1 //===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file performs vector type splitting and scalarization for LegalizeTypes.
11 // Scalarization is the act of changing a computation in an illegal one-element
12 // vector type to be a computation in its scalar element type. For example,
13 // implementing <1 x f32> arithmetic in a scalar f32 register. This is needed
14 // as a base case when scalarizing vector arithmetic like <4 x f32>, which
15 // eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16 // types.
17 // Splitting is the act of changing a computation in an invalid vector type to
18 // be a computation in two vectors of half the size. For example, implementing
19 // <128 x f32> operations in terms of two <64 x f32> operations.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "LegalizeTypes.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28
29 #define DEBUG_TYPE "legalize-types"
30
31 //===----------------------------------------------------------------------===//
32 // Result Vector Scalarization: <1 x ty> -> ty.
33 //===----------------------------------------------------------------------===//
34
ScalarizeVectorResult(SDNode * N,unsigned ResNo)35 void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
36 DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
37 N->dump(&DAG);
38 dbgs() << "\n");
39 SDValue R = SDValue();
40
41 switch (N->getOpcode()) {
42 default:
43 #ifndef NDEBUG
44 dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
45 N->dump(&DAG);
46 dbgs() << "\n";
47 #endif
48 report_fatal_error("Do not know how to scalarize the result of this "
49 "operator!\n");
50
51 case ISD::MERGE_VALUES: R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
52 case ISD::BITCAST: R = ScalarizeVecRes_BITCAST(N); break;
53 case ISD::BUILD_VECTOR: R = ScalarizeVecRes_BUILD_VECTOR(N); break;
54 case ISD::CONVERT_RNDSAT: R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
55 case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
56 case ISD::FP_ROUND: R = ScalarizeVecRes_FP_ROUND(N); break;
57 case ISD::FP_ROUND_INREG: R = ScalarizeVecRes_InregOp(N); break;
58 case ISD::FPOWI: R = ScalarizeVecRes_FPOWI(N); break;
59 case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
60 case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
61 case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
62 case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
63 case ISD::VSELECT: R = ScalarizeVecRes_VSELECT(N); break;
64 case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break;
65 case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break;
66 case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break;
67 case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break;
68 case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
69 case ISD::ANY_EXTEND:
70 case ISD::BITREVERSE:
71 case ISD::BSWAP:
72 case ISD::CTLZ:
73 case ISD::CTLZ_ZERO_UNDEF:
74 case ISD::CTPOP:
75 case ISD::CTTZ:
76 case ISD::CTTZ_ZERO_UNDEF:
77 case ISD::FABS:
78 case ISD::FCEIL:
79 case ISD::FCOS:
80 case ISD::FEXP:
81 case ISD::FEXP2:
82 case ISD::FFLOOR:
83 case ISD::FLOG:
84 case ISD::FLOG10:
85 case ISD::FLOG2:
86 case ISD::FNEARBYINT:
87 case ISD::FNEG:
88 case ISD::FP_EXTEND:
89 case ISD::FP_TO_SINT:
90 case ISD::FP_TO_UINT:
91 case ISD::FRINT:
92 case ISD::FROUND:
93 case ISD::FSIN:
94 case ISD::FSQRT:
95 case ISD::FTRUNC:
96 case ISD::SIGN_EXTEND:
97 case ISD::SINT_TO_FP:
98 case ISD::TRUNCATE:
99 case ISD::UINT_TO_FP:
100 case ISD::ZERO_EXTEND:
101 R = ScalarizeVecRes_UnaryOp(N);
102 break;
103
104 case ISD::ADD:
105 case ISD::AND:
106 case ISD::FADD:
107 case ISD::FCOPYSIGN:
108 case ISD::FDIV:
109 case ISD::FMUL:
110 case ISD::FMINNUM:
111 case ISD::FMAXNUM:
112 case ISD::FMINNAN:
113 case ISD::FMAXNAN:
114 case ISD::SMIN:
115 case ISD::SMAX:
116 case ISD::UMIN:
117 case ISD::UMAX:
118
119 case ISD::FPOW:
120 case ISD::FREM:
121 case ISD::FSUB:
122 case ISD::MUL:
123 case ISD::OR:
124 case ISD::SDIV:
125 case ISD::SREM:
126 case ISD::SUB:
127 case ISD::UDIV:
128 case ISD::UREM:
129 case ISD::XOR:
130 case ISD::SHL:
131 case ISD::SRA:
132 case ISD::SRL:
133 R = ScalarizeVecRes_BinOp(N);
134 break;
135 case ISD::FMA:
136 R = ScalarizeVecRes_TernaryOp(N);
137 break;
138 }
139
140 // If R is null, the sub-method took care of registering the result.
141 if (R.getNode())
142 SetScalarizedVector(SDValue(N, ResNo), R);
143 }
144
ScalarizeVecRes_BinOp(SDNode * N)145 SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
146 SDValue LHS = GetScalarizedVector(N->getOperand(0));
147 SDValue RHS = GetScalarizedVector(N->getOperand(1));
148 return DAG.getNode(N->getOpcode(), SDLoc(N),
149 LHS.getValueType(), LHS, RHS, N->getFlags());
150 }
151
ScalarizeVecRes_TernaryOp(SDNode * N)152 SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
153 SDValue Op0 = GetScalarizedVector(N->getOperand(0));
154 SDValue Op1 = GetScalarizedVector(N->getOperand(1));
155 SDValue Op2 = GetScalarizedVector(N->getOperand(2));
156 return DAG.getNode(N->getOpcode(), SDLoc(N),
157 Op0.getValueType(), Op0, Op1, Op2);
158 }
159
ScalarizeVecRes_MERGE_VALUES(SDNode * N,unsigned ResNo)160 SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
161 unsigned ResNo) {
162 SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
163 return GetScalarizedVector(Op);
164 }
165
ScalarizeVecRes_BITCAST(SDNode * N)166 SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
167 EVT NewVT = N->getValueType(0).getVectorElementType();
168 return DAG.getNode(ISD::BITCAST, SDLoc(N),
169 NewVT, N->getOperand(0));
170 }
171
ScalarizeVecRes_BUILD_VECTOR(SDNode * N)172 SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
173 EVT EltVT = N->getValueType(0).getVectorElementType();
174 SDValue InOp = N->getOperand(0);
175 // The BUILD_VECTOR operands may be of wider element types and
176 // we may need to truncate them back to the requested return type.
177 if (EltVT.isInteger())
178 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
179 return InOp;
180 }
181
ScalarizeVecRes_CONVERT_RNDSAT(SDNode * N)182 SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
183 EVT NewVT = N->getValueType(0).getVectorElementType();
184 SDValue Op0 = GetScalarizedVector(N->getOperand(0));
185 return DAG.getConvertRndSat(NewVT, SDLoc(N),
186 Op0, DAG.getValueType(NewVT),
187 DAG.getValueType(Op0.getValueType()),
188 N->getOperand(3),
189 N->getOperand(4),
190 cast<CvtRndSatSDNode>(N)->getCvtCode());
191 }
192
ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode * N)193 SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
194 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
195 N->getValueType(0).getVectorElementType(),
196 N->getOperand(0), N->getOperand(1));
197 }
198
ScalarizeVecRes_FP_ROUND(SDNode * N)199 SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
200 EVT NewVT = N->getValueType(0).getVectorElementType();
201 SDValue Op = GetScalarizedVector(N->getOperand(0));
202 return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
203 NewVT, Op, N->getOperand(1));
204 }
205
ScalarizeVecRes_FPOWI(SDNode * N)206 SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
207 SDValue Op = GetScalarizedVector(N->getOperand(0));
208 return DAG.getNode(ISD::FPOWI, SDLoc(N),
209 Op.getValueType(), Op, N->getOperand(1));
210 }
211
ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode * N)212 SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
213 // The value to insert may have a wider type than the vector element type,
214 // so be sure to truncate it to the element type if necessary.
215 SDValue Op = N->getOperand(1);
216 EVT EltVT = N->getValueType(0).getVectorElementType();
217 if (Op.getValueType() != EltVT)
218 // FIXME: Can this happen for floating point types?
219 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
220 return Op;
221 }
222
ScalarizeVecRes_LOAD(LoadSDNode * N)223 SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
224 assert(N->isUnindexed() && "Indexed vector load?");
225
226 SDValue Result = DAG.getLoad(ISD::UNINDEXED,
227 N->getExtensionType(),
228 N->getValueType(0).getVectorElementType(),
229 SDLoc(N),
230 N->getChain(), N->getBasePtr(),
231 DAG.getUNDEF(N->getBasePtr().getValueType()),
232 N->getPointerInfo(),
233 N->getMemoryVT().getVectorElementType(),
234 N->isVolatile(), N->isNonTemporal(),
235 N->isInvariant(), N->getOriginalAlignment(),
236 N->getAAInfo());
237
238 // Legalize the chain result - switch anything that used the old chain to
239 // use the new one.
240 ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
241 return Result;
242 }
243
ScalarizeVecRes_UnaryOp(SDNode * N)244 SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
245 // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
246 EVT DestVT = N->getValueType(0).getVectorElementType();
247 SDValue Op = N->getOperand(0);
248 EVT OpVT = Op.getValueType();
249 SDLoc DL(N);
250 // The result needs scalarizing, but it's not a given that the source does.
251 // This is a workaround for targets where it's impossible to scalarize the
252 // result of a conversion, because the source type is legal.
253 // For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32}
254 // are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is
255 // legal and was not scalarized.
256 // See the similar logic in ScalarizeVecRes_VSETCC
257 if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
258 Op = GetScalarizedVector(Op);
259 } else {
260 EVT VT = OpVT.getVectorElementType();
261 Op = DAG.getNode(
262 ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
263 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
264 }
265 return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
266 }
267
ScalarizeVecRes_InregOp(SDNode * N)268 SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
269 EVT EltVT = N->getValueType(0).getVectorElementType();
270 EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
271 SDValue LHS = GetScalarizedVector(N->getOperand(0));
272 return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
273 LHS, DAG.getValueType(ExtVT));
274 }
275
ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode * N)276 SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
277 // If the operand is wider than the vector element type then it is implicitly
278 // truncated. Make that explicit here.
279 EVT EltVT = N->getValueType(0).getVectorElementType();
280 SDValue InOp = N->getOperand(0);
281 if (InOp.getValueType() != EltVT)
282 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
283 return InOp;
284 }
285
ScalarizeVecRes_VSELECT(SDNode * N)286 SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
287 SDValue Cond = GetScalarizedVector(N->getOperand(0));
288 SDValue LHS = GetScalarizedVector(N->getOperand(1));
289 TargetLowering::BooleanContent ScalarBool =
290 TLI.getBooleanContents(false, false);
291 TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true, false);
292
293 // If integer and float booleans have different contents then we can't
294 // reliably optimize in all cases. There is a full explanation for this in
295 // DAGCombiner::visitSELECT() where the same issue affects folding
296 // (select C, 0, 1) to (xor C, 1).
297 if (TLI.getBooleanContents(false, false) !=
298 TLI.getBooleanContents(false, true)) {
299 // At least try the common case where the boolean is generated by a
300 // comparison.
301 if (Cond->getOpcode() == ISD::SETCC) {
302 EVT OpVT = Cond->getOperand(0)->getValueType(0);
303 ScalarBool = TLI.getBooleanContents(OpVT.getScalarType());
304 VecBool = TLI.getBooleanContents(OpVT);
305 } else
306 ScalarBool = TargetLowering::UndefinedBooleanContent;
307 }
308
309 if (ScalarBool != VecBool) {
310 EVT CondVT = Cond.getValueType();
311 switch (ScalarBool) {
312 case TargetLowering::UndefinedBooleanContent:
313 break;
314 case TargetLowering::ZeroOrOneBooleanContent:
315 assert(VecBool == TargetLowering::UndefinedBooleanContent ||
316 VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent);
317 // Vector read from all ones, scalar expects a single 1 so mask.
318 Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
319 Cond, DAG.getConstant(1, SDLoc(N), CondVT));
320 break;
321 case TargetLowering::ZeroOrNegativeOneBooleanContent:
322 assert(VecBool == TargetLowering::UndefinedBooleanContent ||
323 VecBool == TargetLowering::ZeroOrOneBooleanContent);
324 // Vector reads from a one, scalar from all ones so sign extend.
325 Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
326 Cond, DAG.getValueType(MVT::i1));
327 break;
328 }
329 }
330
331 return DAG.getSelect(SDLoc(N),
332 LHS.getValueType(), Cond, LHS,
333 GetScalarizedVector(N->getOperand(2)));
334 }
335
ScalarizeVecRes_SELECT(SDNode * N)336 SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
337 SDValue LHS = GetScalarizedVector(N->getOperand(1));
338 return DAG.getSelect(SDLoc(N),
339 LHS.getValueType(), N->getOperand(0), LHS,
340 GetScalarizedVector(N->getOperand(2)));
341 }
342
ScalarizeVecRes_SELECT_CC(SDNode * N)343 SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
344 SDValue LHS = GetScalarizedVector(N->getOperand(2));
345 return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
346 N->getOperand(0), N->getOperand(1),
347 LHS, GetScalarizedVector(N->getOperand(3)),
348 N->getOperand(4));
349 }
350
ScalarizeVecRes_SETCC(SDNode * N)351 SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
352 assert(N->getValueType(0).isVector() ==
353 N->getOperand(0).getValueType().isVector() &&
354 "Scalar/Vector type mismatch");
355
356 if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N);
357
358 SDValue LHS = GetScalarizedVector(N->getOperand(0));
359 SDValue RHS = GetScalarizedVector(N->getOperand(1));
360 SDLoc DL(N);
361
362 // Turn it into a scalar SETCC.
363 return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
364 }
365
ScalarizeVecRes_UNDEF(SDNode * N)366 SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
367 return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
368 }
369
ScalarizeVecRes_VECTOR_SHUFFLE(SDNode * N)370 SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
371 // Figure out if the scalar is the LHS or RHS and return it.
372 SDValue Arg = N->getOperand(2).getOperand(0);
373 if (Arg.getOpcode() == ISD::UNDEF)
374 return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
375 unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
376 return GetScalarizedVector(N->getOperand(Op));
377 }
378
ScalarizeVecRes_VSETCC(SDNode * N)379 SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
380 assert(N->getValueType(0).isVector() &&
381 N->getOperand(0).getValueType().isVector() &&
382 "Operand types must be vectors");
383 SDValue LHS = N->getOperand(0);
384 SDValue RHS = N->getOperand(1);
385 EVT OpVT = LHS.getValueType();
386 EVT NVT = N->getValueType(0).getVectorElementType();
387 SDLoc DL(N);
388
389 // The result needs scalarizing, but it's not a given that the source does.
390 if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
391 LHS = GetScalarizedVector(LHS);
392 RHS = GetScalarizedVector(RHS);
393 } else {
394 EVT VT = OpVT.getVectorElementType();
395 LHS = DAG.getNode(
396 ISD::EXTRACT_VECTOR_ELT, DL, VT, LHS,
397 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
398 RHS = DAG.getNode(
399 ISD::EXTRACT_VECTOR_ELT, DL, VT, RHS,
400 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
401 }
402
403 // Turn it into a scalar SETCC.
404 SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
405 N->getOperand(2));
406 // Vectors may have a different boolean contents to scalars. Promote the
407 // value appropriately.
408 ISD::NodeType ExtendCode =
409 TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
410 return DAG.getNode(ExtendCode, DL, NVT, Res);
411 }
412
413
414 //===----------------------------------------------------------------------===//
415 // Operand Vector Scalarization <1 x ty> -> ty.
416 //===----------------------------------------------------------------------===//
417
ScalarizeVectorOperand(SDNode * N,unsigned OpNo)418 bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
419 DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
420 N->dump(&DAG);
421 dbgs() << "\n");
422 SDValue Res = SDValue();
423
424 if (!Res.getNode()) {
425 switch (N->getOpcode()) {
426 default:
427 #ifndef NDEBUG
428 dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
429 N->dump(&DAG);
430 dbgs() << "\n";
431 #endif
432 llvm_unreachable("Do not know how to scalarize this operator's operand!");
433 case ISD::BITCAST:
434 Res = ScalarizeVecOp_BITCAST(N);
435 break;
436 case ISD::ANY_EXTEND:
437 case ISD::ZERO_EXTEND:
438 case ISD::SIGN_EXTEND:
439 case ISD::TRUNCATE:
440 case ISD::FP_TO_SINT:
441 case ISD::FP_TO_UINT:
442 case ISD::SINT_TO_FP:
443 case ISD::UINT_TO_FP:
444 Res = ScalarizeVecOp_UnaryOp(N);
445 break;
446 case ISD::CONCAT_VECTORS:
447 Res = ScalarizeVecOp_CONCAT_VECTORS(N);
448 break;
449 case ISD::EXTRACT_VECTOR_ELT:
450 Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
451 break;
452 case ISD::VSELECT:
453 Res = ScalarizeVecOp_VSELECT(N);
454 break;
455 case ISD::STORE:
456 Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
457 break;
458 case ISD::FP_ROUND:
459 Res = ScalarizeVecOp_FP_ROUND(N, OpNo);
460 break;
461 }
462 }
463
464 // If the result is null, the sub-method took care of registering results etc.
465 if (!Res.getNode()) return false;
466
467 // If the result is N, the sub-method updated N in place. Tell the legalizer
468 // core about this.
469 if (Res.getNode() == N)
470 return true;
471
472 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
473 "Invalid operand expansion");
474
475 ReplaceValueWith(SDValue(N, 0), Res);
476 return false;
477 }
478
479 /// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs
480 /// to be scalarized, it must be <1 x ty>. Convert the element instead.
ScalarizeVecOp_BITCAST(SDNode * N)481 SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
482 SDValue Elt = GetScalarizedVector(N->getOperand(0));
483 return DAG.getNode(ISD::BITCAST, SDLoc(N),
484 N->getValueType(0), Elt);
485 }
486
487 /// ScalarizeVecOp_UnaryOp - If the input is a vector that needs to be
488 /// scalarized, it must be <1 x ty>. Do the operation on the element instead.
ScalarizeVecOp_UnaryOp(SDNode * N)489 SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
490 assert(N->getValueType(0).getVectorNumElements() == 1 &&
491 "Unexpected vector type!");
492 SDValue Elt = GetScalarizedVector(N->getOperand(0));
493 SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N),
494 N->getValueType(0).getScalarType(), Elt);
495 // Revectorize the result so the types line up with what the uses of this
496 // expression expect.
497 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Op);
498 }
499
500 /// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
501 /// use a BUILD_VECTOR instead.
ScalarizeVecOp_CONCAT_VECTORS(SDNode * N)502 SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
503 SmallVector<SDValue, 8> Ops(N->getNumOperands());
504 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
505 Ops[i] = GetScalarizedVector(N->getOperand(i));
506 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Ops);
507 }
508
509 /// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
510 /// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
511 /// index.
ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode * N)512 SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
513 SDValue Res = GetScalarizedVector(N->getOperand(0));
514 if (Res.getValueType() != N->getValueType(0))
515 Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0),
516 Res);
517 return Res;
518 }
519
520
521 /// ScalarizeVecOp_VSELECT - If the input condition is a vector that needs to be
522 /// scalarized, it must be <1 x i1>, so just convert to a normal ISD::SELECT
523 /// (still with vector output type since that was acceptable if we got here).
ScalarizeVecOp_VSELECT(SDNode * N)524 SDValue DAGTypeLegalizer::ScalarizeVecOp_VSELECT(SDNode *N) {
525 SDValue ScalarCond = GetScalarizedVector(N->getOperand(0));
526 EVT VT = N->getValueType(0);
527
528 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, ScalarCond, N->getOperand(1),
529 N->getOperand(2));
530 }
531
532 /// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
533 /// scalarized, it must be <1 x ty>. Just store the element.
ScalarizeVecOp_STORE(StoreSDNode * N,unsigned OpNo)534 SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
535 assert(N->isUnindexed() && "Indexed store of one-element vector?");
536 assert(OpNo == 1 && "Do not know how to scalarize this operand!");
537 SDLoc dl(N);
538
539 if (N->isTruncatingStore())
540 return DAG.getTruncStore(N->getChain(), dl,
541 GetScalarizedVector(N->getOperand(1)),
542 N->getBasePtr(), N->getPointerInfo(),
543 N->getMemoryVT().getVectorElementType(),
544 N->isVolatile(), N->isNonTemporal(),
545 N->getAlignment(), N->getAAInfo());
546
547 return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
548 N->getBasePtr(), N->getPointerInfo(),
549 N->isVolatile(), N->isNonTemporal(),
550 N->getOriginalAlignment(), N->getAAInfo());
551 }
552
553 /// ScalarizeVecOp_FP_ROUND - If the value to round is a vector that needs
554 /// to be scalarized, it must be <1 x ty>. Convert the element instead.
ScalarizeVecOp_FP_ROUND(SDNode * N,unsigned OpNo)555 SDValue DAGTypeLegalizer::ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo) {
556 SDValue Elt = GetScalarizedVector(N->getOperand(0));
557 SDValue Res = DAG.getNode(ISD::FP_ROUND, SDLoc(N),
558 N->getValueType(0).getVectorElementType(), Elt,
559 N->getOperand(1));
560 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
561 }
562
563 //===----------------------------------------------------------------------===//
564 // Result Vector Splitting
565 //===----------------------------------------------------------------------===//
566
567 /// SplitVectorResult - This method is called when the specified result of the
568 /// specified node is found to need vector splitting. At this point, the node
569 /// may also have invalid operands or may have other results that need
570 /// legalization, we just know that (at least) one result needs vector
571 /// splitting.
SplitVectorResult(SDNode * N,unsigned ResNo)572 void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
573 DEBUG(dbgs() << "Split node result: ";
574 N->dump(&DAG);
575 dbgs() << "\n");
576 SDValue Lo, Hi;
577
578 // See if the target wants to custom expand this node.
579 if (CustomLowerNode(N, N->getValueType(ResNo), true))
580 return;
581
582 switch (N->getOpcode()) {
583 default:
584 #ifndef NDEBUG
585 dbgs() << "SplitVectorResult #" << ResNo << ": ";
586 N->dump(&DAG);
587 dbgs() << "\n";
588 #endif
589 report_fatal_error("Do not know how to split the result of this "
590 "operator!\n");
591
592 case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
593 case ISD::VSELECT:
594 case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
595 case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
596 case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
597 case ISD::BITCAST: SplitVecRes_BITCAST(N, Lo, Hi); break;
598 case ISD::BUILD_VECTOR: SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
599 case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
600 case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
601 case ISD::INSERT_SUBVECTOR: SplitVecRes_INSERT_SUBVECTOR(N, Lo, Hi); break;
602 case ISD::FP_ROUND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
603 case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break;
604 case ISD::FCOPYSIGN: SplitVecRes_FCOPYSIGN(N, Lo, Hi); break;
605 case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
606 case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
607 case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
608 case ISD::LOAD:
609 SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
610 break;
611 case ISD::MLOAD:
612 SplitVecRes_MLOAD(cast<MaskedLoadSDNode>(N), Lo, Hi);
613 break;
614 case ISD::MGATHER:
615 SplitVecRes_MGATHER(cast<MaskedGatherSDNode>(N), Lo, Hi);
616 break;
617 case ISD::SETCC:
618 SplitVecRes_SETCC(N, Lo, Hi);
619 break;
620 case ISD::VECTOR_SHUFFLE:
621 SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
622 break;
623
624 case ISD::BITREVERSE:
625 case ISD::BSWAP:
626 case ISD::CONVERT_RNDSAT:
627 case ISD::CTLZ:
628 case ISD::CTTZ:
629 case ISD::CTLZ_ZERO_UNDEF:
630 case ISD::CTTZ_ZERO_UNDEF:
631 case ISD::CTPOP:
632 case ISD::FABS:
633 case ISD::FCEIL:
634 case ISD::FCOS:
635 case ISD::FEXP:
636 case ISD::FEXP2:
637 case ISD::FFLOOR:
638 case ISD::FLOG:
639 case ISD::FLOG10:
640 case ISD::FLOG2:
641 case ISD::FNEARBYINT:
642 case ISD::FNEG:
643 case ISD::FP_EXTEND:
644 case ISD::FP_ROUND:
645 case ISD::FP_TO_SINT:
646 case ISD::FP_TO_UINT:
647 case ISD::FRINT:
648 case ISD::FROUND:
649 case ISD::FSIN:
650 case ISD::FSQRT:
651 case ISD::FTRUNC:
652 case ISD::SINT_TO_FP:
653 case ISD::TRUNCATE:
654 case ISD::UINT_TO_FP:
655 SplitVecRes_UnaryOp(N, Lo, Hi);
656 break;
657
658 case ISD::ANY_EXTEND:
659 case ISD::SIGN_EXTEND:
660 case ISD::ZERO_EXTEND:
661 SplitVecRes_ExtendOp(N, Lo, Hi);
662 break;
663
664 case ISD::ADD:
665 case ISD::SUB:
666 case ISD::MUL:
667 case ISD::FADD:
668 case ISD::FSUB:
669 case ISD::FMUL:
670 case ISD::FMINNUM:
671 case ISD::FMAXNUM:
672 case ISD::FMINNAN:
673 case ISD::FMAXNAN:
674 case ISD::SDIV:
675 case ISD::UDIV:
676 case ISD::FDIV:
677 case ISD::FPOW:
678 case ISD::AND:
679 case ISD::OR:
680 case ISD::XOR:
681 case ISD::SHL:
682 case ISD::SRA:
683 case ISD::SRL:
684 case ISD::UREM:
685 case ISD::SREM:
686 case ISD::FREM:
687 case ISD::SMIN:
688 case ISD::SMAX:
689 case ISD::UMIN:
690 case ISD::UMAX:
691 SplitVecRes_BinOp(N, Lo, Hi);
692 break;
693 case ISD::FMA:
694 SplitVecRes_TernaryOp(N, Lo, Hi);
695 break;
696 }
697
698 // If Lo/Hi is null, the sub-method took care of registering results etc.
699 if (Lo.getNode())
700 SetSplitVector(SDValue(N, ResNo), Lo, Hi);
701 }
702
SplitVecRes_BinOp(SDNode * N,SDValue & Lo,SDValue & Hi)703 void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
704 SDValue &Hi) {
705 SDValue LHSLo, LHSHi;
706 GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
707 SDValue RHSLo, RHSHi;
708 GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
709 SDLoc dl(N);
710
711 const SDNodeFlags *Flags = N->getFlags();
712 unsigned Opcode = N->getOpcode();
713 Lo = DAG.getNode(Opcode, dl, LHSLo.getValueType(), LHSLo, RHSLo, Flags);
714 Hi = DAG.getNode(Opcode, dl, LHSHi.getValueType(), LHSHi, RHSHi, Flags);
715 }
716
SplitVecRes_TernaryOp(SDNode * N,SDValue & Lo,SDValue & Hi)717 void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
718 SDValue &Hi) {
719 SDValue Op0Lo, Op0Hi;
720 GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
721 SDValue Op1Lo, Op1Hi;
722 GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
723 SDValue Op2Lo, Op2Hi;
724 GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
725 SDLoc dl(N);
726
727 Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(),
728 Op0Lo, Op1Lo, Op2Lo);
729 Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(),
730 Op0Hi, Op1Hi, Op2Hi);
731 }
732
SplitVecRes_BITCAST(SDNode * N,SDValue & Lo,SDValue & Hi)733 void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
734 SDValue &Hi) {
735 // We know the result is a vector. The input may be either a vector or a
736 // scalar value.
737 EVT LoVT, HiVT;
738 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
739 SDLoc dl(N);
740
741 SDValue InOp = N->getOperand(0);
742 EVT InVT = InOp.getValueType();
743
744 // Handle some special cases efficiently.
745 switch (getTypeAction(InVT)) {
746 case TargetLowering::TypeLegal:
747 case TargetLowering::TypePromoteInteger:
748 case TargetLowering::TypePromoteFloat:
749 case TargetLowering::TypeSoftenFloat:
750 case TargetLowering::TypeScalarizeVector:
751 case TargetLowering::TypeWidenVector:
752 break;
753 case TargetLowering::TypeExpandInteger:
754 case TargetLowering::TypeExpandFloat:
755 // A scalar to vector conversion, where the scalar needs expansion.
756 // If the vector is being split in two then we can just convert the
757 // expanded pieces.
758 if (LoVT == HiVT) {
759 GetExpandedOp(InOp, Lo, Hi);
760 if (DAG.getDataLayout().isBigEndian())
761 std::swap(Lo, Hi);
762 Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
763 Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
764 return;
765 }
766 break;
767 case TargetLowering::TypeSplitVector:
768 // If the input is a vector that needs to be split, convert each split
769 // piece of the input now.
770 GetSplitVector(InOp, Lo, Hi);
771 Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
772 Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
773 return;
774 }
775
776 // In the general case, convert the input to an integer and split it by hand.
777 EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
778 EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
779 if (DAG.getDataLayout().isBigEndian())
780 std::swap(LoIntVT, HiIntVT);
781
782 SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
783
784 if (DAG.getDataLayout().isBigEndian())
785 std::swap(Lo, Hi);
786 Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
787 Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
788 }
789
SplitVecRes_BUILD_VECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)790 void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
791 SDValue &Hi) {
792 EVT LoVT, HiVT;
793 SDLoc dl(N);
794 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
795 unsigned LoNumElts = LoVT.getVectorNumElements();
796 SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
797 Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, LoOps);
798
799 SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
800 Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, HiOps);
801 }
802
SplitVecRes_CONCAT_VECTORS(SDNode * N,SDValue & Lo,SDValue & Hi)803 void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
804 SDValue &Hi) {
805 assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
806 SDLoc dl(N);
807 unsigned NumSubvectors = N->getNumOperands() / 2;
808 if (NumSubvectors == 1) {
809 Lo = N->getOperand(0);
810 Hi = N->getOperand(1);
811 return;
812 }
813
814 EVT LoVT, HiVT;
815 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
816
817 SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
818 Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, LoOps);
819
820 SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
821 Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, HiOps);
822 }
823
SplitVecRes_EXTRACT_SUBVECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)824 void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
825 SDValue &Hi) {
826 SDValue Vec = N->getOperand(0);
827 SDValue Idx = N->getOperand(1);
828 SDLoc dl(N);
829
830 EVT LoVT, HiVT;
831 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
832
833 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
834 uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
835 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
836 DAG.getConstant(IdxVal + LoVT.getVectorNumElements(), dl,
837 TLI.getVectorIdxTy(DAG.getDataLayout())));
838 }
839
SplitVecRes_INSERT_SUBVECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)840 void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
841 SDValue &Hi) {
842 SDValue Vec = N->getOperand(0);
843 SDValue SubVec = N->getOperand(1);
844 SDValue Idx = N->getOperand(2);
845 SDLoc dl(N);
846 GetSplitVector(Vec, Lo, Hi);
847
848 // Spill the vector to the stack.
849 EVT VecVT = Vec.getValueType();
850 EVT SubVecVT = VecVT.getVectorElementType();
851 SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
852 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
853 MachinePointerInfo(), false, false, 0);
854
855 // Store the new subvector into the specified index.
856 SDValue SubVecPtr = GetVectorElementPointer(StackPtr, SubVecVT, Idx);
857 Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
858 unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(VecType);
859 Store = DAG.getStore(Store, dl, SubVec, SubVecPtr, MachinePointerInfo(),
860 false, false, 0);
861
862 // Load the Lo part from the stack slot.
863 Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
864 false, false, false, 0);
865
866 // Increment the pointer to the other part.
867 unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
868 StackPtr =
869 DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
870 DAG.getConstant(IncrementSize, dl, StackPtr.getValueType()));
871
872 // Load the Hi part from the stack slot.
873 Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
874 false, false, false, MinAlign(Alignment, IncrementSize));
875 }
876
SplitVecRes_FPOWI(SDNode * N,SDValue & Lo,SDValue & Hi)877 void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
878 SDValue &Hi) {
879 SDLoc dl(N);
880 GetSplitVector(N->getOperand(0), Lo, Hi);
881 Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
882 Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
883 }
884
SplitVecRes_FCOPYSIGN(SDNode * N,SDValue & Lo,SDValue & Hi)885 void DAGTypeLegalizer::SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo,
886 SDValue &Hi) {
887 SDValue LHSLo, LHSHi;
888 GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
889 SDLoc DL(N);
890
891 SDValue RHSLo, RHSHi;
892 SDValue RHS = N->getOperand(1);
893 EVT RHSVT = RHS.getValueType();
894 if (getTypeAction(RHSVT) == TargetLowering::TypeSplitVector)
895 GetSplitVector(RHS, RHSLo, RHSHi);
896 else
897 std::tie(RHSLo, RHSHi) = DAG.SplitVector(RHS, SDLoc(RHS));
898
899
900 Lo = DAG.getNode(ISD::FCOPYSIGN, DL, LHSLo.getValueType(), LHSLo, RHSLo);
901 Hi = DAG.getNode(ISD::FCOPYSIGN, DL, LHSHi.getValueType(), LHSHi, RHSHi);
902 }
903
SplitVecRes_InregOp(SDNode * N,SDValue & Lo,SDValue & Hi)904 void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
905 SDValue &Hi) {
906 SDValue LHSLo, LHSHi;
907 GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
908 SDLoc dl(N);
909
910 EVT LoVT, HiVT;
911 std::tie(LoVT, HiVT) =
912 DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT());
913
914 Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
915 DAG.getValueType(LoVT));
916 Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
917 DAG.getValueType(HiVT));
918 }
919
SplitVecRes_INSERT_VECTOR_ELT(SDNode * N,SDValue & Lo,SDValue & Hi)920 void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
921 SDValue &Hi) {
922 SDValue Vec = N->getOperand(0);
923 SDValue Elt = N->getOperand(1);
924 SDValue Idx = N->getOperand(2);
925 SDLoc dl(N);
926 GetSplitVector(Vec, Lo, Hi);
927
928 if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
929 unsigned IdxVal = CIdx->getZExtValue();
930 unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
931 if (IdxVal < LoNumElts)
932 Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
933 Lo.getValueType(), Lo, Elt, Idx);
934 else
935 Hi =
936 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
937 DAG.getConstant(IdxVal - LoNumElts, dl,
938 TLI.getVectorIdxTy(DAG.getDataLayout())));
939 return;
940 }
941
942 // See if the target wants to custom expand this node.
943 if (CustomLowerNode(N, N->getValueType(0), true))
944 return;
945
946 // Spill the vector to the stack.
947 EVT VecVT = Vec.getValueType();
948 EVT EltVT = VecVT.getVectorElementType();
949 SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
950 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
951 MachinePointerInfo(), false, false, 0);
952
953 // Store the new element. This may be larger than the vector element type,
954 // so use a truncating store.
955 SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
956 Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
957 unsigned Alignment = DAG.getDataLayout().getPrefTypeAlignment(VecType);
958 Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
959 false, false, 0);
960
961 // Load the Lo part from the stack slot.
962 Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
963 false, false, false, 0);
964
965 // Increment the pointer to the other part.
966 unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
967 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
968 DAG.getConstant(IncrementSize, dl,
969 StackPtr.getValueType()));
970
971 // Load the Hi part from the stack slot.
972 Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
973 false, false, false, MinAlign(Alignment, IncrementSize));
974 }
975
SplitVecRes_SCALAR_TO_VECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)976 void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
977 SDValue &Hi) {
978 EVT LoVT, HiVT;
979 SDLoc dl(N);
980 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
981 Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
982 Hi = DAG.getUNDEF(HiVT);
983 }
984
SplitVecRes_LOAD(LoadSDNode * LD,SDValue & Lo,SDValue & Hi)985 void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
986 SDValue &Hi) {
987 assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
988 EVT LoVT, HiVT;
989 SDLoc dl(LD);
990 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
991
992 ISD::LoadExtType ExtType = LD->getExtensionType();
993 SDValue Ch = LD->getChain();
994 SDValue Ptr = LD->getBasePtr();
995 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
996 EVT MemoryVT = LD->getMemoryVT();
997 unsigned Alignment = LD->getOriginalAlignment();
998 bool isVolatile = LD->isVolatile();
999 bool isNonTemporal = LD->isNonTemporal();
1000 bool isInvariant = LD->isInvariant();
1001 AAMDNodes AAInfo = LD->getAAInfo();
1002
1003 EVT LoMemVT, HiMemVT;
1004 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1005
1006 Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
1007 LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
1008 isInvariant, Alignment, AAInfo);
1009
1010 unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1011 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1012 DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
1013 Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
1014 LD->getPointerInfo().getWithOffset(IncrementSize),
1015 HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment,
1016 AAInfo);
1017
1018 // Build a factor node to remember that this load is independent of the
1019 // other one.
1020 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1021 Hi.getValue(1));
1022
1023 // Legalize the chain result - switch anything that used the old chain to
1024 // use the new one.
1025 ReplaceValueWith(SDValue(LD, 1), Ch);
1026 }
1027
SplitVecRes_MLOAD(MaskedLoadSDNode * MLD,SDValue & Lo,SDValue & Hi)1028 void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
1029 SDValue &Lo, SDValue &Hi) {
1030 EVT LoVT, HiVT;
1031 SDLoc dl(MLD);
1032 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
1033
1034 SDValue Ch = MLD->getChain();
1035 SDValue Ptr = MLD->getBasePtr();
1036 SDValue Mask = MLD->getMask();
1037 SDValue Src0 = MLD->getSrc0();
1038 unsigned Alignment = MLD->getOriginalAlignment();
1039 ISD::LoadExtType ExtType = MLD->getExtensionType();
1040
1041 // if Alignment is equal to the vector size,
1042 // take the half of it for the second part
1043 unsigned SecondHalfAlignment =
1044 (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
1045 Alignment/2 : Alignment;
1046
1047 // Split Mask operand
1048 SDValue MaskLo, MaskHi;
1049 if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
1050 GetSplitVector(Mask, MaskLo, MaskHi);
1051 else
1052 std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
1053
1054 EVT MemoryVT = MLD->getMemoryVT();
1055 EVT LoMemVT, HiMemVT;
1056 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1057
1058 SDValue Src0Lo, Src0Hi;
1059 if (getTypeAction(Src0.getValueType()) == TargetLowering::TypeSplitVector)
1060 GetSplitVector(Src0, Src0Lo, Src0Hi);
1061 else
1062 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
1063
1064 MachineMemOperand *MMO = DAG.getMachineFunction().
1065 getMachineMemOperand(MLD->getPointerInfo(),
1066 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
1067 Alignment, MLD->getAAInfo(), MLD->getRanges());
1068
1069 Lo = DAG.getMaskedLoad(LoVT, dl, Ch, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
1070 ExtType);
1071
1072 unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1073 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1074 DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
1075
1076 MMO = DAG.getMachineFunction().
1077 getMachineMemOperand(MLD->getPointerInfo(),
1078 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(),
1079 SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
1080
1081 Hi = DAG.getMaskedLoad(HiVT, dl, Ch, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
1082 ExtType);
1083
1084
1085 // Build a factor node to remember that this load is independent of the
1086 // other one.
1087 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1088 Hi.getValue(1));
1089
1090 // Legalize the chain result - switch anything that used the old chain to
1091 // use the new one.
1092 ReplaceValueWith(SDValue(MLD, 1), Ch);
1093
1094 }
1095
SplitVecRes_MGATHER(MaskedGatherSDNode * MGT,SDValue & Lo,SDValue & Hi)1096 void DAGTypeLegalizer::SplitVecRes_MGATHER(MaskedGatherSDNode *MGT,
1097 SDValue &Lo, SDValue &Hi) {
1098 EVT LoVT, HiVT;
1099 SDLoc dl(MGT);
1100 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MGT->getValueType(0));
1101
1102 SDValue Ch = MGT->getChain();
1103 SDValue Ptr = MGT->getBasePtr();
1104 SDValue Mask = MGT->getMask();
1105 SDValue Src0 = MGT->getValue();
1106 SDValue Index = MGT->getIndex();
1107 unsigned Alignment = MGT->getOriginalAlignment();
1108
1109 // Split Mask operand
1110 SDValue MaskLo, MaskHi;
1111 if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
1112 GetSplitVector(Mask, MaskLo, MaskHi);
1113 else
1114 std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
1115
1116 EVT MemoryVT = MGT->getMemoryVT();
1117 EVT LoMemVT, HiMemVT;
1118 // Split MemoryVT
1119 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1120
1121 SDValue Src0Lo, Src0Hi;
1122 if (getTypeAction(Src0.getValueType()) == TargetLowering::TypeSplitVector)
1123 GetSplitVector(Src0, Src0Lo, Src0Hi);
1124 else
1125 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
1126
1127 SDValue IndexHi, IndexLo;
1128 if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
1129 GetSplitVector(Index, IndexLo, IndexHi);
1130 else
1131 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, dl);
1132
1133 MachineMemOperand *MMO = DAG.getMachineFunction().
1134 getMachineMemOperand(MGT->getPointerInfo(),
1135 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
1136 Alignment, MGT->getAAInfo(), MGT->getRanges());
1137
1138 SDValue OpsLo[] = {Ch, Src0Lo, MaskLo, Ptr, IndexLo};
1139 Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, dl, OpsLo,
1140 MMO);
1141
1142 SDValue OpsHi[] = {Ch, Src0Hi, MaskHi, Ptr, IndexHi};
1143 Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, dl, OpsHi,
1144 MMO);
1145
1146 // Build a factor node to remember that this load is independent of the
1147 // other one.
1148 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1149 Hi.getValue(1));
1150
1151 // Legalize the chain result - switch anything that used the old chain to
1152 // use the new one.
1153 ReplaceValueWith(SDValue(MGT, 1), Ch);
1154 }
1155
1156
SplitVecRes_SETCC(SDNode * N,SDValue & Lo,SDValue & Hi)1157 void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
1158 assert(N->getValueType(0).isVector() &&
1159 N->getOperand(0).getValueType().isVector() &&
1160 "Operand types must be vectors");
1161
1162 EVT LoVT, HiVT;
1163 SDLoc DL(N);
1164 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1165
1166 // Split the input.
1167 SDValue LL, LH, RL, RH;
1168 std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
1169 std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
1170
1171 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
1172 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
1173 }
1174
SplitVecRes_UnaryOp(SDNode * N,SDValue & Lo,SDValue & Hi)1175 void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
1176 SDValue &Hi) {
1177 // Get the dest types - they may not match the input types, e.g. int_to_fp.
1178 EVT LoVT, HiVT;
1179 SDLoc dl(N);
1180 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1181
1182 // If the input also splits, handle it directly for a compile time speedup.
1183 // Otherwise split it by hand.
1184 EVT InVT = N->getOperand(0).getValueType();
1185 if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
1186 GetSplitVector(N->getOperand(0), Lo, Hi);
1187 else
1188 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
1189
1190 if (N->getOpcode() == ISD::FP_ROUND) {
1191 Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
1192 Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
1193 } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
1194 SDValue DTyOpLo = DAG.getValueType(LoVT);
1195 SDValue DTyOpHi = DAG.getValueType(HiVT);
1196 SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
1197 SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
1198 SDValue RndOp = N->getOperand(3);
1199 SDValue SatOp = N->getOperand(4);
1200 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1201 Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
1202 CvtCode);
1203 Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
1204 CvtCode);
1205 } else {
1206 Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
1207 Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
1208 }
1209 }
1210
SplitVecRes_ExtendOp(SDNode * N,SDValue & Lo,SDValue & Hi)1211 void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
1212 SDValue &Hi) {
1213 SDLoc dl(N);
1214 EVT SrcVT = N->getOperand(0).getValueType();
1215 EVT DestVT = N->getValueType(0);
1216 EVT LoVT, HiVT;
1217 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT);
1218
1219 // We can do better than a generic split operation if the extend is doing
1220 // more than just doubling the width of the elements and the following are
1221 // true:
1222 // - The number of vector elements is even,
1223 // - the source type is legal,
1224 // - the type of a split source is illegal,
1225 // - the type of an extended (by doubling element size) source is legal, and
1226 // - the type of that extended source when split is legal.
1227 //
1228 // This won't necessarily completely legalize the operation, but it will
1229 // more effectively move in the right direction and prevent falling down
1230 // to scalarization in many cases due to the input vector being split too
1231 // far.
1232 unsigned NumElements = SrcVT.getVectorNumElements();
1233 if ((NumElements & 1) == 0 &&
1234 SrcVT.getSizeInBits() * 2 < DestVT.getSizeInBits()) {
1235 LLVMContext &Ctx = *DAG.getContext();
1236 EVT NewSrcVT = EVT::getVectorVT(
1237 Ctx, EVT::getIntegerVT(
1238 Ctx, SrcVT.getVectorElementType().getSizeInBits() * 2),
1239 NumElements);
1240 EVT SplitSrcVT =
1241 EVT::getVectorVT(Ctx, SrcVT.getVectorElementType(), NumElements / 2);
1242 EVT SplitLoVT, SplitHiVT;
1243 std::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT);
1244 if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) &&
1245 TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) {
1246 DEBUG(dbgs() << "Split vector extend via incremental extend:";
1247 N->dump(&DAG); dbgs() << "\n");
1248 // Extend the source vector by one step.
1249 SDValue NewSrc =
1250 DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0));
1251 // Get the low and high halves of the new, extended one step, vector.
1252 std::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
1253 // Extend those vector halves the rest of the way.
1254 Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
1255 Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
1256 return;
1257 }
1258 }
1259 // Fall back to the generic unary operator splitting otherwise.
1260 SplitVecRes_UnaryOp(N, Lo, Hi);
1261 }
1262
SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode * N,SDValue & Lo,SDValue & Hi)1263 void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
1264 SDValue &Lo, SDValue &Hi) {
1265 // The low and high parts of the original input give four input vectors.
1266 SDValue Inputs[4];
1267 SDLoc dl(N);
1268 GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
1269 GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
1270 EVT NewVT = Inputs[0].getValueType();
1271 unsigned NewElts = NewVT.getVectorNumElements();
1272
1273 // If Lo or Hi uses elements from at most two of the four input vectors, then
1274 // express it as a vector shuffle of those two inputs. Otherwise extract the
1275 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
1276 SmallVector<int, 16> Ops;
1277 for (unsigned High = 0; High < 2; ++High) {
1278 SDValue &Output = High ? Hi : Lo;
1279
1280 // Build a shuffle mask for the output, discovering on the fly which
1281 // input vectors to use as shuffle operands (recorded in InputUsed).
1282 // If building a suitable shuffle vector proves too hard, then bail
1283 // out with useBuildVector set.
1284 unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
1285 unsigned FirstMaskIdx = High * NewElts;
1286 bool useBuildVector = false;
1287 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
1288 // The mask element. This indexes into the input.
1289 int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
1290
1291 // The input vector this mask element indexes into.
1292 unsigned Input = (unsigned)Idx / NewElts;
1293
1294 if (Input >= array_lengthof(Inputs)) {
1295 // The mask element does not index into any input vector.
1296 Ops.push_back(-1);
1297 continue;
1298 }
1299
1300 // Turn the index into an offset from the start of the input vector.
1301 Idx -= Input * NewElts;
1302
1303 // Find or create a shuffle vector operand to hold this input.
1304 unsigned OpNo;
1305 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
1306 if (InputUsed[OpNo] == Input) {
1307 // This input vector is already an operand.
1308 break;
1309 } else if (InputUsed[OpNo] == -1U) {
1310 // Create a new operand for this input vector.
1311 InputUsed[OpNo] = Input;
1312 break;
1313 }
1314 }
1315
1316 if (OpNo >= array_lengthof(InputUsed)) {
1317 // More than two input vectors used! Give up on trying to create a
1318 // shuffle vector. Insert all elements into a BUILD_VECTOR instead.
1319 useBuildVector = true;
1320 break;
1321 }
1322
1323 // Add the mask index for the new shuffle vector.
1324 Ops.push_back(Idx + OpNo * NewElts);
1325 }
1326
1327 if (useBuildVector) {
1328 EVT EltVT = NewVT.getVectorElementType();
1329 SmallVector<SDValue, 16> SVOps;
1330
1331 // Extract the input elements by hand.
1332 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
1333 // The mask element. This indexes into the input.
1334 int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
1335
1336 // The input vector this mask element indexes into.
1337 unsigned Input = (unsigned)Idx / NewElts;
1338
1339 if (Input >= array_lengthof(Inputs)) {
1340 // The mask element is "undef" or indexes off the end of the input.
1341 SVOps.push_back(DAG.getUNDEF(EltVT));
1342 continue;
1343 }
1344
1345 // Turn the index into an offset from the start of the input vector.
1346 Idx -= Input * NewElts;
1347
1348 // Extract the vector element by hand.
1349 SVOps.push_back(DAG.getNode(
1350 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Inputs[Input],
1351 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
1352 }
1353
1354 // Construct the Lo/Hi output using a BUILD_VECTOR.
1355 Output = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, SVOps);
1356 } else if (InputUsed[0] == -1U) {
1357 // No input vectors were used! The result is undefined.
1358 Output = DAG.getUNDEF(NewVT);
1359 } else {
1360 SDValue Op0 = Inputs[InputUsed[0]];
1361 // If only one input was used, use an undefined vector for the other.
1362 SDValue Op1 = InputUsed[1] == -1U ?
1363 DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
1364 // At least one input vector was used. Create a new shuffle vector.
1365 Output = DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
1366 }
1367
1368 Ops.clear();
1369 }
1370 }
1371
1372
1373 //===----------------------------------------------------------------------===//
1374 // Operand Vector Splitting
1375 //===----------------------------------------------------------------------===//
1376
1377 /// SplitVectorOperand - This method is called when the specified operand of the
1378 /// specified node is found to need vector splitting. At this point, all of the
1379 /// result types of the node are known to be legal, but other operands of the
1380 /// node may need legalization as well as the specified one.
SplitVectorOperand(SDNode * N,unsigned OpNo)1381 bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
1382 DEBUG(dbgs() << "Split node operand: ";
1383 N->dump(&DAG);
1384 dbgs() << "\n");
1385 SDValue Res = SDValue();
1386
1387 // See if the target wants to custom split this node.
1388 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
1389 return false;
1390
1391 if (!Res.getNode()) {
1392 switch (N->getOpcode()) {
1393 default:
1394 #ifndef NDEBUG
1395 dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
1396 N->dump(&DAG);
1397 dbgs() << "\n";
1398 #endif
1399 report_fatal_error("Do not know how to split this operator's "
1400 "operand!\n");
1401
1402 case ISD::SETCC: Res = SplitVecOp_VSETCC(N); break;
1403 case ISD::BITCAST: Res = SplitVecOp_BITCAST(N); break;
1404 case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
1405 case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
1406 case ISD::CONCAT_VECTORS: Res = SplitVecOp_CONCAT_VECTORS(N); break;
1407 case ISD::TRUNCATE:
1408 Res = SplitVecOp_TruncateHelper(N);
1409 break;
1410 case ISD::FP_ROUND: Res = SplitVecOp_FP_ROUND(N); break;
1411 case ISD::FCOPYSIGN: Res = SplitVecOp_FCOPYSIGN(N); break;
1412 case ISD::STORE:
1413 Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
1414 break;
1415 case ISD::MSTORE:
1416 Res = SplitVecOp_MSTORE(cast<MaskedStoreSDNode>(N), OpNo);
1417 break;
1418 case ISD::MSCATTER:
1419 Res = SplitVecOp_MSCATTER(cast<MaskedScatterSDNode>(N), OpNo);
1420 break;
1421 case ISD::MGATHER:
1422 Res = SplitVecOp_MGATHER(cast<MaskedGatherSDNode>(N), OpNo);
1423 break;
1424 case ISD::VSELECT:
1425 Res = SplitVecOp_VSELECT(N, OpNo);
1426 break;
1427 case ISD::FP_TO_SINT:
1428 case ISD::FP_TO_UINT:
1429 if (N->getValueType(0).bitsLT(N->getOperand(0)->getValueType(0)))
1430 Res = SplitVecOp_TruncateHelper(N);
1431 else
1432 Res = SplitVecOp_UnaryOp(N);
1433 break;
1434 case ISD::SINT_TO_FP:
1435 case ISD::UINT_TO_FP:
1436 if (N->getValueType(0).bitsLT(N->getOperand(0)->getValueType(0)))
1437 Res = SplitVecOp_TruncateHelper(N);
1438 else
1439 Res = SplitVecOp_UnaryOp(N);
1440 break;
1441 case ISD::CTTZ:
1442 case ISD::CTLZ:
1443 case ISD::CTPOP:
1444 case ISD::FP_EXTEND:
1445 case ISD::SIGN_EXTEND:
1446 case ISD::ZERO_EXTEND:
1447 case ISD::ANY_EXTEND:
1448 case ISD::FTRUNC:
1449 Res = SplitVecOp_UnaryOp(N);
1450 break;
1451 }
1452 }
1453
1454 // If the result is null, the sub-method took care of registering results etc.
1455 if (!Res.getNode()) return false;
1456
1457 // If the result is N, the sub-method updated N in place. Tell the legalizer
1458 // core about this.
1459 if (Res.getNode() == N)
1460 return true;
1461
1462 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1463 "Invalid operand expansion");
1464
1465 ReplaceValueWith(SDValue(N, 0), Res);
1466 return false;
1467 }
1468
SplitVecOp_VSELECT(SDNode * N,unsigned OpNo)1469 SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
1470 // The only possibility for an illegal operand is the mask, since result type
1471 // legalization would have handled this node already otherwise.
1472 assert(OpNo == 0 && "Illegal operand must be mask");
1473
1474 SDValue Mask = N->getOperand(0);
1475 SDValue Src0 = N->getOperand(1);
1476 SDValue Src1 = N->getOperand(2);
1477 EVT Src0VT = Src0.getValueType();
1478 SDLoc DL(N);
1479 assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?");
1480
1481 SDValue Lo, Hi;
1482 GetSplitVector(N->getOperand(0), Lo, Hi);
1483 assert(Lo.getValueType() == Hi.getValueType() &&
1484 "Lo and Hi have differing types");
1485
1486 EVT LoOpVT, HiOpVT;
1487 std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT);
1488 assert(LoOpVT == HiOpVT && "Asymmetric vector split?");
1489
1490 SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask;
1491 std::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL);
1492 std::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL);
1493 std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
1494
1495 SDValue LoSelect =
1496 DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
1497 SDValue HiSelect =
1498 DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
1499
1500 return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
1501 }
1502
SplitVecOp_UnaryOp(SDNode * N)1503 SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
1504 // The result has a legal vector type, but the input needs splitting.
1505 EVT ResVT = N->getValueType(0);
1506 SDValue Lo, Hi;
1507 SDLoc dl(N);
1508 GetSplitVector(N->getOperand(0), Lo, Hi);
1509 EVT InVT = Lo.getValueType();
1510
1511 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1512 InVT.getVectorNumElements());
1513
1514 Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
1515 Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
1516
1517 return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
1518 }
1519
SplitVecOp_BITCAST(SDNode * N)1520 SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
1521 // For example, i64 = BITCAST v4i16 on alpha. Typically the vector will
1522 // end up being split all the way down to individual components. Convert the
1523 // split pieces into integers and reassemble.
1524 SDValue Lo, Hi;
1525 GetSplitVector(N->getOperand(0), Lo, Hi);
1526 Lo = BitConvertToInteger(Lo);
1527 Hi = BitConvertToInteger(Hi);
1528
1529 if (DAG.getDataLayout().isBigEndian())
1530 std::swap(Lo, Hi);
1531
1532 return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0),
1533 JoinIntegers(Lo, Hi));
1534 }
1535
SplitVecOp_EXTRACT_SUBVECTOR(SDNode * N)1536 SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
1537 // We know that the extracted result type is legal.
1538 EVT SubVT = N->getValueType(0);
1539 SDValue Idx = N->getOperand(1);
1540 SDLoc dl(N);
1541 SDValue Lo, Hi;
1542 GetSplitVector(N->getOperand(0), Lo, Hi);
1543
1544 uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1545 uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1546
1547 if (IdxVal < LoElts) {
1548 assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
1549 "Extracted subvector crosses vector split!");
1550 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
1551 } else {
1552 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
1553 DAG.getConstant(IdxVal - LoElts, dl,
1554 Idx.getValueType()));
1555 }
1556 }
1557
SplitVecOp_EXTRACT_VECTOR_ELT(SDNode * N)1558 SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1559 SDValue Vec = N->getOperand(0);
1560 SDValue Idx = N->getOperand(1);
1561 EVT VecVT = Vec.getValueType();
1562
1563 if (isa<ConstantSDNode>(Idx)) {
1564 uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1565 assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
1566
1567 SDValue Lo, Hi;
1568 GetSplitVector(Vec, Lo, Hi);
1569
1570 uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1571
1572 if (IdxVal < LoElts)
1573 return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
1574 return SDValue(DAG.UpdateNodeOperands(N, Hi,
1575 DAG.getConstant(IdxVal - LoElts, SDLoc(N),
1576 Idx.getValueType())), 0);
1577 }
1578
1579 // See if the target wants to custom expand this node.
1580 if (CustomLowerNode(N, N->getValueType(0), true))
1581 return SDValue();
1582
1583 // Make the vector elements byte-addressable if they aren't already.
1584 SDLoc dl(N);
1585 EVT EltVT = VecVT.getVectorElementType();
1586 if (EltVT.getSizeInBits() < 8) {
1587 SmallVector<SDValue, 4> ElementOps;
1588 for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i) {
1589 ElementOps.push_back(DAG.getAnyExtOrTrunc(
1590 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vec,
1591 DAG.getConstant(i, dl, MVT::i8)),
1592 dl, MVT::i8));
1593 }
1594
1595 EltVT = MVT::i8;
1596 VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
1597 VecVT.getVectorNumElements());
1598 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, ElementOps);
1599 }
1600
1601 // Store the vector to the stack.
1602 SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1603 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1604 MachinePointerInfo(), false, false, 0);
1605
1606 // Load back the required element.
1607 StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1608 return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
1609 MachinePointerInfo(), EltVT, false, false, false, 0);
1610 }
1611
SplitVecOp_MGATHER(MaskedGatherSDNode * MGT,unsigned OpNo)1612 SDValue DAGTypeLegalizer::SplitVecOp_MGATHER(MaskedGatherSDNode *MGT,
1613 unsigned OpNo) {
1614 EVT LoVT, HiVT;
1615 SDLoc dl(MGT);
1616 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MGT->getValueType(0));
1617
1618 SDValue Ch = MGT->getChain();
1619 SDValue Ptr = MGT->getBasePtr();
1620 SDValue Index = MGT->getIndex();
1621 SDValue Mask = MGT->getMask();
1622 SDValue Src0 = MGT->getValue();
1623 unsigned Alignment = MGT->getOriginalAlignment();
1624
1625 SDValue MaskLo, MaskHi;
1626 if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
1627 // Split Mask operand
1628 GetSplitVector(Mask, MaskLo, MaskHi);
1629 else
1630 std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
1631
1632 EVT MemoryVT = MGT->getMemoryVT();
1633 EVT LoMemVT, HiMemVT;
1634 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1635
1636 SDValue Src0Lo, Src0Hi;
1637 if (getTypeAction(Src0.getValueType()) == TargetLowering::TypeSplitVector)
1638 GetSplitVector(Src0, Src0Lo, Src0Hi);
1639 else
1640 std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
1641
1642 SDValue IndexHi, IndexLo;
1643 if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
1644 GetSplitVector(Index, IndexLo, IndexHi);
1645 else
1646 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, dl);
1647
1648 MachineMemOperand *MMO = DAG.getMachineFunction().
1649 getMachineMemOperand(MGT->getPointerInfo(),
1650 MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
1651 Alignment, MGT->getAAInfo(), MGT->getRanges());
1652
1653 SDValue OpsLo[] = {Ch, Src0Lo, MaskLo, Ptr, IndexLo};
1654 SDValue Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, dl,
1655 OpsLo, MMO);
1656
1657 MMO = DAG.getMachineFunction().
1658 getMachineMemOperand(MGT->getPointerInfo(),
1659 MachineMemOperand::MOLoad, HiMemVT.getStoreSize(),
1660 Alignment, MGT->getAAInfo(),
1661 MGT->getRanges());
1662
1663 SDValue OpsHi[] = {Ch, Src0Hi, MaskHi, Ptr, IndexHi};
1664 SDValue Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, dl,
1665 OpsHi, MMO);
1666
1667 // Build a factor node to remember that this load is independent of the
1668 // other one.
1669 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1670 Hi.getValue(1));
1671
1672 // Legalize the chain result - switch anything that used the old chain to
1673 // use the new one.
1674 ReplaceValueWith(SDValue(MGT, 1), Ch);
1675
1676 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MGT->getValueType(0), Lo,
1677 Hi);
1678 ReplaceValueWith(SDValue(MGT, 0), Res);
1679 return SDValue();
1680 }
1681
SplitVecOp_MSTORE(MaskedStoreSDNode * N,unsigned OpNo)1682 SDValue DAGTypeLegalizer::SplitVecOp_MSTORE(MaskedStoreSDNode *N,
1683 unsigned OpNo) {
1684 SDValue Ch = N->getChain();
1685 SDValue Ptr = N->getBasePtr();
1686 SDValue Mask = N->getMask();
1687 SDValue Data = N->getValue();
1688 EVT MemoryVT = N->getMemoryVT();
1689 unsigned Alignment = N->getOriginalAlignment();
1690 SDLoc DL(N);
1691
1692 EVT LoMemVT, HiMemVT;
1693 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1694
1695 SDValue DataLo, DataHi;
1696 if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
1697 // Split Data operand
1698 GetSplitVector(Data, DataLo, DataHi);
1699 else
1700 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
1701
1702 SDValue MaskLo, MaskHi;
1703 if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
1704 // Split Mask operand
1705 GetSplitVector(Mask, MaskLo, MaskHi);
1706 else
1707 std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
1708
1709 MaskLo = PromoteTargetBoolean(MaskLo, DataLo.getValueType());
1710 MaskHi = PromoteTargetBoolean(MaskHi, DataHi.getValueType());
1711
1712 // if Alignment is equal to the vector size,
1713 // take the half of it for the second part
1714 unsigned SecondHalfAlignment =
1715 (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
1716 Alignment/2 : Alignment;
1717
1718 SDValue Lo, Hi;
1719 MachineMemOperand *MMO = DAG.getMachineFunction().
1720 getMachineMemOperand(N->getPointerInfo(),
1721 MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
1722 Alignment, N->getAAInfo(), N->getRanges());
1723
1724 Lo = DAG.getMaskedStore(Ch, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
1725 N->isTruncatingStore());
1726
1727 unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1728 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1729 DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
1730
1731 MMO = DAG.getMachineFunction().
1732 getMachineMemOperand(N->getPointerInfo(),
1733 MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
1734 SecondHalfAlignment, N->getAAInfo(), N->getRanges());
1735
1736 Hi = DAG.getMaskedStore(Ch, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
1737 N->isTruncatingStore());
1738
1739 // Build a factor node to remember that this store is independent of the
1740 // other one.
1741 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1742 }
1743
SplitVecOp_MSCATTER(MaskedScatterSDNode * N,unsigned OpNo)1744 SDValue DAGTypeLegalizer::SplitVecOp_MSCATTER(MaskedScatterSDNode *N,
1745 unsigned OpNo) {
1746 SDValue Ch = N->getChain();
1747 SDValue Ptr = N->getBasePtr();
1748 SDValue Mask = N->getMask();
1749 SDValue Index = N->getIndex();
1750 SDValue Data = N->getValue();
1751 EVT MemoryVT = N->getMemoryVT();
1752 unsigned Alignment = N->getOriginalAlignment();
1753 SDLoc DL(N);
1754
1755 // Split all operands
1756 EVT LoMemVT, HiMemVT;
1757 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1758
1759 SDValue DataLo, DataHi;
1760 if (getTypeAction(Data.getValueType()) == TargetLowering::TypeSplitVector)
1761 // Split Data operand
1762 GetSplitVector(Data, DataLo, DataHi);
1763 else
1764 std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
1765
1766 SDValue MaskLo, MaskHi;
1767 if (getTypeAction(Mask.getValueType()) == TargetLowering::TypeSplitVector)
1768 // Split Mask operand
1769 GetSplitVector(Mask, MaskLo, MaskHi);
1770 else
1771 std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, DL);
1772
1773 SDValue IndexHi, IndexLo;
1774 if (getTypeAction(Index.getValueType()) == TargetLowering::TypeSplitVector)
1775 GetSplitVector(Index, IndexLo, IndexHi);
1776 else
1777 std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
1778
1779 SDValue Lo, Hi;
1780 MachineMemOperand *MMO = DAG.getMachineFunction().
1781 getMachineMemOperand(N->getPointerInfo(),
1782 MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
1783 Alignment, N->getAAInfo(), N->getRanges());
1784
1785 SDValue OpsLo[] = {Ch, DataLo, MaskLo, Ptr, IndexLo};
1786 Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(),
1787 DL, OpsLo, MMO);
1788
1789 MMO = DAG.getMachineFunction().
1790 getMachineMemOperand(N->getPointerInfo(),
1791 MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
1792 Alignment, N->getAAInfo(), N->getRanges());
1793
1794 SDValue OpsHi[] = {Ch, DataHi, MaskHi, Ptr, IndexHi};
1795 Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
1796 DL, OpsHi, MMO);
1797
1798 // Build a factor node to remember that this store is independent of the
1799 // other one.
1800 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1801 }
1802
SplitVecOp_STORE(StoreSDNode * N,unsigned OpNo)1803 SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
1804 assert(N->isUnindexed() && "Indexed store of vector?");
1805 assert(OpNo == 1 && "Can only split the stored value");
1806 SDLoc DL(N);
1807
1808 bool isTruncating = N->isTruncatingStore();
1809 SDValue Ch = N->getChain();
1810 SDValue Ptr = N->getBasePtr();
1811 EVT MemoryVT = N->getMemoryVT();
1812 unsigned Alignment = N->getOriginalAlignment();
1813 bool isVol = N->isVolatile();
1814 bool isNT = N->isNonTemporal();
1815 AAMDNodes AAInfo = N->getAAInfo();
1816 SDValue Lo, Hi;
1817 GetSplitVector(N->getOperand(1), Lo, Hi);
1818
1819 EVT LoMemVT, HiMemVT;
1820 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1821
1822 unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1823
1824 if (isTruncating)
1825 Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1826 LoMemVT, isVol, isNT, Alignment, AAInfo);
1827 else
1828 Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1829 isVol, isNT, Alignment, AAInfo);
1830
1831 // Increment the pointer to the other half.
1832 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1833 DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
1834
1835 if (isTruncating)
1836 Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
1837 N->getPointerInfo().getWithOffset(IncrementSize),
1838 HiMemVT, isVol, isNT, Alignment, AAInfo);
1839 else
1840 Hi = DAG.getStore(Ch, DL, Hi, Ptr,
1841 N->getPointerInfo().getWithOffset(IncrementSize),
1842 isVol, isNT, Alignment, AAInfo);
1843
1844 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1845 }
1846
SplitVecOp_CONCAT_VECTORS(SDNode * N)1847 SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
1848 SDLoc DL(N);
1849
1850 // The input operands all must have the same type, and we know the result
1851 // type is valid. Convert this to a buildvector which extracts all the
1852 // input elements.
1853 // TODO: If the input elements are power-two vectors, we could convert this to
1854 // a new CONCAT_VECTORS node with elements that are half-wide.
1855 SmallVector<SDValue, 32> Elts;
1856 EVT EltVT = N->getValueType(0).getVectorElementType();
1857 for (const SDValue &Op : N->op_values()) {
1858 for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
1859 i != e; ++i) {
1860 Elts.push_back(DAG.getNode(
1861 ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Op,
1862 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
1863 }
1864 }
1865
1866 return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0), Elts);
1867 }
1868
SplitVecOp_TruncateHelper(SDNode * N)1869 SDValue DAGTypeLegalizer::SplitVecOp_TruncateHelper(SDNode *N) {
1870 // The result type is legal, but the input type is illegal. If splitting
1871 // ends up with the result type of each half still being legal, just
1872 // do that. If, however, that would result in an illegal result type,
1873 // we can try to get more clever with power-two vectors. Specifically,
1874 // split the input type, but also widen the result element size, then
1875 // concatenate the halves and truncate again. For example, consider a target
1876 // where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
1877 // vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
1878 // %inlo = v4i32 extract_subvector %in, 0
1879 // %inhi = v4i32 extract_subvector %in, 4
1880 // %lo16 = v4i16 trunc v4i32 %inlo
1881 // %hi16 = v4i16 trunc v4i32 %inhi
1882 // %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
1883 // %res = v8i8 trunc v8i16 %in16
1884 //
1885 // Without this transform, the original truncate would end up being
1886 // scalarized, which is pretty much always a last resort.
1887 SDValue InVec = N->getOperand(0);
1888 EVT InVT = InVec->getValueType(0);
1889 EVT OutVT = N->getValueType(0);
1890 unsigned NumElements = OutVT.getVectorNumElements();
1891 bool IsFloat = OutVT.isFloatingPoint();
1892
1893 // Widening should have already made sure this is a power-two vector
1894 // if we're trying to split it at all. assert() that's true, just in case.
1895 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
1896
1897 unsigned InElementSize = InVT.getVectorElementType().getSizeInBits();
1898 unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits();
1899
1900 // If the input elements are only 1/2 the width of the result elements,
1901 // just use the normal splitting. Our trick only work if there's room
1902 // to split more than once.
1903 if (InElementSize <= OutElementSize * 2)
1904 return SplitVecOp_UnaryOp(N);
1905 SDLoc DL(N);
1906
1907 // Extract the halves of the input via extract_subvector.
1908 SDValue InLoVec, InHiVec;
1909 std::tie(InLoVec, InHiVec) = DAG.SplitVector(InVec, DL);
1910 // Truncate them to 1/2 the element size.
1911 EVT HalfElementVT = IsFloat ?
1912 EVT::getFloatingPointVT(InElementSize/2) :
1913 EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
1914 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
1915 NumElements/2);
1916 SDValue HalfLo = DAG.getNode(N->getOpcode(), DL, HalfVT, InLoVec);
1917 SDValue HalfHi = DAG.getNode(N->getOpcode(), DL, HalfVT, InHiVec);
1918 // Concatenate them to get the full intermediate truncation result.
1919 EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
1920 SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
1921 HalfHi);
1922 // Now finish up by truncating all the way down to the original result
1923 // type. This should normally be something that ends up being legal directly,
1924 // but in theory if a target has very wide vectors and an annoyingly
1925 // restricted set of legal types, this split can chain to build things up.
1926 return IsFloat
1927 ? DAG.getNode(ISD::FP_ROUND, DL, OutVT, InterVec,
1928 DAG.getTargetConstant(
1929 0, DL, TLI.getPointerTy(DAG.getDataLayout())))
1930 : DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
1931 }
1932
SplitVecOp_VSETCC(SDNode * N)1933 SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
1934 assert(N->getValueType(0).isVector() &&
1935 N->getOperand(0).getValueType().isVector() &&
1936 "Operand types must be vectors");
1937 // The result has a legal vector type, but the input needs splitting.
1938 SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
1939 SDLoc DL(N);
1940 GetSplitVector(N->getOperand(0), Lo0, Hi0);
1941 GetSplitVector(N->getOperand(1), Lo1, Hi1);
1942 unsigned PartElements = Lo0.getValueType().getVectorNumElements();
1943 EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
1944 EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
1945
1946 LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
1947 HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
1948 SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
1949 return PromoteTargetBoolean(Con, N->getValueType(0));
1950 }
1951
1952
SplitVecOp_FP_ROUND(SDNode * N)1953 SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
1954 // The result has a legal vector type, but the input needs splitting.
1955 EVT ResVT = N->getValueType(0);
1956 SDValue Lo, Hi;
1957 SDLoc DL(N);
1958 GetSplitVector(N->getOperand(0), Lo, Hi);
1959 EVT InVT = Lo.getValueType();
1960
1961 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1962 InVT.getVectorNumElements());
1963
1964 Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
1965 Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
1966
1967 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
1968 }
1969
SplitVecOp_FCOPYSIGN(SDNode * N)1970 SDValue DAGTypeLegalizer::SplitVecOp_FCOPYSIGN(SDNode *N) {
1971 // The result (and the first input) has a legal vector type, but the second
1972 // input needs splitting.
1973 return DAG.UnrollVectorOp(N, N->getValueType(0).getVectorNumElements());
1974 }
1975
1976
1977 //===----------------------------------------------------------------------===//
1978 // Result Vector Widening
1979 //===----------------------------------------------------------------------===//
1980
WidenVectorResult(SDNode * N,unsigned ResNo)1981 void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
1982 DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
1983 N->dump(&DAG);
1984 dbgs() << "\n");
1985
1986 // See if the target wants to custom widen this node.
1987 if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
1988 return;
1989
1990 SDValue Res = SDValue();
1991 switch (N->getOpcode()) {
1992 default:
1993 #ifndef NDEBUG
1994 dbgs() << "WidenVectorResult #" << ResNo << ": ";
1995 N->dump(&DAG);
1996 dbgs() << "\n";
1997 #endif
1998 llvm_unreachable("Do not know how to widen the result of this operator!");
1999
2000 case ISD::MERGE_VALUES: Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
2001 case ISD::BITCAST: Res = WidenVecRes_BITCAST(N); break;
2002 case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break;
2003 case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break;
2004 case ISD::CONVERT_RNDSAT: Res = WidenVecRes_CONVERT_RNDSAT(N); break;
2005 case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
2006 case ISD::FP_ROUND_INREG: Res = WidenVecRes_InregOp(N); break;
2007 case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
2008 case ISD::LOAD: Res = WidenVecRes_LOAD(N); break;
2009 case ISD::SCALAR_TO_VECTOR: Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
2010 case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
2011 case ISD::VSELECT:
2012 case ISD::SELECT: Res = WidenVecRes_SELECT(N); break;
2013 case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break;
2014 case ISD::SETCC: Res = WidenVecRes_SETCC(N); break;
2015 case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break;
2016 case ISD::VECTOR_SHUFFLE:
2017 Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
2018 break;
2019 case ISD::MLOAD:
2020 Res = WidenVecRes_MLOAD(cast<MaskedLoadSDNode>(N));
2021 break;
2022 case ISD::MGATHER:
2023 Res = WidenVecRes_MGATHER(cast<MaskedGatherSDNode>(N));
2024 break;
2025
2026 case ISD::ADD:
2027 case ISD::AND:
2028 case ISD::MUL:
2029 case ISD::MULHS:
2030 case ISD::MULHU:
2031 case ISD::OR:
2032 case ISD::SUB:
2033 case ISD::XOR:
2034 case ISD::FMINNUM:
2035 case ISD::FMAXNUM:
2036 case ISD::FMINNAN:
2037 case ISD::FMAXNAN:
2038 case ISD::SMIN:
2039 case ISD::SMAX:
2040 case ISD::UMIN:
2041 case ISD::UMAX:
2042 Res = WidenVecRes_Binary(N);
2043 break;
2044
2045 case ISD::FADD:
2046 case ISD::FMUL:
2047 case ISD::FPOW:
2048 case ISD::FSUB:
2049 case ISD::FDIV:
2050 case ISD::FREM:
2051 case ISD::SDIV:
2052 case ISD::UDIV:
2053 case ISD::SREM:
2054 case ISD::UREM:
2055 Res = WidenVecRes_BinaryCanTrap(N);
2056 break;
2057
2058 case ISD::FCOPYSIGN:
2059 Res = WidenVecRes_FCOPYSIGN(N);
2060 break;
2061
2062 case ISD::FPOWI:
2063 Res = WidenVecRes_POWI(N);
2064 break;
2065
2066 case ISD::SHL:
2067 case ISD::SRA:
2068 case ISD::SRL:
2069 Res = WidenVecRes_Shift(N);
2070 break;
2071
2072 case ISD::ANY_EXTEND:
2073 case ISD::FP_EXTEND:
2074 case ISD::FP_ROUND:
2075 case ISD::FP_TO_SINT:
2076 case ISD::FP_TO_UINT:
2077 case ISD::SIGN_EXTEND:
2078 case ISD::SINT_TO_FP:
2079 case ISD::TRUNCATE:
2080 case ISD::UINT_TO_FP:
2081 case ISD::ZERO_EXTEND:
2082 Res = WidenVecRes_Convert(N);
2083 break;
2084
2085 case ISD::BITREVERSE:
2086 case ISD::BSWAP:
2087 case ISD::CTLZ:
2088 case ISD::CTPOP:
2089 case ISD::CTTZ:
2090 case ISD::FABS:
2091 case ISD::FCEIL:
2092 case ISD::FCOS:
2093 case ISD::FEXP:
2094 case ISD::FEXP2:
2095 case ISD::FFLOOR:
2096 case ISD::FLOG:
2097 case ISD::FLOG10:
2098 case ISD::FLOG2:
2099 case ISD::FNEARBYINT:
2100 case ISD::FNEG:
2101 case ISD::FRINT:
2102 case ISD::FROUND:
2103 case ISD::FSIN:
2104 case ISD::FSQRT:
2105 case ISD::FTRUNC:
2106 Res = WidenVecRes_Unary(N);
2107 break;
2108 case ISD::FMA:
2109 Res = WidenVecRes_Ternary(N);
2110 break;
2111 }
2112
2113 // If Res is null, the sub-method took care of registering the result.
2114 if (Res.getNode())
2115 SetWidenedVector(SDValue(N, ResNo), Res);
2116 }
2117
WidenVecRes_Ternary(SDNode * N)2118 SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
2119 // Ternary op widening.
2120 SDLoc dl(N);
2121 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2122 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2123 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2124 SDValue InOp3 = GetWidenedVector(N->getOperand(2));
2125 return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
2126 }
2127
WidenVecRes_Binary(SDNode * N)2128 SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
2129 // Binary op widening.
2130 SDLoc dl(N);
2131 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2132 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2133 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2134 return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, N->getFlags());
2135 }
2136
WidenVecRes_BinaryCanTrap(SDNode * N)2137 SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) {
2138 // Binary op widening for operations that can trap.
2139 unsigned Opcode = N->getOpcode();
2140 SDLoc dl(N);
2141 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2142 EVT WidenEltVT = WidenVT.getVectorElementType();
2143 EVT VT = WidenVT;
2144 unsigned NumElts = VT.getVectorNumElements();
2145 const SDNodeFlags *Flags = N->getFlags();
2146 while (!TLI.isTypeLegal(VT) && NumElts != 1) {
2147 NumElts = NumElts / 2;
2148 VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
2149 }
2150
2151 if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
2152 // Operation doesn't trap so just widen as normal.
2153 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2154 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2155 return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, Flags);
2156 }
2157
2158 // No legal vector version so unroll the vector operation and then widen.
2159 if (NumElts == 1)
2160 return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
2161
2162 // Since the operation can trap, apply operation on the original vector.
2163 EVT MaxVT = VT;
2164 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2165 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2166 unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
2167
2168 SmallVector<SDValue, 16> ConcatOps(CurNumElts);
2169 unsigned ConcatEnd = 0; // Current ConcatOps index.
2170 int Idx = 0; // Current Idx into input vectors.
2171
2172 // NumElts := greatest legal vector size (at most WidenVT)
2173 // while (orig. vector has unhandled elements) {
2174 // take munches of size NumElts from the beginning and add to ConcatOps
2175 // NumElts := next smaller supported vector size or 1
2176 // }
2177 while (CurNumElts != 0) {
2178 while (CurNumElts >= NumElts) {
2179 SDValue EOp1 = DAG.getNode(
2180 ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
2181 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2182 SDValue EOp2 = DAG.getNode(
2183 ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
2184 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2185 ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2, Flags);
2186 Idx += NumElts;
2187 CurNumElts -= NumElts;
2188 }
2189 do {
2190 NumElts = NumElts / 2;
2191 VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
2192 } while (!TLI.isTypeLegal(VT) && NumElts != 1);
2193
2194 if (NumElts == 1) {
2195 for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
2196 SDValue EOp1 = DAG.getNode(
2197 ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, InOp1,
2198 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2199 SDValue EOp2 = DAG.getNode(
2200 ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, InOp2,
2201 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2202 ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
2203 EOp1, EOp2, Flags);
2204 }
2205 CurNumElts = 0;
2206 }
2207 }
2208
2209 // Check to see if we have a single operation with the widen type.
2210 if (ConcatEnd == 1) {
2211 VT = ConcatOps[0].getValueType();
2212 if (VT == WidenVT)
2213 return ConcatOps[0];
2214 }
2215
2216 // while (Some element of ConcatOps is not of type MaxVT) {
2217 // From the end of ConcatOps, collect elements of the same type and put
2218 // them into an op of the next larger supported type
2219 // }
2220 while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
2221 Idx = ConcatEnd - 1;
2222 VT = ConcatOps[Idx--].getValueType();
2223 while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
2224 Idx--;
2225
2226 int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
2227 EVT NextVT;
2228 do {
2229 NextSize *= 2;
2230 NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
2231 } while (!TLI.isTypeLegal(NextVT));
2232
2233 if (!VT.isVector()) {
2234 // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
2235 SDValue VecOp = DAG.getUNDEF(NextVT);
2236 unsigned NumToInsert = ConcatEnd - Idx - 1;
2237 for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
2238 VecOp = DAG.getNode(
2239 ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp, ConcatOps[OpIdx],
2240 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2241 }
2242 ConcatOps[Idx+1] = VecOp;
2243 ConcatEnd = Idx + 2;
2244 } else {
2245 // Vector type, create a CONCAT_VECTORS of type NextVT
2246 SDValue undefVec = DAG.getUNDEF(VT);
2247 unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
2248 SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
2249 unsigned RealVals = ConcatEnd - Idx - 1;
2250 unsigned SubConcatEnd = 0;
2251 unsigned SubConcatIdx = Idx + 1;
2252 while (SubConcatEnd < RealVals)
2253 SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
2254 while (SubConcatEnd < OpsToConcat)
2255 SubConcatOps[SubConcatEnd++] = undefVec;
2256 ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
2257 NextVT, SubConcatOps);
2258 ConcatEnd = SubConcatIdx + 1;
2259 }
2260 }
2261
2262 // Check to see if we have a single operation with the widen type.
2263 if (ConcatEnd == 1) {
2264 VT = ConcatOps[0].getValueType();
2265 if (VT == WidenVT)
2266 return ConcatOps[0];
2267 }
2268
2269 // add undefs of size MaxVT until ConcatOps grows to length of WidenVT
2270 unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
2271 if (NumOps != ConcatEnd ) {
2272 SDValue UndefVal = DAG.getUNDEF(MaxVT);
2273 for (unsigned j = ConcatEnd; j < NumOps; ++j)
2274 ConcatOps[j] = UndefVal;
2275 }
2276 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
2277 makeArrayRef(ConcatOps.data(), NumOps));
2278 }
2279
WidenVecRes_Convert(SDNode * N)2280 SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
2281 SDValue InOp = N->getOperand(0);
2282 SDLoc DL(N);
2283
2284 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2285 unsigned WidenNumElts = WidenVT.getVectorNumElements();
2286
2287 EVT InVT = InOp.getValueType();
2288 EVT InEltVT = InVT.getVectorElementType();
2289 EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
2290
2291 unsigned Opcode = N->getOpcode();
2292 unsigned InVTNumElts = InVT.getVectorNumElements();
2293 const SDNodeFlags *Flags = N->getFlags();
2294 if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
2295 InOp = GetWidenedVector(N->getOperand(0));
2296 InVT = InOp.getValueType();
2297 InVTNumElts = InVT.getVectorNumElements();
2298 if (InVTNumElts == WidenNumElts) {
2299 if (N->getNumOperands() == 1)
2300 return DAG.getNode(Opcode, DL, WidenVT, InOp);
2301 return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1), Flags);
2302 }
2303 }
2304
2305 if (TLI.isTypeLegal(InWidenVT)) {
2306 // Because the result and the input are different vector types, widening
2307 // the result could create a legal type but widening the input might make
2308 // it an illegal type that might lead to repeatedly splitting the input
2309 // and then widening it. To avoid this, we widen the input only if
2310 // it results in a legal type.
2311 if (WidenNumElts % InVTNumElts == 0) {
2312 // Widen the input and call convert on the widened input vector.
2313 unsigned NumConcat = WidenNumElts/InVTNumElts;
2314 SmallVector<SDValue, 16> Ops(NumConcat);
2315 Ops[0] = InOp;
2316 SDValue UndefVal = DAG.getUNDEF(InVT);
2317 for (unsigned i = 1; i != NumConcat; ++i)
2318 Ops[i] = UndefVal;
2319 SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT, Ops);
2320 if (N->getNumOperands() == 1)
2321 return DAG.getNode(Opcode, DL, WidenVT, InVec);
2322 return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1), Flags);
2323 }
2324
2325 if (InVTNumElts % WidenNumElts == 0) {
2326 SDValue InVal = DAG.getNode(
2327 ISD::EXTRACT_SUBVECTOR, DL, InWidenVT, InOp,
2328 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
2329 // Extract the input and convert the shorten input vector.
2330 if (N->getNumOperands() == 1)
2331 return DAG.getNode(Opcode, DL, WidenVT, InVal);
2332 return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1), Flags);
2333 }
2334 }
2335
2336 // Otherwise unroll into some nasty scalar code and rebuild the vector.
2337 SmallVector<SDValue, 16> Ops(WidenNumElts);
2338 EVT EltVT = WidenVT.getVectorElementType();
2339 unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
2340 unsigned i;
2341 for (i=0; i < MinElts; ++i) {
2342 SDValue Val = DAG.getNode(
2343 ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
2344 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
2345 if (N->getNumOperands() == 1)
2346 Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
2347 else
2348 Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1), Flags);
2349 }
2350
2351 SDValue UndefVal = DAG.getUNDEF(EltVT);
2352 for (; i < WidenNumElts; ++i)
2353 Ops[i] = UndefVal;
2354
2355 return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, Ops);
2356 }
2357
WidenVecRes_FCOPYSIGN(SDNode * N)2358 SDValue DAGTypeLegalizer::WidenVecRes_FCOPYSIGN(SDNode *N) {
2359 // If this is an FCOPYSIGN with same input types, we can treat it as a
2360 // normal (can trap) binary op.
2361 if (N->getOperand(0).getValueType() == N->getOperand(1).getValueType())
2362 return WidenVecRes_BinaryCanTrap(N);
2363
2364 // If the types are different, fall back to unrolling.
2365 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2366 return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
2367 }
2368
WidenVecRes_POWI(SDNode * N)2369 SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
2370 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2371 SDValue InOp = GetWidenedVector(N->getOperand(0));
2372 SDValue ShOp = N->getOperand(1);
2373 return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
2374 }
2375
WidenVecRes_Shift(SDNode * N)2376 SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
2377 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2378 SDValue InOp = GetWidenedVector(N->getOperand(0));
2379 SDValue ShOp = N->getOperand(1);
2380
2381 EVT ShVT = ShOp.getValueType();
2382 if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
2383 ShOp = GetWidenedVector(ShOp);
2384 ShVT = ShOp.getValueType();
2385 }
2386 EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
2387 ShVT.getVectorElementType(),
2388 WidenVT.getVectorNumElements());
2389 if (ShVT != ShWidenVT)
2390 ShOp = ModifyToType(ShOp, ShWidenVT);
2391
2392 return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
2393 }
2394
WidenVecRes_Unary(SDNode * N)2395 SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
2396 // Unary op widening.
2397 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2398 SDValue InOp = GetWidenedVector(N->getOperand(0));
2399 return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp);
2400 }
2401
WidenVecRes_InregOp(SDNode * N)2402 SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
2403 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2404 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
2405 cast<VTSDNode>(N->getOperand(1))->getVT()
2406 .getVectorElementType(),
2407 WidenVT.getVectorNumElements());
2408 SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
2409 return DAG.getNode(N->getOpcode(), SDLoc(N),
2410 WidenVT, WidenLHS, DAG.getValueType(ExtVT));
2411 }
2412
WidenVecRes_MERGE_VALUES(SDNode * N,unsigned ResNo)2413 SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
2414 SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
2415 return GetWidenedVector(WidenVec);
2416 }
2417
WidenVecRes_BITCAST(SDNode * N)2418 SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
2419 SDValue InOp = N->getOperand(0);
2420 EVT InVT = InOp.getValueType();
2421 EVT VT = N->getValueType(0);
2422 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2423 SDLoc dl(N);
2424
2425 switch (getTypeAction(InVT)) {
2426 case TargetLowering::TypeLegal:
2427 break;
2428 case TargetLowering::TypePromoteInteger:
2429 // If the incoming type is a vector that is being promoted, then
2430 // we know that the elements are arranged differently and that we
2431 // must perform the conversion using a stack slot.
2432 if (InVT.isVector())
2433 break;
2434
2435 // If the InOp is promoted to the same size, convert it. Otherwise,
2436 // fall out of the switch and widen the promoted input.
2437 InOp = GetPromotedInteger(InOp);
2438 InVT = InOp.getValueType();
2439 if (WidenVT.bitsEq(InVT))
2440 return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
2441 break;
2442 case TargetLowering::TypeSoftenFloat:
2443 case TargetLowering::TypePromoteFloat:
2444 case TargetLowering::TypeExpandInteger:
2445 case TargetLowering::TypeExpandFloat:
2446 case TargetLowering::TypeScalarizeVector:
2447 case TargetLowering::TypeSplitVector:
2448 break;
2449 case TargetLowering::TypeWidenVector:
2450 // If the InOp is widened to the same size, convert it. Otherwise, fall
2451 // out of the switch and widen the widened input.
2452 InOp = GetWidenedVector(InOp);
2453 InVT = InOp.getValueType();
2454 if (WidenVT.bitsEq(InVT))
2455 // The input widens to the same size. Convert to the widen value.
2456 return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
2457 break;
2458 }
2459
2460 unsigned WidenSize = WidenVT.getSizeInBits();
2461 unsigned InSize = InVT.getSizeInBits();
2462 // x86mmx is not an acceptable vector element type, so don't try.
2463 if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
2464 // Determine new input vector type. The new input vector type will use
2465 // the same element type (if its a vector) or use the input type as a
2466 // vector. It is the same size as the type to widen to.
2467 EVT NewInVT;
2468 unsigned NewNumElts = WidenSize / InSize;
2469 if (InVT.isVector()) {
2470 EVT InEltVT = InVT.getVectorElementType();
2471 NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
2472 WidenSize / InEltVT.getSizeInBits());
2473 } else {
2474 NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
2475 }
2476
2477 if (TLI.isTypeLegal(NewInVT)) {
2478 // Because the result and the input are different vector types, widening
2479 // the result could create a legal type but widening the input might make
2480 // it an illegal type that might lead to repeatedly splitting the input
2481 // and then widening it. To avoid this, we widen the input only if
2482 // it results in a legal type.
2483 SmallVector<SDValue, 16> Ops(NewNumElts);
2484 SDValue UndefVal = DAG.getUNDEF(InVT);
2485 Ops[0] = InOp;
2486 for (unsigned i = 1; i < NewNumElts; ++i)
2487 Ops[i] = UndefVal;
2488
2489 SDValue NewVec;
2490 if (InVT.isVector())
2491 NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewInVT, Ops);
2492 else
2493 NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, Ops);
2494 return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
2495 }
2496 }
2497
2498 return CreateStackStoreLoad(InOp, WidenVT);
2499 }
2500
WidenVecRes_BUILD_VECTOR(SDNode * N)2501 SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
2502 SDLoc dl(N);
2503 // Build a vector with undefined for the new nodes.
2504 EVT VT = N->getValueType(0);
2505
2506 // Integer BUILD_VECTOR operands may be larger than the node's vector element
2507 // type. The UNDEFs need to have the same type as the existing operands.
2508 EVT EltVT = N->getOperand(0).getValueType();
2509 unsigned NumElts = VT.getVectorNumElements();
2510
2511 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2512 unsigned WidenNumElts = WidenVT.getVectorNumElements();
2513
2514 SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
2515 assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
2516 NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
2517
2518 return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, NewOps);
2519 }
2520
WidenVecRes_CONCAT_VECTORS(SDNode * N)2521 SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
2522 EVT InVT = N->getOperand(0).getValueType();
2523 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2524 SDLoc dl(N);
2525 unsigned WidenNumElts = WidenVT.getVectorNumElements();
2526 unsigned NumInElts = InVT.getVectorNumElements();
2527 unsigned NumOperands = N->getNumOperands();
2528
2529 bool InputWidened = false; // Indicates we need to widen the input.
2530 if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
2531 if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
2532 // Add undef vectors to widen to correct length.
2533 unsigned NumConcat = WidenVT.getVectorNumElements() /
2534 InVT.getVectorNumElements();
2535 SDValue UndefVal = DAG.getUNDEF(InVT);
2536 SmallVector<SDValue, 16> Ops(NumConcat);
2537 for (unsigned i=0; i < NumOperands; ++i)
2538 Ops[i] = N->getOperand(i);
2539 for (unsigned i = NumOperands; i != NumConcat; ++i)
2540 Ops[i] = UndefVal;
2541 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Ops);
2542 }
2543 } else {
2544 InputWidened = true;
2545 if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
2546 // The inputs and the result are widen to the same value.
2547 unsigned i;
2548 for (i=1; i < NumOperands; ++i)
2549 if (N->getOperand(i).getOpcode() != ISD::UNDEF)
2550 break;
2551
2552 if (i == NumOperands)
2553 // Everything but the first operand is an UNDEF so just return the
2554 // widened first operand.
2555 return GetWidenedVector(N->getOperand(0));
2556
2557 if (NumOperands == 2) {
2558 // Replace concat of two operands with a shuffle.
2559 SmallVector<int, 16> MaskOps(WidenNumElts, -1);
2560 for (unsigned i = 0; i < NumInElts; ++i) {
2561 MaskOps[i] = i;
2562 MaskOps[i + NumInElts] = i + WidenNumElts;
2563 }
2564 return DAG.getVectorShuffle(WidenVT, dl,
2565 GetWidenedVector(N->getOperand(0)),
2566 GetWidenedVector(N->getOperand(1)),
2567 &MaskOps[0]);
2568 }
2569 }
2570 }
2571
2572 // Fall back to use extracts and build vector.
2573 EVT EltVT = WidenVT.getVectorElementType();
2574 SmallVector<SDValue, 16> Ops(WidenNumElts);
2575 unsigned Idx = 0;
2576 for (unsigned i=0; i < NumOperands; ++i) {
2577 SDValue InOp = N->getOperand(i);
2578 if (InputWidened)
2579 InOp = GetWidenedVector(InOp);
2580 for (unsigned j=0; j < NumInElts; ++j)
2581 Ops[Idx++] = DAG.getNode(
2582 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2583 DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2584 }
2585 SDValue UndefVal = DAG.getUNDEF(EltVT);
2586 for (; Idx < WidenNumElts; ++Idx)
2587 Ops[Idx] = UndefVal;
2588 return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
2589 }
2590
WidenVecRes_CONVERT_RNDSAT(SDNode * N)2591 SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
2592 SDLoc dl(N);
2593 SDValue InOp = N->getOperand(0);
2594 SDValue RndOp = N->getOperand(3);
2595 SDValue SatOp = N->getOperand(4);
2596
2597 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2598 unsigned WidenNumElts = WidenVT.getVectorNumElements();
2599
2600 EVT InVT = InOp.getValueType();
2601 EVT InEltVT = InVT.getVectorElementType();
2602 EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
2603
2604 SDValue DTyOp = DAG.getValueType(WidenVT);
2605 SDValue STyOp = DAG.getValueType(InWidenVT);
2606 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
2607
2608 unsigned InVTNumElts = InVT.getVectorNumElements();
2609 if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
2610 InOp = GetWidenedVector(InOp);
2611 InVT = InOp.getValueType();
2612 InVTNumElts = InVT.getVectorNumElements();
2613 if (InVTNumElts == WidenNumElts)
2614 return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2615 SatOp, CvtCode);
2616 }
2617
2618 if (TLI.isTypeLegal(InWidenVT)) {
2619 // Because the result and the input are different vector types, widening
2620 // the result could create a legal type but widening the input might make
2621 // it an illegal type that might lead to repeatedly splitting the input
2622 // and then widening it. To avoid this, we widen the input only if
2623 // it results in a legal type.
2624 if (WidenNumElts % InVTNumElts == 0) {
2625 // Widen the input and call convert on the widened input vector.
2626 unsigned NumConcat = WidenNumElts/InVTNumElts;
2627 SmallVector<SDValue, 16> Ops(NumConcat);
2628 Ops[0] = InOp;
2629 SDValue UndefVal = DAG.getUNDEF(InVT);
2630 for (unsigned i = 1; i != NumConcat; ++i)
2631 Ops[i] = UndefVal;
2632
2633 InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, Ops);
2634 return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2635 SatOp, CvtCode);
2636 }
2637
2638 if (InVTNumElts % WidenNumElts == 0) {
2639 // Extract the input and convert the shorten input vector.
2640 InOp = DAG.getNode(
2641 ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
2642 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2643 return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2644 SatOp, CvtCode);
2645 }
2646 }
2647
2648 // Otherwise unroll into some nasty scalar code and rebuild the vector.
2649 SmallVector<SDValue, 16> Ops(WidenNumElts);
2650 EVT EltVT = WidenVT.getVectorElementType();
2651 DTyOp = DAG.getValueType(EltVT);
2652 STyOp = DAG.getValueType(InEltVT);
2653
2654 unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
2655 unsigned i;
2656 for (i=0; i < MinElts; ++i) {
2657 SDValue ExtVal = DAG.getNode(
2658 ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
2659 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
2660 Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
2661 SatOp, CvtCode);
2662 }
2663
2664 SDValue UndefVal = DAG.getUNDEF(EltVT);
2665 for (; i < WidenNumElts; ++i)
2666 Ops[i] = UndefVal;
2667
2668 return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
2669 }
2670
WidenVecRes_EXTRACT_SUBVECTOR(SDNode * N)2671 SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
2672 EVT VT = N->getValueType(0);
2673 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2674 unsigned WidenNumElts = WidenVT.getVectorNumElements();
2675 SDValue InOp = N->getOperand(0);
2676 SDValue Idx = N->getOperand(1);
2677 SDLoc dl(N);
2678
2679 if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2680 InOp = GetWidenedVector(InOp);
2681
2682 EVT InVT = InOp.getValueType();
2683
2684 // Check if we can just return the input vector after widening.
2685 uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
2686 if (IdxVal == 0 && InVT == WidenVT)
2687 return InOp;
2688
2689 // Check if we can extract from the vector.
2690 unsigned InNumElts = InVT.getVectorNumElements();
2691 if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
2692 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
2693
2694 // We could try widening the input to the right length but for now, extract
2695 // the original elements, fill the rest with undefs and build a vector.
2696 SmallVector<SDValue, 16> Ops(WidenNumElts);
2697 EVT EltVT = VT.getVectorElementType();
2698 unsigned NumElts = VT.getVectorNumElements();
2699 unsigned i;
2700 for (i=0; i < NumElts; ++i)
2701 Ops[i] =
2702 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2703 DAG.getConstant(IdxVal + i, dl,
2704 TLI.getVectorIdxTy(DAG.getDataLayout())));
2705
2706 SDValue UndefVal = DAG.getUNDEF(EltVT);
2707 for (; i < WidenNumElts; ++i)
2708 Ops[i] = UndefVal;
2709 return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
2710 }
2711
WidenVecRes_INSERT_VECTOR_ELT(SDNode * N)2712 SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
2713 SDValue InOp = GetWidenedVector(N->getOperand(0));
2714 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N),
2715 InOp.getValueType(), InOp,
2716 N->getOperand(1), N->getOperand(2));
2717 }
2718
WidenVecRes_LOAD(SDNode * N)2719 SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
2720 LoadSDNode *LD = cast<LoadSDNode>(N);
2721 ISD::LoadExtType ExtType = LD->getExtensionType();
2722
2723 SDValue Result;
2724 SmallVector<SDValue, 16> LdChain; // Chain for the series of load
2725 if (ExtType != ISD::NON_EXTLOAD)
2726 Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
2727 else
2728 Result = GenWidenVectorLoads(LdChain, LD);
2729
2730 // If we generate a single load, we can use that for the chain. Otherwise,
2731 // build a factor node to remember the multiple loads are independent and
2732 // chain to that.
2733 SDValue NewChain;
2734 if (LdChain.size() == 1)
2735 NewChain = LdChain[0];
2736 else
2737 NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, LdChain);
2738
2739 // Modified the chain - switch anything that used the old chain to use
2740 // the new one.
2741 ReplaceValueWith(SDValue(N, 1), NewChain);
2742
2743 return Result;
2744 }
2745
WidenVecRes_MLOAD(MaskedLoadSDNode * N)2746 SDValue DAGTypeLegalizer::WidenVecRes_MLOAD(MaskedLoadSDNode *N) {
2747
2748 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),N->getValueType(0));
2749 SDValue Mask = N->getMask();
2750 EVT MaskVT = Mask.getValueType();
2751 SDValue Src0 = GetWidenedVector(N->getSrc0());
2752 ISD::LoadExtType ExtType = N->getExtensionType();
2753 SDLoc dl(N);
2754
2755 if (getTypeAction(MaskVT) == TargetLowering::TypeWidenVector)
2756 Mask = GetWidenedVector(Mask);
2757 else {
2758 EVT BoolVT = getSetCCResultType(WidenVT);
2759
2760 // We can't use ModifyToType() because we should fill the mask with
2761 // zeroes
2762 unsigned WidenNumElts = BoolVT.getVectorNumElements();
2763 unsigned MaskNumElts = MaskVT.getVectorNumElements();
2764
2765 unsigned NumConcat = WidenNumElts / MaskNumElts;
2766 SmallVector<SDValue, 16> Ops(NumConcat);
2767 SDValue ZeroVal = DAG.getConstant(0, dl, MaskVT);
2768 Ops[0] = Mask;
2769 for (unsigned i = 1; i != NumConcat; ++i)
2770 Ops[i] = ZeroVal;
2771
2772 Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, BoolVT, Ops);
2773 }
2774
2775 SDValue Res = DAG.getMaskedLoad(WidenVT, dl, N->getChain(), N->getBasePtr(),
2776 Mask, Src0, N->getMemoryVT(),
2777 N->getMemOperand(), ExtType);
2778 // Legalize the chain result - switch anything that used the old chain to
2779 // use the new one.
2780 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
2781 return Res;
2782 }
2783
WidenVecRes_MGATHER(MaskedGatherSDNode * N)2784 SDValue DAGTypeLegalizer::WidenVecRes_MGATHER(MaskedGatherSDNode *N) {
2785
2786 EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2787 SDValue Mask = N->getMask();
2788 SDValue Src0 = GetWidenedVector(N->getValue());
2789 unsigned NumElts = WideVT.getVectorNumElements();
2790 SDLoc dl(N);
2791
2792 // The mask should be widened as well
2793 Mask = WidenTargetBoolean(Mask, WideVT, true);
2794
2795 // Widen the Index operand
2796 SDValue Index = N->getIndex();
2797 EVT WideIndexVT = EVT::getVectorVT(*DAG.getContext(),
2798 Index.getValueType().getScalarType(),
2799 NumElts);
2800 Index = ModifyToType(Index, WideIndexVT);
2801 SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index };
2802 SDValue Res = DAG.getMaskedGather(DAG.getVTList(WideVT, MVT::Other),
2803 N->getMemoryVT(), dl, Ops,
2804 N->getMemOperand());
2805
2806 // Legalize the chain result - switch anything that used the old chain to
2807 // use the new one.
2808 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
2809 return Res;
2810 }
2811
WidenVecRes_SCALAR_TO_VECTOR(SDNode * N)2812 SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
2813 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2814 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N),
2815 WidenVT, N->getOperand(0));
2816 }
2817
WidenVecRes_SELECT(SDNode * N)2818 SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
2819 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2820 unsigned WidenNumElts = WidenVT.getVectorNumElements();
2821
2822 SDValue Cond1 = N->getOperand(0);
2823 EVT CondVT = Cond1.getValueType();
2824 if (CondVT.isVector()) {
2825 EVT CondEltVT = CondVT.getVectorElementType();
2826 EVT CondWidenVT = EVT::getVectorVT(*DAG.getContext(),
2827 CondEltVT, WidenNumElts);
2828 if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
2829 Cond1 = GetWidenedVector(Cond1);
2830
2831 // If we have to split the condition there is no point in widening the
2832 // select. This would result in an cycle of widening the select ->
2833 // widening the condition operand -> splitting the condition operand ->
2834 // splitting the select -> widening the select. Instead split this select
2835 // further and widen the resulting type.
2836 if (getTypeAction(CondVT) == TargetLowering::TypeSplitVector) {
2837 SDValue SplitSelect = SplitVecOp_VSELECT(N, 0);
2838 SDValue Res = ModifyToType(SplitSelect, WidenVT);
2839 return Res;
2840 }
2841
2842 if (Cond1.getValueType() != CondWidenVT)
2843 Cond1 = ModifyToType(Cond1, CondWidenVT);
2844 }
2845
2846 SDValue InOp1 = GetWidenedVector(N->getOperand(1));
2847 SDValue InOp2 = GetWidenedVector(N->getOperand(2));
2848 assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
2849 return DAG.getNode(N->getOpcode(), SDLoc(N),
2850 WidenVT, Cond1, InOp1, InOp2);
2851 }
2852
WidenVecRes_SELECT_CC(SDNode * N)2853 SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
2854 SDValue InOp1 = GetWidenedVector(N->getOperand(2));
2855 SDValue InOp2 = GetWidenedVector(N->getOperand(3));
2856 return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
2857 InOp1.getValueType(), N->getOperand(0),
2858 N->getOperand(1), InOp1, InOp2, N->getOperand(4));
2859 }
2860
WidenVecRes_SETCC(SDNode * N)2861 SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
2862 assert(N->getValueType(0).isVector() ==
2863 N->getOperand(0).getValueType().isVector() &&
2864 "Scalar/Vector type mismatch");
2865 if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N);
2866
2867 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2868 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2869 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2870 return DAG.getNode(ISD::SETCC, SDLoc(N), WidenVT,
2871 InOp1, InOp2, N->getOperand(2));
2872 }
2873
WidenVecRes_UNDEF(SDNode * N)2874 SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
2875 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2876 return DAG.getUNDEF(WidenVT);
2877 }
2878
WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode * N)2879 SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
2880 EVT VT = N->getValueType(0);
2881 SDLoc dl(N);
2882
2883 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2884 unsigned NumElts = VT.getVectorNumElements();
2885 unsigned WidenNumElts = WidenVT.getVectorNumElements();
2886
2887 SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2888 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2889
2890 // Adjust mask based on new input vector length.
2891 SmallVector<int, 16> NewMask;
2892 for (unsigned i = 0; i != NumElts; ++i) {
2893 int Idx = N->getMaskElt(i);
2894 if (Idx < (int)NumElts)
2895 NewMask.push_back(Idx);
2896 else
2897 NewMask.push_back(Idx - NumElts + WidenNumElts);
2898 }
2899 for (unsigned i = NumElts; i != WidenNumElts; ++i)
2900 NewMask.push_back(-1);
2901 return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
2902 }
2903
WidenVecRes_VSETCC(SDNode * N)2904 SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
2905 assert(N->getValueType(0).isVector() &&
2906 N->getOperand(0).getValueType().isVector() &&
2907 "Operands must be vectors");
2908 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2909 unsigned WidenNumElts = WidenVT.getVectorNumElements();
2910
2911 SDValue InOp1 = N->getOperand(0);
2912 EVT InVT = InOp1.getValueType();
2913 assert(InVT.isVector() && "can not widen non-vector type");
2914 EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(),
2915 InVT.getVectorElementType(), WidenNumElts);
2916
2917 // The input and output types often differ here, and it could be that while
2918 // we'd prefer to widen the result type, the input operands have been split.
2919 // In this case, we also need to split the result of this node as well.
2920 if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) {
2921 SDValue SplitVSetCC = SplitVecOp_VSETCC(N);
2922 SDValue Res = ModifyToType(SplitVSetCC, WidenVT);
2923 return Res;
2924 }
2925
2926 InOp1 = GetWidenedVector(InOp1);
2927 SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2928
2929 // Assume that the input and output will be widen appropriately. If not,
2930 // we will have to unroll it at some point.
2931 assert(InOp1.getValueType() == WidenInVT &&
2932 InOp2.getValueType() == WidenInVT &&
2933 "Input not widened to expected type!");
2934 (void)WidenInVT;
2935 return DAG.getNode(ISD::SETCC, SDLoc(N),
2936 WidenVT, InOp1, InOp2, N->getOperand(2));
2937 }
2938
2939
2940 //===----------------------------------------------------------------------===//
2941 // Widen Vector Operand
2942 //===----------------------------------------------------------------------===//
WidenVectorOperand(SDNode * N,unsigned OpNo)2943 bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) {
2944 DEBUG(dbgs() << "Widen node operand " << OpNo << ": ";
2945 N->dump(&DAG);
2946 dbgs() << "\n");
2947 SDValue Res = SDValue();
2948
2949 // See if the target wants to custom widen this node.
2950 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2951 return false;
2952
2953 switch (N->getOpcode()) {
2954 default:
2955 #ifndef NDEBUG
2956 dbgs() << "WidenVectorOperand op #" << OpNo << ": ";
2957 N->dump(&DAG);
2958 dbgs() << "\n";
2959 #endif
2960 llvm_unreachable("Do not know how to widen this operator's operand!");
2961
2962 case ISD::BITCAST: Res = WidenVecOp_BITCAST(N); break;
2963 case ISD::CONCAT_VECTORS: Res = WidenVecOp_CONCAT_VECTORS(N); break;
2964 case ISD::EXTRACT_SUBVECTOR: Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
2965 case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
2966 case ISD::STORE: Res = WidenVecOp_STORE(N); break;
2967 case ISD::MSTORE: Res = WidenVecOp_MSTORE(N, OpNo); break;
2968 case ISD::MSCATTER: Res = WidenVecOp_MSCATTER(N, OpNo); break;
2969 case ISD::SETCC: Res = WidenVecOp_SETCC(N); break;
2970 case ISD::FCOPYSIGN: Res = WidenVecOp_FCOPYSIGN(N); break;
2971
2972 case ISD::ANY_EXTEND:
2973 case ISD::SIGN_EXTEND:
2974 case ISD::ZERO_EXTEND:
2975 Res = WidenVecOp_EXTEND(N);
2976 break;
2977
2978 case ISD::FP_EXTEND:
2979 case ISD::FP_TO_SINT:
2980 case ISD::FP_TO_UINT:
2981 case ISD::SINT_TO_FP:
2982 case ISD::UINT_TO_FP:
2983 case ISD::TRUNCATE:
2984 Res = WidenVecOp_Convert(N);
2985 break;
2986 }
2987
2988 // If Res is null, the sub-method took care of registering the result.
2989 if (!Res.getNode()) return false;
2990
2991 // If the result is N, the sub-method updated N in place. Tell the legalizer
2992 // core about this.
2993 if (Res.getNode() == N)
2994 return true;
2995
2996
2997 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2998 "Invalid operand expansion");
2999
3000 ReplaceValueWith(SDValue(N, 0), Res);
3001 return false;
3002 }
3003
WidenVecOp_EXTEND(SDNode * N)3004 SDValue DAGTypeLegalizer::WidenVecOp_EXTEND(SDNode *N) {
3005 SDLoc DL(N);
3006 EVT VT = N->getValueType(0);
3007
3008 SDValue InOp = N->getOperand(0);
3009 // If some legalization strategy other than widening is used on the operand,
3010 // we can't safely assume that just extending the low lanes is the correct
3011 // transformation.
3012 if (getTypeAction(InOp.getValueType()) != TargetLowering::TypeWidenVector)
3013 return WidenVecOp_Convert(N);
3014 InOp = GetWidenedVector(InOp);
3015 assert(VT.getVectorNumElements() <
3016 InOp.getValueType().getVectorNumElements() &&
3017 "Input wasn't widened!");
3018
3019 // We may need to further widen the operand until it has the same total
3020 // vector size as the result.
3021 EVT InVT = InOp.getValueType();
3022 if (InVT.getSizeInBits() != VT.getSizeInBits()) {
3023 EVT InEltVT = InVT.getVectorElementType();
3024 for (int i = MVT::FIRST_VECTOR_VALUETYPE, e = MVT::LAST_VECTOR_VALUETYPE; i < e; ++i) {
3025 EVT FixedVT = (MVT::SimpleValueType)i;
3026 EVT FixedEltVT = FixedVT.getVectorElementType();
3027 if (TLI.isTypeLegal(FixedVT) &&
3028 FixedVT.getSizeInBits() == VT.getSizeInBits() &&
3029 FixedEltVT == InEltVT) {
3030 assert(FixedVT.getVectorNumElements() >= VT.getVectorNumElements() &&
3031 "Not enough elements in the fixed type for the operand!");
3032 assert(FixedVT.getVectorNumElements() != InVT.getVectorNumElements() &&
3033 "We can't have the same type as we started with!");
3034 if (FixedVT.getVectorNumElements() > InVT.getVectorNumElements())
3035 InOp = DAG.getNode(
3036 ISD::INSERT_SUBVECTOR, DL, FixedVT, DAG.getUNDEF(FixedVT), InOp,
3037 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3038 else
3039 InOp = DAG.getNode(
3040 ISD::EXTRACT_SUBVECTOR, DL, FixedVT, InOp,
3041 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3042 break;
3043 }
3044 }
3045 InVT = InOp.getValueType();
3046 if (InVT.getSizeInBits() != VT.getSizeInBits())
3047 // We couldn't find a legal vector type that was a widening of the input
3048 // and could be extended in-register to the result type, so we have to
3049 // scalarize.
3050 return WidenVecOp_Convert(N);
3051 }
3052
3053 // Use special DAG nodes to represent the operation of extending the
3054 // low lanes.
3055 switch (N->getOpcode()) {
3056 default:
3057 llvm_unreachable("Extend legalization on on extend operation!");
3058 case ISD::ANY_EXTEND:
3059 return DAG.getAnyExtendVectorInReg(InOp, DL, VT);
3060 case ISD::SIGN_EXTEND:
3061 return DAG.getSignExtendVectorInReg(InOp, DL, VT);
3062 case ISD::ZERO_EXTEND:
3063 return DAG.getZeroExtendVectorInReg(InOp, DL, VT);
3064 }
3065 }
3066
WidenVecOp_FCOPYSIGN(SDNode * N)3067 SDValue DAGTypeLegalizer::WidenVecOp_FCOPYSIGN(SDNode *N) {
3068 // The result (and first input) is legal, but the second input is illegal.
3069 // We can't do much to fix that, so just unroll and let the extracts off of
3070 // the second input be widened as needed later.
3071 return DAG.UnrollVectorOp(N);
3072 }
3073
WidenVecOp_Convert(SDNode * N)3074 SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
3075 // Since the result is legal and the input is illegal, it is unlikely
3076 // that we can fix the input to a legal type so unroll the convert
3077 // into some scalar code and create a nasty build vector.
3078 EVT VT = N->getValueType(0);
3079 EVT EltVT = VT.getVectorElementType();
3080 SDLoc dl(N);
3081 unsigned NumElts = VT.getVectorNumElements();
3082 SDValue InOp = N->getOperand(0);
3083 if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
3084 InOp = GetWidenedVector(InOp);
3085 EVT InVT = InOp.getValueType();
3086 EVT InEltVT = InVT.getVectorElementType();
3087
3088 unsigned Opcode = N->getOpcode();
3089 SmallVector<SDValue, 16> Ops(NumElts);
3090 for (unsigned i=0; i < NumElts; ++i)
3091 Ops[i] = DAG.getNode(
3092 Opcode, dl, EltVT,
3093 DAG.getNode(
3094 ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
3095 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
3096
3097 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3098 }
3099
WidenVecOp_BITCAST(SDNode * N)3100 SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
3101 EVT VT = N->getValueType(0);
3102 SDValue InOp = GetWidenedVector(N->getOperand(0));
3103 EVT InWidenVT = InOp.getValueType();
3104 SDLoc dl(N);
3105
3106 // Check if we can convert between two legal vector types and extract.
3107 unsigned InWidenSize = InWidenVT.getSizeInBits();
3108 unsigned Size = VT.getSizeInBits();
3109 // x86mmx is not an acceptable vector element type, so don't try.
3110 if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
3111 unsigned NewNumElts = InWidenSize / Size;
3112 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
3113 if (TLI.isTypeLegal(NewVT)) {
3114 SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
3115 return DAG.getNode(
3116 ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
3117 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3118 }
3119 }
3120
3121 return CreateStackStoreLoad(InOp, VT);
3122 }
3123
WidenVecOp_CONCAT_VECTORS(SDNode * N)3124 SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
3125 // If the input vector is not legal, it is likely that we will not find a
3126 // legal vector of the same size. Replace the concatenate vector with a
3127 // nasty build vector.
3128 EVT VT = N->getValueType(0);
3129 EVT EltVT = VT.getVectorElementType();
3130 SDLoc dl(N);
3131 unsigned NumElts = VT.getVectorNumElements();
3132 SmallVector<SDValue, 16> Ops(NumElts);
3133
3134 EVT InVT = N->getOperand(0).getValueType();
3135 unsigned NumInElts = InVT.getVectorNumElements();
3136
3137 unsigned Idx = 0;
3138 unsigned NumOperands = N->getNumOperands();
3139 for (unsigned i=0; i < NumOperands; ++i) {
3140 SDValue InOp = N->getOperand(i);
3141 if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
3142 InOp = GetWidenedVector(InOp);
3143 for (unsigned j=0; j < NumInElts; ++j)
3144 Ops[Idx++] = DAG.getNode(
3145 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
3146 DAG.getConstant(j, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3147 }
3148 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3149 }
3150
WidenVecOp_EXTRACT_SUBVECTOR(SDNode * N)3151 SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
3152 SDValue InOp = GetWidenedVector(N->getOperand(0));
3153 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
3154 N->getValueType(0), InOp, N->getOperand(1));
3155 }
3156
WidenVecOp_EXTRACT_VECTOR_ELT(SDNode * N)3157 SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
3158 SDValue InOp = GetWidenedVector(N->getOperand(0));
3159 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
3160 N->getValueType(0), InOp, N->getOperand(1));
3161 }
3162
WidenVecOp_STORE(SDNode * N)3163 SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
3164 // We have to widen the value but we want only to store the original
3165 // vector type.
3166 StoreSDNode *ST = cast<StoreSDNode>(N);
3167
3168 SmallVector<SDValue, 16> StChain;
3169 if (ST->isTruncatingStore())
3170 GenWidenVectorTruncStores(StChain, ST);
3171 else
3172 GenWidenVectorStores(StChain, ST);
3173
3174 if (StChain.size() == 1)
3175 return StChain[0];
3176 else
3177 return DAG.getNode(ISD::TokenFactor, SDLoc(ST), MVT::Other, StChain);
3178 }
3179
WidenVecOp_MSTORE(SDNode * N,unsigned OpNo)3180 SDValue DAGTypeLegalizer::WidenVecOp_MSTORE(SDNode *N, unsigned OpNo) {
3181 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
3182 SDValue Mask = MST->getMask();
3183 EVT MaskVT = Mask.getValueType();
3184 SDValue StVal = MST->getValue();
3185 // Widen the value
3186 SDValue WideVal = GetWidenedVector(StVal);
3187 SDLoc dl(N);
3188
3189 if (OpNo == 2 || getTypeAction(MaskVT) == TargetLowering::TypeWidenVector)
3190 Mask = GetWidenedVector(Mask);
3191 else {
3192 // The mask should be widened as well
3193 EVT BoolVT = getSetCCResultType(WideVal.getValueType());
3194 // We can't use ModifyToType() because we should fill the mask with
3195 // zeroes
3196 unsigned WidenNumElts = BoolVT.getVectorNumElements();
3197 unsigned MaskNumElts = MaskVT.getVectorNumElements();
3198
3199 unsigned NumConcat = WidenNumElts / MaskNumElts;
3200 SmallVector<SDValue, 16> Ops(NumConcat);
3201 SDValue ZeroVal = DAG.getConstant(0, dl, MaskVT);
3202 Ops[0] = Mask;
3203 for (unsigned i = 1; i != NumConcat; ++i)
3204 Ops[i] = ZeroVal;
3205
3206 Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, BoolVT, Ops);
3207 }
3208 assert(Mask.getValueType().getVectorNumElements() ==
3209 WideVal.getValueType().getVectorNumElements() &&
3210 "Mask and data vectors should have the same number of elements");
3211 return DAG.getMaskedStore(MST->getChain(), dl, WideVal, MST->getBasePtr(),
3212 Mask, MST->getMemoryVT(), MST->getMemOperand(),
3213 false);
3214 }
3215
WidenVecOp_MSCATTER(SDNode * N,unsigned OpNo)3216 SDValue DAGTypeLegalizer::WidenVecOp_MSCATTER(SDNode *N, unsigned OpNo) {
3217 assert(OpNo == 1 && "Can widen only data operand of mscatter");
3218 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
3219 SDValue DataOp = MSC->getValue();
3220 SDValue Mask = MSC->getMask();
3221
3222 // Widen the value
3223 SDValue WideVal = GetWidenedVector(DataOp);
3224 EVT WideVT = WideVal.getValueType();
3225 unsigned NumElts = WideVal.getValueType().getVectorNumElements();
3226 SDLoc dl(N);
3227
3228 // The mask should be widened as well
3229 Mask = WidenTargetBoolean(Mask, WideVT, true);
3230
3231 // Widen index
3232 SDValue Index = MSC->getIndex();
3233 EVT WideIndexVT = EVT::getVectorVT(*DAG.getContext(),
3234 Index.getValueType().getScalarType(),
3235 NumElts);
3236 Index = ModifyToType(Index, WideIndexVT);
3237
3238 SDValue Ops[] = {MSC->getChain(), WideVal, Mask, MSC->getBasePtr(), Index};
3239 return DAG.getMaskedScatter(DAG.getVTList(MVT::Other),
3240 MSC->getMemoryVT(), dl, Ops,
3241 MSC->getMemOperand());
3242 }
3243
WidenVecOp_SETCC(SDNode * N)3244 SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) {
3245 SDValue InOp0 = GetWidenedVector(N->getOperand(0));
3246 SDValue InOp1 = GetWidenedVector(N->getOperand(1));
3247 SDLoc dl(N);
3248
3249 // WARNING: In this code we widen the compare instruction with garbage.
3250 // This garbage may contain denormal floats which may be slow. Is this a real
3251 // concern ? Should we zero the unused lanes if this is a float compare ?
3252
3253 // Get a new SETCC node to compare the newly widened operands.
3254 // Only some of the compared elements are legal.
3255 EVT SVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3256 InOp0.getValueType());
3257 SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N),
3258 SVT, InOp0, InOp1, N->getOperand(2));
3259
3260 // Extract the needed results from the result vector.
3261 EVT ResVT = EVT::getVectorVT(*DAG.getContext(),
3262 SVT.getVectorElementType(),
3263 N->getValueType(0).getVectorNumElements());
3264 SDValue CC = DAG.getNode(
3265 ISD::EXTRACT_SUBVECTOR, dl, ResVT, WideSETCC,
3266 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3267
3268 return PromoteTargetBoolean(CC, N->getValueType(0));
3269 }
3270
3271
3272 //===----------------------------------------------------------------------===//
3273 // Vector Widening Utilities
3274 //===----------------------------------------------------------------------===//
3275
3276 // Utility function to find the type to chop up a widen vector for load/store
3277 // TLI: Target lowering used to determine legal types.
3278 // Width: Width left need to load/store.
3279 // WidenVT: The widen vector type to load to/store from
3280 // Align: If 0, don't allow use of a wider type
3281 // WidenEx: If Align is not 0, the amount additional we can load/store from.
3282
FindMemType(SelectionDAG & DAG,const TargetLowering & TLI,unsigned Width,EVT WidenVT,unsigned Align=0,unsigned WidenEx=0)3283 static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
3284 unsigned Width, EVT WidenVT,
3285 unsigned Align = 0, unsigned WidenEx = 0) {
3286 EVT WidenEltVT = WidenVT.getVectorElementType();
3287 unsigned WidenWidth = WidenVT.getSizeInBits();
3288 unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
3289 unsigned AlignInBits = Align*8;
3290
3291 // If we have one element to load/store, return it.
3292 EVT RetVT = WidenEltVT;
3293 if (Width == WidenEltWidth)
3294 return RetVT;
3295
3296 // See if there is larger legal integer than the element type to load/store
3297 unsigned VT;
3298 for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
3299 VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
3300 EVT MemVT((MVT::SimpleValueType) VT);
3301 unsigned MemVTWidth = MemVT.getSizeInBits();
3302 if (MemVT.getSizeInBits() <= WidenEltWidth)
3303 break;
3304 auto Action = TLI.getTypeAction(*DAG.getContext(), MemVT);
3305 if ((Action == TargetLowering::TypeLegal ||
3306 Action == TargetLowering::TypePromoteInteger) &&
3307 (WidenWidth % MemVTWidth) == 0 &&
3308 isPowerOf2_32(WidenWidth / MemVTWidth) &&
3309 (MemVTWidth <= Width ||
3310 (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
3311 RetVT = MemVT;
3312 break;
3313 }
3314 }
3315
3316 // See if there is a larger vector type to load/store that has the same vector
3317 // element type and is evenly divisible with the WidenVT.
3318 for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
3319 VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
3320 EVT MemVT = (MVT::SimpleValueType) VT;
3321 unsigned MemVTWidth = MemVT.getSizeInBits();
3322 if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
3323 (WidenWidth % MemVTWidth) == 0 &&
3324 isPowerOf2_32(WidenWidth / MemVTWidth) &&
3325 (MemVTWidth <= Width ||
3326 (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
3327 if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT)
3328 return MemVT;
3329 }
3330 }
3331
3332 return RetVT;
3333 }
3334
3335 // Builds a vector type from scalar loads
3336 // VecTy: Resulting Vector type
3337 // LDOps: Load operators to build a vector type
3338 // [Start,End) the list of loads to use.
BuildVectorFromScalar(SelectionDAG & DAG,EVT VecTy,SmallVectorImpl<SDValue> & LdOps,unsigned Start,unsigned End)3339 static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy,
3340 SmallVectorImpl<SDValue> &LdOps,
3341 unsigned Start, unsigned End) {
3342 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3343 SDLoc dl(LdOps[Start]);
3344 EVT LdTy = LdOps[Start].getValueType();
3345 unsigned Width = VecTy.getSizeInBits();
3346 unsigned NumElts = Width / LdTy.getSizeInBits();
3347 EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
3348
3349 unsigned Idx = 1;
3350 SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
3351
3352 for (unsigned i = Start + 1; i != End; ++i) {
3353 EVT NewLdTy = LdOps[i].getValueType();
3354 if (NewLdTy != LdTy) {
3355 NumElts = Width / NewLdTy.getSizeInBits();
3356 NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
3357 VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
3358 // Readjust position and vector position based on new load type
3359 Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
3360 LdTy = NewLdTy;
3361 }
3362 VecOp = DAG.getNode(
3363 ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
3364 DAG.getConstant(Idx++, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3365 }
3366 return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
3367 }
3368
GenWidenVectorLoads(SmallVectorImpl<SDValue> & LdChain,LoadSDNode * LD)3369 SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
3370 LoadSDNode *LD) {
3371 // The strategy assumes that we can efficiently load powers of two widths.
3372 // The routines chops the vector into the largest vector loads with the same
3373 // element type or scalar loads and then recombines it to the widen vector
3374 // type.
3375 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
3376 unsigned WidenWidth = WidenVT.getSizeInBits();
3377 EVT LdVT = LD->getMemoryVT();
3378 SDLoc dl(LD);
3379 assert(LdVT.isVector() && WidenVT.isVector());
3380 assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
3381
3382 // Load information
3383 SDValue Chain = LD->getChain();
3384 SDValue BasePtr = LD->getBasePtr();
3385 unsigned Align = LD->getAlignment();
3386 bool isVolatile = LD->isVolatile();
3387 bool isNonTemporal = LD->isNonTemporal();
3388 bool isInvariant = LD->isInvariant();
3389 AAMDNodes AAInfo = LD->getAAInfo();
3390
3391 int LdWidth = LdVT.getSizeInBits();
3392 int WidthDiff = WidenWidth - LdWidth; // Difference
3393 unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads
3394
3395 // Find the vector type that can load from.
3396 EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
3397 int NewVTWidth = NewVT.getSizeInBits();
3398 SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
3399 isVolatile, isNonTemporal, isInvariant, Align,
3400 AAInfo);
3401 LdChain.push_back(LdOp.getValue(1));
3402
3403 // Check if we can load the element with one instruction
3404 if (LdWidth <= NewVTWidth) {
3405 if (!NewVT.isVector()) {
3406 unsigned NumElts = WidenWidth / NewVTWidth;
3407 EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
3408 SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
3409 return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
3410 }
3411 if (NewVT == WidenVT)
3412 return LdOp;
3413
3414 assert(WidenWidth % NewVTWidth == 0);
3415 unsigned NumConcat = WidenWidth / NewVTWidth;
3416 SmallVector<SDValue, 16> ConcatOps(NumConcat);
3417 SDValue UndefVal = DAG.getUNDEF(NewVT);
3418 ConcatOps[0] = LdOp;
3419 for (unsigned i = 1; i != NumConcat; ++i)
3420 ConcatOps[i] = UndefVal;
3421 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, ConcatOps);
3422 }
3423
3424 // Load vector by using multiple loads from largest vector to scalar
3425 SmallVector<SDValue, 16> LdOps;
3426 LdOps.push_back(LdOp);
3427
3428 LdWidth -= NewVTWidth;
3429 unsigned Offset = 0;
3430
3431 while (LdWidth > 0) {
3432 unsigned Increment = NewVTWidth / 8;
3433 Offset += Increment;
3434 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
3435 DAG.getConstant(Increment, dl, BasePtr.getValueType()));
3436
3437 SDValue L;
3438 if (LdWidth < NewVTWidth) {
3439 // Our current type we are using is too large, find a better size
3440 NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
3441 NewVTWidth = NewVT.getSizeInBits();
3442 L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
3443 LD->getPointerInfo().getWithOffset(Offset), isVolatile,
3444 isNonTemporal, isInvariant, MinAlign(Align, Increment),
3445 AAInfo);
3446 LdChain.push_back(L.getValue(1));
3447 if (L->getValueType(0).isVector()) {
3448 SmallVector<SDValue, 16> Loads;
3449 Loads.push_back(L);
3450 unsigned size = L->getValueSizeInBits(0);
3451 while (size < LdOp->getValueSizeInBits(0)) {
3452 Loads.push_back(DAG.getUNDEF(L->getValueType(0)));
3453 size += L->getValueSizeInBits(0);
3454 }
3455 L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0), Loads);
3456 }
3457 } else {
3458 L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
3459 LD->getPointerInfo().getWithOffset(Offset), isVolatile,
3460 isNonTemporal, isInvariant, MinAlign(Align, Increment),
3461 AAInfo);
3462 LdChain.push_back(L.getValue(1));
3463 }
3464
3465 LdOps.push_back(L);
3466
3467
3468 LdWidth -= NewVTWidth;
3469 }
3470
3471 // Build the vector from the loads operations
3472 unsigned End = LdOps.size();
3473 if (!LdOps[0].getValueType().isVector())
3474 // All the loads are scalar loads.
3475 return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
3476
3477 // If the load contains vectors, build the vector using concat vector.
3478 // All of the vectors used to loads are power of 2 and the scalars load
3479 // can be combined to make a power of 2 vector.
3480 SmallVector<SDValue, 16> ConcatOps(End);
3481 int i = End - 1;
3482 int Idx = End;
3483 EVT LdTy = LdOps[i].getValueType();
3484 // First combine the scalar loads to a vector
3485 if (!LdTy.isVector()) {
3486 for (--i; i >= 0; --i) {
3487 LdTy = LdOps[i].getValueType();
3488 if (LdTy.isVector())
3489 break;
3490 }
3491 ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i+1, End);
3492 }
3493 ConcatOps[--Idx] = LdOps[i];
3494 for (--i; i >= 0; --i) {
3495 EVT NewLdTy = LdOps[i].getValueType();
3496 if (NewLdTy != LdTy) {
3497 // Create a larger vector
3498 ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
3499 makeArrayRef(&ConcatOps[Idx], End - Idx));
3500 Idx = End - 1;
3501 LdTy = NewLdTy;
3502 }
3503 ConcatOps[--Idx] = LdOps[i];
3504 }
3505
3506 if (WidenWidth == LdTy.getSizeInBits()*(End - Idx))
3507 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
3508 makeArrayRef(&ConcatOps[Idx], End - Idx));
3509
3510 // We need to fill the rest with undefs to build the vector
3511 unsigned NumOps = WidenWidth / LdTy.getSizeInBits();
3512 SmallVector<SDValue, 16> WidenOps(NumOps);
3513 SDValue UndefVal = DAG.getUNDEF(LdTy);
3514 {
3515 unsigned i = 0;
3516 for (; i != End-Idx; ++i)
3517 WidenOps[i] = ConcatOps[Idx+i];
3518 for (; i != NumOps; ++i)
3519 WidenOps[i] = UndefVal;
3520 }
3521 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, WidenOps);
3522 }
3523
3524 SDValue
GenWidenVectorExtLoads(SmallVectorImpl<SDValue> & LdChain,LoadSDNode * LD,ISD::LoadExtType ExtType)3525 DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
3526 LoadSDNode *LD,
3527 ISD::LoadExtType ExtType) {
3528 // For extension loads, it may not be more efficient to chop up the vector
3529 // and then extended it. Instead, we unroll the load and build a new vector.
3530 EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
3531 EVT LdVT = LD->getMemoryVT();
3532 SDLoc dl(LD);
3533 assert(LdVT.isVector() && WidenVT.isVector());
3534
3535 // Load information
3536 SDValue Chain = LD->getChain();
3537 SDValue BasePtr = LD->getBasePtr();
3538 unsigned Align = LD->getAlignment();
3539 bool isVolatile = LD->isVolatile();
3540 bool isNonTemporal = LD->isNonTemporal();
3541 bool isInvariant = LD->isInvariant();
3542 AAMDNodes AAInfo = LD->getAAInfo();
3543
3544 EVT EltVT = WidenVT.getVectorElementType();
3545 EVT LdEltVT = LdVT.getVectorElementType();
3546 unsigned NumElts = LdVT.getVectorNumElements();
3547
3548 // Load each element and widen
3549 unsigned WidenNumElts = WidenVT.getVectorNumElements();
3550 SmallVector<SDValue, 16> Ops(WidenNumElts);
3551 unsigned Increment = LdEltVT.getSizeInBits() / 8;
3552 Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
3553 LD->getPointerInfo(),
3554 LdEltVT, isVolatile, isNonTemporal, isInvariant,
3555 Align, AAInfo);
3556 LdChain.push_back(Ops[0].getValue(1));
3557 unsigned i = 0, Offset = Increment;
3558 for (i=1; i < NumElts; ++i, Offset += Increment) {
3559 SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
3560 BasePtr,
3561 DAG.getConstant(Offset, dl,
3562 BasePtr.getValueType()));
3563 Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
3564 LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
3565 isVolatile, isNonTemporal, isInvariant, Align,
3566 AAInfo);
3567 LdChain.push_back(Ops[i].getValue(1));
3568 }
3569
3570 // Fill the rest with undefs
3571 SDValue UndefVal = DAG.getUNDEF(EltVT);
3572 for (; i != WidenNumElts; ++i)
3573 Ops[i] = UndefVal;
3574
3575 return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
3576 }
3577
3578
GenWidenVectorStores(SmallVectorImpl<SDValue> & StChain,StoreSDNode * ST)3579 void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
3580 StoreSDNode *ST) {
3581 // The strategy assumes that we can efficiently store powers of two widths.
3582 // The routines chops the vector into the largest vector stores with the same
3583 // element type or scalar stores.
3584 SDValue Chain = ST->getChain();
3585 SDValue BasePtr = ST->getBasePtr();
3586 unsigned Align = ST->getAlignment();
3587 bool isVolatile = ST->isVolatile();
3588 bool isNonTemporal = ST->isNonTemporal();
3589 AAMDNodes AAInfo = ST->getAAInfo();
3590 SDValue ValOp = GetWidenedVector(ST->getValue());
3591 SDLoc dl(ST);
3592
3593 EVT StVT = ST->getMemoryVT();
3594 unsigned StWidth = StVT.getSizeInBits();
3595 EVT ValVT = ValOp.getValueType();
3596 unsigned ValWidth = ValVT.getSizeInBits();
3597 EVT ValEltVT = ValVT.getVectorElementType();
3598 unsigned ValEltWidth = ValEltVT.getSizeInBits();
3599 assert(StVT.getVectorElementType() == ValEltVT);
3600
3601 int Idx = 0; // current index to store
3602 unsigned Offset = 0; // offset from base to store
3603 while (StWidth != 0) {
3604 // Find the largest vector type we can store with
3605 EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT);
3606 unsigned NewVTWidth = NewVT.getSizeInBits();
3607 unsigned Increment = NewVTWidth / 8;
3608 if (NewVT.isVector()) {
3609 unsigned NumVTElts = NewVT.getVectorNumElements();
3610 do {
3611 SDValue EOp = DAG.getNode(
3612 ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
3613 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3614 StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
3615 ST->getPointerInfo().getWithOffset(Offset),
3616 isVolatile, isNonTemporal,
3617 MinAlign(Align, Offset), AAInfo));
3618 StWidth -= NewVTWidth;
3619 Offset += Increment;
3620 Idx += NumVTElts;
3621 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
3622 DAG.getConstant(Increment, dl,
3623 BasePtr.getValueType()));
3624 } while (StWidth != 0 && StWidth >= NewVTWidth);
3625 } else {
3626 // Cast the vector to the scalar type we can store
3627 unsigned NumElts = ValWidth / NewVTWidth;
3628 EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
3629 SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
3630 // Readjust index position based on new vector type
3631 Idx = Idx * ValEltWidth / NewVTWidth;
3632 do {
3633 SDValue EOp = DAG.getNode(
3634 ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
3635 DAG.getConstant(Idx++, dl,
3636 TLI.getVectorIdxTy(DAG.getDataLayout())));
3637 StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
3638 ST->getPointerInfo().getWithOffset(Offset),
3639 isVolatile, isNonTemporal,
3640 MinAlign(Align, Offset), AAInfo));
3641 StWidth -= NewVTWidth;
3642 Offset += Increment;
3643 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
3644 DAG.getConstant(Increment, dl,
3645 BasePtr.getValueType()));
3646 } while (StWidth != 0 && StWidth >= NewVTWidth);
3647 // Restore index back to be relative to the original widen element type
3648 Idx = Idx * NewVTWidth / ValEltWidth;
3649 }
3650 }
3651 }
3652
3653 void
GenWidenVectorTruncStores(SmallVectorImpl<SDValue> & StChain,StoreSDNode * ST)3654 DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
3655 StoreSDNode *ST) {
3656 // For extension loads, it may not be more efficient to truncate the vector
3657 // and then store it. Instead, we extract each element and then store it.
3658 SDValue Chain = ST->getChain();
3659 SDValue BasePtr = ST->getBasePtr();
3660 unsigned Align = ST->getAlignment();
3661 bool isVolatile = ST->isVolatile();
3662 bool isNonTemporal = ST->isNonTemporal();
3663 AAMDNodes AAInfo = ST->getAAInfo();
3664 SDValue ValOp = GetWidenedVector(ST->getValue());
3665 SDLoc dl(ST);
3666
3667 EVT StVT = ST->getMemoryVT();
3668 EVT ValVT = ValOp.getValueType();
3669
3670 // It must be true that we the widen vector type is bigger than where
3671 // we need to store.
3672 assert(StVT.isVector() && ValOp.getValueType().isVector());
3673 assert(StVT.bitsLT(ValOp.getValueType()));
3674
3675 // For truncating stores, we can not play the tricks of chopping legal
3676 // vector types and bit cast it to the right type. Instead, we unroll
3677 // the store.
3678 EVT StEltVT = StVT.getVectorElementType();
3679 EVT ValEltVT = ValVT.getVectorElementType();
3680 unsigned Increment = ValEltVT.getSizeInBits() / 8;
3681 unsigned NumElts = StVT.getVectorNumElements();
3682 SDValue EOp = DAG.getNode(
3683 ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
3684 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3685 StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
3686 ST->getPointerInfo(), StEltVT,
3687 isVolatile, isNonTemporal, Align,
3688 AAInfo));
3689 unsigned Offset = Increment;
3690 for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
3691 SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
3692 BasePtr,
3693 DAG.getConstant(Offset, dl,
3694 BasePtr.getValueType()));
3695 SDValue EOp = DAG.getNode(
3696 ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
3697 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3698 StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
3699 ST->getPointerInfo().getWithOffset(Offset),
3700 StEltVT, isVolatile, isNonTemporal,
3701 MinAlign(Align, Offset), AAInfo));
3702 }
3703 }
3704
3705 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
3706 /// input vector must have the same element type as NVT.
3707 /// FillWithZeroes specifies that the vector should be widened with zeroes.
ModifyToType(SDValue InOp,EVT NVT,bool FillWithZeroes)3708 SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT,
3709 bool FillWithZeroes) {
3710 // Note that InOp might have been widened so it might already have
3711 // the right width or it might need be narrowed.
3712 EVT InVT = InOp.getValueType();
3713 assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
3714 "input and widen element type must match");
3715 SDLoc dl(InOp);
3716
3717 // Check if InOp already has the right width.
3718 if (InVT == NVT)
3719 return InOp;
3720
3721 unsigned InNumElts = InVT.getVectorNumElements();
3722 unsigned WidenNumElts = NVT.getVectorNumElements();
3723 if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
3724 unsigned NumConcat = WidenNumElts / InNumElts;
3725 SmallVector<SDValue, 16> Ops(NumConcat);
3726 SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, InVT) :
3727 DAG.getUNDEF(InVT);
3728 Ops[0] = InOp;
3729 for (unsigned i = 1; i != NumConcat; ++i)
3730 Ops[i] = FillVal;
3731
3732 return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, Ops);
3733 }
3734
3735 if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
3736 return DAG.getNode(
3737 ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
3738 DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3739
3740 // Fall back to extract and build.
3741 SmallVector<SDValue, 16> Ops(WidenNumElts);
3742 EVT EltVT = NVT.getVectorElementType();
3743 unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
3744 unsigned Idx;
3745 for (Idx = 0; Idx < MinNumElts; ++Idx)
3746 Ops[Idx] = DAG.getNode(
3747 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
3748 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3749
3750 SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
3751 DAG.getUNDEF(EltVT);
3752 for ( ; Idx < WidenNumElts; ++Idx)
3753 Ops[Idx] = FillVal;
3754 return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Ops);
3755 }
3756