1 #ifndef FIO_STAT_H
2 #define FIO_STAT_H
3 
4 #include "iolog.h"
5 
6 struct group_run_stats {
7 	uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT];
8 	uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT];
9 	uint64_t io_kb[DDIR_RWDIR_CNT];
10 	uint64_t agg[DDIR_RWDIR_CNT];
11 	uint32_t kb_base;
12 	uint32_t unit_base;
13 	uint32_t groupid;
14 	uint32_t unified_rw_rep;
15 } __attribute__((packed));
16 
17 /*
18  * How many depth levels to log
19  */
20 #define FIO_IO_U_MAP_NR	7
21 #define FIO_IO_U_LAT_U_NR 10
22 #define FIO_IO_U_LAT_M_NR 12
23 
24 /*
25  * Aggregate clat samples to report percentile(s) of them.
26  *
27  * EXECUTIVE SUMMARY
28  *
29  * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the
30  * value of resulting percentiles. The error will be approximately
31  * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value.
32  *
33  * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum
34  * range being tracked for latency samples. The maximum value tracked
35  * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds.
36  *
37  * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory
38  * requirement of storing those aggregate counts. The memory used will
39  * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int)
40  * bytes.
41  *
42  * FIO_IO_U_PLAT_NR is the total number of buckets.
43  *
44  * DETAILS
45  *
46  * Suppose the clat varies from 0 to 999 (usec), the straightforward
47  * method is to keep an array of (999 + 1) buckets, in which a counter
48  * keeps the count of samples which fall in the bucket, e.g.,
49  * {[0],[1],...,[999]}. However this consumes a huge amount of space,
50  * and can be avoided if an approximation is acceptable.
51  *
52  * One such method is to let the range of the bucket to be greater
53  * than one. This method has low accuracy when the value is small. For
54  * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and
55  * the represented value of each bucket be the mean of the range. Then
56  * a value 0 has an round-off error of 49.5. To improve on this, we
57  * use buckets with non-uniform ranges, while bounding the error of
58  * each bucket within a ratio of the sample value. A simple example
59  * would be when error_bound = 0.005, buckets are {
60  * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},..,
61  * {[900,909],[910,919]...}  }. The total range is partitioned into
62  * groups with different ranges, then buckets with uniform ranges. An
63  * upper bound of the error is (range_of_bucket/2)/value_of_bucket
64  *
65  * For better efficiency, we implement this using base two. We group
66  * samples by their Most Significant Bit (MSB), extract the next M bit
67  * of them as an index within the group, and discard the rest of the
68  * bits.
69  *
70  * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0),
71  * and use M bit for indexing
72  *
73  *        | n |    M bits   | bit (n-M-1) ... bit 0 |
74  *
75  * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most
76  * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off
77  * error
78  *
79  *           2^(n-M)-1    2^(n-M)    1
80  *      e <= --------- <= ------- = ---
81  *             2^n          2^n     2^M
82  *
83  * Furthermore, we use "mean" of the range to represent the bucket,
84  * the error e can be lowered by half to 1 / 2^(M+1). By using M bits
85  * as the index, each group must contains 2^M buckets.
86  *
87  * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6
88  *      Error bound is 1/2^(6+1) = 0.0078125 (< 1%)
89  *
90  *	Group	MSB	#discarded	range of		#buckets
91  *			error_bits	value
92  *	----------------------------------------------------------------
93  *	0*	0~5	0		[0,63]			64
94  *	1*	6	0		[64,127]		64
95  *	2	7	1		[128,255]		64
96  *	3	8	2		[256,511]		64
97  *	4	9	3		[512,1023]		64
98  *	...	...	...		[...,...]		...
99  *	18	23	17		[8838608,+inf]**	64
100  *
101  *  * Special cases: when n < (M-1) or when n == (M-1), in both cases,
102  *    the value cannot be rounded off. Use all bits of the sample as
103  *    index.
104  *
105  *  ** If a sample's MSB is greater than 23, it will be counted as 23.
106  */
107 
108 #define FIO_IO_U_PLAT_BITS 6
109 #define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS)
110 #define FIO_IO_U_PLAT_GROUP_NR 19
111 #define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL)
112 #define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified
113 					list of percentiles */
114 
115 #define MAX_PATTERN_SIZE	512
116 #define FIO_JOBNAME_SIZE	128
117 #define FIO_JOBDESC_SIZE	256
118 #define FIO_VERROR_SIZE		128
119 
120 struct thread_stat {
121 	char name[FIO_JOBNAME_SIZE];
122 	char verror[FIO_VERROR_SIZE];
123 	uint32_t error;
124 	uint32_t thread_number;
125 	uint32_t groupid;
126 	uint32_t pid;
127 	char description[FIO_JOBDESC_SIZE];
128 	uint32_t members;
129 	uint32_t unified_rw_rep;
130 
131 	/*
132 	 * bandwidth and latency stats
133 	 */
134 	struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */
135 	struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */
136 	struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */
137 	struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */
138 	struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */
139 
140 	/*
141 	 * fio system usage accounting
142 	 */
143 	uint64_t usr_time;
144 	uint64_t sys_time;
145 	uint64_t ctx;
146 	uint64_t minf, majf;
147 
148 	/*
149 	 * IO depth and latency stats
150 	 */
151 	uint64_t clat_percentiles;
152 	uint64_t percentile_precision;
153 	fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN];
154 
155 	uint32_t io_u_map[FIO_IO_U_MAP_NR];
156 	uint32_t io_u_submit[FIO_IO_U_MAP_NR];
157 	uint32_t io_u_complete[FIO_IO_U_MAP_NR];
158 	uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR];
159 	uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR];
160 	uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR];
161 	uint32_t pad;
162 
163 	uint64_t total_io_u[3];
164 	uint64_t short_io_u[3];
165 	uint64_t drop_io_u[3];
166 	uint64_t total_submit;
167 	uint64_t total_complete;
168 
169 	uint64_t io_bytes[DDIR_RWDIR_CNT];
170 	uint64_t runtime[DDIR_RWDIR_CNT];
171 	uint64_t total_run_time;
172 
173 	/*
174 	 * IO Error related stats
175 	 */
176 	union {
177 		uint16_t continue_on_error;
178 		uint64_t pad2;
179 	};
180 	uint64_t total_err_count;
181 	uint32_t first_error;
182 
183 	uint32_t kb_base;
184 	uint32_t unit_base;
185 
186 	uint32_t latency_depth;
187 	uint64_t latency_target;
188 	fio_fp64_t latency_percentile;
189 	uint64_t latency_window;
190 } __attribute__((packed));
191 
192 struct jobs_eta {
193 	uint32_t nr_running;
194 	uint32_t nr_ramp;
195 
196 	uint32_t nr_pending;
197 	uint32_t nr_setting_up;
198 
199 	uint32_t files_open;
200 
201 	uint32_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT];
202 	uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT];
203 	uint32_t rate[DDIR_RWDIR_CNT];
204 	uint32_t iops[DDIR_RWDIR_CNT];
205 	uint64_t elapsed_sec;
206 	uint64_t eta_sec;
207 	uint32_t is_pow2;
208 	uint32_t unit_base;
209 
210 	/*
211 	 * Network 'copy' of run_str[]
212 	 */
213 	uint32_t nr_threads;
214 	uint8_t run_str[];
215 } __attribute__((packed));
216 
217 extern struct fio_mutex *stat_mutex;
218 
219 extern struct jobs_eta *get_jobs_eta(int force, size_t *size);
220 
221 extern void stat_init(void);
222 extern void stat_exit(void);
223 
224 extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs);
225 extern void show_group_stats(struct group_run_stats *rs);
226 extern int calc_thread_status(struct jobs_eta *je, int force);
227 extern void display_thread_status(struct jobs_eta *je);
228 extern void show_run_stats(void);
229 extern void __show_run_stats(void);
230 extern void __show_running_run_stats(void);
231 extern void show_running_run_stats(void);
232 extern void check_for_running_stats(void);
233 extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr);
234 extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src);
235 extern void init_thread_stat(struct thread_stat *ts);
236 extern void init_group_run_stat(struct group_run_stats *gs);
237 extern void eta_to_str(char *str, unsigned long eta_sec);
238 extern int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev);
239 extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv);
240 extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat);
241 extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat);
242 extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist);
243 extern void reset_io_stats(struct thread_data *);
244 
usec_to_msec(unsigned long * min,unsigned long * max,double * mean,double * dev)245 static inline int usec_to_msec(unsigned long *min, unsigned long *max,
246 			       double *mean, double *dev)
247 {
248 	if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) {
249 		*min /= 1000;
250 		*max /= 1000;
251 		*mean /= 1000.0;
252 		*dev /= 1000.0;
253 		return 0;
254 	}
255 
256 	return 1;
257 }
258 /*
259  * Worst level condensing would be 1:5, so allow enough room for that
260  */
261 #define __THREAD_RUNSTR_SZ(nr)	((nr) * 5)
262 #define THREAD_RUNSTR_SZ	__THREAD_RUNSTR_SZ(thread_number)
263 
264 #endif
265