1 // Copyright 2013 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Implement gradient smoothing: we replace a current alpha value by its
11 // surrounding average if it's close enough (that is: the change will be less
12 // than the minimum distance between two quantized level).
13 // We use sliding window for computing the 2d moving average.
14 //
15 // Author: Skal (pascal.massimino@gmail.com)
16 
17 #include "./quant_levels_dec.h"
18 
19 #include <string.h>   // for memset
20 
21 #include "./utils.h"
22 
23 // #define USE_DITHERING   // uncomment to enable ordered dithering (not vital)
24 
25 #define FIX 16     // fix-point precision for averaging
26 #define LFIX 2     // extra precision for look-up table
27 #define LUT_SIZE ((1 << (8 + LFIX)) - 1)  // look-up table size
28 
29 #if defined(USE_DITHERING)
30 
31 #define DFIX 4           // extra precision for ordered dithering
32 #define DSIZE 4          // dithering size (must be a power of two)
33 // cf. http://en.wikipedia.org/wiki/Ordered_dithering
34 static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
35   {  0,  8,  2, 10 },     // coefficients are in DFIX fixed-point precision
36   { 12,  4, 14,  6 },
37   {  3, 11,  1,  9 },
38   { 15,  7, 13,  5 }
39 };
40 
41 #else
42 #define DFIX 0
43 #endif
44 
45 typedef struct {
46   int width_, height_;  // dimension
47   int row_;             // current input row being processed
48   uint8_t* src_;        // input pointer
49   uint8_t* dst_;        // output pointer
50 
51   int radius_;          // filter radius (=delay)
52   int scale_;           // normalization factor, in FIX bits precision
53 
54   void* mem_;           // all memory
55 
56   // various scratch buffers
57   uint16_t* start_;
58   uint16_t* cur_;
59   uint16_t* end_;
60   uint16_t* top_;
61   uint16_t* average_;
62 
63   // input levels distribution
64   int num_levels_;       // number of quantized levels
65   int min_, max_;        // min and max level values
66   int min_level_dist_;   // smallest distance between two consecutive levels
67 
68   int16_t* correction_;  // size = 1 + 2*LUT_SIZE  -> ~4k memory
69 } SmoothParams;
70 
71 //------------------------------------------------------------------------------
72 
73 #define CLIP_MASK (int)(~0U << (8 + DFIX))
clip_8b(int v)74 static WEBP_INLINE uint8_t clip_8b(int v) {
75   return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
76 }
77 
78 // vertical accumulation
VFilter(SmoothParams * const p)79 static void VFilter(SmoothParams* const p) {
80   const uint8_t* src = p->src_;
81   const int w = p->width_;
82   uint16_t* const cur = p->cur_;
83   const uint16_t* const top = p->top_;
84   uint16_t* const out = p->end_;
85   uint16_t sum = 0;               // all arithmetic is modulo 16bit
86   int x;
87 
88   for (x = 0; x < w; ++x) {
89     uint16_t new_value;
90     sum += src[x];
91     new_value = top[x] + sum;
92     out[x] = new_value - cur[x];  // vertical sum of 'r' pixels.
93     cur[x] = new_value;
94   }
95   // move input pointers one row down
96   p->top_ = p->cur_;
97   p->cur_ += w;
98   if (p->cur_ == p->end_) p->cur_ = p->start_;  // roll-over
99   // We replicate edges, as it's somewhat easier as a boundary condition.
100   // That's why we don't update the 'src' pointer on top/bottom area:
101   if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
102     p->src_ += p->width_;
103   }
104 }
105 
106 // horizontal accumulation. We use mirror replication of missing pixels, as it's
107 // a little easier to implement (surprisingly).
HFilter(SmoothParams * const p)108 static void HFilter(SmoothParams* const p) {
109   const uint16_t* const in = p->end_;
110   uint16_t* const out = p->average_;
111   const uint32_t scale = p->scale_;
112   const int w = p->width_;
113   const int r = p->radius_;
114 
115   int x;
116   for (x = 0; x <= r; ++x) {   // left mirroring
117     const uint16_t delta = in[x + r - 1] + in[r - x];
118     out[x] = (delta * scale) >> FIX;
119   }
120   for (; x < w - r; ++x) {     // bulk middle run
121     const uint16_t delta = in[x + r] - in[x - r - 1];
122     out[x] = (delta * scale) >> FIX;
123   }
124   for (; x < w; ++x) {         // right mirroring
125     const uint16_t delta =
126         2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
127     out[x] = (delta * scale) >> FIX;
128   }
129 }
130 
131 // emit one filtered output row
ApplyFilter(SmoothParams * const p)132 static void ApplyFilter(SmoothParams* const p) {
133   const uint16_t* const average = p->average_;
134   const int w = p->width_;
135   const int16_t* const correction = p->correction_;
136 #if defined(USE_DITHERING)
137   const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
138 #endif
139   uint8_t* const dst = p->dst_;
140   int x;
141   for (x = 0; x < w; ++x) {
142     const int v = dst[x];
143     if (v < p->max_ && v > p->min_) {
144       const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
145 #if defined(USE_DITHERING)
146       dst[x] = clip_8b(c + dither[x % DSIZE]);
147 #else
148       dst[x] = clip_8b(c);
149 #endif
150     }
151   }
152   p->dst_ += w;  // advance output pointer
153 }
154 
155 //------------------------------------------------------------------------------
156 // Initialize correction table
157 
InitCorrectionLUT(int16_t * const lut,int min_dist)158 static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
159   // The correction curve is:
160   //   f(x) = x for x <= threshold2
161   //   f(x) = 0 for x >= threshold1
162   // and a linear interpolation for range x=[threshold2, threshold1]
163   // (along with f(-x) = -f(x) symmetry).
164   // Note that: threshold2 = 3/4 * threshold1
165   const int threshold1 = min_dist << LFIX;
166   const int threshold2 = (3 * threshold1) >> 2;
167   const int max_threshold = threshold2 << DFIX;
168   const int delta = threshold1 - threshold2;
169   int i;
170   for (i = 1; i <= LUT_SIZE; ++i) {
171     int c = (i <= threshold2) ? (i << DFIX)
172           : (i < threshold1) ? max_threshold * (threshold1 - i) / delta
173           : 0;
174     c >>= LFIX;
175     lut[+i] = +c;
176     lut[-i] = -c;
177   }
178   lut[0] = 0;
179 }
180 
CountLevels(const uint8_t * const data,int size,SmoothParams * const p)181 static void CountLevels(const uint8_t* const data, int size,
182                         SmoothParams* const p) {
183   int i, last_level;
184   uint8_t used_levels[256] = { 0 };
185   p->min_ = 255;
186   p->max_ = 0;
187   for (i = 0; i < size; ++i) {
188     const int v = data[i];
189     if (v < p->min_) p->min_ = v;
190     if (v > p->max_) p->max_ = v;
191     used_levels[v] = 1;
192   }
193   // Compute the mininum distance between two non-zero levels.
194   p->min_level_dist_ = p->max_ - p->min_;
195   last_level = -1;
196   for (i = 0; i < 256; ++i) {
197     if (used_levels[i]) {
198       ++p->num_levels_;
199       if (last_level >= 0) {
200         const int level_dist = i - last_level;
201         if (level_dist < p->min_level_dist_) {
202           p->min_level_dist_ = level_dist;
203         }
204       }
205       last_level = i;
206     }
207   }
208 }
209 
210 // Initialize all params.
InitParams(uint8_t * const data,int width,int height,int radius,SmoothParams * const p)211 static int InitParams(uint8_t* const data, int width, int height,
212                       int radius, SmoothParams* const p) {
213   const int R = 2 * radius + 1;  // total size of the kernel
214 
215   const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
216   const size_t size_m =  width * sizeof(*p->average_);
217   const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
218   const size_t total_size = size_scratch_m + size_m + size_lut;
219   uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
220 
221   if (mem == NULL) return 0;
222   p->mem_ = (void*)mem;
223 
224   p->start_ = (uint16_t*)mem;
225   p->cur_ = p->start_;
226   p->end_ = p->start_ + R * width;
227   p->top_ = p->end_ - width;
228   memset(p->top_, 0, width * sizeof(*p->top_));
229   mem += size_scratch_m;
230 
231   p->average_ = (uint16_t*)mem;
232   mem += size_m;
233 
234   p->width_ = width;
235   p->height_ = height;
236   p->src_ = data;
237   p->dst_ = data;
238   p->radius_ = radius;
239   p->scale_ = (1 << (FIX + LFIX)) / (R * R);  // normalization constant
240   p->row_ = -radius;
241 
242   // analyze the input distribution so we can best-fit the threshold
243   CountLevels(data, width * height, p);
244 
245   // correction table
246   p->correction_ = ((int16_t*)mem) + LUT_SIZE;
247   InitCorrectionLUT(p->correction_, p->min_level_dist_);
248 
249   return 1;
250 }
251 
CleanupParams(SmoothParams * const p)252 static void CleanupParams(SmoothParams* const p) {
253   WebPSafeFree(p->mem_);
254 }
255 
WebPDequantizeLevels(uint8_t * const data,int width,int height,int strength)256 int WebPDequantizeLevels(uint8_t* const data, int width, int height,
257                          int strength) {
258   const int radius = 4 * strength / 100;
259   if (strength < 0 || strength > 100) return 0;
260   if (data == NULL || width <= 0 || height <= 0) return 0;  // bad params
261   if (radius > 0) {
262     SmoothParams p;
263     memset(&p, 0, sizeof(p));
264     if (!InitParams(data, width, height, radius, &p)) return 0;
265     if (p.num_levels_ > 2) {
266       for (; p.row_ < p.height_; ++p.row_) {
267         VFilter(&p);  // accumulate average of input
268         // Need to wait few rows in order to prime the filter,
269         // before emitting some output.
270         if (p.row_ >= p.radius_) {
271           HFilter(&p);
272           ApplyFilter(&p);
273         }
274       }
275     }
276     CleanupParams(&p);
277   }
278   return 1;
279 }
280