) + (x >> bits)];
683 }
684 
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)685 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
686                                                    int x, int y) {
687   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
688                                       hdr->huffman_subsample_bits_, x, y);
689   assert(meta_index < hdr->num_htree_groups_);
690   return hdr->htree_groups_ + meta_index;
691 }
692 
693 //------------------------------------------------------------------------------
694 // Main loop, with custom row-processing function
695 
696 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
697 
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)698 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
699                                    const uint32_t* const rows) {
700   int n = dec->next_transform_;
701   const int cache_pixs = dec->width_ * num_rows;
702   const int start_row = dec->last_row_;
703   const int end_row = start_row + num_rows;
704   const uint32_t* rows_in = rows;
705   uint32_t* const rows_out = dec->argb_cache_;
706 
707   // Inverse transforms.
708   // TODO: most transforms only need to operate on the cropped region only.
709   memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
710   while (n-- > 0) {
711     VP8LTransform* const transform = &dec->transforms_[n];
712     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
713     rows_in = rows_out;
714   }
715 }
716 
717 // Special method for paletted alpha data.
ApplyInverseTransformsAlpha(VP8LDecoder * const dec,int num_rows,const uint8_t * const rows)718 static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows,
719                                         const uint8_t* const rows) {
720   const int start_row = dec->last_row_;
721   const int end_row = start_row + num_rows;
722   const uint8_t* rows_in = rows;
723   uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row;
724   VP8LTransform* const transform = &dec->transforms_[0];
725   assert(dec->next_transform_ == 1);
726   assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
727   VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in,
728                                       rows_out);
729 }
730 
731 // Processes (transforms, scales & color-converts) the rows decoded after the
732 // last call.
ProcessRows(VP8LDecoder * const dec,int row)733 static void ProcessRows(VP8LDecoder* const dec, int row) {
734   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
735   const int num_rows = row - dec->last_row_;
736 
737   if (num_rows <= 0) return;  // Nothing to be done.
738   ApplyInverseTransforms(dec, num_rows, rows);
739 
740   // Emit output.
741   {
742     VP8Io* const io = dec->io_;
743     uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
744     const int in_stride = io->width * sizeof(uint32_t);  // in unit of RGBA
745     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
746       // Nothing to output (this time).
747     } else {
748       const WebPDecBuffer* const output = dec->output_;
749       if (WebPIsRGBMode(output->colorspace)) {  // convert to RGBA
750         const WebPRGBABuffer* const buf = &output->u.RGBA;
751         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
752         const int num_rows_out = io->use_scaling ?
753             EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
754                                  rgba, buf->stride) :
755             EmitRows(output->colorspace, rows_data, in_stride,
756                      io->mb_w, io->mb_h, rgba, buf->stride);
757         // Update 'last_out_row_'.
758         dec->last_out_row_ += num_rows_out;
759       } else {                              // convert to YUVA
760         dec->last_out_row_ = io->use_scaling ?
761             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
762             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
763       }
764       assert(dec->last_out_row_ <= output->height);
765     }
766   }
767 
768   // Update 'last_row_'.
769   dec->last_row_ = row;
770   assert(dec->last_row_ <= dec->height_);
771 }
772 
773 // Row-processing for the special case when alpha data contains only one
774 // transform (color indexing), and trivial non-green literals.
Is8bOptimizable(const VP8LMetadata * const hdr)775 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
776   int i;
777   if (hdr->color_cache_size_ > 0) return 0;
778   // When the Huffman tree contains only one symbol, we can skip the
779   // call to ReadSymbol() for red/blue/alpha channels.
780   for (i = 0; i < hdr->num_htree_groups_; ++i) {
781     HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
782     if (htrees[RED][0].bits > 0) return 0;
783     if (htrees[BLUE][0].bits > 0) return 0;
784     if (htrees[ALPHA][0].bits > 0) return 0;
785   }
786   return 1;
787 }
788 
ExtractPalettedAlphaRows(VP8LDecoder * const dec,int row)789 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) {
790   const int num_rows = row - dec->last_row_;
791   const uint8_t* const in =
792       (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_;
793   if (num_rows > 0) {
794     ApplyInverseTransformsAlpha(dec, num_rows, in);
795   }
796   dec->last_row_ = dec->last_out_row_ = row;
797 }
798 
799 //------------------------------------------------------------------------------
800 // Helper functions for fast pattern copy (8b and 32b)
801 
802 // cyclic rotation of pattern word
Rotate8b(uint32_t V)803 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
804 #if defined(WORDS_BIGENDIAN)
805   return ((V & 0xff000000u) >> 24) | (V << 8);
806 #else
807   return ((V & 0xffu) << 24) | (V >> 8);
808 #endif
809 }
810 
811 // copy 1, 2 or 4-bytes pattern
CopySmallPattern8b(const uint8_t * src,uint8_t * dst,int length,uint32_t pattern)812 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
813                                            int length, uint32_t pattern) {
814   int i;
815   // align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
816   while ((uintptr_t)dst & 3) {
817     *dst++ = *src++;
818     pattern = Rotate8b(pattern);
819     --length;
820   }
821   // Copy the pattern 4 bytes at a time.
822   for (i = 0; i < (length >> 2); ++i) {
823     ((uint32_t*)dst)[i] = pattern;
824   }
825   // Finish with left-overs. 'pattern' is still correctly positioned,
826   // so no Rotate8b() call is needed.
827   for (i <<= 2; i < length; ++i) {
828     dst[i] = src[i];
829   }
830 }
831 
CopyBlock8b(uint8_t * const dst,int dist,int length)832 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
833   const uint8_t* src = dst - dist;
834   if (length >= 8) {
835     uint32_t pattern = 0;
836     switch (dist) {
837       case 1:
838         pattern = src[0];
839 #if defined(__arm__) || defined(_M_ARM)   // arm doesn't like multiply that much
840         pattern |= pattern << 8;
841         pattern |= pattern << 16;
842 #elif defined(WEBP_USE_MIPS_DSP_R2)
843         __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
844 #else
845         pattern = 0x01010101u * pattern;
846 #endif
847         break;
848       case 2:
849         memcpy(&pattern, src, sizeof(uint16_t));
850 #if defined(__arm__) || defined(_M_ARM)
851         pattern |= pattern << 16;
852 #elif defined(WEBP_USE_MIPS_DSP_R2)
853         __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
854 #else
855         pattern = 0x00010001u * pattern;
856 #endif
857         break;
858       case 4:
859         memcpy(&pattern, src, sizeof(uint32_t));
860         break;
861       default:
862         goto Copy;
863         break;
864     }
865     CopySmallPattern8b(src, dst, length, pattern);
866     return;
867   }
868  Copy:
869   if (dist >= length) {  // no overlap -> use memcpy()
870     memcpy(dst, src, length * sizeof(*dst));
871   } else {
872     int i;
873     for (i = 0; i < length; ++i) dst[i] = src[i];
874   }
875 }
876 
877 // copy pattern of 1 or 2 uint32_t's
CopySmallPattern32b(const uint32_t * src,uint32_t * dst,int length,uint64_t pattern)878 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
879                                             uint32_t* dst,
880                                             int length, uint64_t pattern) {
881   int i;
882   if ((uintptr_t)dst & 4) {           // Align 'dst' to 8-bytes boundary.
883     *dst++ = *src++;
884     pattern = (pattern >> 32) | (pattern << 32);
885     --length;
886   }
887   assert(0 == ((uintptr_t)dst & 7));
888   for (i = 0; i < (length >> 1); ++i) {
889     ((uint64_t*)dst)[i] = pattern;    // Copy the pattern 8 bytes at a time.
890   }
891   if (length & 1) {                   // Finish with left-over.
892     dst[i << 1] = src[i << 1];
893   }
894 }
895 
CopyBlock32b(uint32_t * const dst,int dist,int length)896 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
897                                      int dist, int length) {
898   const uint32_t* const src = dst - dist;
899   if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
900     uint64_t pattern;
901     if (dist == 1) {
902       pattern = (uint64_t)src[0];
903       pattern |= pattern << 32;
904     } else {
905       memcpy(&pattern, src, sizeof(pattern));
906     }
907     CopySmallPattern32b(src, dst, length, pattern);
908   } else if (dist >= length) {  // no overlap
909     memcpy(dst, src, length * sizeof(*dst));
910   } else {
911     int i;
912     for (i = 0; i < length; ++i) dst[i] = src[i];
913   }
914 }
915 
916 //------------------------------------------------------------------------------
917 
DecodeAlphaData(VP8LDecoder * const dec,uint8_t * const data,int width,int height,int last_row)918 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
919                            int width, int height, int last_row) {
920   int ok = 1;
921   int row = dec->last_pixel_ / width;
922   int col = dec->last_pixel_ % width;
923   VP8LBitReader* const br = &dec->br_;
924   VP8LMetadata* const hdr = &dec->hdr_;
925   const HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row);
926   int pos = dec->last_pixel_;         // current position
927   const int end = width * height;     // End of data
928   const int last = width * last_row;  // Last pixel to decode
929   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
930   const int mask = hdr->huffman_mask_;
931   assert(htree_group != NULL);
932   assert(pos < end);
933   assert(last_row <= height);
934   assert(Is8bOptimizable(hdr));
935 
936   while (!br->eos_ && pos < last) {
937     int code;
938     // Only update when changing tile.
939     if ((col & mask) == 0) {
940       htree_group = GetHtreeGroupForPos(hdr, col, row);
941     }
942     VP8LFillBitWindow(br);
943     code = ReadSymbol(htree_group->htrees[GREEN], br);
944     if (code < NUM_LITERAL_CODES) {  // Literal
945       data[pos] = code;
946       ++pos;
947       ++col;
948       if (col >= width) {
949         col = 0;
950         ++row;
951         if (row % NUM_ARGB_CACHE_ROWS == 0) {
952           ExtractPalettedAlphaRows(dec, row);
953         }
954       }
955     } else if (code < len_code_limit) {  // Backward reference
956       int dist_code, dist;
957       const int length_sym = code - NUM_LITERAL_CODES;
958       const int length = GetCopyLength(length_sym, br);
959       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
960       VP8LFillBitWindow(br);
961       dist_code = GetCopyDistance(dist_symbol, br);
962       dist = PlaneCodeToDistance(width, dist_code);
963       if (pos >= dist && end - pos >= length) {
964         CopyBlock8b(data + pos, dist, length);
965       } else {
966         ok = 0;
967         goto End;
968       }
969       pos += length;
970       col += length;
971       while (col >= width) {
972         col -= width;
973         ++row;
974         if (row % NUM_ARGB_CACHE_ROWS == 0) {
975           ExtractPalettedAlphaRows(dec, row);
976         }
977       }
978       if (pos < last && (col & mask)) {
979         htree_group = GetHtreeGroupForPos(hdr, col, row);
980       }
981     } else {  // Not reached
982       ok = 0;
983       goto End;
984     }
985     assert(br->eos_ == VP8LIsEndOfStream(br));
986   }
987   // Process the remaining rows corresponding to last row-block.
988   ExtractPalettedAlphaRows(dec, row);
989 
990  End:
991   if (!ok || (br->eos_ && pos < end)) {
992     ok = 0;
993     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
994                             : VP8_STATUS_BITSTREAM_ERROR;
995   } else {
996     dec->last_pixel_ = pos;
997   }
998   return ok;
999 }
1000 
SaveState(VP8LDecoder * const dec,int last_pixel)1001 static void SaveState(VP8LDecoder* const dec, int last_pixel) {
1002   assert(dec->incremental_);
1003   dec->saved_br_ = dec->br_;
1004   dec->saved_last_pixel_ = last_pixel;
1005   if (dec->hdr_.color_cache_size_ > 0) {
1006     VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_);
1007   }
1008 }
1009 
RestoreState(VP8LDecoder * const dec)1010 static void RestoreState(VP8LDecoder* const dec) {
1011   assert(dec->br_.eos_);
1012   dec->status_ = VP8_STATUS_SUSPENDED;
1013   dec->br_ = dec->saved_br_;
1014   dec->last_pixel_ = dec->saved_last_pixel_;
1015   if (dec->hdr_.color_cache_size_ > 0) {
1016     VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_);
1017   }
1018 }
1019 
1020 #define SYNC_EVERY_N_ROWS 8  // minimum number of rows between check-points
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,int last_row,ProcessRowsFunc process_func)1021 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
1022                            int width, int height, int last_row,
1023                            ProcessRowsFunc process_func) {
1024   int row = dec->last_pixel_ / width;
1025   int col = dec->last_pixel_ % width;
1026   VP8LBitReader* const br = &dec->br_;
1027   VP8LMetadata* const hdr = &dec->hdr_;
1028   HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row);
1029   uint32_t* src = data + dec->last_pixel_;
1030   uint32_t* last_cached = src;
1031   uint32_t* const src_end = data + width * height;     // End of data
1032   uint32_t* const src_last = data + width * last_row;  // Last pixel to decode
1033   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1034   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
1035   int next_sync_row = dec->incremental_ ? row : 1 << 24;
1036   VP8LColorCache* const color_cache =
1037       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
1038   const int mask = hdr->huffman_mask_;
1039   assert(htree_group != NULL);
1040   assert(src < src_end);
1041   assert(src_last <= src_end);
1042 
1043   while (src < src_last) {
1044     int code;
1045     if (row >= next_sync_row) {
1046       SaveState(dec, (int)(src - data));
1047       next_sync_row = row + SYNC_EVERY_N_ROWS;
1048     }
1049     // Only update when changing tile. Note we could use this test:
1050     // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
1051     // but that's actually slower and needs storing the previous col/row.
1052     if ((col & mask) == 0) htree_group = GetHtreeGroupForPos(hdr, col, row);
1053     if (htree_group->is_trivial_code) {
1054       *src = htree_group->literal_arb;
1055       goto AdvanceByOne;
1056     }
1057     VP8LFillBitWindow(br);
1058     if (htree_group->use_packed_table) {
1059       code = ReadPackedSymbols(htree_group, br, src);
1060       if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
1061     } else {
1062       code = ReadSymbol(htree_group->htrees[GREEN], br);
1063     }
1064     if (br->eos_) break;  // early out
1065     if (code < NUM_LITERAL_CODES) {  // Literal
1066       if (htree_group->is_trivial_literal) {
1067         *src = htree_group->literal_arb | (code << 8);
1068       } else {
1069         int red, blue, alpha;
1070         red = ReadSymbol(htree_group->htrees[RED], br);
1071         VP8LFillBitWindow(br);
1072         blue = ReadSymbol(htree_group->htrees[BLUE], br);
1073         alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
1074         if (br->eos_) break;
1075         *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
1076       }
1077     AdvanceByOne:
1078       ++src;
1079       ++col;
1080       if (col >= width) {
1081         col = 0;
1082         ++row;
1083         if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) {
1084           process_func(dec, row);
1085         }
1086         if (color_cache != NULL) {
1087           while (last_cached < src) {
1088             VP8LColorCacheInsert(color_cache, *last_cached++);
1089           }
1090         }
1091       }
1092     } else if (code < len_code_limit) {  // Backward reference
1093       int dist_code, dist;
1094       const int length_sym = code - NUM_LITERAL_CODES;
1095       const int length = GetCopyLength(length_sym, br);
1096       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1097       VP8LFillBitWindow(br);
1098       dist_code = GetCopyDistance(dist_symbol, br);
1099       dist = PlaneCodeToDistance(width, dist_code);
1100       if (br->eos_) break;
1101       if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
1102         goto Error;
1103       } else {
1104         CopyBlock32b(src, dist, length);
1105       }
1106       src += length;
1107       col += length;
1108       while (col >= width) {
1109         col -= width;
1110         ++row;
1111         if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) {
1112           process_func(dec, row);
1113         }
1114       }
1115       // Because of the check done above (before 'src' was incremented by
1116       // 'length'), the following holds true.
1117       assert(src <= src_end);
1118       if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
1119       if (color_cache != NULL) {
1120         while (last_cached < src) {
1121           VP8LColorCacheInsert(color_cache, *last_cached++);
1122         }
1123       }
1124     } else if (code < color_cache_limit) {  // Color cache
1125       const int key = code - len_code_limit;
1126       assert(color_cache != NULL);
1127       while (last_cached < src) {
1128         VP8LColorCacheInsert(color_cache, *last_cached++);
1129       }
1130       *src = VP8LColorCacheLookup(color_cache, key);
1131       goto AdvanceByOne;
1132     } else {  // Not reached
1133       goto Error;
1134     }
1135     assert(br->eos_ == VP8LIsEndOfStream(br));
1136   }
1137 
1138   if (dec->incremental_ && br->eos_ && src < src_end) {
1139     RestoreState(dec);
1140   } else if (!br->eos_) {
1141     // Process the remaining rows corresponding to last row-block.
1142     if (process_func != NULL) {
1143       process_func(dec, row);
1144     }
1145     dec->status_ = VP8_STATUS_OK;
1146     dec->last_pixel_ = (int)(src - data);  // end-of-scan marker
1147   } else {
1148     // if not incremental, and we are past the end of buffer (eos_=1), then this
1149     // is a real bitstream error.
1150     goto Error;
1151   }
1152   return 1;
1153 
1154  Error:
1155   dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1156   return 0;
1157 }
1158 
1159 // -----------------------------------------------------------------------------
1160 // VP8LTransform
1161 
ClearTransform(VP8LTransform * const transform)1162 static void ClearTransform(VP8LTransform* const transform) {
1163   WebPSafeFree(transform->data_);
1164   transform->data_ = NULL;
1165 }
1166 
1167 // For security reason, we need to remap the color map to span
1168 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)1169 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
1170   int i;
1171   const int final_num_colors = 1 << (8 >> transform->bits_);
1172   uint32_t* const new_color_map =
1173       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
1174                                 sizeof(*new_color_map));
1175   if (new_color_map == NULL) {
1176     return 0;
1177   } else {
1178     uint8_t* const data = (uint8_t*)transform->data_;
1179     uint8_t* const new_data = (uint8_t*)new_color_map;
1180     new_color_map[0] = transform->data_[0];
1181     for (i = 4; i < 4 * num_colors; ++i) {
1182       // Equivalent to AddPixelEq(), on a byte-basis.
1183       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
1184     }
1185     for (; i < 4 * final_num_colors; ++i)
1186       new_data[i] = 0;  // black tail.
1187     WebPSafeFree(transform->data_);
1188     transform->data_ = new_color_map;
1189   }
1190   return 1;
1191 }
1192 
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)1193 static int ReadTransform(int* const xsize, int const* ysize,
1194                          VP8LDecoder* const dec) {
1195   int ok = 1;
1196   VP8LBitReader* const br = &dec->br_;
1197   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
1198   const VP8LImageTransformType type =
1199       (VP8LImageTransformType)VP8LReadBits(br, 2);
1200 
1201   // Each transform type can only be present once in the stream.
1202   if (dec->transforms_seen_ & (1U << type)) {
1203     return 0;  // Already there, let's not accept the second same transform.
1204   }
1205   dec->transforms_seen_ |= (1U << type);
1206 
1207   transform->type_ = type;
1208   transform->xsize_ = *xsize;
1209   transform->ysize_ = *ysize;
1210   transform->data_ = NULL;
1211   ++dec->next_transform_;
1212   assert(dec->next_transform_ <= NUM_TRANSFORMS);
1213 
1214   switch (type) {
1215     case PREDICTOR_TRANSFORM:
1216     case CROSS_COLOR_TRANSFORM:
1217       transform->bits_ = VP8LReadBits(br, 3) + 2;
1218       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
1219                                                transform->bits_),
1220                              VP8LSubSampleSize(transform->ysize_,
1221                                                transform->bits_),
1222                              0, dec, &transform->data_);
1223       break;
1224     case COLOR_INDEXING_TRANSFORM: {
1225        const int num_colors = VP8LReadBits(br, 8) + 1;
1226        const int bits = (num_colors > 16) ? 0
1227                       : (num_colors > 4) ? 1
1228                       : (num_colors > 2) ? 2
1229                       : 3;
1230        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
1231        transform->bits_ = bits;
1232        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
1233        ok = ok && ExpandColorMap(num_colors, transform);
1234       break;
1235     }
1236     case SUBTRACT_GREEN:
1237       break;
1238     default:
1239       assert(0);    // can't happen
1240       break;
1241   }
1242 
1243   return ok;
1244 }
1245 
1246 // -----------------------------------------------------------------------------
1247 // VP8LMetadata
1248 
InitMetadata(VP8LMetadata * const hdr)1249 static void InitMetadata(VP8LMetadata* const hdr) {
1250   assert(hdr != NULL);
1251   memset(hdr, 0, sizeof(*hdr));
1252 }
1253 
ClearMetadata(VP8LMetadata * const hdr)1254 static void ClearMetadata(VP8LMetadata* const hdr) {
1255   assert(hdr != NULL);
1256 
1257   WebPSafeFree(hdr->huffman_image_);
1258   WebPSafeFree(hdr->huffman_tables_);
1259   VP8LHtreeGroupsFree(hdr->htree_groups_);
1260   VP8LColorCacheClear(&hdr->color_cache_);
1261   VP8LColorCacheClear(&hdr->saved_color_cache_);
1262   InitMetadata(hdr);
1263 }
1264 
1265 // -----------------------------------------------------------------------------
1266 // VP8LDecoder
1267 
VP8LNew(void)1268 VP8LDecoder* VP8LNew(void) {
1269   VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
1270   if (dec == NULL) return NULL;
1271   dec->status_ = VP8_STATUS_OK;
1272   dec->state_ = READ_DIM;
1273 
1274   VP8LDspInit();  // Init critical function pointers.
1275 
1276   return dec;
1277 }
1278 
VP8LClear(VP8LDecoder * const dec)1279 void VP8LClear(VP8LDecoder* const dec) {
1280   int i;
1281   if (dec == NULL) return;
1282   ClearMetadata(&dec->hdr_);
1283 
1284   WebPSafeFree(dec->pixels_);
1285   dec->pixels_ = NULL;
1286   for (i = 0; i < dec->next_transform_; ++i) {
1287     ClearTransform(&dec->transforms_[i]);
1288   }
1289   dec->next_transform_ = 0;
1290   dec->transforms_seen_ = 0;
1291 
1292   WebPSafeFree(dec->rescaler_memory);
1293   dec->rescaler_memory = NULL;
1294 
1295   dec->output_ = NULL;   // leave no trace behind
1296 }
1297 
VP8LDelete(VP8LDecoder * const dec)1298 void VP8LDelete(VP8LDecoder* const dec) {
1299   if (dec != NULL) {
1300     VP8LClear(dec);
1301     WebPSafeFree(dec);
1302   }
1303 }
1304 
UpdateDecoder(VP8LDecoder * const dec,int width,int height)1305 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
1306   VP8LMetadata* const hdr = &dec->hdr_;
1307   const int num_bits = hdr->huffman_subsample_bits_;
1308   dec->width_ = width;
1309   dec->height_ = height;
1310 
1311   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
1312   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
1313 }
1314 
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)1315 static int DecodeImageStream(int xsize, int ysize,
1316                              int is_level0,
1317                              VP8LDecoder* const dec,
1318                              uint32_t** const decoded_data) {
1319   int ok = 1;
1320   int transform_xsize = xsize;
1321   int transform_ysize = ysize;
1322   VP8LBitReader* const br = &dec->br_;
1323   VP8LMetadata* const hdr = &dec->hdr_;
1324   uint32_t* data = NULL;
1325   int color_cache_bits = 0;
1326 
1327   // Read the transforms (may recurse).
1328   if (is_level0) {
1329     while (ok && VP8LReadBits(br, 1)) {
1330       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
1331     }
1332   }
1333 
1334   // Color cache
1335   if (ok && VP8LReadBits(br, 1)) {
1336     color_cache_bits = VP8LReadBits(br, 4);
1337     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
1338     if (!ok) {
1339       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1340       goto End;
1341     }
1342   }
1343 
1344   // Read the Huffman codes (may recurse).
1345   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
1346                               color_cache_bits, is_level0);
1347   if (!ok) {
1348     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1349     goto End;
1350   }
1351 
1352   // Finish setting up the color-cache
1353   if (color_cache_bits > 0) {
1354     hdr->color_cache_size_ = 1 << color_cache_bits;
1355     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
1356       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1357       ok = 0;
1358       goto End;
1359     }
1360   } else {
1361     hdr->color_cache_size_ = 0;
1362   }
1363   UpdateDecoder(dec, transform_xsize, transform_ysize);
1364 
1365   if (is_level0) {   // level 0 complete
1366     dec->state_ = READ_HDR;
1367     goto End;
1368   }
1369 
1370   {
1371     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1372     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1373     if (data == NULL) {
1374       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1375       ok = 0;
1376       goto End;
1377     }
1378   }
1379 
1380   // Use the Huffman trees to decode the LZ77 encoded data.
1381   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
1382                        transform_ysize, NULL);
1383   ok = ok && !br->eos_;
1384 
1385  End:
1386   if (!ok) {
1387     WebPSafeFree(data);
1388     ClearMetadata(hdr);
1389   } else {
1390     if (decoded_data != NULL) {
1391       *decoded_data = data;
1392     } else {
1393       // We allocate image data in this function only for transforms. At level 0
1394       // (that is: not the transforms), we shouldn't have allocated anything.
1395       assert(data == NULL);
1396       assert(is_level0);
1397     }
1398     dec->last_pixel_ = 0;  // Reset for future DECODE_DATA_FUNC() calls.
1399     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
1400   }
1401   return ok;
1402 }
1403 
1404 //------------------------------------------------------------------------------
1405 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
AllocateInternalBuffers32b(VP8LDecoder * const dec,int final_width)1406 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
1407   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1408   // Scratch buffer corresponding to top-prediction row for transforming the
1409   // first row in the row-blocks. Not needed for paletted alpha.
1410   const uint64_t cache_top_pixels = (uint16_t)final_width;
1411   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
1412   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1413   const uint64_t total_num_pixels =
1414       num_pixels + cache_top_pixels + cache_pixels;
1415 
1416   assert(dec->width_ <= final_width);
1417   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
1418   if (dec->pixels_ == NULL) {
1419     dec->argb_cache_ = NULL;    // for sanity check
1420     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1421     return 0;
1422   }
1423   dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
1424   return 1;
1425 }
1426 
AllocateInternalBuffers8b(VP8LDecoder * const dec)1427 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
1428   const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
1429   dec->argb_cache_ = NULL;    // for sanity check
1430   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
1431   if (dec->pixels_ == NULL) {
1432     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1433     return 0;
1434   }
1435   return 1;
1436 }
1437 
1438 //------------------------------------------------------------------------------
1439 
1440 // Special row-processing that only stores the alpha data.
ExtractAlphaRows(VP8LDecoder * const dec,int row)1441 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
1442   const int num_rows = row - dec->last_row_;
1443   const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_;
1444 
1445   if (num_rows <= 0) return;  // Nothing to be done.
1446   ApplyInverseTransforms(dec, num_rows, in);
1447 
1448   // Extract alpha (which is stored in the green plane).
1449   {
1450     const int width = dec->io_->width;      // the final width (!= dec->width_)
1451     const int cache_pixs = width * num_rows;
1452     uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
1453     const uint32_t* const src = dec->argb_cache_;
1454     int i;
1455     for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
1456   }
1457   dec->last_row_ = dec->last_out_row_ = row;
1458 }
1459 
VP8LDecodeAlphaHeader(ALPHDecoder * const alph_dec,const uint8_t * const data,size_t data_size,uint8_t * const output)1460 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
1461                           const uint8_t* const data, size_t data_size,
1462                           uint8_t* const output) {
1463   int ok = 0;
1464   VP8LDecoder* dec;
1465   VP8Io* io;
1466   assert(alph_dec != NULL);
1467   alph_dec->vp8l_dec_ = VP8LNew();
1468   if (alph_dec->vp8l_dec_ == NULL) return 0;
1469   dec = alph_dec->vp8l_dec_;
1470 
1471   dec->width_ = alph_dec->width_;
1472   dec->height_ = alph_dec->height_;
1473   dec->io_ = &alph_dec->io_;
1474   io = dec->io_;
1475 
1476   VP8InitIo(io);
1477   WebPInitCustomIo(NULL, io);  // Just a sanity Init. io won't be used.
1478   io->opaque = output;
1479   io->width = alph_dec->width_;
1480   io->height = alph_dec->height_;
1481 
1482   dec->status_ = VP8_STATUS_OK;
1483   VP8LInitBitReader(&dec->br_, data, data_size);
1484 
1485   if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
1486     goto Err;
1487   }
1488 
1489   // Special case: if alpha data uses only the color indexing transform and
1490   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
1491   // method that only needs allocation of 1 byte per pixel (alpha channel).
1492   if (dec->next_transform_ == 1 &&
1493       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
1494       Is8bOptimizable(&dec->hdr_)) {
1495     alph_dec->use_8b_decode = 1;
1496     ok = AllocateInternalBuffers8b(dec);
1497   } else {
1498     // Allocate internal buffers (note that dec->width_ may have changed here).
1499     alph_dec->use_8b_decode = 0;
1500     ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
1501   }
1502 
1503   if (!ok) goto Err;
1504 
1505   return 1;
1506 
1507  Err:
1508   VP8LDelete(alph_dec->vp8l_dec_);
1509   alph_dec->vp8l_dec_ = NULL;
1510   return 0;
1511 }
1512 
VP8LDecodeAlphaImageStream(ALPHDecoder * const alph_dec,int last_row)1513 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
1514   VP8LDecoder* const dec = alph_dec->vp8l_dec_;
1515   assert(dec != NULL);
1516   assert(last_row <= dec->height_);
1517 
1518   if (dec->last_pixel_ == dec->width_ * dec->height_) {
1519     return 1;  // done
1520   }
1521 
1522   // Decode (with special row processing).
1523   return alph_dec->use_8b_decode ?
1524       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
1525                       last_row) :
1526       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1527                       last_row, ExtractAlphaRows);
1528 }
1529 
1530 //------------------------------------------------------------------------------
1531 
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1532 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1533   int width, height, has_alpha;
1534 
1535   if (dec == NULL) return 0;
1536   if (io == NULL) {
1537     dec->status_ = VP8_STATUS_INVALID_PARAM;
1538     return 0;
1539   }
1540 
1541   dec->io_ = io;
1542   dec->status_ = VP8_STATUS_OK;
1543   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1544   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1545     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1546     goto Error;
1547   }
1548   dec->state_ = READ_DIM;
1549   io->width = width;
1550   io->height = height;
1551 
1552   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1553   return 1;
1554 
1555  Error:
1556   VP8LClear(dec);
1557   assert(dec->status_ != VP8_STATUS_OK);
1558   return 0;
1559 }
1560 
VP8LDecodeImage(VP8LDecoder * const dec)1561 int VP8LDecodeImage(VP8LDecoder* const dec) {
1562   VP8Io* io = NULL;
1563   WebPDecParams* params = NULL;
1564 
1565   // Sanity checks.
1566   if (dec == NULL) return 0;
1567 
1568   assert(dec->hdr_.huffman_tables_ != NULL);
1569   assert(dec->hdr_.htree_groups_ != NULL);
1570   assert(dec->hdr_.num_htree_groups_ > 0);
1571 
1572   io = dec->io_;
1573   assert(io != NULL);
1574   params = (WebPDecParams*)io->opaque;
1575   assert(params != NULL);
1576 
1577   // Initialization.
1578   if (dec->state_ != READ_DATA) {
1579     dec->output_ = params->output;
1580     assert(dec->output_ != NULL);
1581 
1582     if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1583       dec->status_ = VP8_STATUS_INVALID_PARAM;
1584       goto Err;
1585     }
1586 
1587     if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
1588 
1589     if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1590 
1591     if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
1592       // need the alpha-multiply functions for premultiplied output or rescaling
1593       WebPInitAlphaProcessing();
1594     }
1595     if (!WebPIsRGBMode(dec->output_->colorspace)) {
1596       WebPInitConvertARGBToYUV();
1597       if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();
1598     }
1599     if (dec->incremental_) {
1600       if (dec->hdr_.color_cache_size_ > 0 &&
1601           dec->hdr_.saved_color_cache_.colors_ == NULL) {
1602         if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_,
1603                                 dec->hdr_.color_cache_.hash_bits_)) {
1604           dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1605           goto Err;
1606         }
1607       }
1608     }
1609     dec->state_ = READ_DATA;
1610   }
1611 
1612   // Decode.
1613   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1614                        dec->height_, ProcessRows)) {
1615     goto Err;
1616   }
1617 
1618   params->last_y = dec->last_out_row_;
1619   return 1;
1620 
1621  Err:
1622   VP8LClear(dec);
1623   assert(dec->status_ != VP8_STATUS_OK);
1624   return 0;
1625 }
1626 
1627 //------------------------------------------------------------------------------
1628