1=========================
2Clang Language Extensions
3=========================
4
5.. contents::
6   :local:
7   :depth: 1
8
9.. toctree::
10   :hidden:
11
12   ObjectiveCLiterals
13   BlockLanguageSpec
14   Block-ABI-Apple
15   AutomaticReferenceCounting
16
17Introduction
18============
19
20This document describes the language extensions provided by Clang.  In addition
21to the language extensions listed here, Clang aims to support a broad range of
22GCC extensions.  Please see the `GCC manual
23<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
24these extensions.
25
26.. _langext-feature_check:
27
28Feature Checking Macros
29=======================
30
31Language extensions can be very useful, but only if you know you can depend on
32them.  In order to allow fine-grain features checks, we support three builtin
33function-like macros.  This allows you to directly test for a feature in your
34code without having to resort to something like autoconf or fragile "compiler
35version checks".
36
37``__has_builtin``
38-----------------
39
40This function-like macro takes a single identifier argument that is the name of
41a builtin function.  It evaluates to 1 if the builtin is supported or 0 if not.
42It can be used like this:
43
44.. code-block:: c++
45
46  #ifndef __has_builtin         // Optional of course.
47    #define __has_builtin(x) 0  // Compatibility with non-clang compilers.
48  #endif
49
50  ...
51  #if __has_builtin(__builtin_trap)
52    __builtin_trap();
53  #else
54    abort();
55  #endif
56  ...
57
58.. _langext-__has_feature-__has_extension:
59
60``__has_feature`` and ``__has_extension``
61-----------------------------------------
62
63These function-like macros take a single identifier argument that is the name
64of a feature.  ``__has_feature`` evaluates to 1 if the feature is both
65supported by Clang and standardized in the current language standard or 0 if
66not (but see :ref:`below <langext-has-feature-back-compat>`), while
67``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
68current language (either as a language extension or a standard language
69feature) or 0 if not.  They can be used like this:
70
71.. code-block:: c++
72
73  #ifndef __has_feature         // Optional of course.
74    #define __has_feature(x) 0  // Compatibility with non-clang compilers.
75  #endif
76  #ifndef __has_extension
77    #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
78  #endif
79
80  ...
81  #if __has_feature(cxx_rvalue_references)
82  // This code will only be compiled with the -std=c++11 and -std=gnu++11
83  // options, because rvalue references are only standardized in C++11.
84  #endif
85
86  #if __has_extension(cxx_rvalue_references)
87  // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
88  // and -std=gnu++98 options, because rvalue references are supported as a
89  // language extension in C++98.
90  #endif
91
92.. _langext-has-feature-back-compat:
93
94For backward compatibility, ``__has_feature`` can also be used to test
95for support for non-standardized features, i.e. features not prefixed ``c_``,
96``cxx_`` or ``objc_``.
97
98Another use of ``__has_feature`` is to check for compiler features not related
99to the language standard, such as e.g. :doc:`AddressSanitizer
100<AddressSanitizer>`.
101
102If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
103to ``__has_feature``.
104
105The feature tag is described along with the language feature below.
106
107The feature name or extension name can also be specified with a preceding and
108following ``__`` (double underscore) to avoid interference from a macro with
109the same name.  For instance, ``__cxx_rvalue_references__`` can be used instead
110of ``cxx_rvalue_references``.
111
112``__has_cpp_attribute``
113-----------------------
114
115This function-like macro takes a single argument that is the name of a
116C++11-style attribute. The argument can either be a single identifier, or a
117scoped identifier. If the attribute is supported, a nonzero value is returned.
118If the attribute is a standards-based attribute, this macro returns a nonzero
119value based on the year and month in which the attribute was voted into the
120working draft. If the attribute is not supported by the current compliation
121target, this macro evaluates to 0.  It can be used like this:
122
123.. code-block:: c++
124
125  #ifndef __has_cpp_attribute         // Optional of course.
126    #define __has_cpp_attribute(x) 0  // Compatibility with non-clang compilers.
127  #endif
128
129  ...
130  #if __has_cpp_attribute(clang::fallthrough)
131  #define FALLTHROUGH [[clang::fallthrough]]
132  #else
133  #define FALLTHROUGH
134  #endif
135  ...
136
137The attribute identifier (but not scope) can also be specified with a preceding
138and following ``__`` (double underscore) to avoid interference from a macro with
139the same name.  For instance, ``gnu::__const__`` can be used instead of
140``gnu::const``.
141
142``__has_attribute``
143-------------------
144
145This function-like macro takes a single identifier argument that is the name of
146a GNU-style attribute.  It evaluates to 1 if the attribute is supported by the
147current compilation target, or 0 if not.  It can be used like this:
148
149.. code-block:: c++
150
151  #ifndef __has_attribute         // Optional of course.
152    #define __has_attribute(x) 0  // Compatibility with non-clang compilers.
153  #endif
154
155  ...
156  #if __has_attribute(always_inline)
157  #define ALWAYS_INLINE __attribute__((always_inline))
158  #else
159  #define ALWAYS_INLINE
160  #endif
161  ...
162
163The attribute name can also be specified with a preceding and following ``__``
164(double underscore) to avoid interference from a macro with the same name.  For
165instance, ``__always_inline__`` can be used instead of ``always_inline``.
166
167
168``__has_declspec_attribute``
169----------------------------
170
171This function-like macro takes a single identifier argument that is the name of
172an attribute implemented as a Microsoft-style ``__declspec`` attribute.  It
173evaluates to 1 if the attribute is supported by the current compilation target,
174or 0 if not.  It can be used like this:
175
176.. code-block:: c++
177
178  #ifndef __has_declspec_attribute         // Optional of course.
179    #define __has_declspec_attribute(x) 0  // Compatibility with non-clang compilers.
180  #endif
181
182  ...
183  #if __has_declspec_attribute(dllexport)
184  #define DLLEXPORT __declspec(dllexport)
185  #else
186  #define DLLEXPORT
187  #endif
188  ...
189
190The attribute name can also be specified with a preceding and following ``__``
191(double underscore) to avoid interference from a macro with the same name.  For
192instance, ``__dllexport__`` can be used instead of ``dllexport``.
193
194``__is_identifier``
195-------------------
196
197This function-like macro takes a single identifier argument that might be either
198a reserved word or a regular identifier. It evaluates to 1 if the argument is just
199a regular identifier and not a reserved word, in the sense that it can then be
200used as the name of a user-defined function or variable. Otherwise it evaluates
201to 0.  It can be used like this:
202
203.. code-block:: c++
204
205  ...
206  #ifdef __is_identifier          // Compatibility with non-clang compilers.
207    #if __is_identifier(__wchar_t)
208      typedef wchar_t __wchar_t;
209    #endif
210  #endif
211
212  __wchar_t WideCharacter;
213  ...
214
215Include File Checking Macros
216============================
217
218Not all developments systems have the same include files.  The
219:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
220you to check for the existence of an include file before doing a possibly
221failing ``#include`` directive.  Include file checking macros must be used
222as expressions in ``#if`` or ``#elif`` preprocessing directives.
223
224.. _langext-__has_include:
225
226``__has_include``
227-----------------
228
229This function-like macro takes a single file name string argument that is the
230name of an include file.  It evaluates to 1 if the file can be found using the
231include paths, or 0 otherwise:
232
233.. code-block:: c++
234
235  // Note the two possible file name string formats.
236  #if __has_include("myinclude.h") && __has_include(<stdint.h>)
237  # include "myinclude.h"
238  #endif
239
240To test for this feature, use ``#if defined(__has_include)``:
241
242.. code-block:: c++
243
244  // To avoid problem with non-clang compilers not having this macro.
245  #if defined(__has_include)
246  #if __has_include("myinclude.h")
247  # include "myinclude.h"
248  #endif
249  #endif
250
251.. _langext-__has_include_next:
252
253``__has_include_next``
254----------------------
255
256This function-like macro takes a single file name string argument that is the
257name of an include file.  It is like ``__has_include`` except that it looks for
258the second instance of the given file found in the include paths.  It evaluates
259to 1 if the second instance of the file can be found using the include paths,
260or 0 otherwise:
261
262.. code-block:: c++
263
264  // Note the two possible file name string formats.
265  #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
266  # include_next "myinclude.h"
267  #endif
268
269  // To avoid problem with non-clang compilers not having this macro.
270  #if defined(__has_include_next)
271  #if __has_include_next("myinclude.h")
272  # include_next "myinclude.h"
273  #endif
274  #endif
275
276Note that ``__has_include_next``, like the GNU extension ``#include_next``
277directive, is intended for use in headers only, and will issue a warning if
278used in the top-level compilation file.  A warning will also be issued if an
279absolute path is used in the file argument.
280
281``__has_warning``
282-----------------
283
284This function-like macro takes a string literal that represents a command line
285option for a warning and returns true if that is a valid warning option.
286
287.. code-block:: c++
288
289  #if __has_warning("-Wformat")
290  ...
291  #endif
292
293Builtin Macros
294==============
295
296``__BASE_FILE__``
297  Defined to a string that contains the name of the main input file passed to
298  Clang.
299
300``__COUNTER__``
301  Defined to an integer value that starts at zero and is incremented each time
302  the ``__COUNTER__`` macro is expanded.
303
304``__INCLUDE_LEVEL__``
305  Defined to an integral value that is the include depth of the file currently
306  being translated.  For the main file, this value is zero.
307
308``__TIMESTAMP__``
309  Defined to the date and time of the last modification of the current source
310  file.
311
312``__clang__``
313  Defined when compiling with Clang
314
315``__clang_major__``
316  Defined to the major marketing version number of Clang (e.g., the 2 in
317  2.0.1).  Note that marketing version numbers should not be used to check for
318  language features, as different vendors use different numbering schemes.
319  Instead, use the :ref:`langext-feature_check`.
320
321``__clang_minor__``
322  Defined to the minor version number of Clang (e.g., the 0 in 2.0.1).  Note
323  that marketing version numbers should not be used to check for language
324  features, as different vendors use different numbering schemes.  Instead, use
325  the :ref:`langext-feature_check`.
326
327``__clang_patchlevel__``
328  Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
329
330``__clang_version__``
331  Defined to a string that captures the Clang marketing version, including the
332  Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
333
334.. _langext-vectors:
335
336Vectors and Extended Vectors
337============================
338
339Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
340
341OpenCL vector types are created using ``ext_vector_type`` attribute.  It
342support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL.  An example
343is:
344
345.. code-block:: c++
346
347  typedef float float4 __attribute__((ext_vector_type(4)));
348  typedef float float2 __attribute__((ext_vector_type(2)));
349
350  float4 foo(float2 a, float2 b) {
351    float4 c;
352    c.xz = a;
353    c.yw = b;
354    return c;
355  }
356
357Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
358
359Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
360and functions.  For example:
361
362.. code-block:: c++
363
364  vector float foo(vector int a) {
365    vector int b;
366    b = vec_add(a, a) + a;
367    return (vector float)b;
368  }
369
370NEON vector types are created using ``neon_vector_type`` and
371``neon_polyvector_type`` attributes.  For example:
372
373.. code-block:: c++
374
375  typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
376  typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
377
378  int8x8_t foo(int8x8_t a) {
379    int8x8_t v;
380    v = a;
381    return v;
382  }
383
384Vector Literals
385---------------
386
387Vector literals can be used to create vectors from a set of scalars, or
388vectors.  Either parentheses or braces form can be used.  In the parentheses
389form the number of literal values specified must be one, i.e. referring to a
390scalar value, or must match the size of the vector type being created.  If a
391single scalar literal value is specified, the scalar literal value will be
392replicated to all the components of the vector type.  In the brackets form any
393number of literals can be specified.  For example:
394
395.. code-block:: c++
396
397  typedef int v4si __attribute__((__vector_size__(16)));
398  typedef float float4 __attribute__((ext_vector_type(4)));
399  typedef float float2 __attribute__((ext_vector_type(2)));
400
401  v4si vsi = (v4si){1, 2, 3, 4};
402  float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
403  vector int vi1 = (vector int)(1);    // vi1 will be (1, 1, 1, 1).
404  vector int vi2 = (vector int){1};    // vi2 will be (1, 0, 0, 0).
405  vector int vi3 = (vector int)(1, 2); // error
406  vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
407  vector int vi5 = (vector int)(1, 2, 3, 4);
408  float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
409
410Vector Operations
411-----------------
412
413The table below shows the support for each operation by vector extension.  A
414dash indicates that an operation is not accepted according to a corresponding
415specification.
416
417============================== ======= ======= ======= =======
418         Operator              OpenCL  AltiVec   GCC    NEON
419============================== ======= ======= ======= =======
420[]                               yes     yes     yes     --
421unary operators +, --            yes     yes     yes     --
422++, -- --                        yes     yes     yes     --
423+,--,*,/,%                       yes     yes     yes     --
424bitwise operators &,|,^,~        yes     yes     yes     --
425>>,<<                            yes     yes     yes     --
426!, &&, ||                        yes     --      --      --
427==, !=, >, <, >=, <=             yes     yes     --      --
428=                                yes     yes     yes     yes
429:?                               yes     --      --      --
430sizeof                           yes     yes     yes     yes
431C-style cast                     yes     yes     yes     no
432reinterpret_cast                 yes     no      yes     no
433static_cast                      yes     no      yes     no
434const_cast                       no      no      no      no
435============================== ======= ======= ======= =======
436
437See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`.
438
439Messages on ``deprecated`` and ``unavailable`` Attributes
440=========================================================
441
442An optional string message can be added to the ``deprecated`` and
443``unavailable`` attributes.  For example:
444
445.. code-block:: c++
446
447  void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
448
449If the deprecated or unavailable declaration is used, the message will be
450incorporated into the appropriate diagnostic:
451
452.. code-block:: c++
453
454  harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
455        [-Wdeprecated-declarations]
456    explode();
457    ^
458
459Query for this feature with
460``__has_extension(attribute_deprecated_with_message)`` and
461``__has_extension(attribute_unavailable_with_message)``.
462
463Attributes on Enumerators
464=========================
465
466Clang allows attributes to be written on individual enumerators.  This allows
467enumerators to be deprecated, made unavailable, etc.  The attribute must appear
468after the enumerator name and before any initializer, like so:
469
470.. code-block:: c++
471
472  enum OperationMode {
473    OM_Invalid,
474    OM_Normal,
475    OM_Terrified __attribute__((deprecated)),
476    OM_AbortOnError __attribute__((deprecated)) = 4
477  };
478
479Attributes on the ``enum`` declaration do not apply to individual enumerators.
480
481Query for this feature with ``__has_extension(enumerator_attributes)``.
482
483'User-Specified' System Frameworks
484==================================
485
486Clang provides a mechanism by which frameworks can be built in such a way that
487they will always be treated as being "system frameworks", even if they are not
488present in a system framework directory.  This can be useful to system
489framework developers who want to be able to test building other applications
490with development builds of their framework, including the manner in which the
491compiler changes warning behavior for system headers.
492
493Framework developers can opt-in to this mechanism by creating a
494"``.system_framework``" file at the top-level of their framework.  That is, the
495framework should have contents like:
496
497.. code-block:: none
498
499  .../TestFramework.framework
500  .../TestFramework.framework/.system_framework
501  .../TestFramework.framework/Headers
502  .../TestFramework.framework/Headers/TestFramework.h
503  ...
504
505Clang will treat the presence of this file as an indicator that the framework
506should be treated as a system framework, regardless of how it was found in the
507framework search path.  For consistency, we recommend that such files never be
508included in installed versions of the framework.
509
510Checks for Standard Language Features
511=====================================
512
513The ``__has_feature`` macro can be used to query if certain standard language
514features are enabled.  The ``__has_extension`` macro can be used to query if
515language features are available as an extension when compiling for a standard
516which does not provide them.  The features which can be tested are listed here.
517
518Since Clang 3.4, the C++ SD-6 feature test macros are also supported.
519These are macros with names of the form ``__cpp_<feature_name>``, and are
520intended to be a portable way to query the supported features of the compiler.
521See `the C++ status page <http://clang.llvm.org/cxx_status.html#ts>`_ for
522information on the version of SD-6 supported by each Clang release, and the
523macros provided by that revision of the recommendations.
524
525C++98
526-----
527
528The features listed below are part of the C++98 standard.  These features are
529enabled by default when compiling C++ code.
530
531C++ exceptions
532^^^^^^^^^^^^^^
533
534Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
535enabled.  For example, compiling code with ``-fno-exceptions`` disables C++
536exceptions.
537
538C++ RTTI
539^^^^^^^^
540
541Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled.  For
542example, compiling code with ``-fno-rtti`` disables the use of RTTI.
543
544C++11
545-----
546
547The features listed below are part of the C++11 standard.  As a result, all
548these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
549when compiling C++ code.
550
551C++11 SFINAE includes access control
552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
553
554Use ``__has_feature(cxx_access_control_sfinae)`` or
555``__has_extension(cxx_access_control_sfinae)`` to determine whether
556access-control errors (e.g., calling a private constructor) are considered to
557be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
558<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
559
560C++11 alias templates
561^^^^^^^^^^^^^^^^^^^^^
562
563Use ``__has_feature(cxx_alias_templates)`` or
564``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
565alias declarations and alias templates is enabled.
566
567C++11 alignment specifiers
568^^^^^^^^^^^^^^^^^^^^^^^^^^
569
570Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
571determine if support for alignment specifiers using ``alignas`` is enabled.
572
573Use ``__has_feature(cxx_alignof)`` or ``__has_extension(cxx_alignof)`` to
574determine if support for the ``alignof`` keyword is enabled.
575
576C++11 attributes
577^^^^^^^^^^^^^^^^
578
579Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
580determine if support for attribute parsing with C++11's square bracket notation
581is enabled.
582
583C++11 generalized constant expressions
584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
585
586Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
587constant expressions (e.g., ``constexpr``) is enabled.
588
589C++11 ``decltype()``
590^^^^^^^^^^^^^^^^^^^^
591
592Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
593determine if support for the ``decltype()`` specifier is enabled.  C++11's
594``decltype`` does not require type-completeness of a function call expression.
595Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
596``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
597support for this feature is enabled.
598
599C++11 default template arguments in function templates
600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
601
602Use ``__has_feature(cxx_default_function_template_args)`` or
603``__has_extension(cxx_default_function_template_args)`` to determine if support
604for default template arguments in function templates is enabled.
605
606C++11 ``default``\ ed functions
607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
608
609Use ``__has_feature(cxx_defaulted_functions)`` or
610``__has_extension(cxx_defaulted_functions)`` to determine if support for
611defaulted function definitions (with ``= default``) is enabled.
612
613C++11 delegating constructors
614^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
615
616Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
617delegating constructors is enabled.
618
619C++11 ``deleted`` functions
620^^^^^^^^^^^^^^^^^^^^^^^^^^^
621
622Use ``__has_feature(cxx_deleted_functions)`` or
623``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
624function definitions (with ``= delete``) is enabled.
625
626C++11 explicit conversion functions
627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
628
629Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
630``explicit`` conversion functions is enabled.
631
632C++11 generalized initializers
633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
634
635Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
636generalized initializers (using braced lists and ``std::initializer_list``) is
637enabled.
638
639C++11 implicit move constructors/assignment operators
640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
641
642Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
643generate move constructors and move assignment operators where needed.
644
645C++11 inheriting constructors
646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
647
648Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
649inheriting constructors is enabled.
650
651C++11 inline namespaces
652^^^^^^^^^^^^^^^^^^^^^^^
653
654Use ``__has_feature(cxx_inline_namespaces)`` or
655``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
656namespaces is enabled.
657
658C++11 lambdas
659^^^^^^^^^^^^^
660
661Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
662determine if support for lambdas is enabled.
663
664C++11 local and unnamed types as template arguments
665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
666
667Use ``__has_feature(cxx_local_type_template_args)`` or
668``__has_extension(cxx_local_type_template_args)`` to determine if support for
669local and unnamed types as template arguments is enabled.
670
671C++11 noexcept
672^^^^^^^^^^^^^^
673
674Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
675determine if support for noexcept exception specifications is enabled.
676
677C++11 in-class non-static data member initialization
678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
679
680Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
681initialization of non-static data members is enabled.
682
683C++11 ``nullptr``
684^^^^^^^^^^^^^^^^^
685
686Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
687determine if support for ``nullptr`` is enabled.
688
689C++11 ``override control``
690^^^^^^^^^^^^^^^^^^^^^^^^^^
691
692Use ``__has_feature(cxx_override_control)`` or
693``__has_extension(cxx_override_control)`` to determine if support for the
694override control keywords is enabled.
695
696C++11 reference-qualified functions
697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
698
699Use ``__has_feature(cxx_reference_qualified_functions)`` or
700``__has_extension(cxx_reference_qualified_functions)`` to determine if support
701for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
702applied to ``*this``) is enabled.
703
704C++11 range-based ``for`` loop
705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
706
707Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
708determine if support for the range-based for loop is enabled.
709
710C++11 raw string literals
711^^^^^^^^^^^^^^^^^^^^^^^^^
712
713Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
714string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
715
716C++11 rvalue references
717^^^^^^^^^^^^^^^^^^^^^^^
718
719Use ``__has_feature(cxx_rvalue_references)`` or
720``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
721references is enabled.
722
723C++11 ``static_assert()``
724^^^^^^^^^^^^^^^^^^^^^^^^^
725
726Use ``__has_feature(cxx_static_assert)`` or
727``__has_extension(cxx_static_assert)`` to determine if support for compile-time
728assertions using ``static_assert`` is enabled.
729
730C++11 ``thread_local``
731^^^^^^^^^^^^^^^^^^^^^^
732
733Use ``__has_feature(cxx_thread_local)`` to determine if support for
734``thread_local`` variables is enabled.
735
736C++11 type inference
737^^^^^^^^^^^^^^^^^^^^
738
739Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
740determine C++11 type inference is supported using the ``auto`` specifier.  If
741this is disabled, ``auto`` will instead be a storage class specifier, as in C
742or C++98.
743
744C++11 strongly typed enumerations
745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
746
747Use ``__has_feature(cxx_strong_enums)`` or
748``__has_extension(cxx_strong_enums)`` to determine if support for strongly
749typed, scoped enumerations is enabled.
750
751C++11 trailing return type
752^^^^^^^^^^^^^^^^^^^^^^^^^^
753
754Use ``__has_feature(cxx_trailing_return)`` or
755``__has_extension(cxx_trailing_return)`` to determine if support for the
756alternate function declaration syntax with trailing return type is enabled.
757
758C++11 Unicode string literals
759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
760
761Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
762string literals is enabled.
763
764C++11 unrestricted unions
765^^^^^^^^^^^^^^^^^^^^^^^^^
766
767Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
768unrestricted unions is enabled.
769
770C++11 user-defined literals
771^^^^^^^^^^^^^^^^^^^^^^^^^^^
772
773Use ``__has_feature(cxx_user_literals)`` to determine if support for
774user-defined literals is enabled.
775
776C++11 variadic templates
777^^^^^^^^^^^^^^^^^^^^^^^^
778
779Use ``__has_feature(cxx_variadic_templates)`` or
780``__has_extension(cxx_variadic_templates)`` to determine if support for
781variadic templates is enabled.
782
783C++1y
784-----
785
786The features listed below are part of the committee draft for the C++1y
787standard.  As a result, all these features are enabled with the ``-std=c++1y``
788or ``-std=gnu++1y`` option when compiling C++ code.
789
790C++1y binary literals
791^^^^^^^^^^^^^^^^^^^^^
792
793Use ``__has_feature(cxx_binary_literals)`` or
794``__has_extension(cxx_binary_literals)`` to determine whether
795binary literals (for instance, ``0b10010``) are recognized. Clang supports this
796feature as an extension in all language modes.
797
798C++1y contextual conversions
799^^^^^^^^^^^^^^^^^^^^^^^^^^^^
800
801Use ``__has_feature(cxx_contextual_conversions)`` or
802``__has_extension(cxx_contextual_conversions)`` to determine if the C++1y rules
803are used when performing an implicit conversion for an array bound in a
804*new-expression*, the operand of a *delete-expression*, an integral constant
805expression, or a condition in a ``switch`` statement.
806
807C++1y decltype(auto)
808^^^^^^^^^^^^^^^^^^^^
809
810Use ``__has_feature(cxx_decltype_auto)`` or
811``__has_extension(cxx_decltype_auto)`` to determine if support
812for the ``decltype(auto)`` placeholder type is enabled.
813
814C++1y default initializers for aggregates
815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
816
817Use ``__has_feature(cxx_aggregate_nsdmi)`` or
818``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
819for default initializers in aggregate members is enabled.
820
821C++1y digit separators
822^^^^^^^^^^^^^^^^^^^^^^
823
824Use ``__cpp_digit_separators`` to determine if support for digit separators
825using single quotes (for instance, ``10'000``) is enabled. At this time, there
826is no corresponding ``__has_feature`` name
827
828C++1y generalized lambda capture
829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
830
831Use ``__has_feature(cxx_init_captures)`` or
832``__has_extension(cxx_init_captures)`` to determine if support for
833lambda captures with explicit initializers is enabled
834(for instance, ``[n(0)] { return ++n; }``).
835
836C++1y generic lambdas
837^^^^^^^^^^^^^^^^^^^^^
838
839Use ``__has_feature(cxx_generic_lambdas)`` or
840``__has_extension(cxx_generic_lambdas)`` to determine if support for generic
841(polymorphic) lambdas is enabled
842(for instance, ``[] (auto x) { return x + 1; }``).
843
844C++1y relaxed constexpr
845^^^^^^^^^^^^^^^^^^^^^^^
846
847Use ``__has_feature(cxx_relaxed_constexpr)`` or
848``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
849declarations, local variable modification, and control flow constructs
850are permitted in ``constexpr`` functions.
851
852C++1y return type deduction
853^^^^^^^^^^^^^^^^^^^^^^^^^^^
854
855Use ``__has_feature(cxx_return_type_deduction)`` or
856``__has_extension(cxx_return_type_deduction)`` to determine if support
857for return type deduction for functions (using ``auto`` as a return type)
858is enabled.
859
860C++1y runtime-sized arrays
861^^^^^^^^^^^^^^^^^^^^^^^^^^
862
863Use ``__has_feature(cxx_runtime_array)`` or
864``__has_extension(cxx_runtime_array)`` to determine if support
865for arrays of runtime bound (a restricted form of variable-length arrays)
866is enabled.
867Clang's implementation of this feature is incomplete.
868
869C++1y variable templates
870^^^^^^^^^^^^^^^^^^^^^^^^
871
872Use ``__has_feature(cxx_variable_templates)`` or
873``__has_extension(cxx_variable_templates)`` to determine if support for
874templated variable declarations is enabled.
875
876C11
877---
878
879The features listed below are part of the C11 standard.  As a result, all these
880features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
881compiling C code.  Additionally, because these features are all
882backward-compatible, they are available as extensions in all language modes.
883
884C11 alignment specifiers
885^^^^^^^^^^^^^^^^^^^^^^^^
886
887Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
888if support for alignment specifiers using ``_Alignas`` is enabled.
889
890Use ``__has_feature(c_alignof)`` or ``__has_extension(c_alignof)`` to determine
891if support for the ``_Alignof`` keyword is enabled.
892
893C11 atomic operations
894^^^^^^^^^^^^^^^^^^^^^
895
896Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
897if support for atomic types using ``_Atomic`` is enabled.  Clang also provides
898:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
899the ``<stdatomic.h>`` operations on ``_Atomic`` types. Use
900``__has_include(<stdatomic.h>)`` to determine if C11's ``<stdatomic.h>`` header
901is available.
902
903Clang will use the system's ``<stdatomic.h>`` header when one is available, and
904will otherwise use its own. When using its own, implementations of the atomic
905operations are provided as macros. In the cases where C11 also requires a real
906function, this header provides only the declaration of that function (along
907with a shadowing macro implementation), and you must link to a library which
908provides a definition of the function if you use it instead of the macro.
909
910C11 generic selections
911^^^^^^^^^^^^^^^^^^^^^^
912
913Use ``__has_feature(c_generic_selections)`` or
914``__has_extension(c_generic_selections)`` to determine if support for generic
915selections is enabled.
916
917As an extension, the C11 generic selection expression is available in all
918languages supported by Clang.  The syntax is the same as that given in the C11
919standard.
920
921In C, type compatibility is decided according to the rules given in the
922appropriate standard, but in C++, which lacks the type compatibility rules used
923in C, types are considered compatible only if they are equivalent.
924
925C11 ``_Static_assert()``
926^^^^^^^^^^^^^^^^^^^^^^^^
927
928Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
929to determine if support for compile-time assertions using ``_Static_assert`` is
930enabled.
931
932C11 ``_Thread_local``
933^^^^^^^^^^^^^^^^^^^^^
934
935Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
936to determine if support for ``_Thread_local`` variables is enabled.
937
938Modules
939-------
940
941Use ``__has_feature(modules)`` to determine if Modules have been enabled.
942For example, compiling code with ``-fmodules`` enables the use of Modules.
943
944More information could be found `here <http://clang.llvm.org/docs/Modules.html>`_.
945
946Checks for Type Trait Primitives
947================================
948
949Type trait primitives are special builtin constant expressions that can be used
950by the standard C++ library to facilitate or simplify the implementation of
951user-facing type traits in the <type_traits> header.
952
953They are not intended to be used directly by user code because they are
954implementation-defined and subject to change -- as such they're tied closely to
955the supported set of system headers, currently:
956
957* LLVM's own libc++
958* GNU libstdc++
959* The Microsoft standard C++ library
960
961Clang supports the `GNU C++ type traits
962<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
963`Microsoft Visual C++ Type traits
964<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_.
965
966Feature detection is supported only for some of the primitives at present. User
967code should not use these checks because they bear no direct relation to the
968actual set of type traits supported by the C++ standard library.
969
970For type trait ``__X``, ``__has_extension(X)`` indicates the presence of the
971type trait primitive in the compiler. A simplistic usage example as might be
972seen in standard C++ headers follows:
973
974.. code-block:: c++
975
976  #if __has_extension(is_convertible_to)
977  template<typename From, typename To>
978  struct is_convertible_to {
979    static const bool value = __is_convertible_to(From, To);
980  };
981  #else
982  // Emulate type trait for compatibility with other compilers.
983  #endif
984
985The following type trait primitives are supported by Clang:
986
987* ``__has_nothrow_assign`` (GNU, Microsoft)
988* ``__has_nothrow_copy`` (GNU, Microsoft)
989* ``__has_nothrow_constructor`` (GNU, Microsoft)
990* ``__has_trivial_assign`` (GNU, Microsoft)
991* ``__has_trivial_copy`` (GNU, Microsoft)
992* ``__has_trivial_constructor`` (GNU, Microsoft)
993* ``__has_trivial_destructor`` (GNU, Microsoft)
994* ``__has_virtual_destructor`` (GNU, Microsoft)
995* ``__is_abstract`` (GNU, Microsoft)
996* ``__is_base_of`` (GNU, Microsoft)
997* ``__is_class`` (GNU, Microsoft)
998* ``__is_convertible_to`` (Microsoft)
999* ``__is_empty`` (GNU, Microsoft)
1000* ``__is_enum`` (GNU, Microsoft)
1001* ``__is_interface_class`` (Microsoft)
1002* ``__is_pod`` (GNU, Microsoft)
1003* ``__is_polymorphic`` (GNU, Microsoft)
1004* ``__is_union`` (GNU, Microsoft)
1005* ``__is_literal(type)``: Determines whether the given type is a literal type
1006* ``__is_final``: Determines whether the given type is declared with a
1007  ``final`` class-virt-specifier.
1008* ``__underlying_type(type)``: Retrieves the underlying type for a given
1009  ``enum`` type.  This trait is required to implement the C++11 standard
1010  library.
1011* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
1012  of type ``totype`` can be assigned to from a value of type ``fromtype`` such
1013  that no non-trivial functions are called as part of that assignment.  This
1014  trait is required to implement the C++11 standard library.
1015* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
1016  value of type ``type`` can be direct-initialized with arguments of types
1017  ``argtypes...`` such that no non-trivial functions are called as part of
1018  that initialization.  This trait is required to implement the C++11 standard
1019  library.
1020* ``__is_destructible`` (MSVC 2013)
1021* ``__is_nothrow_destructible`` (MSVC 2013)
1022* ``__is_nothrow_assignable`` (MSVC 2013, clang)
1023* ``__is_constructible`` (MSVC 2013, clang)
1024* ``__is_nothrow_constructible`` (MSVC 2013, clang)
1025
1026Blocks
1027======
1028
1029The syntax and high level language feature description is in
1030:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
1031the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
1032
1033Query for this feature with ``__has_extension(blocks)``.
1034
1035Objective-C Features
1036====================
1037
1038Related result types
1039--------------------
1040
1041According to Cocoa conventions, Objective-C methods with certain names
1042("``init``", "``alloc``", etc.) always return objects that are an instance of
1043the receiving class's type.  Such methods are said to have a "related result
1044type", meaning that a message send to one of these methods will have the same
1045static type as an instance of the receiver class.  For example, given the
1046following classes:
1047
1048.. code-block:: objc
1049
1050  @interface NSObject
1051  + (id)alloc;
1052  - (id)init;
1053  @end
1054
1055  @interface NSArray : NSObject
1056  @end
1057
1058and this common initialization pattern
1059
1060.. code-block:: objc
1061
1062  NSArray *array = [[NSArray alloc] init];
1063
1064the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
1065``alloc`` implicitly has a related result type.  Similarly, the type of the
1066expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
1067related result type and its receiver is known to have the type ``NSArray *``.
1068If neither ``alloc`` nor ``init`` had a related result type, the expressions
1069would have had type ``id``, as declared in the method signature.
1070
1071A method with a related result type can be declared by using the type
1072``instancetype`` as its result type.  ``instancetype`` is a contextual keyword
1073that is only permitted in the result type of an Objective-C method, e.g.
1074
1075.. code-block:: objc
1076
1077  @interface A
1078  + (instancetype)constructAnA;
1079  @end
1080
1081The related result type can also be inferred for some methods.  To determine
1082whether a method has an inferred related result type, the first word in the
1083camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
1084and the method will have a related result type if its return type is compatible
1085with the type of its class and if:
1086
1087* the first word is "``alloc``" or "``new``", and the method is a class method,
1088  or
1089
1090* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
1091  and the method is an instance method.
1092
1093If a method with a related result type is overridden by a subclass method, the
1094subclass method must also return a type that is compatible with the subclass
1095type.  For example:
1096
1097.. code-block:: objc
1098
1099  @interface NSString : NSObject
1100  - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
1101  @end
1102
1103Related result types only affect the type of a message send or property access
1104via the given method.  In all other respects, a method with a related result
1105type is treated the same way as method that returns ``id``.
1106
1107Use ``__has_feature(objc_instancetype)`` to determine whether the
1108``instancetype`` contextual keyword is available.
1109
1110Automatic reference counting
1111----------------------------
1112
1113Clang provides support for :doc:`automated reference counting
1114<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
1115for manual ``retain``/``release``/``autorelease`` message sends.  There are two
1116feature macros associated with automatic reference counting:
1117``__has_feature(objc_arc)`` indicates the availability of automated reference
1118counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
1119automated reference counting also includes support for ``__weak`` pointers to
1120Objective-C objects.
1121
1122.. _objc-fixed-enum:
1123
1124Enumerations with a fixed underlying type
1125-----------------------------------------
1126
1127Clang provides support for C++11 enumerations with a fixed underlying type
1128within Objective-C.  For example, one can write an enumeration type as:
1129
1130.. code-block:: c++
1131
1132  typedef enum : unsigned char { Red, Green, Blue } Color;
1133
1134This specifies that the underlying type, which is used to store the enumeration
1135value, is ``unsigned char``.
1136
1137Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
1138underlying types is available in Objective-C.
1139
1140Interoperability with C++11 lambdas
1141-----------------------------------
1142
1143Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
1144permitting a lambda to be implicitly converted to a block pointer with the
1145corresponding signature.  For example, consider an API such as ``NSArray``'s
1146array-sorting method:
1147
1148.. code-block:: objc
1149
1150  - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
1151
1152``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
1153(^)(id, id)``, and parameters of this type are generally provided with block
1154literals as arguments.  However, one can also use a C++11 lambda so long as it
1155provides the same signature (in this case, accepting two parameters of type
1156``id`` and returning an ``NSComparisonResult``):
1157
1158.. code-block:: objc
1159
1160  NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
1161                     @"String 02"];
1162  const NSStringCompareOptions comparisonOptions
1163    = NSCaseInsensitiveSearch | NSNumericSearch |
1164      NSWidthInsensitiveSearch | NSForcedOrderingSearch;
1165  NSLocale *currentLocale = [NSLocale currentLocale];
1166  NSArray *sorted
1167    = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
1168               NSRange string1Range = NSMakeRange(0, [s1 length]);
1169               return [s1 compare:s2 options:comparisonOptions
1170               range:string1Range locale:currentLocale];
1171       }];
1172  NSLog(@"sorted: %@", sorted);
1173
1174This code relies on an implicit conversion from the type of the lambda
1175expression (an unnamed, local class type called the *closure type*) to the
1176corresponding block pointer type.  The conversion itself is expressed by a
1177conversion operator in that closure type that produces a block pointer with the
1178same signature as the lambda itself, e.g.,
1179
1180.. code-block:: objc
1181
1182  operator NSComparisonResult (^)(id, id)() const;
1183
1184This conversion function returns a new block that simply forwards the two
1185parameters to the lambda object (which it captures by copy), then returns the
1186result.  The returned block is first copied (with ``Block_copy``) and then
1187autoreleased.  As an optimization, if a lambda expression is immediately
1188converted to a block pointer (as in the first example, above), then the block
1189is not copied and autoreleased: rather, it is given the same lifetime as a
1190block literal written at that point in the program, which avoids the overhead
1191of copying a block to the heap in the common case.
1192
1193The conversion from a lambda to a block pointer is only available in
1194Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
1195management (autorelease).
1196
1197Object Literals and Subscripting
1198--------------------------------
1199
1200Clang provides support for :doc:`Object Literals and Subscripting
1201<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
1202programming patterns, makes programs more concise, and improves the safety of
1203container creation.  There are several feature macros associated with object
1204literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
1205availability of array literals; ``__has_feature(objc_dictionary_literals)``
1206tests the availability of dictionary literals;
1207``__has_feature(objc_subscripting)`` tests the availability of object
1208subscripting.
1209
1210Objective-C Autosynthesis of Properties
1211---------------------------------------
1212
1213Clang provides support for autosynthesis of declared properties.  Using this
1214feature, clang provides default synthesis of those properties not declared
1215@dynamic and not having user provided backing getter and setter methods.
1216``__has_feature(objc_default_synthesize_properties)`` checks for availability
1217of this feature in version of clang being used.
1218
1219.. _langext-objc-retain-release:
1220
1221Objective-C retaining behavior attributes
1222-----------------------------------------
1223
1224In Objective-C, functions and methods are generally assumed to follow the
1225`Cocoa Memory Management
1226<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
1227conventions for ownership of object arguments and
1228return values. However, there are exceptions, and so Clang provides attributes
1229to allow these exceptions to be documented. This are used by ARC and the
1230`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
1231better described using the ``objc_method_family`` attribute instead.
1232
1233**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
1234``ns_returns_autoreleased``, ``cf_returns_retained``, and
1235``cf_returns_not_retained`` attributes can be placed on methods and functions
1236that return Objective-C or CoreFoundation objects. They are commonly placed at
1237the end of a function prototype or method declaration:
1238
1239.. code-block:: objc
1240
1241  id foo() __attribute__((ns_returns_retained));
1242
1243  - (NSString *)bar:(int)x __attribute__((ns_returns_retained));
1244
1245The ``*_returns_retained`` attributes specify that the returned object has a +1
1246retain count.  The ``*_returns_not_retained`` attributes specify that the return
1247object has a +0 retain count, even if the normal convention for its selector
1248would be +1.  ``ns_returns_autoreleased`` specifies that the returned object is
1249+0, but is guaranteed to live at least as long as the next flush of an
1250autorelease pool.
1251
1252**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
1253an parameter declaration; they specify that the argument is expected to have a
1254+1 retain count, which will be balanced in some way by the function or method.
1255The ``ns_consumes_self`` attribute can only be placed on an Objective-C
1256method; it specifies that the method expects its ``self`` parameter to have a
1257+1 retain count, which it will balance in some way.
1258
1259.. code-block:: objc
1260
1261  void foo(__attribute__((ns_consumed)) NSString *string);
1262
1263  - (void) bar __attribute__((ns_consumes_self));
1264  - (void) baz:(id) __attribute__((ns_consumed)) x;
1265
1266Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
1267<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
1268
1269Query for these features with ``__has_attribute(ns_consumed)``,
1270``__has_attribute(ns_returns_retained)``, etc.
1271
1272
1273Objective-C++ ABI: protocol-qualifier mangling of parameters
1274------------------------------------------------------------
1275
1276Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
1277type is a qualified-``id`` (e.g., ``id<Foo>``).  This mangling allows such
1278parameters to be differentiated from those with the regular unqualified ``id``
1279type.
1280
1281This was a non-backward compatible mangling change to the ABI.  This change
1282allows proper overloading, and also prevents mangling conflicts with template
1283parameters of protocol-qualified type.
1284
1285Query the presence of this new mangling with
1286``__has_feature(objc_protocol_qualifier_mangling)``.
1287
1288.. _langext-overloading:
1289
1290Initializer lists for complex numbers in C
1291==========================================
1292
1293clang supports an extension which allows the following in C:
1294
1295.. code-block:: c++
1296
1297  #include <math.h>
1298  #include <complex.h>
1299  complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
1300
1301This construct is useful because there is no way to separately initialize the
1302real and imaginary parts of a complex variable in standard C, given that clang
1303does not support ``_Imaginary``.  (Clang also supports the ``__real__`` and
1304``__imag__`` extensions from gcc, which help in some cases, but are not usable
1305in static initializers.)
1306
1307Note that this extension does not allow eliding the braces; the meaning of the
1308following two lines is different:
1309
1310.. code-block:: c++
1311
1312  complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
1313  complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
1314
1315This extension also works in C++ mode, as far as that goes, but does not apply
1316to the C++ ``std::complex``.  (In C++11, list initialization allows the same
1317syntax to be used with ``std::complex`` with the same meaning.)
1318
1319Builtin Functions
1320=================
1321
1322Clang supports a number of builtin library functions with the same syntax as
1323GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
1324``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
1325``__builtin_assume_aligned``, ``__sync_fetch_and_add``, etc.  In addition to
1326the GCC builtins, Clang supports a number of builtins that GCC does not, which
1327are listed here.
1328
1329Please note that Clang does not and will not support all of the GCC builtins
1330for vector operations.  Instead of using builtins, you should use the functions
1331defined in target-specific header files like ``<xmmintrin.h>``, which define
1332portable wrappers for these.  Many of the Clang versions of these functions are
1333implemented directly in terms of :ref:`extended vector support
1334<langext-vectors>` instead of builtins, in order to reduce the number of
1335builtins that we need to implement.
1336
1337``__builtin_assume``
1338------------------------------
1339
1340``__builtin_assume`` is used to provide the optimizer with a boolean
1341invariant that is defined to be true.
1342
1343**Syntax**:
1344
1345.. code-block:: c++
1346
1347  __builtin_assume(bool)
1348
1349**Example of Use**:
1350
1351.. code-block:: c++
1352
1353  int foo(int x) {
1354    __builtin_assume(x != 0);
1355
1356    // The optimizer may short-circuit this check using the invariant.
1357    if (x == 0)
1358      return do_something();
1359
1360    return do_something_else();
1361  }
1362
1363**Description**:
1364
1365The boolean argument to this function is defined to be true. The optimizer may
1366analyze the form of the expression provided as the argument and deduce from
1367that information used to optimize the program. If the condition is violated
1368during execution, the behavior is undefined. The argument itself is never
1369evaluated, so any side effects of the expression will be discarded.
1370
1371Query for this feature with ``__has_builtin(__builtin_assume)``.
1372
1373``__builtin_readcyclecounter``
1374------------------------------
1375
1376``__builtin_readcyclecounter`` is used to access the cycle counter register (or
1377a similar low-latency, high-accuracy clock) on those targets that support it.
1378
1379**Syntax**:
1380
1381.. code-block:: c++
1382
1383  __builtin_readcyclecounter()
1384
1385**Example of Use**:
1386
1387.. code-block:: c++
1388
1389  unsigned long long t0 = __builtin_readcyclecounter();
1390  do_something();
1391  unsigned long long t1 = __builtin_readcyclecounter();
1392  unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
1393
1394**Description**:
1395
1396The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
1397which may be either global or process/thread-specific depending on the target.
1398As the backing counters often overflow quickly (on the order of seconds) this
1399should only be used for timing small intervals.  When not supported by the
1400target, the return value is always zero.  This builtin takes no arguments and
1401produces an unsigned long long result.
1402
1403Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
1404that even if present, its use may depend on run-time privilege or other OS
1405controlled state.
1406
1407.. _langext-__builtin_shufflevector:
1408
1409``__builtin_shufflevector``
1410---------------------------
1411
1412``__builtin_shufflevector`` is used to express generic vector
1413permutation/shuffle/swizzle operations.  This builtin is also very important
1414for the implementation of various target-specific header files like
1415``<xmmintrin.h>``.
1416
1417**Syntax**:
1418
1419.. code-block:: c++
1420
1421  __builtin_shufflevector(vec1, vec2, index1, index2, ...)
1422
1423**Examples**:
1424
1425.. code-block:: c++
1426
1427  // identity operation - return 4-element vector v1.
1428  __builtin_shufflevector(v1, v1, 0, 1, 2, 3)
1429
1430  // "Splat" element 0 of V1 into a 4-element result.
1431  __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
1432
1433  // Reverse 4-element vector V1.
1434  __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
1435
1436  // Concatenate every other element of 4-element vectors V1 and V2.
1437  __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
1438
1439  // Concatenate every other element of 8-element vectors V1 and V2.
1440  __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
1441
1442  // Shuffle v1 with some elements being undefined
1443  __builtin_shufflevector(v1, v1, 3, -1, 1, -1)
1444
1445**Description**:
1446
1447The first two arguments to ``__builtin_shufflevector`` are vectors that have
1448the same element type.  The remaining arguments are a list of integers that
1449specify the elements indices of the first two vectors that should be extracted
1450and returned in a new vector.  These element indices are numbered sequentially
1451starting with the first vector, continuing into the second vector.  Thus, if
1452``vec1`` is a 4-element vector, index 5 would refer to the second element of
1453``vec2``. An index of -1 can be used to indicate that the corresponding element
1454in the returned vector is a don't care and can be optimized by the backend.
1455
1456The result of ``__builtin_shufflevector`` is a vector with the same element
1457type as ``vec1``/``vec2`` but that has an element count equal to the number of
1458indices specified.
1459
1460Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
1461
1462.. _langext-__builtin_convertvector:
1463
1464``__builtin_convertvector``
1465---------------------------
1466
1467``__builtin_convertvector`` is used to express generic vector
1468type-conversion operations. The input vector and the output vector
1469type must have the same number of elements.
1470
1471**Syntax**:
1472
1473.. code-block:: c++
1474
1475  __builtin_convertvector(src_vec, dst_vec_type)
1476
1477**Examples**:
1478
1479.. code-block:: c++
1480
1481  typedef double vector4double __attribute__((__vector_size__(32)));
1482  typedef float  vector4float  __attribute__((__vector_size__(16)));
1483  typedef short  vector4short  __attribute__((__vector_size__(8)));
1484  vector4float vf; vector4short vs;
1485
1486  // convert from a vector of 4 floats to a vector of 4 doubles.
1487  __builtin_convertvector(vf, vector4double)
1488  // equivalent to:
1489  (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
1490
1491  // convert from a vector of 4 shorts to a vector of 4 floats.
1492  __builtin_convertvector(vs, vector4float)
1493  // equivalent to:
1494  (vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }
1495
1496**Description**:
1497
1498The first argument to ``__builtin_convertvector`` is a vector, and the second
1499argument is a vector type with the same number of elements as the first
1500argument.
1501
1502The result of ``__builtin_convertvector`` is a vector with the same element
1503type as the second argument, with a value defined in terms of the action of a
1504C-style cast applied to each element of the first argument.
1505
1506Query for this feature with ``__has_builtin(__builtin_convertvector)``.
1507
1508``__builtin_unreachable``
1509-------------------------
1510
1511``__builtin_unreachable`` is used to indicate that a specific point in the
1512program cannot be reached, even if the compiler might otherwise think it can.
1513This is useful to improve optimization and eliminates certain warnings.  For
1514example, without the ``__builtin_unreachable`` in the example below, the
1515compiler assumes that the inline asm can fall through and prints a "function
1516declared '``noreturn``' should not return" warning.
1517
1518**Syntax**:
1519
1520.. code-block:: c++
1521
1522    __builtin_unreachable()
1523
1524**Example of use**:
1525
1526.. code-block:: c++
1527
1528  void myabort(void) __attribute__((noreturn));
1529  void myabort(void) {
1530    asm("int3");
1531    __builtin_unreachable();
1532  }
1533
1534**Description**:
1535
1536The ``__builtin_unreachable()`` builtin has completely undefined behavior.
1537Since it has undefined behavior, it is a statement that it is never reached and
1538the optimizer can take advantage of this to produce better code.  This builtin
1539takes no arguments and produces a void result.
1540
1541Query for this feature with ``__has_builtin(__builtin_unreachable)``.
1542
1543``__builtin_unpredictable``
1544---------------------------
1545
1546``__builtin_unpredictable`` is used to indicate that a branch condition is
1547unpredictable by hardware mechanisms such as branch prediction logic.
1548
1549**Syntax**:
1550
1551.. code-block:: c++
1552
1553    __builtin_unpredictable(long long)
1554
1555**Example of use**:
1556
1557.. code-block:: c++
1558
1559  if (__builtin_unpredictable(x > 0)) {
1560     foo();
1561  }
1562
1563**Description**:
1564
1565The ``__builtin_unpredictable()`` builtin is expected to be used with control
1566flow conditions such as in ``if`` and ``switch`` statements.
1567
1568Query for this feature with ``__has_builtin(__builtin_unpredictable)``.
1569
1570``__sync_swap``
1571---------------
1572
1573``__sync_swap`` is used to atomically swap integers or pointers in memory.
1574
1575**Syntax**:
1576
1577.. code-block:: c++
1578
1579  type __sync_swap(type *ptr, type value, ...)
1580
1581**Example of Use**:
1582
1583.. code-block:: c++
1584
1585  int old_value = __sync_swap(&value, new_value);
1586
1587**Description**:
1588
1589The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
1590atomic intrinsics to allow code to atomically swap the current value with the
1591new value.  More importantly, it helps developers write more efficient and
1592correct code by avoiding expensive loops around
1593``__sync_bool_compare_and_swap()`` or relying on the platform specific
1594implementation details of ``__sync_lock_test_and_set()``.  The
1595``__sync_swap()`` builtin is a full barrier.
1596
1597``__builtin_addressof``
1598-----------------------
1599
1600``__builtin_addressof`` performs the functionality of the built-in ``&``
1601operator, ignoring any ``operator&`` overload.  This is useful in constant
1602expressions in C++11, where there is no other way to take the address of an
1603object that overloads ``operator&``.
1604
1605**Example of use**:
1606
1607.. code-block:: c++
1608
1609  template<typename T> constexpr T *addressof(T &value) {
1610    return __builtin_addressof(value);
1611  }
1612
1613``__builtin_operator_new`` and ``__builtin_operator_delete``
1614------------------------------------------------------------
1615
1616``__builtin_operator_new`` allocates memory just like a non-placement non-class
1617*new-expression*. This is exactly like directly calling the normal
1618non-placement ``::operator new``, except that it allows certain optimizations
1619that the C++ standard does not permit for a direct function call to
1620``::operator new`` (in particular, removing ``new`` / ``delete`` pairs and
1621merging allocations).
1622
1623Likewise, ``__builtin_operator_delete`` deallocates memory just like a
1624non-class *delete-expression*, and is exactly like directly calling the normal
1625``::operator delete``, except that it permits optimizations. Only the unsized
1626form of ``__builtin_operator_delete`` is currently available.
1627
1628These builtins are intended for use in the implementation of ``std::allocator``
1629and other similar allocation libraries, and are only available in C++.
1630
1631Multiprecision Arithmetic Builtins
1632----------------------------------
1633
1634Clang provides a set of builtins which expose multiprecision arithmetic in a
1635manner amenable to C. They all have the following form:
1636
1637.. code-block:: c
1638
1639  unsigned x = ..., y = ..., carryin = ..., carryout;
1640  unsigned sum = __builtin_addc(x, y, carryin, &carryout);
1641
1642Thus one can form a multiprecision addition chain in the following manner:
1643
1644.. code-block:: c
1645
1646  unsigned *x, *y, *z, carryin=0, carryout;
1647  z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
1648  carryin = carryout;
1649  z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
1650  carryin = carryout;
1651  z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
1652  carryin = carryout;
1653  z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
1654
1655The complete list of builtins are:
1656
1657.. code-block:: c
1658
1659  unsigned char      __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
1660  unsigned short     __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1661  unsigned           __builtin_addc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1662  unsigned long      __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1663  unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
1664  unsigned char      __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
1665  unsigned short     __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1666  unsigned           __builtin_subc  (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1667  unsigned long      __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1668  unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
1669
1670Checked Arithmetic Builtins
1671---------------------------
1672
1673Clang provides a set of builtins that implement checked arithmetic for security
1674critical applications in a manner that is fast and easily expressable in C. As
1675an example of their usage:
1676
1677.. code-block:: c
1678
1679  errorcode_t security_critical_application(...) {
1680    unsigned x, y, result;
1681    ...
1682    if (__builtin_mul_overflow(x, y, &result))
1683      return kErrorCodeHackers;
1684    ...
1685    use_multiply(result);
1686    ...
1687  }
1688
1689Clang provides the following checked arithmetic builtins:
1690
1691.. code-block:: c
1692
1693  bool __builtin_add_overflow   (type1 x, type2 y, type3 *sum);
1694  bool __builtin_sub_overflow   (type1 x, type2 y, type3 *diff);
1695  bool __builtin_mul_overflow   (type1 x, type2 y, type3 *prod);
1696  bool __builtin_uadd_overflow  (unsigned x, unsigned y, unsigned *sum);
1697  bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
1698  bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
1699  bool __builtin_usub_overflow  (unsigned x, unsigned y, unsigned *diff);
1700  bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
1701  bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
1702  bool __builtin_umul_overflow  (unsigned x, unsigned y, unsigned *prod);
1703  bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
1704  bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
1705  bool __builtin_sadd_overflow  (int x, int y, int *sum);
1706  bool __builtin_saddl_overflow (long x, long y, long *sum);
1707  bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
1708  bool __builtin_ssub_overflow  (int x, int y, int *diff);
1709  bool __builtin_ssubl_overflow (long x, long y, long *diff);
1710  bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
1711  bool __builtin_smul_overflow  (int x, int y, int *prod);
1712  bool __builtin_smull_overflow (long x, long y, long *prod);
1713  bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
1714
1715Each builtin performs the specified mathematical operation on the
1716first two arguments and stores the result in the third argument.  If
1717possible, the result will be equal to mathematically-correct result
1718and the builtin will return 0.  Otherwise, the builtin will return
17191 and the result will be equal to the unique value that is equivalent
1720to the mathematically-correct result modulo two raised to the *k*
1721power, where *k* is the number of bits in the result type.  The
1722behavior of these builtins is well-defined for all argument values.
1723
1724The first three builtins work generically for operands of any integer type,
1725including boolean types.  The operands need not have the same type as each
1726other, or as the result.  The other builtins may implicitly promote or
1727convert their operands before performing the operation.
1728
1729Query for this feature with ``__has_builtin(__builtin_add_overflow)``, etc.
1730
1731.. _langext-__c11_atomic:
1732
1733__c11_atomic builtins
1734---------------------
1735
1736Clang provides a set of builtins which are intended to be used to implement
1737C11's ``<stdatomic.h>`` header.  These builtins provide the semantics of the
1738``_explicit`` form of the corresponding C11 operation, and are named with a
1739``__c11_`` prefix.  The supported operations, and the differences from
1740the corresponding C11 operations, are:
1741
1742* ``__c11_atomic_init``
1743* ``__c11_atomic_thread_fence``
1744* ``__c11_atomic_signal_fence``
1745* ``__c11_atomic_is_lock_free`` (The argument is the size of the
1746  ``_Atomic(...)`` object, instead of its address)
1747* ``__c11_atomic_store``
1748* ``__c11_atomic_load``
1749* ``__c11_atomic_exchange``
1750* ``__c11_atomic_compare_exchange_strong``
1751* ``__c11_atomic_compare_exchange_weak``
1752* ``__c11_atomic_fetch_add``
1753* ``__c11_atomic_fetch_sub``
1754* ``__c11_atomic_fetch_and``
1755* ``__c11_atomic_fetch_or``
1756* ``__c11_atomic_fetch_xor``
1757
1758The macros ``__ATOMIC_RELAXED``, ``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``,
1759``__ATOMIC_RELEASE``, ``__ATOMIC_ACQ_REL``, and ``__ATOMIC_SEQ_CST`` are
1760provided, with values corresponding to the enumerators of C11's
1761``memory_order`` enumeration.
1762
1763(Note that Clang additionally provides GCC-compatible ``__atomic_*``
1764builtins)
1765
1766Low-level ARM exclusive memory builtins
1767---------------------------------------
1768
1769Clang provides overloaded builtins giving direct access to the three key ARM
1770instructions for implementing atomic operations.
1771
1772.. code-block:: c
1773
1774  T __builtin_arm_ldrex(const volatile T *addr);
1775  T __builtin_arm_ldaex(const volatile T *addr);
1776  int __builtin_arm_strex(T val, volatile T *addr);
1777  int __builtin_arm_stlex(T val, volatile T *addr);
1778  void __builtin_arm_clrex(void);
1779
1780The types ``T`` currently supported are:
1781
1782* Integer types with width at most 64 bits (or 128 bits on AArch64).
1783* Floating-point types
1784* Pointer types.
1785
1786Note that the compiler does not guarantee it will not insert stores which clear
1787the exclusive monitor in between an ``ldrex`` type operation and its paired
1788``strex``. In practice this is only usually a risk when the extra store is on
1789the same cache line as the variable being modified and Clang will only insert
1790stack stores on its own, so it is best not to use these operations on variables
1791with automatic storage duration.
1792
1793Also, loads and stores may be implicit in code written between the ``ldrex`` and
1794``strex``. Clang will not necessarily mitigate the effects of these either, so
1795care should be exercised.
1796
1797For these reasons the higher level atomic primitives should be preferred where
1798possible.
1799
1800Non-temporal load/store builtins
1801--------------------------------
1802
1803Clang provides overloaded builtins allowing generation of non-temporal memory
1804accesses.
1805
1806.. code-block:: c
1807
1808  T __builtin_nontemporal_load(T *addr);
1809  void __builtin_nontemporal_store(T value, T *addr);
1810
1811The types ``T`` currently supported are:
1812
1813* Integer types.
1814* Floating-point types.
1815* Vector types.
1816
1817Note that the compiler does not guarantee that non-temporal loads or stores
1818will be used.
1819
1820Non-standard C++11 Attributes
1821=============================
1822
1823Clang's non-standard C++11 attributes live in the ``clang`` attribute
1824namespace.
1825
1826Clang supports GCC's ``gnu`` attribute namespace. All GCC attributes which
1827are accepted with the ``__attribute__((foo))`` syntax are also accepted as
1828``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
1829(see the list of `GCC function attributes
1830<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
1831attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
1832`GCC type attributes
1833<http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
1834implementation, these attributes must appertain to the *declarator-id* in a
1835declaration, which means they must go either at the start of the declaration or
1836immediately after the name being declared.
1837
1838For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
1839also applies the GNU ``noreturn`` attribute to ``f``.
1840
1841.. code-block:: c++
1842
1843  [[gnu::unused]] int a, f [[gnu::noreturn]] ();
1844
1845Target-Specific Extensions
1846==========================
1847
1848Clang supports some language features conditionally on some targets.
1849
1850ARM/AArch64 Language Extensions
1851-------------------------------
1852
1853Memory Barrier Intrinsics
1854^^^^^^^^^^^^^^^^^^^^^^^^^
1855Clang implements the ``__dmb``, ``__dsb`` and ``__isb`` intrinsics as defined
1856in the `ARM C Language Extensions Release 2.0
1857<http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_.
1858Note that these intrinsics are implemented as motion barriers that block
1859reordering of memory accesses and side effect instructions. Other instructions
1860like simple arithmatic may be reordered around the intrinsic. If you expect to
1861have no reordering at all, use inline assembly instead.
1862
1863X86/X86-64 Language Extensions
1864------------------------------
1865
1866The X86 backend has these language extensions:
1867
1868Memory references off the GS segment
1869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1870
1871Annotating a pointer with address space #256 causes it to be code generated
1872relative to the X86 GS segment register, and address space #257 causes it to be
1873relative to the X86 FS segment.  Note that this is a very very low-level
1874feature that should only be used if you know what you're doing (for example in
1875an OS kernel).
1876
1877Here is an example:
1878
1879.. code-block:: c++
1880
1881  #define GS_RELATIVE __attribute__((address_space(256)))
1882  int foo(int GS_RELATIVE *P) {
1883    return *P;
1884  }
1885
1886Which compiles to (on X86-32):
1887
1888.. code-block:: gas
1889
1890  _foo:
1891          movl    4(%esp), %eax
1892          movl    %gs:(%eax), %eax
1893          ret
1894
1895Extensions for Static Analysis
1896==============================
1897
1898Clang supports additional attributes that are useful for documenting program
1899invariants and rules for static analysis tools, such as the `Clang Static
1900Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
1901in the analyzer's `list of source-level annotations
1902<http://clang-analyzer.llvm.org/annotations.html>`_.
1903
1904
1905Extensions for Dynamic Analysis
1906===============================
1907
1908Use ``__has_feature(address_sanitizer)`` to check if the code is being built
1909with :doc:`AddressSanitizer`.
1910
1911Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
1912with :doc:`ThreadSanitizer`.
1913
1914Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
1915with :doc:`MemorySanitizer`.
1916
1917Use ``__has_feature(safe_stack)`` to check if the code is being built
1918with :doc:`SafeStack`.
1919
1920
1921Extensions for selectively disabling optimization
1922=================================================
1923
1924Clang provides a mechanism for selectively disabling optimizations in functions
1925and methods.
1926
1927To disable optimizations in a single function definition, the GNU-style or C++11
1928non-standard attribute ``optnone`` can be used.
1929
1930.. code-block:: c++
1931
1932  // The following functions will not be optimized.
1933  // GNU-style attribute
1934  __attribute__((optnone)) int foo() {
1935    // ... code
1936  }
1937  // C++11 attribute
1938  [[clang::optnone]] int bar() {
1939    // ... code
1940  }
1941
1942To facilitate disabling optimization for a range of function definitions, a
1943range-based pragma is provided. Its syntax is ``#pragma clang optimize``
1944followed by ``off`` or ``on``.
1945
1946All function definitions in the region between an ``off`` and the following
1947``on`` will be decorated with the ``optnone`` attribute unless doing so would
1948conflict with explicit attributes already present on the function (e.g. the
1949ones that control inlining).
1950
1951.. code-block:: c++
1952
1953  #pragma clang optimize off
1954  // This function will be decorated with optnone.
1955  int foo() {
1956    // ... code
1957  }
1958
1959  // optnone conflicts with always_inline, so bar() will not be decorated.
1960  __attribute__((always_inline)) int bar() {
1961    // ... code
1962  }
1963  #pragma clang optimize on
1964
1965If no ``on`` is found to close an ``off`` region, the end of the region is the
1966end of the compilation unit.
1967
1968Note that a stray ``#pragma clang optimize on`` does not selectively enable
1969additional optimizations when compiling at low optimization levels. This feature
1970can only be used to selectively disable optimizations.
1971
1972The pragma has an effect on functions only at the point of their definition; for
1973function templates, this means that the state of the pragma at the point of an
1974instantiation is not necessarily relevant. Consider the following example:
1975
1976.. code-block:: c++
1977
1978  template<typename T> T twice(T t) {
1979    return 2 * t;
1980  }
1981
1982  #pragma clang optimize off
1983  template<typename T> T thrice(T t) {
1984    return 3 * t;
1985  }
1986
1987  int container(int a, int b) {
1988    return twice(a) + thrice(b);
1989  }
1990  #pragma clang optimize on
1991
1992In this example, the definition of the template function ``twice`` is outside
1993the pragma region, whereas the definition of ``thrice`` is inside the region.
1994The ``container`` function is also in the region and will not be optimized, but
1995it causes the instantiation of ``twice`` and ``thrice`` with an ``int`` type; of
1996these two instantiations, ``twice`` will be optimized (because its definition
1997was outside the region) and ``thrice`` will not be optimized.
1998
1999Extensions for loop hint optimizations
2000======================================
2001
2002The ``#pragma clang loop`` directive is used to specify hints for optimizing the
2003subsequent for, while, do-while, or c++11 range-based for loop. The directive
2004provides options for vectorization, interleaving, and unrolling. Loop hints can
2005be specified before any loop and will be ignored if the optimization is not safe
2006to apply.
2007
2008Vectorization and Interleaving
2009------------------------------
2010
2011A vectorized loop performs multiple iterations of the original loop
2012in parallel using vector instructions. The instruction set of the target
2013processor determines which vector instructions are available and their vector
2014widths. This restricts the types of loops that can be vectorized. The vectorizer
2015automatically determines if the loop is safe and profitable to vectorize. A
2016vector instruction cost model is used to select the vector width.
2017
2018Interleaving multiple loop iterations allows modern processors to further
2019improve instruction-level parallelism (ILP) using advanced hardware features,
2020such as multiple execution units and out-of-order execution. The vectorizer uses
2021a cost model that depends on the register pressure and generated code size to
2022select the interleaving count.
2023
2024Vectorization is enabled by ``vectorize(enable)`` and interleaving is enabled
2025by ``interleave(enable)``. This is useful when compiling with ``-Os`` to
2026manually enable vectorization or interleaving.
2027
2028.. code-block:: c++
2029
2030  #pragma clang loop vectorize(enable)
2031  #pragma clang loop interleave(enable)
2032  for(...) {
2033    ...
2034  }
2035
2036The vector width is specified by ``vectorize_width(_value_)`` and the interleave
2037count is specified by ``interleave_count(_value_)``, where
2038_value_ is a positive integer. This is useful for specifying the optimal
2039width/count of the set of target architectures supported by your application.
2040
2041.. code-block:: c++
2042
2043  #pragma clang loop vectorize_width(2)
2044  #pragma clang loop interleave_count(2)
2045  for(...) {
2046    ...
2047  }
2048
2049Specifying a width/count of 1 disables the optimization, and is equivalent to
2050``vectorize(disable)`` or ``interleave(disable)``.
2051
2052Loop Unrolling
2053--------------
2054
2055Unrolling a loop reduces the loop control overhead and exposes more
2056opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling
2057eliminates the loop and replaces it with an enumerated sequence of loop
2058iterations. Full unrolling is only possible if the loop trip count is known at
2059compile time. Partial unrolling replicates the loop body within the loop and
2060reduces the trip count.
2061
2062If ``unroll(enable)`` is specified the unroller will attempt to fully unroll the
2063loop if the trip count is known at compile time. If the fully unrolled code size
2064is greater than an internal limit the loop will be partially unrolled up to this
2065limit. If the trip count is not known at compile time the loop will be partially
2066unrolled with a heuristically chosen unroll factor.
2067
2068.. code-block:: c++
2069
2070  #pragma clang loop unroll(enable)
2071  for(...) {
2072    ...
2073  }
2074
2075If ``unroll(full)`` is specified the unroller will attempt to fully unroll the
2076loop if the trip count is known at compile time identically to
2077``unroll(enable)``. However, with ``unroll(full)`` the loop will not be unrolled
2078if the loop count is not known at compile time.
2079
2080.. code-block:: c++
2081
2082  #pragma clang loop unroll(full)
2083  for(...) {
2084    ...
2085  }
2086
2087The unroll count can be specified explicitly with ``unroll_count(_value_)`` where
2088_value_ is a positive integer. If this value is greater than the trip count the
2089loop will be fully unrolled. Otherwise the loop is partially unrolled subject
2090to the same code size limit as with ``unroll(enable)``.
2091
2092.. code-block:: c++
2093
2094  #pragma clang loop unroll_count(8)
2095  for(...) {
2096    ...
2097  }
2098
2099Unrolling of a loop can be prevented by specifying ``unroll(disable)``.
2100
2101Additional Information
2102----------------------
2103
2104For convenience multiple loop hints can be specified on a single line.
2105
2106.. code-block:: c++
2107
2108  #pragma clang loop vectorize_width(4) interleave_count(8)
2109  for(...) {
2110    ...
2111  }
2112
2113If an optimization cannot be applied any hints that apply to it will be ignored.
2114For example, the hint ``vectorize_width(4)`` is ignored if the loop is not
2115proven safe to vectorize. To identify and diagnose optimization issues use
2116`-Rpass`, `-Rpass-missed`, and `-Rpass-analysis` command line options. See the
2117user guide for details.
2118