1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12 #ifdef HAVE_CONFIG_H
13 #include "../webp/config.h"
14 #endif
15
16 #include <math.h>
17
18 #include "./backward_references.h"
19 #include "./histogram.h"
20 #include "../dsp/lossless.h"
21 #include "../utils/utils.h"
22
23 #define MAX_COST 1.e38
24
25 // Number of partitions for the three dominant (literal, red and blue) symbol
26 // costs.
27 #define NUM_PARTITIONS 4
28 // The size of the bin-hash corresponding to the three dominant costs.
29 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
30 // Maximum number of histograms allowed in greedy combining algorithm.
31 #define MAX_HISTO_GREEDY 100
32
HistogramClear(VP8LHistogram * const p)33 static void HistogramClear(VP8LHistogram* const p) {
34 uint32_t* const literal = p->literal_;
35 const int cache_bits = p->palette_code_bits_;
36 const int histo_size = VP8LGetHistogramSize(cache_bits);
37 memset(p, 0, histo_size);
38 p->palette_code_bits_ = cache_bits;
39 p->literal_ = literal;
40 }
41
42 // Swap two histogram pointers.
HistogramSwap(VP8LHistogram ** const A,VP8LHistogram ** const B)43 static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
44 VP8LHistogram* const tmp = *A;
45 *A = *B;
46 *B = tmp;
47 }
48
HistogramCopy(const VP8LHistogram * const src,VP8LHistogram * const dst)49 static void HistogramCopy(const VP8LHistogram* const src,
50 VP8LHistogram* const dst) {
51 uint32_t* const dst_literal = dst->literal_;
52 const int dst_cache_bits = dst->palette_code_bits_;
53 const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
54 assert(src->palette_code_bits_ == dst_cache_bits);
55 memcpy(dst, src, histo_size);
56 dst->literal_ = dst_literal;
57 }
58
VP8LGetHistogramSize(int cache_bits)59 int VP8LGetHistogramSize(int cache_bits) {
60 const int literal_size = VP8LHistogramNumCodes(cache_bits);
61 const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
62 assert(total_size <= (size_t)0x7fffffff);
63 return (int)total_size;
64 }
65
VP8LFreeHistogram(VP8LHistogram * const histo)66 void VP8LFreeHistogram(VP8LHistogram* const histo) {
67 WebPSafeFree(histo);
68 }
69
VP8LFreeHistogramSet(VP8LHistogramSet * const histo)70 void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
71 WebPSafeFree(histo);
72 }
73
VP8LHistogramStoreRefs(const VP8LBackwardRefs * const refs,VP8LHistogram * const histo)74 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
75 VP8LHistogram* const histo) {
76 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
77 while (VP8LRefsCursorOk(&c)) {
78 VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos);
79 VP8LRefsCursorNext(&c);
80 }
81 }
82
VP8LHistogramCreate(VP8LHistogram * const p,const VP8LBackwardRefs * const refs,int palette_code_bits)83 void VP8LHistogramCreate(VP8LHistogram* const p,
84 const VP8LBackwardRefs* const refs,
85 int palette_code_bits) {
86 if (palette_code_bits >= 0) {
87 p->palette_code_bits_ = palette_code_bits;
88 }
89 HistogramClear(p);
90 VP8LHistogramStoreRefs(refs, p);
91 }
92
VP8LHistogramInit(VP8LHistogram * const p,int palette_code_bits)93 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
94 p->palette_code_bits_ = palette_code_bits;
95 HistogramClear(p);
96 }
97
VP8LAllocateHistogram(int cache_bits)98 VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
99 VP8LHistogram* histo = NULL;
100 const int total_size = VP8LGetHistogramSize(cache_bits);
101 uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
102 if (memory == NULL) return NULL;
103 histo = (VP8LHistogram*)memory;
104 // literal_ won't necessary be aligned.
105 histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
106 VP8LHistogramInit(histo, cache_bits);
107 return histo;
108 }
109
VP8LAllocateHistogramSet(int size,int cache_bits)110 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
111 int i;
112 VP8LHistogramSet* set;
113 const int histo_size = VP8LGetHistogramSize(cache_bits);
114 const size_t total_size =
115 sizeof(*set) + size * (sizeof(*set->histograms) +
116 histo_size + WEBP_ALIGN_CST);
117 uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
118 if (memory == NULL) return NULL;
119
120 set = (VP8LHistogramSet*)memory;
121 memory += sizeof(*set);
122 set->histograms = (VP8LHistogram**)memory;
123 memory += size * sizeof(*set->histograms);
124 set->max_size = size;
125 set->size = size;
126 for (i = 0; i < size; ++i) {
127 memory = (uint8_t*)WEBP_ALIGN(memory);
128 set->histograms[i] = (VP8LHistogram*)memory;
129 // literal_ won't necessary be aligned.
130 set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
131 VP8LHistogramInit(set->histograms[i], cache_bits);
132 memory += histo_size;
133 }
134 return set;
135 }
136
137 // -----------------------------------------------------------------------------
138
VP8LHistogramAddSinglePixOrCopy(VP8LHistogram * const histo,const PixOrCopy * const v)139 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
140 const PixOrCopy* const v) {
141 if (PixOrCopyIsLiteral(v)) {
142 ++histo->alpha_[PixOrCopyLiteral(v, 3)];
143 ++histo->red_[PixOrCopyLiteral(v, 2)];
144 ++histo->literal_[PixOrCopyLiteral(v, 1)];
145 ++histo->blue_[PixOrCopyLiteral(v, 0)];
146 } else if (PixOrCopyIsCacheIdx(v)) {
147 const int literal_ix =
148 NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
149 ++histo->literal_[literal_ix];
150 } else {
151 int code, extra_bits;
152 VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
153 ++histo->literal_[NUM_LITERAL_CODES + code];
154 VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
155 ++histo->distance_[code];
156 }
157 }
158
159 // -----------------------------------------------------------------------------
160 // Entropy-related functions.
161
BitsEntropyRefine(const VP8LBitEntropy * entropy)162 static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
163 double mix;
164 if (entropy->nonzeros < 5) {
165 if (entropy->nonzeros <= 1) {
166 return 0;
167 }
168 // Two symbols, they will be 0 and 1 in a Huffman code.
169 // Let's mix in a bit of entropy to favor good clustering when
170 // distributions of these are combined.
171 if (entropy->nonzeros == 2) {
172 return 0.99 * entropy->sum + 0.01 * entropy->entropy;
173 }
174 // No matter what the entropy says, we cannot be better than min_limit
175 // with Huffman coding. I am mixing a bit of entropy into the
176 // min_limit since it produces much better (~0.5 %) compression results
177 // perhaps because of better entropy clustering.
178 if (entropy->nonzeros == 3) {
179 mix = 0.95;
180 } else {
181 mix = 0.7; // nonzeros == 4.
182 }
183 } else {
184 mix = 0.627;
185 }
186
187 {
188 double min_limit = 2 * entropy->sum - entropy->max_val;
189 min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
190 return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
191 }
192 }
193
VP8LBitsEntropy(const uint32_t * const array,int n,uint32_t * const trivial_symbol)194 double VP8LBitsEntropy(const uint32_t* const array, int n,
195 uint32_t* const trivial_symbol) {
196 VP8LBitEntropy entropy;
197 VP8LBitsEntropyUnrefined(array, n, &entropy);
198 if (trivial_symbol != NULL) {
199 *trivial_symbol =
200 (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
201 }
202
203 return BitsEntropyRefine(&entropy);
204 }
205
InitialHuffmanCost(void)206 static double InitialHuffmanCost(void) {
207 // Small bias because Huffman code length is typically not stored in
208 // full length.
209 static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
210 static const double kSmallBias = 9.1;
211 return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
212 }
213
214 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
FinalHuffmanCost(const VP8LStreaks * const stats)215 static double FinalHuffmanCost(const VP8LStreaks* const stats) {
216 double retval = InitialHuffmanCost();
217 retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
218 retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
219 retval += 1.796875 * stats->streaks[0][0];
220 retval += 3.28125 * stats->streaks[1][0];
221 return retval;
222 }
223
224 // Get the symbol entropy for the distribution 'population'.
225 // Set 'trivial_sym', if there's only one symbol present in the distribution.
PopulationCost(const uint32_t * const population,int length,uint32_t * const trivial_sym)226 static double PopulationCost(const uint32_t* const population, int length,
227 uint32_t* const trivial_sym) {
228 VP8LBitEntropy bit_entropy;
229 VP8LStreaks stats;
230 VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
231 if (trivial_sym != NULL) {
232 *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
233 : VP8L_NON_TRIVIAL_SYM;
234 }
235
236 return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
237 }
238
GetCombinedEntropy(const uint32_t * const X,const uint32_t * const Y,int length)239 static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
240 const uint32_t* const Y,
241 int length) {
242 VP8LBitEntropy bit_entropy;
243 VP8LStreaks stats;
244 VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
245
246 return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
247 }
248
249 // Estimates the Entropy + Huffman + other block overhead size cost.
VP8LHistogramEstimateBits(const VP8LHistogram * const p)250 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
251 return
252 PopulationCost(
253 p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
254 + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
255 + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
256 + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
257 + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
258 + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
259 + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
260 }
261
262 // -----------------------------------------------------------------------------
263 // Various histogram combine/cost-eval functions
264
GetCombinedHistogramEntropy(const VP8LHistogram * const a,const VP8LHistogram * const b,double cost_threshold,double * cost)265 static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
266 const VP8LHistogram* const b,
267 double cost_threshold,
268 double* cost) {
269 const int palette_code_bits = a->palette_code_bits_;
270 assert(a->palette_code_bits_ == b->palette_code_bits_);
271 *cost += GetCombinedEntropy(a->literal_, b->literal_,
272 VP8LHistogramNumCodes(palette_code_bits));
273 *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
274 b->literal_ + NUM_LITERAL_CODES,
275 NUM_LENGTH_CODES);
276 if (*cost > cost_threshold) return 0;
277
278 *cost += GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES);
279 if (*cost > cost_threshold) return 0;
280
281 *cost += GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES);
282 if (*cost > cost_threshold) return 0;
283
284 *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES);
285 if (*cost > cost_threshold) return 0;
286
287 *cost += GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES);
288 *cost +=
289 VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
290 if (*cost > cost_threshold) return 0;
291
292 return 1;
293 }
294
295 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
296 // to the threshold value 'cost_threshold'. The score returned is
297 // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
298 // Since the previous score passed is 'cost_threshold', we only need to compare
299 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
300 // early.
HistogramAddEval(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out,double cost_threshold)301 static double HistogramAddEval(const VP8LHistogram* const a,
302 const VP8LHistogram* const b,
303 VP8LHistogram* const out,
304 double cost_threshold) {
305 double cost = 0;
306 const double sum_cost = a->bit_cost_ + b->bit_cost_;
307 cost_threshold += sum_cost;
308
309 if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
310 VP8LHistogramAdd(a, b, out);
311 out->bit_cost_ = cost;
312 out->palette_code_bits_ = a->palette_code_bits_;
313 out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) ?
314 a->trivial_symbol_ : VP8L_NON_TRIVIAL_SYM;
315 }
316
317 return cost - sum_cost;
318 }
319
320 // Same as HistogramAddEval(), except that the resulting histogram
321 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
322 // the term C(b) which is constant over all the evaluations.
HistogramAddThresh(const VP8LHistogram * const a,const VP8LHistogram * const b,double cost_threshold)323 static double HistogramAddThresh(const VP8LHistogram* const a,
324 const VP8LHistogram* const b,
325 double cost_threshold) {
326 double cost = -a->bit_cost_;
327 GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
328 return cost;
329 }
330
331 // -----------------------------------------------------------------------------
332
333 // The structure to keep track of cost range for the three dominant entropy
334 // symbols.
335 // TODO(skal): Evaluate if float can be used here instead of double for
336 // representing the entropy costs.
337 typedef struct {
338 double literal_max_;
339 double literal_min_;
340 double red_max_;
341 double red_min_;
342 double blue_max_;
343 double blue_min_;
344 } DominantCostRange;
345
DominantCostRangeInit(DominantCostRange * const c)346 static void DominantCostRangeInit(DominantCostRange* const c) {
347 c->literal_max_ = 0.;
348 c->literal_min_ = MAX_COST;
349 c->red_max_ = 0.;
350 c->red_min_ = MAX_COST;
351 c->blue_max_ = 0.;
352 c->blue_min_ = MAX_COST;
353 }
354
UpdateDominantCostRange(const VP8LHistogram * const h,DominantCostRange * const c)355 static void UpdateDominantCostRange(
356 const VP8LHistogram* const h, DominantCostRange* const c) {
357 if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
358 if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
359 if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
360 if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
361 if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
362 if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
363 }
364
UpdateHistogramCost(VP8LHistogram * const h)365 static void UpdateHistogramCost(VP8LHistogram* const h) {
366 uint32_t alpha_sym, red_sym, blue_sym;
367 const double alpha_cost =
368 PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym);
369 const double distance_cost =
370 PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
371 VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
372 const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
373 h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) +
374 VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
375 NUM_LENGTH_CODES);
376 h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
377 h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
378 h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
379 alpha_cost + distance_cost;
380 if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
381 h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
382 } else {
383 h->trivial_symbol_ =
384 ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
385 }
386 }
387
GetBinIdForEntropy(double min,double max,double val)388 static int GetBinIdForEntropy(double min, double max, double val) {
389 const double range = max - min + 1e-6;
390 const double delta = val - min;
391 return (int)(NUM_PARTITIONS * delta / range);
392 }
393
GetHistoBinIndexLowEffort(const VP8LHistogram * const h,const DominantCostRange * const c)394 static int GetHistoBinIndexLowEffort(
395 const VP8LHistogram* const h, const DominantCostRange* const c) {
396 const int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
397 h->literal_cost_);
398 assert(bin_id < NUM_PARTITIONS);
399 return bin_id;
400 }
401
GetHistoBinIndex(const VP8LHistogram * const h,const DominantCostRange * const c)402 static int GetHistoBinIndex(
403 const VP8LHistogram* const h, const DominantCostRange* const c) {
404 const int bin_id =
405 GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_) +
406 NUM_PARTITIONS * GetBinIdForEntropy(c->red_min_, c->red_max_,
407 h->red_cost_) +
408 NUM_PARTITIONS * NUM_PARTITIONS * GetBinIdForEntropy(c->literal_min_,
409 c->literal_max_,
410 h->literal_cost_);
411 assert(bin_id < BIN_SIZE);
412 return bin_id;
413 }
414
415 // Construct the histograms from backward references.
HistogramBuild(int xsize,int histo_bits,const VP8LBackwardRefs * const backward_refs,VP8LHistogramSet * const image_histo)416 static void HistogramBuild(
417 int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
418 VP8LHistogramSet* const image_histo) {
419 int x = 0, y = 0;
420 const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
421 VP8LHistogram** const histograms = image_histo->histograms;
422 VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
423 assert(histo_bits > 0);
424 while (VP8LRefsCursorOk(&c)) {
425 const PixOrCopy* const v = c.cur_pos;
426 const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
427 VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
428 x += PixOrCopyLength(v);
429 while (x >= xsize) {
430 x -= xsize;
431 ++y;
432 }
433 VP8LRefsCursorNext(&c);
434 }
435 }
436
437 // Copies the histograms and computes its bit_cost.
HistogramCopyAndAnalyze(VP8LHistogramSet * const orig_histo,VP8LHistogramSet * const image_histo)438 static void HistogramCopyAndAnalyze(
439 VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) {
440 int i;
441 const int histo_size = orig_histo->size;
442 VP8LHistogram** const orig_histograms = orig_histo->histograms;
443 VP8LHistogram** const histograms = image_histo->histograms;
444 for (i = 0; i < histo_size; ++i) {
445 VP8LHistogram* const histo = orig_histograms[i];
446 UpdateHistogramCost(histo);
447 // Copy histograms from orig_histo[] to image_histo[].
448 HistogramCopy(histo, histograms[i]);
449 }
450 }
451
452 // Partition histograms to different entropy bins for three dominant (literal,
453 // red and blue) symbol costs and compute the histogram aggregate bit_cost.
HistogramAnalyzeEntropyBin(VP8LHistogramSet * const image_histo,int16_t * const bin_map,int low_effort)454 static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
455 int16_t* const bin_map, int low_effort) {
456 int i;
457 VP8LHistogram** const histograms = image_histo->histograms;
458 const int histo_size = image_histo->size;
459 const int bin_depth = histo_size + 1;
460 DominantCostRange cost_range;
461 DominantCostRangeInit(&cost_range);
462
463 // Analyze the dominant (literal, red and blue) entropy costs.
464 for (i = 0; i < histo_size; ++i) {
465 VP8LHistogram* const histo = histograms[i];
466 UpdateDominantCostRange(histo, &cost_range);
467 }
468
469 // bin-hash histograms on three of the dominant (literal, red and blue)
470 // symbol costs.
471 for (i = 0; i < histo_size; ++i) {
472 int num_histos;
473 VP8LHistogram* const histo = histograms[i];
474 const int16_t bin_id = low_effort ?
475 (int16_t)GetHistoBinIndexLowEffort(histo, &cost_range) :
476 (int16_t)GetHistoBinIndex(histo, &cost_range);
477 const int bin_offset = bin_id * bin_depth;
478 // bin_map[n][0] for every bin 'n' maintains the counter for the number of
479 // histograms in that bin.
480 // Get and increment the num_histos in that bin.
481 num_histos = ++bin_map[bin_offset];
482 assert(bin_offset + num_histos < bin_depth * BIN_SIZE);
483 // Add histogram i'th index at num_histos (last) position in the bin_map.
484 bin_map[bin_offset + num_histos] = i;
485 }
486 }
487
488 // Compact the histogram set by removing unused entries.
HistogramCompactBins(VP8LHistogramSet * const image_histo)489 static void HistogramCompactBins(VP8LHistogramSet* const image_histo) {
490 VP8LHistogram** const histograms = image_histo->histograms;
491 int i, j;
492
493 for (i = 0, j = 0; i < image_histo->size; ++i) {
494 if (histograms[i] != NULL && histograms[i]->bit_cost_ != 0.) {
495 if (j < i) {
496 histograms[j] = histograms[i];
497 histograms[i] = NULL;
498 }
499 ++j;
500 }
501 }
502 image_histo->size = j;
503 }
504
HistogramCombineEntropyBin(VP8LHistogramSet * const image_histo,VP8LHistogram * cur_combo,int16_t * const bin_map,int bin_depth,int num_bins,double combine_cost_factor,int low_effort)505 static VP8LHistogram* HistogramCombineEntropyBin(
506 VP8LHistogramSet* const image_histo,
507 VP8LHistogram* cur_combo,
508 int16_t* const bin_map, int bin_depth, int num_bins,
509 double combine_cost_factor, int low_effort) {
510 int bin_id;
511 VP8LHistogram** const histograms = image_histo->histograms;
512
513 for (bin_id = 0; bin_id < num_bins; ++bin_id) {
514 const int bin_offset = bin_id * bin_depth;
515 const int num_histos = bin_map[bin_offset];
516 const int idx1 = bin_map[bin_offset + 1];
517 int num_combine_failures = 0;
518 int n;
519 for (n = 2; n <= num_histos; ++n) {
520 const int idx2 = bin_map[bin_offset + n];
521 if (low_effort) {
522 // Merge all histograms with the same bin index, irrespective of cost of
523 // the merged histograms.
524 VP8LHistogramAdd(histograms[idx1], histograms[idx2], histograms[idx1]);
525 histograms[idx2]->bit_cost_ = 0.;
526 } else {
527 const double bit_cost_idx2 = histograms[idx2]->bit_cost_;
528 if (bit_cost_idx2 > 0.) {
529 const double bit_cost_thresh = -bit_cost_idx2 * combine_cost_factor;
530 const double curr_cost_diff =
531 HistogramAddEval(histograms[idx1], histograms[idx2],
532 cur_combo, bit_cost_thresh);
533 if (curr_cost_diff < bit_cost_thresh) {
534 // Try to merge two histograms only if the combo is a trivial one or
535 // the two candidate histograms are already non-trivial.
536 // For some images, 'try_combine' turns out to be false for a lot of
537 // histogram pairs. In that case, we fallback to combining
538 // histograms as usual to avoid increasing the header size.
539 const int try_combine =
540 (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
541 ((histograms[idx1]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
542 (histograms[idx2]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
543 const int max_combine_failures = 32;
544 if (try_combine || (num_combine_failures >= max_combine_failures)) {
545 HistogramSwap(&cur_combo, &histograms[idx1]);
546 histograms[idx2]->bit_cost_ = 0.;
547 } else {
548 ++num_combine_failures;
549 }
550 }
551 }
552 }
553 }
554 if (low_effort) {
555 // Update the bit_cost for the merged histograms (per bin index).
556 UpdateHistogramCost(histograms[idx1]);
557 }
558 }
559 HistogramCompactBins(image_histo);
560 return cur_combo;
561 }
562
MyRand(uint32_t * seed)563 static uint32_t MyRand(uint32_t *seed) {
564 *seed *= 16807U;
565 if (*seed == 0) {
566 *seed = 1;
567 }
568 return *seed;
569 }
570
571 // -----------------------------------------------------------------------------
572 // Histogram pairs priority queue
573
574 // Pair of histograms. Negative idx1 value means that pair is out-of-date.
575 typedef struct {
576 int idx1;
577 int idx2;
578 double cost_diff;
579 double cost_combo;
580 } HistogramPair;
581
582 typedef struct {
583 HistogramPair* queue;
584 int size;
585 int max_size;
586 } HistoQueue;
587
HistoQueueInit(HistoQueue * const histo_queue,const int max_index)588 static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) {
589 histo_queue->size = 0;
590 // max_index^2 for the queue size is safe. If you look at
591 // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
592 // data to the queue, you insert at most:
593 // - max_index*(max_index-1)/2 (the first two for loops)
594 // - max_index - 1 in the last for loop at the first iteration of the while
595 // loop, max_index - 2 at the second iteration ... therefore
596 // max_index*(max_index-1)/2 overall too
597 histo_queue->max_size = max_index * max_index;
598 // We allocate max_size + 1 because the last element at index "size" is
599 // used as temporary data (and it could be up to max_size).
600 histo_queue->queue = WebPSafeMalloc(histo_queue->max_size + 1,
601 sizeof(*histo_queue->queue));
602 return histo_queue->queue != NULL;
603 }
604
HistoQueueClear(HistoQueue * const histo_queue)605 static void HistoQueueClear(HistoQueue* const histo_queue) {
606 assert(histo_queue != NULL);
607 WebPSafeFree(histo_queue->queue);
608 }
609
SwapHistogramPairs(HistogramPair * p1,HistogramPair * p2)610 static void SwapHistogramPairs(HistogramPair *p1,
611 HistogramPair *p2) {
612 const HistogramPair tmp = *p1;
613 *p1 = *p2;
614 *p2 = tmp;
615 }
616
617 // Given a valid priority queue in range [0, queue_size) this function checks
618 // whether histo_queue[queue_size] should be accepted and swaps it with the
619 // front if it is smaller. Otherwise, it leaves it as is.
UpdateQueueFront(HistoQueue * const histo_queue)620 static void UpdateQueueFront(HistoQueue* const histo_queue) {
621 if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return;
622
623 if (histo_queue->queue[histo_queue->size].cost_diff <
624 histo_queue->queue[0].cost_diff) {
625 SwapHistogramPairs(histo_queue->queue,
626 histo_queue->queue + histo_queue->size);
627 }
628 ++histo_queue->size;
629
630 // We cannot add more elements than the capacity.
631 // The allocation adds an extra element to the official capacity so that
632 // histo_queue->queue[histo_queue->max_size] is read/written within bound.
633 assert(histo_queue->size <= histo_queue->max_size);
634 }
635
636 // -----------------------------------------------------------------------------
637
PreparePair(VP8LHistogram ** histograms,int idx1,int idx2,HistogramPair * const pair,VP8LHistogram * const histos)638 static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2,
639 HistogramPair* const pair,
640 VP8LHistogram* const histos) {
641 if (idx1 > idx2) {
642 const int tmp = idx2;
643 idx2 = idx1;
644 idx1 = tmp;
645 }
646 pair->idx1 = idx1;
647 pair->idx2 = idx2;
648 pair->cost_diff =
649 HistogramAddEval(histograms[idx1], histograms[idx2], histos, 0);
650 pair->cost_combo = histos->bit_cost_;
651 }
652
653 // Combines histograms by continuously choosing the one with the highest cost
654 // reduction.
HistogramCombineGreedy(VP8LHistogramSet * const image_histo,VP8LHistogram * const histos)655 static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo,
656 VP8LHistogram* const histos) {
657 int ok = 0;
658 int image_histo_size = image_histo->size;
659 int i, j;
660 VP8LHistogram** const histograms = image_histo->histograms;
661 // Indexes of remaining histograms.
662 int* const clusters = WebPSafeMalloc(image_histo_size, sizeof(*clusters));
663 // Priority queue of histogram pairs.
664 HistoQueue histo_queue;
665
666 if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) {
667 goto End;
668 }
669
670 for (i = 0; i < image_histo_size; ++i) {
671 // Initialize clusters indexes.
672 clusters[i] = i;
673 for (j = i + 1; j < image_histo_size; ++j) {
674 // Initialize positions array.
675 PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size],
676 histos);
677 UpdateQueueFront(&histo_queue);
678 }
679 }
680
681 while (image_histo_size > 1 && histo_queue.size > 0) {
682 HistogramPair* copy_to;
683 const int idx1 = histo_queue.queue[0].idx1;
684 const int idx2 = histo_queue.queue[0].idx2;
685 VP8LHistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
686 histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
687 // Remove merged histogram.
688 for (i = 0; i + 1 < image_histo_size; ++i) {
689 if (clusters[i] >= idx2) {
690 clusters[i] = clusters[i + 1];
691 }
692 }
693 --image_histo_size;
694
695 // Remove pairs intersecting the just combined best pair. This will
696 // therefore pop the head of the queue.
697 copy_to = histo_queue.queue;
698 for (i = 0; i < histo_queue.size; ++i) {
699 HistogramPair* const p = histo_queue.queue + i;
700 if (p->idx1 == idx1 || p->idx2 == idx1 ||
701 p->idx1 == idx2 || p->idx2 == idx2) {
702 // Do not copy the invalid pair.
703 continue;
704 }
705 if (p->cost_diff < histo_queue.queue[0].cost_diff) {
706 // Replace the top of the queue if we found better.
707 SwapHistogramPairs(histo_queue.queue, p);
708 }
709 SwapHistogramPairs(copy_to, p);
710 ++copy_to;
711 }
712 histo_queue.size = (int)(copy_to - histo_queue.queue);
713
714 // Push new pairs formed with combined histogram to the queue.
715 for (i = 0; i < image_histo_size; ++i) {
716 if (clusters[i] != idx1) {
717 PreparePair(histograms, idx1, clusters[i],
718 &histo_queue.queue[histo_queue.size], histos);
719 UpdateQueueFront(&histo_queue);
720 }
721 }
722 }
723 // Move remaining histograms to the beginning of the array.
724 for (i = 0; i < image_histo_size; ++i) {
725 if (i != clusters[i]) { // swap the two histograms
726 HistogramSwap(&histograms[i], &histograms[clusters[i]]);
727 }
728 }
729
730 image_histo->size = image_histo_size;
731 ok = 1;
732
733 End:
734 WebPSafeFree(clusters);
735 HistoQueueClear(&histo_queue);
736 return ok;
737 }
738
HistogramCombineStochastic(VP8LHistogramSet * const image_histo,VP8LHistogram * tmp_histo,VP8LHistogram * best_combo,int quality,int min_cluster_size)739 static VP8LHistogram* HistogramCombineStochastic(
740 VP8LHistogramSet* const image_histo,
741 VP8LHistogram* tmp_histo,
742 VP8LHistogram* best_combo,
743 int quality, int min_cluster_size) {
744 int iter;
745 uint32_t seed = 0;
746 int tries_with_no_success = 0;
747 int image_histo_size = image_histo->size;
748 const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8;
749 const int outer_iters = image_histo_size * iter_mult;
750 const int num_pairs = image_histo_size / 2;
751 const int num_tries_no_success = outer_iters / 2;
752 VP8LHistogram** const histograms = image_histo->histograms;
753
754 // Collapse similar histograms in 'image_histo'.
755 ++min_cluster_size;
756 for (iter = 0;
757 iter < outer_iters && image_histo_size >= min_cluster_size;
758 ++iter) {
759 double best_cost_diff = 0.;
760 int best_idx1 = -1, best_idx2 = 1;
761 int j;
762 const int num_tries =
763 (num_pairs < image_histo_size) ? num_pairs : image_histo_size;
764 seed += iter;
765 for (j = 0; j < num_tries; ++j) {
766 double curr_cost_diff;
767 // Choose two histograms at random and try to combine them.
768 const uint32_t idx1 = MyRand(&seed) % image_histo_size;
769 const uint32_t tmp = (j & 7) + 1;
770 const uint32_t diff =
771 (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1);
772 const uint32_t idx2 = (idx1 + diff + 1) % image_histo_size;
773 if (idx1 == idx2) {
774 continue;
775 }
776
777 // Calculate cost reduction on combining.
778 curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2],
779 tmp_histo, best_cost_diff);
780 if (curr_cost_diff < best_cost_diff) { // found a better pair?
781 HistogramSwap(&best_combo, &tmp_histo);
782 best_cost_diff = curr_cost_diff;
783 best_idx1 = idx1;
784 best_idx2 = idx2;
785 }
786 }
787
788 if (best_idx1 >= 0) {
789 HistogramSwap(&best_combo, &histograms[best_idx1]);
790 // swap best_idx2 slot with last one (which is now unused)
791 --image_histo_size;
792 if (best_idx2 != image_histo_size) {
793 HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
794 histograms[image_histo_size] = NULL;
795 }
796 tries_with_no_success = 0;
797 }
798 if (++tries_with_no_success >= num_tries_no_success) {
799 break;
800 }
801 }
802 image_histo->size = image_histo_size;
803 return best_combo;
804 }
805
806 // -----------------------------------------------------------------------------
807 // Histogram refinement
808
809 // Find the best 'out' histogram for each of the 'in' histograms.
810 // Note: we assume that out[]->bit_cost_ is already up-to-date.
HistogramRemap(const VP8LHistogramSet * const orig_histo,const VP8LHistogramSet * const image_histo,uint16_t * const symbols)811 static void HistogramRemap(const VP8LHistogramSet* const orig_histo,
812 const VP8LHistogramSet* const image_histo,
813 uint16_t* const symbols) {
814 int i;
815 VP8LHistogram** const orig_histograms = orig_histo->histograms;
816 VP8LHistogram** const histograms = image_histo->histograms;
817 const int orig_histo_size = orig_histo->size;
818 const int image_histo_size = image_histo->size;
819 if (image_histo_size > 1) {
820 for (i = 0; i < orig_histo_size; ++i) {
821 int best_out = 0;
822 double best_bits =
823 HistogramAddThresh(histograms[0], orig_histograms[i], MAX_COST);
824 int k;
825 for (k = 1; k < image_histo_size; ++k) {
826 const double cur_bits =
827 HistogramAddThresh(histograms[k], orig_histograms[i], best_bits);
828 if (cur_bits < best_bits) {
829 best_bits = cur_bits;
830 best_out = k;
831 }
832 }
833 symbols[i] = best_out;
834 }
835 } else {
836 assert(image_histo_size == 1);
837 for (i = 0; i < orig_histo_size; ++i) {
838 symbols[i] = 0;
839 }
840 }
841
842 // Recompute each out based on raw and symbols.
843 for (i = 0; i < image_histo_size; ++i) {
844 HistogramClear(histograms[i]);
845 }
846
847 for (i = 0; i < orig_histo_size; ++i) {
848 const int idx = symbols[i];
849 VP8LHistogramAdd(orig_histograms[i], histograms[idx], histograms[idx]);
850 }
851 }
852
GetCombineCostFactor(int histo_size,int quality)853 static double GetCombineCostFactor(int histo_size, int quality) {
854 double combine_cost_factor = 0.16;
855 if (quality < 90) {
856 if (histo_size > 256) combine_cost_factor /= 2.;
857 if (histo_size > 512) combine_cost_factor /= 2.;
858 if (histo_size > 1024) combine_cost_factor /= 2.;
859 if (quality <= 50) combine_cost_factor /= 2.;
860 }
861 return combine_cost_factor;
862 }
863
VP8LGetHistoImageSymbols(int xsize,int ysize,const VP8LBackwardRefs * const refs,int quality,int low_effort,int histo_bits,int cache_bits,VP8LHistogramSet * const image_histo,VP8LHistogramSet * const tmp_histos,uint16_t * const histogram_symbols)864 int VP8LGetHistoImageSymbols(int xsize, int ysize,
865 const VP8LBackwardRefs* const refs,
866 int quality, int low_effort,
867 int histo_bits, int cache_bits,
868 VP8LHistogramSet* const image_histo,
869 VP8LHistogramSet* const tmp_histos,
870 uint16_t* const histogram_symbols) {
871 int ok = 0;
872 const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
873 const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
874 const int image_histo_raw_size = histo_xsize * histo_ysize;
875 const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
876
877 // The bin_map for every bin follows following semantics:
878 // bin_map[n][0] = num_histo; // The number of histograms in that bin.
879 // bin_map[n][1] = index of first histogram in that bin;
880 // bin_map[n][num_histo] = index of last histogram in that bin;
881 // bin_map[n][num_histo + 1] ... bin_map[n][bin_depth - 1] = unused indices.
882 const int bin_depth = image_histo_raw_size + 1;
883 int16_t* bin_map = NULL;
884 VP8LHistogramSet* const orig_histo =
885 VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
886 VP8LHistogram* cur_combo;
887 const int entropy_combine =
888 (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);
889
890 if (orig_histo == NULL) goto Error;
891
892 // Don't attempt linear bin-partition heuristic for:
893 // histograms of small sizes, as bin_map will be very sparse and;
894 // Maximum quality (q==100), to preserve the compression gains at that level.
895 if (entropy_combine) {
896 const int bin_map_size = bin_depth * entropy_combine_num_bins;
897 bin_map = (int16_t*)WebPSafeCalloc(bin_map_size, sizeof(*bin_map));
898 if (bin_map == NULL) goto Error;
899 }
900
901 // Construct the histograms from backward references.
902 HistogramBuild(xsize, histo_bits, refs, orig_histo);
903 // Copies the histograms and computes its bit_cost.
904 HistogramCopyAndAnalyze(orig_histo, image_histo);
905
906 cur_combo = tmp_histos->histograms[1]; // pick up working slot
907 if (entropy_combine) {
908 const double combine_cost_factor =
909 GetCombineCostFactor(image_histo_raw_size, quality);
910 HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
911 // Collapse histograms with similar entropy.
912 cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo, bin_map,
913 bin_depth, entropy_combine_num_bins,
914 combine_cost_factor, low_effort);
915 }
916
917 // Don't combine the histograms using stochastic and greedy heuristics for
918 // low-effort compression mode.
919 if (!low_effort || !entropy_combine) {
920 const float x = quality / 100.f;
921 // cubic ramp between 1 and MAX_HISTO_GREEDY:
922 const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
923 cur_combo = HistogramCombineStochastic(image_histo,
924 tmp_histos->histograms[0],
925 cur_combo, quality, threshold_size);
926 if ((image_histo->size <= threshold_size) &&
927 !HistogramCombineGreedy(image_histo, cur_combo)) {
928 goto Error;
929 }
930 }
931
932 // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
933 // Find the optimal map from original histograms to the final ones.
934 HistogramRemap(orig_histo, image_histo, histogram_symbols);
935
936 ok = 1;
937
938 Error:
939 WebPSafeFree(bin_map);
940 VP8LFreeHistogramSet(orig_histo);
941 return ok;
942 }
943