1 //===-- tsan_interceptors.cc ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // FIXME: move as many interceptors as possible into
13 // sanitizer_common/sanitizer_common_interceptors.inc
14 //===----------------------------------------------------------------------===//
15
16 #include "sanitizer_common/sanitizer_atomic.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_linux.h"
19 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_stacktrace.h"
22 #include "interception/interception.h"
23 #include "tsan_interceptors.h"
24 #include "tsan_interface.h"
25 #include "tsan_platform.h"
26 #include "tsan_suppressions.h"
27 #include "tsan_rtl.h"
28 #include "tsan_mman.h"
29 #include "tsan_fd.h"
30
31 #if SANITIZER_POSIX
32 #include "sanitizer_common/sanitizer_posix.h"
33 #endif
34
35 using namespace __tsan; // NOLINT
36
37 #if SANITIZER_FREEBSD || SANITIZER_MAC
38 #define __errno_location __error
39 #define stdout __stdoutp
40 #define stderr __stderrp
41 #endif
42
43 #if SANITIZER_FREEBSD
44 #define __libc_realloc __realloc
45 #define __libc_calloc __calloc
46 #elif SANITIZER_MAC
47 #define __libc_malloc REAL(malloc)
48 #define __libc_realloc REAL(realloc)
49 #define __libc_calloc REAL(calloc)
50 #define __libc_free REAL(free)
51 #elif SANITIZER_ANDROID
52 #define __errno_location __errno
53 #define __libc_malloc REAL(malloc)
54 #define __libc_realloc REAL(realloc)
55 #define __libc_calloc REAL(calloc)
56 #define __libc_free REAL(free)
57 #define mallopt(a, b)
58 #endif
59
60 #if SANITIZER_LINUX || SANITIZER_FREEBSD
61 #define PTHREAD_CREATE_DETACHED 1
62 #elif SANITIZER_MAC
63 #define PTHREAD_CREATE_DETACHED 2
64 #endif
65
66
67 #ifdef __mips__
68 const int kSigCount = 129;
69 #else
70 const int kSigCount = 65;
71 #endif
72
73 struct my_siginfo_t {
74 // The size is determined by looking at sizeof of real siginfo_t on linux.
75 u64 opaque[128 / sizeof(u64)];
76 };
77
78 #ifdef __mips__
79 struct ucontext_t {
80 u64 opaque[768 / sizeof(u64) + 1];
81 };
82 #else
83 struct ucontext_t {
84 // The size is determined by looking at sizeof of real ucontext_t on linux.
85 u64 opaque[936 / sizeof(u64) + 1];
86 };
87 #endif
88
89 #if defined(__x86_64__) || defined(__mips__) \
90 || (defined(__powerpc64__) && defined(__BIG_ENDIAN__))
91 #define PTHREAD_ABI_BASE "GLIBC_2.3.2"
92 #elif defined(__aarch64__) || (defined(__powerpc64__) \
93 && defined(__LITTLE_ENDIAN__))
94 #define PTHREAD_ABI_BASE "GLIBC_2.17"
95 #endif
96
97 extern "C" int pthread_attr_init(void *attr);
98 extern "C" int pthread_attr_destroy(void *attr);
99 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
100 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
101 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
102 extern "C" int pthread_setspecific(unsigned key, const void *v);
103 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
104 extern "C" int pthread_sigmask(int how, const __sanitizer_sigset_t *set,
105 __sanitizer_sigset_t *oldset);
106 // REAL(sigfillset) defined in common interceptors.
107 DECLARE_REAL(int, sigfillset, __sanitizer_sigset_t *set)
108 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
109 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
110 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
111 extern "C" void *pthread_self();
112 extern "C" void _exit(int status);
113 extern "C" int *__errno_location();
114 extern "C" int fileno_unlocked(void *stream);
115 #if !SANITIZER_ANDROID
116 extern "C" void *__libc_calloc(uptr size, uptr n);
117 extern "C" void *__libc_realloc(void *ptr, uptr size);
118 #endif
119 extern "C" int dirfd(void *dirp);
120 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID
121 extern "C" int mallopt(int param, int value);
122 #endif
123 extern __sanitizer_FILE *stdout, *stderr;
124 const int PTHREAD_MUTEX_RECURSIVE = 1;
125 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
126 const int EINVAL = 22;
127 const int EBUSY = 16;
128 const int EOWNERDEAD = 130;
129 #if !SANITIZER_MAC
130 const int EPOLL_CTL_ADD = 1;
131 #endif
132 const int SIGILL = 4;
133 const int SIGABRT = 6;
134 const int SIGFPE = 8;
135 const int SIGSEGV = 11;
136 const int SIGPIPE = 13;
137 const int SIGTERM = 15;
138 #if defined(__mips__) || SANITIZER_MAC
139 const int SIGBUS = 10;
140 const int SIGSYS = 12;
141 #else
142 const int SIGBUS = 7;
143 const int SIGSYS = 31;
144 #endif
145 void *const MAP_FAILED = (void*)-1;
146 #if !SANITIZER_MAC
147 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
148 #endif
149 const int MAP_FIXED = 0x10;
150 typedef long long_t; // NOLINT
151
152 // From /usr/include/unistd.h
153 # define F_ULOCK 0 /* Unlock a previously locked region. */
154 # define F_LOCK 1 /* Lock a region for exclusive use. */
155 # define F_TLOCK 2 /* Test and lock a region for exclusive use. */
156 # define F_TEST 3 /* Test a region for other processes locks. */
157
158 #define errno (*__errno_location())
159
160 typedef void (*sighandler_t)(int sig);
161 typedef void (*sigactionhandler_t)(int sig, my_siginfo_t *siginfo, void *uctx);
162
163 #if SANITIZER_ANDROID
164 struct sigaction_t {
165 u32 sa_flags;
166 union {
167 sighandler_t sa_handler;
168 sigactionhandler_t sa_sgiaction;
169 };
170 __sanitizer_sigset_t sa_mask;
171 void (*sa_restorer)();
172 };
173 #else
174 struct sigaction_t {
175 #ifdef __mips__
176 u32 sa_flags;
177 #endif
178 union {
179 sighandler_t sa_handler;
180 sigactionhandler_t sa_sigaction;
181 };
182 #if SANITIZER_FREEBSD
183 int sa_flags;
184 __sanitizer_sigset_t sa_mask;
185 #elif SANITIZER_MAC
186 __sanitizer_sigset_t sa_mask;
187 int sa_flags;
188 #else
189 __sanitizer_sigset_t sa_mask;
190 #ifndef __mips__
191 int sa_flags;
192 #endif
193 void (*sa_restorer)();
194 #endif
195 };
196 #endif
197
198 const sighandler_t SIG_DFL = (sighandler_t)0;
199 const sighandler_t SIG_IGN = (sighandler_t)1;
200 const sighandler_t SIG_ERR = (sighandler_t)-1;
201 #if SANITIZER_FREEBSD || SANITIZER_MAC
202 const int SA_SIGINFO = 0x40;
203 const int SIG_SETMASK = 3;
204 #elif defined(__mips__)
205 const int SA_SIGINFO = 8;
206 const int SIG_SETMASK = 3;
207 #else
208 const int SA_SIGINFO = 4;
209 const int SIG_SETMASK = 2;
210 #endif
211
212 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
213 (!cur_thread()->is_inited)
214
215 static sigaction_t sigactions[kSigCount];
216
217 namespace __tsan {
218 struct SignalDesc {
219 bool armed;
220 bool sigaction;
221 my_siginfo_t siginfo;
222 ucontext_t ctx;
223 };
224
225 struct ThreadSignalContext {
226 int int_signal_send;
227 atomic_uintptr_t in_blocking_func;
228 atomic_uintptr_t have_pending_signals;
229 SignalDesc pending_signals[kSigCount];
230 // emptyset and oldset are too big for stack.
231 __sanitizer_sigset_t emptyset;
232 __sanitizer_sigset_t oldset;
233 };
234
235 // The object is 64-byte aligned, because we want hot data to be located in
236 // a single cache line if possible (it's accessed in every interceptor).
237 static ALIGNED(64) char libignore_placeholder[sizeof(LibIgnore)];
libignore()238 static LibIgnore *libignore() {
239 return reinterpret_cast<LibIgnore*>(&libignore_placeholder[0]);
240 }
241
InitializeLibIgnore()242 void InitializeLibIgnore() {
243 const SuppressionContext &supp = *Suppressions();
244 const uptr n = supp.SuppressionCount();
245 for (uptr i = 0; i < n; i++) {
246 const Suppression *s = supp.SuppressionAt(i);
247 if (0 == internal_strcmp(s->type, kSuppressionLib))
248 libignore()->AddIgnoredLibrary(s->templ);
249 }
250 libignore()->OnLibraryLoaded(0);
251 }
252
253 } // namespace __tsan
254
SigCtx(ThreadState * thr)255 static ThreadSignalContext *SigCtx(ThreadState *thr) {
256 ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
257 if (ctx == 0 && !thr->is_dead) {
258 ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
259 MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
260 thr->signal_ctx = ctx;
261 }
262 return ctx;
263 }
264
265 #if !SANITIZER_MAC
266 static unsigned g_thread_finalize_key;
267 #endif
268
ScopedInterceptor(ThreadState * thr,const char * fname,uptr pc)269 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
270 uptr pc)
271 : thr_(thr)
272 , pc_(pc)
273 , in_ignored_lib_(false) {
274 if (!thr_->ignore_interceptors) {
275 Initialize(thr);
276 FuncEntry(thr, pc);
277 }
278 DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
279 if (!thr_->in_ignored_lib && libignore()->IsIgnored(pc)) {
280 in_ignored_lib_ = true;
281 thr_->in_ignored_lib = true;
282 ThreadIgnoreBegin(thr_, pc_);
283 }
284 }
285
~ScopedInterceptor()286 ScopedInterceptor::~ScopedInterceptor() {
287 if (in_ignored_lib_) {
288 thr_->in_ignored_lib = false;
289 ThreadIgnoreEnd(thr_, pc_);
290 }
291 if (!thr_->ignore_interceptors) {
292 ProcessPendingSignals(thr_);
293 FuncExit(thr_);
294 CheckNoLocks(thr_);
295 }
296 }
297
UserCallbackStart()298 void ScopedInterceptor::UserCallbackStart() {
299 if (in_ignored_lib_) {
300 thr_->in_ignored_lib = false;
301 ThreadIgnoreEnd(thr_, pc_);
302 }
303 }
304
UserCallbackEnd()305 void ScopedInterceptor::UserCallbackEnd() {
306 if (in_ignored_lib_) {
307 thr_->in_ignored_lib = true;
308 ThreadIgnoreBegin(thr_, pc_);
309 }
310 }
311
312 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
313 #if SANITIZER_FREEBSD
314 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
315 #else
316 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
317 #endif
318
319 #define READ_STRING_OF_LEN(thr, pc, s, len, n) \
320 MemoryAccessRange((thr), (pc), (uptr)(s), \
321 common_flags()->strict_string_checks ? (len) + 1 : (n), false)
322
323 #define READ_STRING(thr, pc, s, n) \
324 READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
325
326 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
327
328 struct BlockingCall {
BlockingCallBlockingCall329 explicit BlockingCall(ThreadState *thr)
330 : thr(thr)
331 , ctx(SigCtx(thr)) {
332 for (;;) {
333 atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
334 if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
335 break;
336 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
337 ProcessPendingSignals(thr);
338 }
339 // When we are in a "blocking call", we process signals asynchronously
340 // (right when they arrive). In this context we do not expect to be
341 // executing any user/runtime code. The known interceptor sequence when
342 // this is not true is: pthread_join -> munmap(stack). It's fine
343 // to ignore munmap in this case -- we handle stack shadow separately.
344 thr->ignore_interceptors++;
345 }
346
~BlockingCallBlockingCall347 ~BlockingCall() {
348 thr->ignore_interceptors--;
349 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
350 }
351
352 ThreadState *thr;
353 ThreadSignalContext *ctx;
354 };
355
TSAN_INTERCEPTOR(unsigned,sleep,unsigned sec)356 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
357 SCOPED_TSAN_INTERCEPTOR(sleep, sec);
358 unsigned res = BLOCK_REAL(sleep)(sec);
359 AfterSleep(thr, pc);
360 return res;
361 }
362
TSAN_INTERCEPTOR(int,usleep,long_t usec)363 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
364 SCOPED_TSAN_INTERCEPTOR(usleep, usec);
365 int res = BLOCK_REAL(usleep)(usec);
366 AfterSleep(thr, pc);
367 return res;
368 }
369
TSAN_INTERCEPTOR(int,nanosleep,void * req,void * rem)370 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
371 SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
372 int res = BLOCK_REAL(nanosleep)(req, rem);
373 AfterSleep(thr, pc);
374 return res;
375 }
376
377 // The sole reason tsan wraps atexit callbacks is to establish synchronization
378 // between callback setup and callback execution.
379 struct AtExitCtx {
380 void (*f)();
381 void *arg;
382 };
383
at_exit_wrapper(void * arg)384 static void at_exit_wrapper(void *arg) {
385 ThreadState *thr = cur_thread();
386 uptr pc = 0;
387 Acquire(thr, pc, (uptr)arg);
388 AtExitCtx *ctx = (AtExitCtx*)arg;
389 ((void(*)(void *arg))ctx->f)(ctx->arg);
390 __libc_free(ctx);
391 }
392
393 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
394 void *arg, void *dso);
395
396 #if !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,atexit,void (* f)())397 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
398 if (cur_thread()->in_symbolizer)
399 return 0;
400 // We want to setup the atexit callback even if we are in ignored lib
401 // or after fork.
402 SCOPED_INTERCEPTOR_RAW(atexit, f);
403 return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
404 }
405 #endif
406
TSAN_INTERCEPTOR(int,__cxa_atexit,void (* f)(void * a),void * arg,void * dso)407 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
408 if (cur_thread()->in_symbolizer)
409 return 0;
410 SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
411 return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
412 }
413
setup_at_exit_wrapper(ThreadState * thr,uptr pc,void (* f)(),void * arg,void * dso)414 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
415 void *arg, void *dso) {
416 AtExitCtx *ctx = (AtExitCtx*)__libc_malloc(sizeof(AtExitCtx));
417 ctx->f = f;
418 ctx->arg = arg;
419 Release(thr, pc, (uptr)ctx);
420 // Memory allocation in __cxa_atexit will race with free during exit,
421 // because we do not see synchronization around atexit callback list.
422 ThreadIgnoreBegin(thr, pc);
423 int res = REAL(__cxa_atexit)(at_exit_wrapper, ctx, dso);
424 ThreadIgnoreEnd(thr, pc);
425 return res;
426 }
427
428 #if !SANITIZER_MAC
on_exit_wrapper(int status,void * arg)429 static void on_exit_wrapper(int status, void *arg) {
430 ThreadState *thr = cur_thread();
431 uptr pc = 0;
432 Acquire(thr, pc, (uptr)arg);
433 AtExitCtx *ctx = (AtExitCtx*)arg;
434 ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
435 __libc_free(ctx);
436 }
437
TSAN_INTERCEPTOR(int,on_exit,void (* f)(int,void *),void * arg)438 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
439 if (cur_thread()->in_symbolizer)
440 return 0;
441 SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
442 AtExitCtx *ctx = (AtExitCtx*)__libc_malloc(sizeof(AtExitCtx));
443 ctx->f = (void(*)())f;
444 ctx->arg = arg;
445 Release(thr, pc, (uptr)ctx);
446 // Memory allocation in __cxa_atexit will race with free during exit,
447 // because we do not see synchronization around atexit callback list.
448 ThreadIgnoreBegin(thr, pc);
449 int res = REAL(on_exit)(on_exit_wrapper, ctx);
450 ThreadIgnoreEnd(thr, pc);
451 return res;
452 }
453 #endif
454
455 // Cleanup old bufs.
JmpBufGarbageCollect(ThreadState * thr,uptr sp)456 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
457 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
458 JmpBuf *buf = &thr->jmp_bufs[i];
459 if (buf->sp <= sp) {
460 uptr sz = thr->jmp_bufs.Size();
461 internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
462 thr->jmp_bufs.PopBack();
463 i--;
464 }
465 }
466 }
467
SetJmp(ThreadState * thr,uptr sp,uptr mangled_sp)468 static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
469 if (!thr->is_inited) // called from libc guts during bootstrap
470 return;
471 // Cleanup old bufs.
472 JmpBufGarbageCollect(thr, sp);
473 // Remember the buf.
474 JmpBuf *buf = thr->jmp_bufs.PushBack();
475 buf->sp = sp;
476 buf->mangled_sp = mangled_sp;
477 buf->shadow_stack_pos = thr->shadow_stack_pos;
478 ThreadSignalContext *sctx = SigCtx(thr);
479 buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
480 buf->in_blocking_func = sctx ?
481 atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
482 false;
483 buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
484 memory_order_relaxed);
485 }
486
LongJmp(ThreadState * thr,uptr * env)487 static void LongJmp(ThreadState *thr, uptr *env) {
488 #ifdef __powerpc__
489 uptr mangled_sp = env[0];
490 #elif SANITIZER_FREEBSD || SANITIZER_MAC
491 uptr mangled_sp = env[2];
492 #elif defined(SANITIZER_LINUX)
493 # ifdef __aarch64__
494 uptr mangled_sp = env[13];
495 # else
496 uptr mangled_sp = env[6];
497 # endif
498 #endif
499 // Find the saved buf by mangled_sp.
500 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
501 JmpBuf *buf = &thr->jmp_bufs[i];
502 if (buf->mangled_sp == mangled_sp) {
503 CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
504 // Unwind the stack.
505 while (thr->shadow_stack_pos > buf->shadow_stack_pos)
506 FuncExit(thr);
507 ThreadSignalContext *sctx = SigCtx(thr);
508 if (sctx) {
509 sctx->int_signal_send = buf->int_signal_send;
510 atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
511 memory_order_relaxed);
512 }
513 atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
514 memory_order_relaxed);
515 JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp
516 return;
517 }
518 }
519 Printf("ThreadSanitizer: can't find longjmp buf\n");
520 CHECK(0);
521 }
522
523 // FIXME: put everything below into a common extern "C" block?
__tsan_setjmp(uptr sp,uptr mangled_sp)524 extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
525 SetJmp(cur_thread(), sp, mangled_sp);
526 }
527
528 #if SANITIZER_MAC
529 TSAN_INTERCEPTOR(int, setjmp, void *env);
530 TSAN_INTERCEPTOR(int, _setjmp, void *env);
531 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
532 #else // SANITIZER_MAC
533 // Not called. Merely to satisfy TSAN_INTERCEPT().
534 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
535 int __interceptor_setjmp(void *env);
__interceptor_setjmp(void * env)536 extern "C" int __interceptor_setjmp(void *env) {
537 CHECK(0);
538 return 0;
539 }
540
541 // FIXME: any reason to have a separate declaration?
542 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
543 int __interceptor__setjmp(void *env);
__interceptor__setjmp(void * env)544 extern "C" int __interceptor__setjmp(void *env) {
545 CHECK(0);
546 return 0;
547 }
548
549 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
550 int __interceptor_sigsetjmp(void *env);
__interceptor_sigsetjmp(void * env)551 extern "C" int __interceptor_sigsetjmp(void *env) {
552 CHECK(0);
553 return 0;
554 }
555
556 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
557 int __interceptor___sigsetjmp(void *env);
__interceptor___sigsetjmp(void * env)558 extern "C" int __interceptor___sigsetjmp(void *env) {
559 CHECK(0);
560 return 0;
561 }
562
563 extern "C" int setjmp(void *env);
564 extern "C" int _setjmp(void *env);
565 extern "C" int sigsetjmp(void *env);
566 extern "C" int __sigsetjmp(void *env);
DEFINE_REAL(int,setjmp,void * env)567 DEFINE_REAL(int, setjmp, void *env)
568 DEFINE_REAL(int, _setjmp, void *env)
569 DEFINE_REAL(int, sigsetjmp, void *env)
570 DEFINE_REAL(int, __sigsetjmp, void *env)
571 #endif // SANITIZER_MAC
572
573 TSAN_INTERCEPTOR(void, longjmp, uptr *env, int val) {
574 {
575 SCOPED_TSAN_INTERCEPTOR(longjmp, env, val);
576 }
577 LongJmp(cur_thread(), env);
578 REAL(longjmp)(env, val);
579 }
580
TSAN_INTERCEPTOR(void,siglongjmp,uptr * env,int val)581 TSAN_INTERCEPTOR(void, siglongjmp, uptr *env, int val) {
582 {
583 SCOPED_TSAN_INTERCEPTOR(siglongjmp, env, val);
584 }
585 LongJmp(cur_thread(), env);
586 REAL(siglongjmp)(env, val);
587 }
588
589 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(void *,malloc,uptr size)590 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
591 if (cur_thread()->in_symbolizer)
592 return __libc_malloc(size);
593 void *p = 0;
594 {
595 SCOPED_INTERCEPTOR_RAW(malloc, size);
596 p = user_alloc(thr, pc, size);
597 }
598 invoke_malloc_hook(p, size);
599 return p;
600 }
601
TSAN_INTERCEPTOR(void *,__libc_memalign,uptr align,uptr sz)602 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
603 SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
604 return user_alloc(thr, pc, sz, align);
605 }
606
TSAN_INTERCEPTOR(void *,calloc,uptr size,uptr n)607 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
608 if (cur_thread()->in_symbolizer)
609 return __libc_calloc(size, n);
610 void *p = 0;
611 {
612 SCOPED_INTERCEPTOR_RAW(calloc, size, n);
613 p = user_calloc(thr, pc, size, n);
614 }
615 invoke_malloc_hook(p, n * size);
616 return p;
617 }
618
TSAN_INTERCEPTOR(void *,realloc,void * p,uptr size)619 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
620 if (cur_thread()->in_symbolizer)
621 return __libc_realloc(p, size);
622 if (p)
623 invoke_free_hook(p);
624 {
625 SCOPED_INTERCEPTOR_RAW(realloc, p, size);
626 p = user_realloc(thr, pc, p, size);
627 }
628 invoke_malloc_hook(p, size);
629 return p;
630 }
631
TSAN_INTERCEPTOR(void,free,void * p)632 TSAN_INTERCEPTOR(void, free, void *p) {
633 if (p == 0)
634 return;
635 if (cur_thread()->in_symbolizer)
636 return __libc_free(p);
637 invoke_free_hook(p);
638 SCOPED_INTERCEPTOR_RAW(free, p);
639 user_free(thr, pc, p);
640 }
641
TSAN_INTERCEPTOR(void,cfree,void * p)642 TSAN_INTERCEPTOR(void, cfree, void *p) {
643 if (p == 0)
644 return;
645 if (cur_thread()->in_symbolizer)
646 return __libc_free(p);
647 invoke_free_hook(p);
648 SCOPED_INTERCEPTOR_RAW(cfree, p);
649 user_free(thr, pc, p);
650 }
651
TSAN_INTERCEPTOR(uptr,malloc_usable_size,void * p)652 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
653 SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
654 return user_alloc_usable_size(p);
655 }
656 #endif
657
TSAN_INTERCEPTOR(uptr,strlen,const char * s)658 TSAN_INTERCEPTOR(uptr, strlen, const char *s) {
659 SCOPED_TSAN_INTERCEPTOR(strlen, s);
660 uptr len = internal_strlen(s);
661 MemoryAccessRange(thr, pc, (uptr)s, len + 1, false);
662 return len;
663 }
664
TSAN_INTERCEPTOR(void *,memset,void * dst,int v,uptr size)665 TSAN_INTERCEPTOR(void*, memset, void *dst, int v, uptr size) {
666 // On FreeBSD we get here from libthr internals on thread initialization.
667 if (!COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) {
668 SCOPED_TSAN_INTERCEPTOR(memset, dst, v, size);
669 MemoryAccessRange(thr, pc, (uptr)dst, size, true);
670 }
671 return internal_memset(dst, v, size);
672 }
673
TSAN_INTERCEPTOR(void *,memcpy,void * dst,const void * src,uptr size)674 TSAN_INTERCEPTOR(void*, memcpy, void *dst, const void *src, uptr size) {
675 // On FreeBSD we get here from libthr internals on thread initialization.
676 if (!COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) {
677 SCOPED_TSAN_INTERCEPTOR(memcpy, dst, src, size);
678 MemoryAccessRange(thr, pc, (uptr)dst, size, true);
679 MemoryAccessRange(thr, pc, (uptr)src, size, false);
680 }
681 // On OS X, calling internal_memcpy here will cause memory corruptions,
682 // because memcpy and memmove are actually aliases of the same implementation.
683 // We need to use internal_memmove here.
684 return internal_memmove(dst, src, size);
685 }
686
TSAN_INTERCEPTOR(void *,memmove,void * dst,void * src,uptr n)687 TSAN_INTERCEPTOR(void*, memmove, void *dst, void *src, uptr n) {
688 if (!COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) {
689 SCOPED_TSAN_INTERCEPTOR(memmove, dst, src, n);
690 MemoryAccessRange(thr, pc, (uptr)dst, n, true);
691 MemoryAccessRange(thr, pc, (uptr)src, n, false);
692 }
693 return REAL(memmove)(dst, src, n);
694 }
695
TSAN_INTERCEPTOR(char *,strchr,char * s,int c)696 TSAN_INTERCEPTOR(char*, strchr, char *s, int c) {
697 SCOPED_TSAN_INTERCEPTOR(strchr, s, c);
698 char *res = REAL(strchr)(s, c);
699 uptr len = internal_strlen(s);
700 uptr n = res ? (char*)res - (char*)s + 1 : len + 1;
701 READ_STRING_OF_LEN(thr, pc, s, len, n);
702 return res;
703 }
704
705 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(char *,strchrnul,char * s,int c)706 TSAN_INTERCEPTOR(char*, strchrnul, char *s, int c) {
707 SCOPED_TSAN_INTERCEPTOR(strchrnul, s, c);
708 char *res = REAL(strchrnul)(s, c);
709 uptr len = (char*)res - (char*)s + 1;
710 READ_STRING(thr, pc, s, len);
711 return res;
712 }
713 #endif
714
TSAN_INTERCEPTOR(char *,strrchr,char * s,int c)715 TSAN_INTERCEPTOR(char*, strrchr, char *s, int c) {
716 SCOPED_TSAN_INTERCEPTOR(strrchr, s, c);
717 MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s) + 1, false);
718 return REAL(strrchr)(s, c);
719 }
720
TSAN_INTERCEPTOR(char *,strcpy,char * dst,const char * src)721 TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) { // NOLINT
722 SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); // NOLINT
723 uptr srclen = internal_strlen(src);
724 MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
725 MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
726 return REAL(strcpy)(dst, src); // NOLINT
727 }
728
TSAN_INTERCEPTOR(char *,strncpy,char * dst,char * src,uptr n)729 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
730 SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
731 uptr srclen = internal_strnlen(src, n);
732 MemoryAccessRange(thr, pc, (uptr)dst, n, true);
733 MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
734 return REAL(strncpy)(dst, src, n);
735 }
736
TSAN_INTERCEPTOR(char *,strdup,const char * str)737 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
738 SCOPED_TSAN_INTERCEPTOR(strdup, str);
739 // strdup will call malloc, so no instrumentation is required here.
740 return REAL(strdup)(str);
741 }
742
fix_mmap_addr(void ** addr,long_t sz,int flags)743 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
744 if (*addr) {
745 if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
746 if (flags & MAP_FIXED) {
747 errno = EINVAL;
748 return false;
749 } else {
750 *addr = 0;
751 }
752 }
753 }
754 return true;
755 }
756
TSAN_INTERCEPTOR(void *,mmap,void * addr,SIZE_T sz,int prot,int flags,int fd,OFF_T off)757 TSAN_INTERCEPTOR(void *, mmap, void *addr, SIZE_T sz, int prot, int flags,
758 int fd, OFF_T off) {
759 SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off);
760 if (!fix_mmap_addr(&addr, sz, flags))
761 return MAP_FAILED;
762 void *res = REAL(mmap)(addr, sz, prot, flags, fd, off);
763 if (res != MAP_FAILED) {
764 if (fd > 0)
765 FdAccess(thr, pc, fd);
766 MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
767 }
768 return res;
769 }
770
771 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,mmap64,void * addr,SIZE_T sz,int prot,int flags,int fd,OFF64_T off)772 TSAN_INTERCEPTOR(void *, mmap64, void *addr, SIZE_T sz, int prot, int flags,
773 int fd, OFF64_T off) {
774 SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off);
775 if (!fix_mmap_addr(&addr, sz, flags))
776 return MAP_FAILED;
777 void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off);
778 if (res != MAP_FAILED) {
779 if (fd > 0)
780 FdAccess(thr, pc, fd);
781 MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
782 }
783 return res;
784 }
785 #define TSAN_MAYBE_INTERCEPT_MMAP64 TSAN_INTERCEPT(mmap64)
786 #else
787 #define TSAN_MAYBE_INTERCEPT_MMAP64
788 #endif
789
TSAN_INTERCEPTOR(int,munmap,void * addr,long_t sz)790 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
791 SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
792 if (sz != 0) {
793 // If sz == 0, munmap will return EINVAL and don't unmap any memory.
794 DontNeedShadowFor((uptr)addr, sz);
795 ctx->metamap.ResetRange(thr, pc, (uptr)addr, (uptr)sz);
796 }
797 int res = REAL(munmap)(addr, sz);
798 return res;
799 }
800
801 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,memalign,uptr align,uptr sz)802 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
803 SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
804 return user_alloc(thr, pc, sz, align);
805 }
806 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
807 #else
808 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
809 #endif
810
811 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(void *,aligned_alloc,uptr align,uptr sz)812 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
813 SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
814 return user_alloc(thr, pc, sz, align);
815 }
816
TSAN_INTERCEPTOR(void *,valloc,uptr sz)817 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
818 SCOPED_INTERCEPTOR_RAW(valloc, sz);
819 return user_alloc(thr, pc, sz, GetPageSizeCached());
820 }
821 #endif
822
823 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,pvalloc,uptr sz)824 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
825 SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
826 sz = RoundUp(sz, GetPageSizeCached());
827 return user_alloc(thr, pc, sz, GetPageSizeCached());
828 }
829 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
830 #else
831 #define TSAN_MAYBE_INTERCEPT_PVALLOC
832 #endif
833
834 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,posix_memalign,void ** memptr,uptr align,uptr sz)835 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
836 SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
837 *memptr = user_alloc(thr, pc, sz, align);
838 return 0;
839 }
840 #endif
841
842 // __cxa_guard_acquire and friends need to be intercepted in a special way -
843 // regular interceptors will break statically-linked libstdc++. Linux
844 // interceptors are especially defined as weak functions (so that they don't
845 // cause link errors when user defines them as well). So they silently
846 // auto-disable themselves when such symbol is already present in the binary. If
847 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
848 // will silently replace our interceptor. That's why on Linux we simply export
849 // these interceptors with INTERFACE_ATTRIBUTE.
850 // On OS X, we don't support statically linking, so we just use a regular
851 // interceptor.
852 #if SANITIZER_MAC
853 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
854 #else
855 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
856 extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
857 #endif
858
859 // Used in thread-safe function static initialization.
STDCXX_INTERCEPTOR(int,__cxa_guard_acquire,atomic_uint32_t * g)860 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
861 SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
862 for (;;) {
863 u32 cmp = atomic_load(g, memory_order_acquire);
864 if (cmp == 0) {
865 if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
866 return 1;
867 } else if (cmp == 1) {
868 Acquire(thr, pc, (uptr)g);
869 return 0;
870 } else {
871 internal_sched_yield();
872 }
873 }
874 }
875
STDCXX_INTERCEPTOR(void,__cxa_guard_release,atomic_uint32_t * g)876 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
877 SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
878 Release(thr, pc, (uptr)g);
879 atomic_store(g, 1, memory_order_release);
880 }
881
STDCXX_INTERCEPTOR(void,__cxa_guard_abort,atomic_uint32_t * g)882 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
883 SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
884 atomic_store(g, 0, memory_order_relaxed);
885 }
886
887 namespace __tsan {
DestroyThreadState()888 void DestroyThreadState() {
889 ThreadState *thr = cur_thread();
890 ThreadFinish(thr);
891 ThreadSignalContext *sctx = thr->signal_ctx;
892 if (sctx) {
893 thr->signal_ctx = 0;
894 UnmapOrDie(sctx, sizeof(*sctx));
895 }
896 cur_thread_finalize();
897 }
898 } // namespace __tsan
899
900 #if !SANITIZER_MAC
thread_finalize(void * v)901 static void thread_finalize(void *v) {
902 uptr iter = (uptr)v;
903 if (iter > 1) {
904 if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
905 Printf("ThreadSanitizer: failed to set thread key\n");
906 Die();
907 }
908 return;
909 }
910 DestroyThreadState();
911 }
912 #endif
913
914
915 struct ThreadParam {
916 void* (*callback)(void *arg);
917 void *param;
918 atomic_uintptr_t tid;
919 };
920
__tsan_thread_start_func(void * arg)921 extern "C" void *__tsan_thread_start_func(void *arg) {
922 ThreadParam *p = (ThreadParam*)arg;
923 void* (*callback)(void *arg) = p->callback;
924 void *param = p->param;
925 int tid = 0;
926 {
927 ThreadState *thr = cur_thread();
928 // Thread-local state is not initialized yet.
929 ScopedIgnoreInterceptors ignore;
930 #if !SANITIZER_MAC
931 ThreadIgnoreBegin(thr, 0);
932 if (pthread_setspecific(g_thread_finalize_key,
933 (void *)GetPthreadDestructorIterations())) {
934 Printf("ThreadSanitizer: failed to set thread key\n");
935 Die();
936 }
937 ThreadIgnoreEnd(thr, 0);
938 #endif
939 while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
940 internal_sched_yield();
941 ThreadStart(thr, tid, GetTid());
942 atomic_store(&p->tid, 0, memory_order_release);
943 }
944 void *res = callback(param);
945 // Prevent the callback from being tail called,
946 // it mixes up stack traces.
947 volatile int foo = 42;
948 foo++;
949 return res;
950 }
951
TSAN_INTERCEPTOR(int,pthread_create,void * th,void * attr,void * (* callback)(void *),void * param)952 TSAN_INTERCEPTOR(int, pthread_create,
953 void *th, void *attr, void *(*callback)(void*), void * param) {
954 SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
955 if (ctx->after_multithreaded_fork) {
956 if (flags()->die_after_fork) {
957 Report("ThreadSanitizer: starting new threads after multi-threaded "
958 "fork is not supported. Dying (set die_after_fork=0 to override)\n");
959 Die();
960 } else {
961 VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
962 "fork is not supported (pid %d). Continuing because of "
963 "die_after_fork=0, but you are on your own\n", internal_getpid());
964 }
965 }
966 __sanitizer_pthread_attr_t myattr;
967 if (attr == 0) {
968 pthread_attr_init(&myattr);
969 attr = &myattr;
970 }
971 int detached = 0;
972 REAL(pthread_attr_getdetachstate)(attr, &detached);
973 AdjustStackSize(attr);
974
975 ThreadParam p;
976 p.callback = callback;
977 p.param = param;
978 atomic_store(&p.tid, 0, memory_order_relaxed);
979 int res = -1;
980 {
981 // Otherwise we see false positives in pthread stack manipulation.
982 ScopedIgnoreInterceptors ignore;
983 ThreadIgnoreBegin(thr, pc);
984 res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
985 ThreadIgnoreEnd(thr, pc);
986 }
987 if (res == 0) {
988 int tid = ThreadCreate(thr, pc, *(uptr*)th,
989 detached == PTHREAD_CREATE_DETACHED);
990 CHECK_NE(tid, 0);
991 // Synchronization on p.tid serves two purposes:
992 // 1. ThreadCreate must finish before the new thread starts.
993 // Otherwise the new thread can call pthread_detach, but the pthread_t
994 // identifier is not yet registered in ThreadRegistry by ThreadCreate.
995 // 2. ThreadStart must finish before this thread continues.
996 // Otherwise, this thread can call pthread_detach and reset thr->sync
997 // before the new thread got a chance to acquire from it in ThreadStart.
998 atomic_store(&p.tid, tid, memory_order_release);
999 while (atomic_load(&p.tid, memory_order_acquire) != 0)
1000 internal_sched_yield();
1001 }
1002 if (attr == &myattr)
1003 pthread_attr_destroy(&myattr);
1004 return res;
1005 }
1006
TSAN_INTERCEPTOR(int,pthread_join,void * th,void ** ret)1007 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1008 SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1009 int tid = ThreadTid(thr, pc, (uptr)th);
1010 ThreadIgnoreBegin(thr, pc);
1011 int res = BLOCK_REAL(pthread_join)(th, ret);
1012 ThreadIgnoreEnd(thr, pc);
1013 if (res == 0) {
1014 ThreadJoin(thr, pc, tid);
1015 }
1016 return res;
1017 }
1018
1019 DEFINE_REAL_PTHREAD_FUNCTIONS
1020
TSAN_INTERCEPTOR(int,pthread_detach,void * th)1021 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1022 SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
1023 int tid = ThreadTid(thr, pc, (uptr)th);
1024 int res = REAL(pthread_detach)(th);
1025 if (res == 0) {
1026 ThreadDetach(thr, pc, tid);
1027 }
1028 return res;
1029 }
1030
1031 // Problem:
1032 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1033 // pthread_cond_t has different size in the different versions.
1034 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1035 // after pthread_cond_t (old cond is smaller).
1036 // If we call old REAL functions for new pthread_cond_t, we will lose some
1037 // functionality (e.g. old functions do not support waiting against
1038 // CLOCK_REALTIME).
1039 // Proper handling would require to have 2 versions of interceptors as well.
1040 // But this is messy, in particular requires linker scripts when sanitizer
1041 // runtime is linked into a shared library.
1042 // Instead we assume we don't have dynamic libraries built against old
1043 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1044 // that allows to work with old libraries (but this mode does not support
1045 // some features, e.g. pthread_condattr_getpshared).
init_cond(void * c,bool force=false)1046 static void *init_cond(void *c, bool force = false) {
1047 // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1048 // So we allocate additional memory on the side large enough to hold
1049 // any pthread_cond_t object. Always call new REAL functions, but pass
1050 // the aux object to them.
1051 // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1052 // first word of pthread_cond_t to zero.
1053 // It's all relevant only for linux.
1054 if (!common_flags()->legacy_pthread_cond)
1055 return c;
1056 atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1057 uptr cond = atomic_load(p, memory_order_acquire);
1058 if (!force && cond != 0)
1059 return (void*)cond;
1060 void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1061 internal_memset(newcond, 0, pthread_cond_t_sz);
1062 if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1063 memory_order_acq_rel))
1064 return newcond;
1065 WRAP(free)(newcond);
1066 return (void*)cond;
1067 }
1068
1069 struct CondMutexUnlockCtx {
1070 ScopedInterceptor *si;
1071 ThreadState *thr;
1072 uptr pc;
1073 void *m;
1074 };
1075
cond_mutex_unlock(CondMutexUnlockCtx * arg)1076 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
1077 // pthread_cond_wait interceptor has enabled async signal delivery
1078 // (see BlockingCall below). Disable async signals since we are running
1079 // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1080 // since the thread is cancelled, so we have to manually execute them
1081 // (the thread still can run some user code due to pthread_cleanup_push).
1082 ThreadSignalContext *ctx = SigCtx(arg->thr);
1083 CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
1084 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
1085 MutexLock(arg->thr, arg->pc, (uptr)arg->m);
1086 // Undo BlockingCall ctor effects.
1087 arg->thr->ignore_interceptors--;
1088 arg->si->~ScopedInterceptor();
1089 }
1090
INTERCEPTOR(int,pthread_cond_init,void * c,void * a)1091 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1092 void *cond = init_cond(c, true);
1093 SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1094 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1095 return REAL(pthread_cond_init)(cond, a);
1096 }
1097
INTERCEPTOR(int,pthread_cond_wait,void * c,void * m)1098 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1099 void *cond = init_cond(c);
1100 SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1101 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1102 MutexUnlock(thr, pc, (uptr)m);
1103 CondMutexUnlockCtx arg = {&si, thr, pc, m};
1104 int res = 0;
1105 // This ensures that we handle mutex lock even in case of pthread_cancel.
1106 // See test/tsan/cond_cancel.cc.
1107 {
1108 // Enable signal delivery while the thread is blocked.
1109 BlockingCall bc(thr);
1110 res = call_pthread_cancel_with_cleanup(
1111 (int(*)(void *c, void *m, void *abstime))REAL(pthread_cond_wait),
1112 cond, m, 0, (void(*)(void *arg))cond_mutex_unlock, &arg);
1113 }
1114 if (res == errno_EOWNERDEAD)
1115 MutexRepair(thr, pc, (uptr)m);
1116 MutexLock(thr, pc, (uptr)m);
1117 return res;
1118 }
1119
INTERCEPTOR(int,pthread_cond_timedwait,void * c,void * m,void * abstime)1120 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1121 void *cond = init_cond(c);
1122 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1123 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1124 MutexUnlock(thr, pc, (uptr)m);
1125 CondMutexUnlockCtx arg = {&si, thr, pc, m};
1126 int res = 0;
1127 // This ensures that we handle mutex lock even in case of pthread_cancel.
1128 // See test/tsan/cond_cancel.cc.
1129 {
1130 BlockingCall bc(thr);
1131 res = call_pthread_cancel_with_cleanup(
1132 REAL(pthread_cond_timedwait), cond, m, abstime,
1133 (void(*)(void *arg))cond_mutex_unlock, &arg);
1134 }
1135 if (res == errno_EOWNERDEAD)
1136 MutexRepair(thr, pc, (uptr)m);
1137 MutexLock(thr, pc, (uptr)m);
1138 return res;
1139 }
1140
INTERCEPTOR(int,pthread_cond_signal,void * c)1141 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1142 void *cond = init_cond(c);
1143 SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1144 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1145 return REAL(pthread_cond_signal)(cond);
1146 }
1147
INTERCEPTOR(int,pthread_cond_broadcast,void * c)1148 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1149 void *cond = init_cond(c);
1150 SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1151 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1152 return REAL(pthread_cond_broadcast)(cond);
1153 }
1154
INTERCEPTOR(int,pthread_cond_destroy,void * c)1155 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1156 void *cond = init_cond(c);
1157 SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1158 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1159 int res = REAL(pthread_cond_destroy)(cond);
1160 if (common_flags()->legacy_pthread_cond) {
1161 // Free our aux cond and zero the pointer to not leave dangling pointers.
1162 WRAP(free)(cond);
1163 atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1164 }
1165 return res;
1166 }
1167
TSAN_INTERCEPTOR(int,pthread_mutex_init,void * m,void * a)1168 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1169 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1170 int res = REAL(pthread_mutex_init)(m, a);
1171 if (res == 0) {
1172 bool recursive = false;
1173 if (a) {
1174 int type = 0;
1175 if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1176 recursive = (type == PTHREAD_MUTEX_RECURSIVE
1177 || type == PTHREAD_MUTEX_RECURSIVE_NP);
1178 }
1179 MutexCreate(thr, pc, (uptr)m, false, recursive, false);
1180 }
1181 return res;
1182 }
1183
TSAN_INTERCEPTOR(int,pthread_mutex_destroy,void * m)1184 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1185 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1186 int res = REAL(pthread_mutex_destroy)(m);
1187 if (res == 0 || res == EBUSY) {
1188 MutexDestroy(thr, pc, (uptr)m);
1189 }
1190 return res;
1191 }
1192
TSAN_INTERCEPTOR(int,pthread_mutex_trylock,void * m)1193 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1194 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1195 int res = REAL(pthread_mutex_trylock)(m);
1196 if (res == EOWNERDEAD)
1197 MutexRepair(thr, pc, (uptr)m);
1198 if (res == 0 || res == EOWNERDEAD)
1199 MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
1200 return res;
1201 }
1202
1203 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_mutex_timedlock,void * m,void * abstime)1204 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1205 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1206 int res = REAL(pthread_mutex_timedlock)(m, abstime);
1207 if (res == 0) {
1208 MutexLock(thr, pc, (uptr)m);
1209 }
1210 return res;
1211 }
1212 #endif
1213
1214 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_spin_init,void * m,int pshared)1215 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1216 SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1217 int res = REAL(pthread_spin_init)(m, pshared);
1218 if (res == 0) {
1219 MutexCreate(thr, pc, (uptr)m, false, false, false);
1220 }
1221 return res;
1222 }
1223
TSAN_INTERCEPTOR(int,pthread_spin_destroy,void * m)1224 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1225 SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1226 int res = REAL(pthread_spin_destroy)(m);
1227 if (res == 0) {
1228 MutexDestroy(thr, pc, (uptr)m);
1229 }
1230 return res;
1231 }
1232
TSAN_INTERCEPTOR(int,pthread_spin_lock,void * m)1233 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1234 SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1235 int res = REAL(pthread_spin_lock)(m);
1236 if (res == 0) {
1237 MutexLock(thr, pc, (uptr)m);
1238 }
1239 return res;
1240 }
1241
TSAN_INTERCEPTOR(int,pthread_spin_trylock,void * m)1242 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1243 SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1244 int res = REAL(pthread_spin_trylock)(m);
1245 if (res == 0) {
1246 MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
1247 }
1248 return res;
1249 }
1250
TSAN_INTERCEPTOR(int,pthread_spin_unlock,void * m)1251 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1252 SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1253 MutexUnlock(thr, pc, (uptr)m);
1254 int res = REAL(pthread_spin_unlock)(m);
1255 return res;
1256 }
1257 #endif
1258
TSAN_INTERCEPTOR(int,pthread_rwlock_init,void * m,void * a)1259 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1260 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1261 int res = REAL(pthread_rwlock_init)(m, a);
1262 if (res == 0) {
1263 MutexCreate(thr, pc, (uptr)m, true, false, false);
1264 }
1265 return res;
1266 }
1267
TSAN_INTERCEPTOR(int,pthread_rwlock_destroy,void * m)1268 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1269 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1270 int res = REAL(pthread_rwlock_destroy)(m);
1271 if (res == 0) {
1272 MutexDestroy(thr, pc, (uptr)m);
1273 }
1274 return res;
1275 }
1276
TSAN_INTERCEPTOR(int,pthread_rwlock_rdlock,void * m)1277 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1278 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1279 int res = REAL(pthread_rwlock_rdlock)(m);
1280 if (res == 0) {
1281 MutexReadLock(thr, pc, (uptr)m);
1282 }
1283 return res;
1284 }
1285
TSAN_INTERCEPTOR(int,pthread_rwlock_tryrdlock,void * m)1286 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1287 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1288 int res = REAL(pthread_rwlock_tryrdlock)(m);
1289 if (res == 0) {
1290 MutexReadLock(thr, pc, (uptr)m, /*try_lock=*/true);
1291 }
1292 return res;
1293 }
1294
1295 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_rwlock_timedrdlock,void * m,void * abstime)1296 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1297 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1298 int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1299 if (res == 0) {
1300 MutexReadLock(thr, pc, (uptr)m);
1301 }
1302 return res;
1303 }
1304 #endif
1305
TSAN_INTERCEPTOR(int,pthread_rwlock_wrlock,void * m)1306 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1307 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1308 int res = REAL(pthread_rwlock_wrlock)(m);
1309 if (res == 0) {
1310 MutexLock(thr, pc, (uptr)m);
1311 }
1312 return res;
1313 }
1314
TSAN_INTERCEPTOR(int,pthread_rwlock_trywrlock,void * m)1315 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1316 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1317 int res = REAL(pthread_rwlock_trywrlock)(m);
1318 if (res == 0) {
1319 MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
1320 }
1321 return res;
1322 }
1323
1324 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_rwlock_timedwrlock,void * m,void * abstime)1325 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1326 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1327 int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1328 if (res == 0) {
1329 MutexLock(thr, pc, (uptr)m);
1330 }
1331 return res;
1332 }
1333 #endif
1334
TSAN_INTERCEPTOR(int,pthread_rwlock_unlock,void * m)1335 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1336 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1337 MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1338 int res = REAL(pthread_rwlock_unlock)(m);
1339 return res;
1340 }
1341
1342 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_barrier_init,void * b,void * a,unsigned count)1343 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1344 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1345 MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1346 int res = REAL(pthread_barrier_init)(b, a, count);
1347 return res;
1348 }
1349
TSAN_INTERCEPTOR(int,pthread_barrier_destroy,void * b)1350 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1351 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1352 MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1353 int res = REAL(pthread_barrier_destroy)(b);
1354 return res;
1355 }
1356
TSAN_INTERCEPTOR(int,pthread_barrier_wait,void * b)1357 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1358 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1359 Release(thr, pc, (uptr)b);
1360 MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1361 int res = REAL(pthread_barrier_wait)(b);
1362 MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1363 if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1364 Acquire(thr, pc, (uptr)b);
1365 }
1366 return res;
1367 }
1368 #endif
1369
TSAN_INTERCEPTOR(int,pthread_once,void * o,void (* f)())1370 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1371 SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1372 if (o == 0 || f == 0)
1373 return EINVAL;
1374 atomic_uint32_t *a;
1375 if (!SANITIZER_MAC)
1376 a = static_cast<atomic_uint32_t*>(o);
1377 else // On OS X, pthread_once_t has a header with a long-sized signature.
1378 a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1379 u32 v = atomic_load(a, memory_order_acquire);
1380 if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
1381 memory_order_relaxed)) {
1382 (*f)();
1383 if (!thr->in_ignored_lib)
1384 Release(thr, pc, (uptr)o);
1385 atomic_store(a, 2, memory_order_release);
1386 } else {
1387 while (v != 2) {
1388 internal_sched_yield();
1389 v = atomic_load(a, memory_order_acquire);
1390 }
1391 if (!thr->in_ignored_lib)
1392 Acquire(thr, pc, (uptr)o);
1393 }
1394 return 0;
1395 }
1396
1397 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__xstat,int version,const char * path,void * buf)1398 TSAN_INTERCEPTOR(int, __xstat, int version, const char *path, void *buf) {
1399 SCOPED_TSAN_INTERCEPTOR(__xstat, version, path, buf);
1400 READ_STRING(thr, pc, path, 0);
1401 return REAL(__xstat)(version, path, buf);
1402 }
1403 #define TSAN_MAYBE_INTERCEPT___XSTAT TSAN_INTERCEPT(__xstat)
1404 #else
1405 #define TSAN_MAYBE_INTERCEPT___XSTAT
1406 #endif
1407
TSAN_INTERCEPTOR(int,stat,const char * path,void * buf)1408 TSAN_INTERCEPTOR(int, stat, const char *path, void *buf) {
1409 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID
1410 SCOPED_TSAN_INTERCEPTOR(stat, path, buf);
1411 READ_STRING(thr, pc, path, 0);
1412 return REAL(stat)(path, buf);
1413 #else
1414 SCOPED_TSAN_INTERCEPTOR(__xstat, 0, path, buf);
1415 READ_STRING(thr, pc, path, 0);
1416 return REAL(__xstat)(0, path, buf);
1417 #endif
1418 }
1419
1420 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__xstat64,int version,const char * path,void * buf)1421 TSAN_INTERCEPTOR(int, __xstat64, int version, const char *path, void *buf) {
1422 SCOPED_TSAN_INTERCEPTOR(__xstat64, version, path, buf);
1423 READ_STRING(thr, pc, path, 0);
1424 return REAL(__xstat64)(version, path, buf);
1425 }
1426 #define TSAN_MAYBE_INTERCEPT___XSTAT64 TSAN_INTERCEPT(__xstat64)
1427 #else
1428 #define TSAN_MAYBE_INTERCEPT___XSTAT64
1429 #endif
1430
1431 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,stat64,const char * path,void * buf)1432 TSAN_INTERCEPTOR(int, stat64, const char *path, void *buf) {
1433 SCOPED_TSAN_INTERCEPTOR(__xstat64, 0, path, buf);
1434 READ_STRING(thr, pc, path, 0);
1435 return REAL(__xstat64)(0, path, buf);
1436 }
1437 #define TSAN_MAYBE_INTERCEPT_STAT64 TSAN_INTERCEPT(stat64)
1438 #else
1439 #define TSAN_MAYBE_INTERCEPT_STAT64
1440 #endif
1441
1442 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__lxstat,int version,const char * path,void * buf)1443 TSAN_INTERCEPTOR(int, __lxstat, int version, const char *path, void *buf) {
1444 SCOPED_TSAN_INTERCEPTOR(__lxstat, version, path, buf);
1445 READ_STRING(thr, pc, path, 0);
1446 return REAL(__lxstat)(version, path, buf);
1447 }
1448 #define TSAN_MAYBE_INTERCEPT___LXSTAT TSAN_INTERCEPT(__lxstat)
1449 #else
1450 #define TSAN_MAYBE_INTERCEPT___LXSTAT
1451 #endif
1452
TSAN_INTERCEPTOR(int,lstat,const char * path,void * buf)1453 TSAN_INTERCEPTOR(int, lstat, const char *path, void *buf) {
1454 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID
1455 SCOPED_TSAN_INTERCEPTOR(lstat, path, buf);
1456 READ_STRING(thr, pc, path, 0);
1457 return REAL(lstat)(path, buf);
1458 #else
1459 SCOPED_TSAN_INTERCEPTOR(__lxstat, 0, path, buf);
1460 READ_STRING(thr, pc, path, 0);
1461 return REAL(__lxstat)(0, path, buf);
1462 #endif
1463 }
1464
1465 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__lxstat64,int version,const char * path,void * buf)1466 TSAN_INTERCEPTOR(int, __lxstat64, int version, const char *path, void *buf) {
1467 SCOPED_TSAN_INTERCEPTOR(__lxstat64, version, path, buf);
1468 READ_STRING(thr, pc, path, 0);
1469 return REAL(__lxstat64)(version, path, buf);
1470 }
1471 #define TSAN_MAYBE_INTERCEPT___LXSTAT64 TSAN_INTERCEPT(__lxstat64)
1472 #else
1473 #define TSAN_MAYBE_INTERCEPT___LXSTAT64
1474 #endif
1475
1476 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,lstat64,const char * path,void * buf)1477 TSAN_INTERCEPTOR(int, lstat64, const char *path, void *buf) {
1478 SCOPED_TSAN_INTERCEPTOR(__lxstat64, 0, path, buf);
1479 READ_STRING(thr, pc, path, 0);
1480 return REAL(__lxstat64)(0, path, buf);
1481 }
1482 #define TSAN_MAYBE_INTERCEPT_LSTAT64 TSAN_INTERCEPT(lstat64)
1483 #else
1484 #define TSAN_MAYBE_INTERCEPT_LSTAT64
1485 #endif
1486
1487 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__fxstat,int version,int fd,void * buf)1488 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1489 SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1490 if (fd > 0)
1491 FdAccess(thr, pc, fd);
1492 return REAL(__fxstat)(version, fd, buf);
1493 }
1494 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1495 #else
1496 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1497 #endif
1498
TSAN_INTERCEPTOR(int,fstat,int fd,void * buf)1499 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1500 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID
1501 SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1502 if (fd > 0)
1503 FdAccess(thr, pc, fd);
1504 return REAL(fstat)(fd, buf);
1505 #else
1506 SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1507 if (fd > 0)
1508 FdAccess(thr, pc, fd);
1509 return REAL(__fxstat)(0, fd, buf);
1510 #endif
1511 }
1512
1513 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__fxstat64,int version,int fd,void * buf)1514 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1515 SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1516 if (fd > 0)
1517 FdAccess(thr, pc, fd);
1518 return REAL(__fxstat64)(version, fd, buf);
1519 }
1520 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1521 #else
1522 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1523 #endif
1524
1525 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,fstat64,int fd,void * buf)1526 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1527 SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1528 if (fd > 0)
1529 FdAccess(thr, pc, fd);
1530 return REAL(__fxstat64)(0, fd, buf);
1531 }
1532 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1533 #else
1534 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1535 #endif
1536
TSAN_INTERCEPTOR(int,open,const char * name,int flags,int mode)1537 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
1538 SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
1539 READ_STRING(thr, pc, name, 0);
1540 int fd = REAL(open)(name, flags, mode);
1541 if (fd >= 0)
1542 FdFileCreate(thr, pc, fd);
1543 return fd;
1544 }
1545
1546 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,open64,const char * name,int flags,int mode)1547 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
1548 SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
1549 READ_STRING(thr, pc, name, 0);
1550 int fd = REAL(open64)(name, flags, mode);
1551 if (fd >= 0)
1552 FdFileCreate(thr, pc, fd);
1553 return fd;
1554 }
1555 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1556 #else
1557 #define TSAN_MAYBE_INTERCEPT_OPEN64
1558 #endif
1559
TSAN_INTERCEPTOR(int,creat,const char * name,int mode)1560 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1561 SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1562 READ_STRING(thr, pc, name, 0);
1563 int fd = REAL(creat)(name, mode);
1564 if (fd >= 0)
1565 FdFileCreate(thr, pc, fd);
1566 return fd;
1567 }
1568
1569 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,creat64,const char * name,int mode)1570 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1571 SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1572 READ_STRING(thr, pc, name, 0);
1573 int fd = REAL(creat64)(name, mode);
1574 if (fd >= 0)
1575 FdFileCreate(thr, pc, fd);
1576 return fd;
1577 }
1578 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1579 #else
1580 #define TSAN_MAYBE_INTERCEPT_CREAT64
1581 #endif
1582
TSAN_INTERCEPTOR(int,dup,int oldfd)1583 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1584 SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1585 int newfd = REAL(dup)(oldfd);
1586 if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1587 FdDup(thr, pc, oldfd, newfd, true);
1588 return newfd;
1589 }
1590
TSAN_INTERCEPTOR(int,dup2,int oldfd,int newfd)1591 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1592 SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1593 int newfd2 = REAL(dup2)(oldfd, newfd);
1594 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1595 FdDup(thr, pc, oldfd, newfd2, false);
1596 return newfd2;
1597 }
1598
1599 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,dup3,int oldfd,int newfd,int flags)1600 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1601 SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1602 int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1603 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1604 FdDup(thr, pc, oldfd, newfd2, false);
1605 return newfd2;
1606 }
1607 #endif
1608
1609 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,eventfd,unsigned initval,int flags)1610 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1611 SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1612 int fd = REAL(eventfd)(initval, flags);
1613 if (fd >= 0)
1614 FdEventCreate(thr, pc, fd);
1615 return fd;
1616 }
1617 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1618 #else
1619 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1620 #endif
1621
1622 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,signalfd,int fd,void * mask,int flags)1623 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1624 SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
1625 if (fd >= 0)
1626 FdClose(thr, pc, fd);
1627 fd = REAL(signalfd)(fd, mask, flags);
1628 if (fd >= 0)
1629 FdSignalCreate(thr, pc, fd);
1630 return fd;
1631 }
1632 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1633 #else
1634 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1635 #endif
1636
1637 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init,int fake)1638 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1639 SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1640 int fd = REAL(inotify_init)(fake);
1641 if (fd >= 0)
1642 FdInotifyCreate(thr, pc, fd);
1643 return fd;
1644 }
1645 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1646 #else
1647 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1648 #endif
1649
1650 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init1,int flags)1651 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1652 SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1653 int fd = REAL(inotify_init1)(flags);
1654 if (fd >= 0)
1655 FdInotifyCreate(thr, pc, fd);
1656 return fd;
1657 }
1658 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1659 #else
1660 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1661 #endif
1662
TSAN_INTERCEPTOR(int,socket,int domain,int type,int protocol)1663 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1664 SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1665 int fd = REAL(socket)(domain, type, protocol);
1666 if (fd >= 0)
1667 FdSocketCreate(thr, pc, fd);
1668 return fd;
1669 }
1670
TSAN_INTERCEPTOR(int,socketpair,int domain,int type,int protocol,int * fd)1671 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1672 SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1673 int res = REAL(socketpair)(domain, type, protocol, fd);
1674 if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1675 FdPipeCreate(thr, pc, fd[0], fd[1]);
1676 return res;
1677 }
1678
TSAN_INTERCEPTOR(int,connect,int fd,void * addr,unsigned addrlen)1679 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1680 SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1681 FdSocketConnecting(thr, pc, fd);
1682 int res = REAL(connect)(fd, addr, addrlen);
1683 if (res == 0 && fd >= 0)
1684 FdSocketConnect(thr, pc, fd);
1685 return res;
1686 }
1687
TSAN_INTERCEPTOR(int,bind,int fd,void * addr,unsigned addrlen)1688 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1689 SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1690 int res = REAL(bind)(fd, addr, addrlen);
1691 if (fd > 0 && res == 0)
1692 FdAccess(thr, pc, fd);
1693 return res;
1694 }
1695
TSAN_INTERCEPTOR(int,listen,int fd,int backlog)1696 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1697 SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1698 int res = REAL(listen)(fd, backlog);
1699 if (fd > 0 && res == 0)
1700 FdAccess(thr, pc, fd);
1701 return res;
1702 }
1703
1704 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_create,int size)1705 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1706 SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1707 int fd = REAL(epoll_create)(size);
1708 if (fd >= 0)
1709 FdPollCreate(thr, pc, fd);
1710 return fd;
1711 }
1712 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE TSAN_INTERCEPT(epoll_create)
1713 #else
1714 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE
1715 #endif
1716
1717 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_create1,int flags)1718 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1719 SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1720 int fd = REAL(epoll_create1)(flags);
1721 if (fd >= 0)
1722 FdPollCreate(thr, pc, fd);
1723 return fd;
1724 }
1725 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1 TSAN_INTERCEPT(epoll_create1)
1726 #else
1727 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1
1728 #endif
1729
TSAN_INTERCEPTOR(int,close,int fd)1730 TSAN_INTERCEPTOR(int, close, int fd) {
1731 SCOPED_TSAN_INTERCEPTOR(close, fd);
1732 if (fd >= 0)
1733 FdClose(thr, pc, fd);
1734 return REAL(close)(fd);
1735 }
1736
1737 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,__close,int fd)1738 TSAN_INTERCEPTOR(int, __close, int fd) {
1739 SCOPED_TSAN_INTERCEPTOR(__close, fd);
1740 if (fd >= 0)
1741 FdClose(thr, pc, fd);
1742 return REAL(__close)(fd);
1743 }
1744 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1745 #else
1746 #define TSAN_MAYBE_INTERCEPT___CLOSE
1747 #endif
1748
1749 // glibc guts
1750 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(void,__res_iclose,void * state,bool free_addr)1751 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1752 SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
1753 int fds[64];
1754 int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1755 for (int i = 0; i < cnt; i++) {
1756 if (fds[i] > 0)
1757 FdClose(thr, pc, fds[i]);
1758 }
1759 REAL(__res_iclose)(state, free_addr);
1760 }
1761 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1762 #else
1763 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1764 #endif
1765
TSAN_INTERCEPTOR(int,pipe,int * pipefd)1766 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1767 SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1768 int res = REAL(pipe)(pipefd);
1769 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1770 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1771 return res;
1772 }
1773
1774 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pipe2,int * pipefd,int flags)1775 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1776 SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1777 int res = REAL(pipe2)(pipefd, flags);
1778 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1779 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1780 return res;
1781 }
1782 #endif
1783
TSAN_INTERCEPTOR(long_t,send,int fd,void * buf,long_t len,int flags)1784 TSAN_INTERCEPTOR(long_t, send, int fd, void *buf, long_t len, int flags) {
1785 SCOPED_TSAN_INTERCEPTOR(send, fd, buf, len, flags);
1786 if (fd >= 0) {
1787 FdAccess(thr, pc, fd);
1788 FdRelease(thr, pc, fd);
1789 }
1790 int res = REAL(send)(fd, buf, len, flags);
1791 return res;
1792 }
1793
TSAN_INTERCEPTOR(long_t,sendmsg,int fd,void * msg,int flags)1794 TSAN_INTERCEPTOR(long_t, sendmsg, int fd, void *msg, int flags) {
1795 SCOPED_TSAN_INTERCEPTOR(sendmsg, fd, msg, flags);
1796 if (fd >= 0) {
1797 FdAccess(thr, pc, fd);
1798 FdRelease(thr, pc, fd);
1799 }
1800 int res = REAL(sendmsg)(fd, msg, flags);
1801 return res;
1802 }
1803
TSAN_INTERCEPTOR(long_t,recv,int fd,void * buf,long_t len,int flags)1804 TSAN_INTERCEPTOR(long_t, recv, int fd, void *buf, long_t len, int flags) {
1805 SCOPED_TSAN_INTERCEPTOR(recv, fd, buf, len, flags);
1806 if (fd >= 0)
1807 FdAccess(thr, pc, fd);
1808 int res = REAL(recv)(fd, buf, len, flags);
1809 if (res >= 0 && fd >= 0) {
1810 FdAcquire(thr, pc, fd);
1811 }
1812 return res;
1813 }
1814
TSAN_INTERCEPTOR(int,unlink,char * path)1815 TSAN_INTERCEPTOR(int, unlink, char *path) {
1816 SCOPED_TSAN_INTERCEPTOR(unlink, path);
1817 Release(thr, pc, File2addr(path));
1818 int res = REAL(unlink)(path);
1819 return res;
1820 }
1821
TSAN_INTERCEPTOR(void *,tmpfile,int fake)1822 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1823 SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1824 void *res = REAL(tmpfile)(fake);
1825 if (res) {
1826 int fd = fileno_unlocked(res);
1827 if (fd >= 0)
1828 FdFileCreate(thr, pc, fd);
1829 }
1830 return res;
1831 }
1832
1833 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,tmpfile64,int fake)1834 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1835 SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1836 void *res = REAL(tmpfile64)(fake);
1837 if (res) {
1838 int fd = fileno_unlocked(res);
1839 if (fd >= 0)
1840 FdFileCreate(thr, pc, fd);
1841 }
1842 return res;
1843 }
1844 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1845 #else
1846 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1847 #endif
1848
TSAN_INTERCEPTOR(uptr,fread,void * ptr,uptr size,uptr nmemb,void * f)1849 TSAN_INTERCEPTOR(uptr, fread, void *ptr, uptr size, uptr nmemb, void *f) {
1850 // libc file streams can call user-supplied functions, see fopencookie.
1851 {
1852 SCOPED_TSAN_INTERCEPTOR(fread, ptr, size, nmemb, f);
1853 MemoryAccessRange(thr, pc, (uptr)ptr, size * nmemb, true);
1854 }
1855 return REAL(fread)(ptr, size, nmemb, f);
1856 }
1857
TSAN_INTERCEPTOR(uptr,fwrite,const void * p,uptr size,uptr nmemb,void * f)1858 TSAN_INTERCEPTOR(uptr, fwrite, const void *p, uptr size, uptr nmemb, void *f) {
1859 // libc file streams can call user-supplied functions, see fopencookie.
1860 {
1861 SCOPED_TSAN_INTERCEPTOR(fwrite, p, size, nmemb, f);
1862 MemoryAccessRange(thr, pc, (uptr)p, size * nmemb, false);
1863 }
1864 return REAL(fwrite)(p, size, nmemb, f);
1865 }
1866
FlushStreams()1867 static void FlushStreams() {
1868 // Flushing all the streams here may freeze the process if a child thread is
1869 // performing file stream operations at the same time.
1870 REAL(fflush)(stdout);
1871 REAL(fflush)(stderr);
1872 }
1873
TSAN_INTERCEPTOR(void,abort,int fake)1874 TSAN_INTERCEPTOR(void, abort, int fake) {
1875 SCOPED_TSAN_INTERCEPTOR(abort, fake);
1876 FlushStreams();
1877 REAL(abort)(fake);
1878 }
1879
TSAN_INTERCEPTOR(int,puts,const char * s)1880 TSAN_INTERCEPTOR(int, puts, const char *s) {
1881 SCOPED_TSAN_INTERCEPTOR(puts, s);
1882 MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s), false);
1883 return REAL(puts)(s);
1884 }
1885
TSAN_INTERCEPTOR(int,rmdir,char * path)1886 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1887 SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1888 Release(thr, pc, Dir2addr(path));
1889 int res = REAL(rmdir)(path);
1890 return res;
1891 }
1892
TSAN_INTERCEPTOR(int,closedir,void * dirp)1893 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1894 SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
1895 int fd = dirfd(dirp);
1896 FdClose(thr, pc, fd);
1897 return REAL(closedir)(dirp);
1898 }
1899
1900 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_ctl,int epfd,int op,int fd,void * ev)1901 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1902 SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1903 if (epfd >= 0)
1904 FdAccess(thr, pc, epfd);
1905 if (epfd >= 0 && fd >= 0)
1906 FdAccess(thr, pc, fd);
1907 if (op == EPOLL_CTL_ADD && epfd >= 0)
1908 FdRelease(thr, pc, epfd);
1909 int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1910 return res;
1911 }
1912 #define TSAN_MAYBE_INTERCEPT_EPOLL_CTL TSAN_INTERCEPT(epoll_ctl)
1913 #else
1914 #define TSAN_MAYBE_INTERCEPT_EPOLL_CTL
1915 #endif
1916
1917 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_wait,int epfd,void * ev,int cnt,int timeout)1918 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1919 SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1920 if (epfd >= 0)
1921 FdAccess(thr, pc, epfd);
1922 int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1923 if (res > 0 && epfd >= 0)
1924 FdAcquire(thr, pc, epfd);
1925 return res;
1926 }
1927 #define TSAN_MAYBE_INTERCEPT_EPOLL_WAIT TSAN_INTERCEPT(epoll_wait)
1928 #else
1929 #define TSAN_MAYBE_INTERCEPT_EPOLL_WAIT
1930 #endif
1931
1932 namespace __tsan {
1933
CallUserSignalHandler(ThreadState * thr,bool sync,bool acquire,bool sigact,int sig,my_siginfo_t * info,void * uctx)1934 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1935 bool sigact, int sig, my_siginfo_t *info, void *uctx) {
1936 if (acquire)
1937 Acquire(thr, 0, (uptr)&sigactions[sig]);
1938 // Ensure that the handler does not spoil errno.
1939 const int saved_errno = errno;
1940 errno = 99;
1941 // This code races with sigaction. Be careful to not read sa_sigaction twice.
1942 // Also need to remember pc for reporting before the call,
1943 // because the handler can reset it.
1944 volatile uptr pc = sigact ?
1945 (uptr)sigactions[sig].sa_sigaction :
1946 (uptr)sigactions[sig].sa_handler;
1947 if (pc != (uptr)SIG_DFL && pc != (uptr)SIG_IGN) {
1948 if (sigact)
1949 ((sigactionhandler_t)pc)(sig, info, uctx);
1950 else
1951 ((sighandler_t)pc)(sig);
1952 }
1953 // We do not detect errno spoiling for SIGTERM,
1954 // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1955 // tsan reports false positive in such case.
1956 // It's difficult to properly detect this situation (reraise),
1957 // because in async signal processing case (when handler is called directly
1958 // from rtl_generic_sighandler) we have not yet received the reraised
1959 // signal; and it looks too fragile to intercept all ways to reraise a signal.
1960 if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
1961 VarSizeStackTrace stack;
1962 // StackTrace::GetNestInstructionPc(pc) is used because return address is
1963 // expected, OutputReport() will undo this.
1964 ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
1965 ThreadRegistryLock l(ctx->thread_registry);
1966 ScopedReport rep(ReportTypeErrnoInSignal);
1967 if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
1968 rep.AddStack(stack, true);
1969 OutputReport(thr, rep);
1970 }
1971 }
1972 errno = saved_errno;
1973 }
1974
ProcessPendingSignals(ThreadState * thr)1975 void ProcessPendingSignals(ThreadState *thr) {
1976 ThreadSignalContext *sctx = SigCtx(thr);
1977 if (sctx == 0 ||
1978 atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
1979 return;
1980 atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
1981 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1982 CHECK_EQ(0, REAL(sigfillset)(&sctx->emptyset));
1983 CHECK_EQ(0, pthread_sigmask(SIG_SETMASK, &sctx->emptyset, &sctx->oldset));
1984 for (int sig = 0; sig < kSigCount; sig++) {
1985 SignalDesc *signal = &sctx->pending_signals[sig];
1986 if (signal->armed) {
1987 signal->armed = false;
1988 CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
1989 &signal->siginfo, &signal->ctx);
1990 }
1991 }
1992 CHECK_EQ(0, pthread_sigmask(SIG_SETMASK, &sctx->oldset, 0));
1993 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1994 }
1995
1996 } // namespace __tsan
1997
is_sync_signal(ThreadSignalContext * sctx,int sig)1998 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
1999 return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
2000 sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
2001 // If we are sending signal to ourselves, we must process it now.
2002 (sctx && sig == sctx->int_signal_send);
2003 }
2004
rtl_generic_sighandler(bool sigact,int sig,my_siginfo_t * info,void * ctx)2005 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
2006 my_siginfo_t *info, void *ctx) {
2007 ThreadState *thr = cur_thread();
2008 ThreadSignalContext *sctx = SigCtx(thr);
2009 if (sig < 0 || sig >= kSigCount) {
2010 VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
2011 return;
2012 }
2013 // Don't mess with synchronous signals.
2014 const bool sync = is_sync_signal(sctx, sig);
2015 if (sync ||
2016 // If we are in blocking function, we can safely process it now
2017 // (but check if we are in a recursive interceptor,
2018 // i.e. pthread_join()->munmap()).
2019 (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
2020 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
2021 if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
2022 // We ignore interceptors in blocking functions,
2023 // temporary enbled them again while we are calling user function.
2024 int const i = thr->ignore_interceptors;
2025 thr->ignore_interceptors = 0;
2026 atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
2027 CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
2028 thr->ignore_interceptors = i;
2029 atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
2030 } else {
2031 // Be very conservative with when we do acquire in this case.
2032 // It's unsafe to do acquire in async handlers, because ThreadState
2033 // can be in inconsistent state.
2034 // SIGSYS looks relatively safe -- it's synchronous and can actually
2035 // need some global state.
2036 bool acq = (sig == SIGSYS);
2037 CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
2038 }
2039 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2040 return;
2041 }
2042
2043 if (sctx == 0)
2044 return;
2045 SignalDesc *signal = &sctx->pending_signals[sig];
2046 if (signal->armed == false) {
2047 signal->armed = true;
2048 signal->sigaction = sigact;
2049 if (info)
2050 internal_memcpy(&signal->siginfo, info, sizeof(*info));
2051 if (ctx)
2052 internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
2053 atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
2054 }
2055 }
2056
rtl_sighandler(int sig)2057 static void rtl_sighandler(int sig) {
2058 rtl_generic_sighandler(false, sig, 0, 0);
2059 }
2060
rtl_sigaction(int sig,my_siginfo_t * info,void * ctx)2061 static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) {
2062 rtl_generic_sighandler(true, sig, info, ctx);
2063 }
2064
TSAN_INTERCEPTOR(int,sigaction,int sig,sigaction_t * act,sigaction_t * old)2065 TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) {
2066 SCOPED_TSAN_INTERCEPTOR(sigaction, sig, act, old);
2067 if (old)
2068 internal_memcpy(old, &sigactions[sig], sizeof(*old));
2069 if (act == 0)
2070 return 0;
2071 // Copy act into sigactions[sig].
2072 // Can't use struct copy, because compiler can emit call to memcpy.
2073 // Can't use internal_memcpy, because it copies byte-by-byte,
2074 // and signal handler reads the sa_handler concurrently. It it can read
2075 // some bytes from old value and some bytes from new value.
2076 // Use volatile to prevent insertion of memcpy.
2077 sigactions[sig].sa_handler = *(volatile sighandler_t*)&act->sa_handler;
2078 sigactions[sig].sa_flags = *(volatile int*)&act->sa_flags;
2079 internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2080 sizeof(sigactions[sig].sa_mask));
2081 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
2082 sigactions[sig].sa_restorer = act->sa_restorer;
2083 #endif
2084 sigaction_t newact;
2085 internal_memcpy(&newact, act, sizeof(newact));
2086 REAL(sigfillset)(&newact.sa_mask);
2087 if (act->sa_handler != SIG_IGN && act->sa_handler != SIG_DFL) {
2088 if (newact.sa_flags & SA_SIGINFO)
2089 newact.sa_sigaction = rtl_sigaction;
2090 else
2091 newact.sa_handler = rtl_sighandler;
2092 }
2093 ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2094 int res = REAL(sigaction)(sig, &newact, 0);
2095 return res;
2096 }
2097
TSAN_INTERCEPTOR(sighandler_t,signal,int sig,sighandler_t h)2098 TSAN_INTERCEPTOR(sighandler_t, signal, int sig, sighandler_t h) {
2099 sigaction_t act;
2100 act.sa_handler = h;
2101 REAL(memset)(&act.sa_mask, -1, sizeof(act.sa_mask));
2102 act.sa_flags = 0;
2103 sigaction_t old;
2104 int res = sigaction(sig, &act, &old);
2105 if (res)
2106 return SIG_ERR;
2107 return old.sa_handler;
2108 }
2109
TSAN_INTERCEPTOR(int,sigsuspend,const __sanitizer_sigset_t * mask)2110 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
2111 SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
2112 return REAL(sigsuspend)(mask);
2113 }
2114
TSAN_INTERCEPTOR(int,raise,int sig)2115 TSAN_INTERCEPTOR(int, raise, int sig) {
2116 SCOPED_TSAN_INTERCEPTOR(raise, sig);
2117 ThreadSignalContext *sctx = SigCtx(thr);
2118 CHECK_NE(sctx, 0);
2119 int prev = sctx->int_signal_send;
2120 sctx->int_signal_send = sig;
2121 int res = REAL(raise)(sig);
2122 CHECK_EQ(sctx->int_signal_send, sig);
2123 sctx->int_signal_send = prev;
2124 return res;
2125 }
2126
TSAN_INTERCEPTOR(int,kill,int pid,int sig)2127 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2128 SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2129 ThreadSignalContext *sctx = SigCtx(thr);
2130 CHECK_NE(sctx, 0);
2131 int prev = sctx->int_signal_send;
2132 if (pid == (int)internal_getpid()) {
2133 sctx->int_signal_send = sig;
2134 }
2135 int res = REAL(kill)(pid, sig);
2136 if (pid == (int)internal_getpid()) {
2137 CHECK_EQ(sctx->int_signal_send, sig);
2138 sctx->int_signal_send = prev;
2139 }
2140 return res;
2141 }
2142
TSAN_INTERCEPTOR(int,pthread_kill,void * tid,int sig)2143 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2144 SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2145 ThreadSignalContext *sctx = SigCtx(thr);
2146 CHECK_NE(sctx, 0);
2147 int prev = sctx->int_signal_send;
2148 if (tid == pthread_self()) {
2149 sctx->int_signal_send = sig;
2150 }
2151 int res = REAL(pthread_kill)(tid, sig);
2152 if (tid == pthread_self()) {
2153 CHECK_EQ(sctx->int_signal_send, sig);
2154 sctx->int_signal_send = prev;
2155 }
2156 return res;
2157 }
2158
TSAN_INTERCEPTOR(int,gettimeofday,void * tv,void * tz)2159 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2160 SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2161 // It's intercepted merely to process pending signals.
2162 return REAL(gettimeofday)(tv, tz);
2163 }
2164
TSAN_INTERCEPTOR(int,getaddrinfo,void * node,void * service,void * hints,void * rv)2165 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2166 void *hints, void *rv) {
2167 SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2168 // We miss atomic synchronization in getaddrinfo,
2169 // and can report false race between malloc and free
2170 // inside of getaddrinfo. So ignore memory accesses.
2171 ThreadIgnoreBegin(thr, pc);
2172 int res = REAL(getaddrinfo)(node, service, hints, rv);
2173 ThreadIgnoreEnd(thr, pc);
2174 return res;
2175 }
2176
TSAN_INTERCEPTOR(int,fork,int fake)2177 TSAN_INTERCEPTOR(int, fork, int fake) {
2178 if (cur_thread()->in_symbolizer)
2179 return REAL(fork)(fake);
2180 SCOPED_INTERCEPTOR_RAW(fork, fake);
2181 ForkBefore(thr, pc);
2182 int pid = REAL(fork)(fake);
2183 if (pid == 0) {
2184 // child
2185 ForkChildAfter(thr, pc);
2186 FdOnFork(thr, pc);
2187 } else if (pid > 0) {
2188 // parent
2189 ForkParentAfter(thr, pc);
2190 } else {
2191 // error
2192 ForkParentAfter(thr, pc);
2193 }
2194 return pid;
2195 }
2196
TSAN_INTERCEPTOR(int,vfork,int fake)2197 TSAN_INTERCEPTOR(int, vfork, int fake) {
2198 // Some programs (e.g. openjdk) call close for all file descriptors
2199 // in the child process. Under tsan it leads to false positives, because
2200 // address space is shared, so the parent process also thinks that
2201 // the descriptors are closed (while they are actually not).
2202 // This leads to false positives due to missed synchronization.
2203 // Strictly saying this is undefined behavior, because vfork child is not
2204 // allowed to call any functions other than exec/exit. But this is what
2205 // openjdk does, so we want to handle it.
2206 // We could disable interceptors in the child process. But it's not possible
2207 // to simply intercept and wrap vfork, because vfork child is not allowed
2208 // to return from the function that calls vfork, and that's exactly what
2209 // we would do. So this would require some assembly trickery as well.
2210 // Instead we simply turn vfork into fork.
2211 return WRAP(fork)(fake);
2212 }
2213
2214 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2215 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2216 void *data);
2217 struct dl_iterate_phdr_data {
2218 ThreadState *thr;
2219 uptr pc;
2220 dl_iterate_phdr_cb_t cb;
2221 void *data;
2222 };
2223
IsAppNotRodata(uptr addr)2224 static bool IsAppNotRodata(uptr addr) {
2225 return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
2226 }
2227
dl_iterate_phdr_cb(__sanitizer_dl_phdr_info * info,SIZE_T size,void * data)2228 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2229 void *data) {
2230 dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2231 // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2232 // accessible in dl_iterate_phdr callback. But we don't see synchronization
2233 // inside of dynamic linker, so we "unpoison" it here in order to not
2234 // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2235 // because some libc functions call __libc_dlopen.
2236 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2237 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2238 internal_strlen(info->dlpi_name));
2239 int res = cbdata->cb(info, size, cbdata->data);
2240 // Perform the check one more time in case info->dlpi_name was overwritten
2241 // by user callback.
2242 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2243 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2244 internal_strlen(info->dlpi_name));
2245 return res;
2246 }
2247
TSAN_INTERCEPTOR(int,dl_iterate_phdr,dl_iterate_phdr_cb_t cb,void * data)2248 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2249 SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2250 dl_iterate_phdr_data cbdata;
2251 cbdata.thr = thr;
2252 cbdata.pc = pc;
2253 cbdata.cb = cb;
2254 cbdata.data = data;
2255 int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2256 return res;
2257 }
2258 #endif
2259
OnExit(ThreadState * thr)2260 static int OnExit(ThreadState *thr) {
2261 int status = Finalize(thr);
2262 FlushStreams();
2263 return status;
2264 }
2265
2266 struct TsanInterceptorContext {
2267 ThreadState *thr;
2268 const uptr caller_pc;
2269 const uptr pc;
2270 };
2271
2272 #if !SANITIZER_MAC
HandleRecvmsg(ThreadState * thr,uptr pc,__sanitizer_msghdr * msg)2273 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2274 __sanitizer_msghdr *msg) {
2275 int fds[64];
2276 int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2277 for (int i = 0; i < cnt; i++)
2278 FdEventCreate(thr, pc, fds[i]);
2279 }
2280 #endif
2281
2282 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2283 // Causes interceptor recursion (getaddrinfo() and fopen())
2284 #undef SANITIZER_INTERCEPT_GETADDRINFO
2285 // There interceptors do not seem to be strictly necessary for tsan.
2286 // But we see cases where the interceptors consume 70% of execution time.
2287 // Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
2288 // First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
2289 // function "writes to" the buffer. Then, the same memory is "written to"
2290 // twice, first as buf and then as pwbufp (both of them refer to the same
2291 // addresses).
2292 #undef SANITIZER_INTERCEPT_GETPWENT
2293 #undef SANITIZER_INTERCEPT_GETPWENT_R
2294 #undef SANITIZER_INTERCEPT_FGETPWENT
2295 #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
2296 #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
2297 // __tls_get_addr can be called with mis-aligned stack due to:
2298 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2299 // There are two potential issues:
2300 // 1. Sanitizer code contains a MOVDQA spill (it does not seem to be the case
2301 // right now). or 2. ProcessPendingSignal calls user handler which contains
2302 // MOVDQA spill (this happens right now).
2303 // Since the interceptor only initializes memory for msan, the simplest solution
2304 // is to disable the interceptor in tsan (other sanitizers do not call
2305 // signal handlers from COMMON_INTERCEPTOR_ENTER).
2306 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2307
2308 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2309
2310 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
2311 MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
2312 ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2313 true)
2314
2315 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
2316 MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
2317 ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2318 false)
2319
2320 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
2321 SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
2322 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2323 ctx = (void *)&_ctx; \
2324 (void) ctx;
2325
2326 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2327 SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
2328 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2329 ctx = (void *)&_ctx; \
2330 (void) ctx;
2331
2332 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2333 Acquire(thr, pc, File2addr(path)); \
2334 if (file) { \
2335 int fd = fileno_unlocked(file); \
2336 if (fd >= 0) FdFileCreate(thr, pc, fd); \
2337 }
2338
2339 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2340 if (file) { \
2341 int fd = fileno_unlocked(file); \
2342 if (fd >= 0) FdClose(thr, pc, fd); \
2343 }
2344
2345 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2346 libignore()->OnLibraryLoaded(filename)
2347
2348 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2349 libignore()->OnLibraryUnloaded()
2350
2351 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2352 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2353
2354 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2355 Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2356
2357 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2358 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2359
2360 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2361 FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2362
2363 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2364 FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2365
2366 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2367 FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2368
2369 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2370 FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2371
2372 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2373 ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2374
2375 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2376 __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2377
2378 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2379
2380 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2381 OnExit(((TsanInterceptorContext *) ctx)->thr)
2382
2383 #define COMMON_INTERCEPTOR_MUTEX_LOCK(ctx, m) \
2384 MutexLock(((TsanInterceptorContext *)ctx)->thr, \
2385 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2386
2387 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2388 MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2389 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2390
2391 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2392 MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2393 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2394
2395 #if !SANITIZER_MAC
2396 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2397 HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2398 ((TsanInterceptorContext *)ctx)->pc, msg)
2399 #endif
2400
2401 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
2402 if (TsanThread *t = GetCurrentThread()) { \
2403 *begin = t->tls_begin(); \
2404 *end = t->tls_end(); \
2405 } else { \
2406 *begin = *end = 0; \
2407 }
2408
2409 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2410
2411 #define TSAN_SYSCALL() \
2412 ThreadState *thr = cur_thread(); \
2413 if (thr->ignore_interceptors) \
2414 return; \
2415 ScopedSyscall scoped_syscall(thr) \
2416 /**/
2417
2418 struct ScopedSyscall {
2419 ThreadState *thr;
2420
ScopedSyscallScopedSyscall2421 explicit ScopedSyscall(ThreadState *thr)
2422 : thr(thr) {
2423 Initialize(thr);
2424 }
2425
~ScopedSyscallScopedSyscall2426 ~ScopedSyscall() {
2427 ProcessPendingSignals(thr);
2428 }
2429 };
2430
2431 #if !SANITIZER_MAC
syscall_access_range(uptr pc,uptr p,uptr s,bool write)2432 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2433 TSAN_SYSCALL();
2434 MemoryAccessRange(thr, pc, p, s, write);
2435 }
2436
syscall_acquire(uptr pc,uptr addr)2437 static void syscall_acquire(uptr pc, uptr addr) {
2438 TSAN_SYSCALL();
2439 Acquire(thr, pc, addr);
2440 DPrintf("syscall_acquire(%p)\n", addr);
2441 }
2442
syscall_release(uptr pc,uptr addr)2443 static void syscall_release(uptr pc, uptr addr) {
2444 TSAN_SYSCALL();
2445 DPrintf("syscall_release(%p)\n", addr);
2446 Release(thr, pc, addr);
2447 }
2448
syscall_fd_close(uptr pc,int fd)2449 static void syscall_fd_close(uptr pc, int fd) {
2450 TSAN_SYSCALL();
2451 FdClose(thr, pc, fd);
2452 }
2453
syscall_fd_acquire(uptr pc,int fd)2454 static USED void syscall_fd_acquire(uptr pc, int fd) {
2455 TSAN_SYSCALL();
2456 FdAcquire(thr, pc, fd);
2457 DPrintf("syscall_fd_acquire(%p)\n", fd);
2458 }
2459
syscall_fd_release(uptr pc,int fd)2460 static USED void syscall_fd_release(uptr pc, int fd) {
2461 TSAN_SYSCALL();
2462 DPrintf("syscall_fd_release(%p)\n", fd);
2463 FdRelease(thr, pc, fd);
2464 }
2465
syscall_pre_fork(uptr pc)2466 static void syscall_pre_fork(uptr pc) {
2467 TSAN_SYSCALL();
2468 ForkBefore(thr, pc);
2469 }
2470
syscall_post_fork(uptr pc,int pid)2471 static void syscall_post_fork(uptr pc, int pid) {
2472 TSAN_SYSCALL();
2473 if (pid == 0) {
2474 // child
2475 ForkChildAfter(thr, pc);
2476 FdOnFork(thr, pc);
2477 } else if (pid > 0) {
2478 // parent
2479 ForkParentAfter(thr, pc);
2480 } else {
2481 // error
2482 ForkParentAfter(thr, pc);
2483 }
2484 }
2485 #endif
2486
2487 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2488 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2489
2490 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2491 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2492
2493 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2494 do { \
2495 (void)(p); \
2496 (void)(s); \
2497 } while (false)
2498
2499 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2500 do { \
2501 (void)(p); \
2502 (void)(s); \
2503 } while (false)
2504
2505 #define COMMON_SYSCALL_ACQUIRE(addr) \
2506 syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2507
2508 #define COMMON_SYSCALL_RELEASE(addr) \
2509 syscall_release(GET_CALLER_PC(), (uptr)(addr))
2510
2511 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2512
2513 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2514
2515 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2516
2517 #define COMMON_SYSCALL_PRE_FORK() \
2518 syscall_pre_fork(GET_CALLER_PC())
2519
2520 #define COMMON_SYSCALL_POST_FORK(res) \
2521 syscall_post_fork(GET_CALLER_PC(), res)
2522
2523 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2524
2525 namespace __tsan {
2526
finalize(void * arg)2527 static void finalize(void *arg) {
2528 ThreadState *thr = cur_thread();
2529 int status = Finalize(thr);
2530 // Make sure the output is not lost.
2531 FlushStreams();
2532 if (status)
2533 Die();
2534 }
2535
2536 #if !SANITIZER_MAC && !SANITIZER_ANDROID
unreachable()2537 static void unreachable() {
2538 Report("FATAL: ThreadSanitizer: unreachable called\n");
2539 Die();
2540 }
2541 #endif
2542
InitializeInterceptors()2543 void InitializeInterceptors() {
2544 #if !SANITIZER_MAC
2545 // We need to setup it early, because functions like dlsym() can call it.
2546 REAL(memset) = internal_memset;
2547 REAL(memcpy) = internal_memcpy;
2548 #endif
2549
2550 // Instruct libc malloc to consume less memory.
2551 #if SANITIZER_LINUX
2552 mallopt(1, 0); // M_MXFAST
2553 mallopt(-3, 32*1024); // M_MMAP_THRESHOLD
2554 #endif
2555
2556 InitializeCommonInterceptors();
2557
2558 #if !SANITIZER_MAC
2559 // We can not use TSAN_INTERCEPT to get setjmp addr,
2560 // because it does &setjmp and setjmp is not present in some versions of libc.
2561 using __interception::GetRealFunctionAddress;
2562 GetRealFunctionAddress("setjmp", (uptr*)&REAL(setjmp), 0, 0);
2563 GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2564 GetRealFunctionAddress("sigsetjmp", (uptr*)&REAL(sigsetjmp), 0, 0);
2565 GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2566 #endif
2567
2568 TSAN_INTERCEPT(longjmp);
2569 TSAN_INTERCEPT(siglongjmp);
2570
2571 TSAN_INTERCEPT(malloc);
2572 TSAN_INTERCEPT(__libc_memalign);
2573 TSAN_INTERCEPT(calloc);
2574 TSAN_INTERCEPT(realloc);
2575 TSAN_INTERCEPT(free);
2576 TSAN_INTERCEPT(cfree);
2577 TSAN_INTERCEPT(mmap);
2578 TSAN_MAYBE_INTERCEPT_MMAP64;
2579 TSAN_INTERCEPT(munmap);
2580 TSAN_MAYBE_INTERCEPT_MEMALIGN;
2581 TSAN_INTERCEPT(valloc);
2582 TSAN_MAYBE_INTERCEPT_PVALLOC;
2583 TSAN_INTERCEPT(posix_memalign);
2584
2585 TSAN_INTERCEPT(strlen);
2586 TSAN_INTERCEPT(memset);
2587 TSAN_INTERCEPT(memcpy);
2588 TSAN_INTERCEPT(memmove);
2589 TSAN_INTERCEPT(strchr);
2590 TSAN_INTERCEPT(strchrnul);
2591 TSAN_INTERCEPT(strrchr);
2592 TSAN_INTERCEPT(strcpy); // NOLINT
2593 TSAN_INTERCEPT(strncpy);
2594 TSAN_INTERCEPT(strdup);
2595
2596 TSAN_INTERCEPT(pthread_create);
2597 TSAN_INTERCEPT(pthread_join);
2598 TSAN_INTERCEPT(pthread_detach);
2599
2600 TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2601 TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2602 TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2603 TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2604 TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2605 TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2606
2607 TSAN_INTERCEPT(pthread_mutex_init);
2608 TSAN_INTERCEPT(pthread_mutex_destroy);
2609 TSAN_INTERCEPT(pthread_mutex_trylock);
2610 TSAN_INTERCEPT(pthread_mutex_timedlock);
2611
2612 TSAN_INTERCEPT(pthread_spin_init);
2613 TSAN_INTERCEPT(pthread_spin_destroy);
2614 TSAN_INTERCEPT(pthread_spin_lock);
2615 TSAN_INTERCEPT(pthread_spin_trylock);
2616 TSAN_INTERCEPT(pthread_spin_unlock);
2617
2618 TSAN_INTERCEPT(pthread_rwlock_init);
2619 TSAN_INTERCEPT(pthread_rwlock_destroy);
2620 TSAN_INTERCEPT(pthread_rwlock_rdlock);
2621 TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2622 TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2623 TSAN_INTERCEPT(pthread_rwlock_wrlock);
2624 TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2625 TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2626 TSAN_INTERCEPT(pthread_rwlock_unlock);
2627
2628 TSAN_INTERCEPT(pthread_barrier_init);
2629 TSAN_INTERCEPT(pthread_barrier_destroy);
2630 TSAN_INTERCEPT(pthread_barrier_wait);
2631
2632 TSAN_INTERCEPT(pthread_once);
2633
2634 TSAN_INTERCEPT(stat);
2635 TSAN_MAYBE_INTERCEPT___XSTAT;
2636 TSAN_MAYBE_INTERCEPT_STAT64;
2637 TSAN_MAYBE_INTERCEPT___XSTAT64;
2638 TSAN_INTERCEPT(lstat);
2639 TSAN_MAYBE_INTERCEPT___LXSTAT;
2640 TSAN_MAYBE_INTERCEPT_LSTAT64;
2641 TSAN_MAYBE_INTERCEPT___LXSTAT64;
2642 TSAN_INTERCEPT(fstat);
2643 TSAN_MAYBE_INTERCEPT___FXSTAT;
2644 TSAN_MAYBE_INTERCEPT_FSTAT64;
2645 TSAN_MAYBE_INTERCEPT___FXSTAT64;
2646 TSAN_INTERCEPT(open);
2647 TSAN_MAYBE_INTERCEPT_OPEN64;
2648 TSAN_INTERCEPT(creat);
2649 TSAN_MAYBE_INTERCEPT_CREAT64;
2650 TSAN_INTERCEPT(dup);
2651 TSAN_INTERCEPT(dup2);
2652 TSAN_INTERCEPT(dup3);
2653 TSAN_MAYBE_INTERCEPT_EVENTFD;
2654 TSAN_MAYBE_INTERCEPT_SIGNALFD;
2655 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2656 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2657 TSAN_INTERCEPT(socket);
2658 TSAN_INTERCEPT(socketpair);
2659 TSAN_INTERCEPT(connect);
2660 TSAN_INTERCEPT(bind);
2661 TSAN_INTERCEPT(listen);
2662 TSAN_MAYBE_INTERCEPT_EPOLL_CREATE;
2663 TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1;
2664 TSAN_INTERCEPT(close);
2665 TSAN_MAYBE_INTERCEPT___CLOSE;
2666 TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2667 TSAN_INTERCEPT(pipe);
2668 TSAN_INTERCEPT(pipe2);
2669
2670 TSAN_INTERCEPT(send);
2671 TSAN_INTERCEPT(sendmsg);
2672 TSAN_INTERCEPT(recv);
2673
2674 TSAN_INTERCEPT(unlink);
2675 TSAN_INTERCEPT(tmpfile);
2676 TSAN_MAYBE_INTERCEPT_TMPFILE64;
2677 TSAN_INTERCEPT(fread);
2678 TSAN_INTERCEPT(fwrite);
2679 TSAN_INTERCEPT(abort);
2680 TSAN_INTERCEPT(puts);
2681 TSAN_INTERCEPT(rmdir);
2682 TSAN_INTERCEPT(closedir);
2683
2684 TSAN_MAYBE_INTERCEPT_EPOLL_CTL;
2685 TSAN_MAYBE_INTERCEPT_EPOLL_WAIT;
2686
2687 TSAN_INTERCEPT(sigaction);
2688 TSAN_INTERCEPT(signal);
2689 TSAN_INTERCEPT(sigsuspend);
2690 TSAN_INTERCEPT(raise);
2691 TSAN_INTERCEPT(kill);
2692 TSAN_INTERCEPT(pthread_kill);
2693 TSAN_INTERCEPT(sleep);
2694 TSAN_INTERCEPT(usleep);
2695 TSAN_INTERCEPT(nanosleep);
2696 TSAN_INTERCEPT(gettimeofday);
2697 TSAN_INTERCEPT(getaddrinfo);
2698
2699 TSAN_INTERCEPT(fork);
2700 TSAN_INTERCEPT(vfork);
2701 #if !SANITIZER_ANDROID
2702 TSAN_INTERCEPT(dl_iterate_phdr);
2703 #endif
2704 TSAN_INTERCEPT(on_exit);
2705 TSAN_INTERCEPT(__cxa_atexit);
2706 TSAN_INTERCEPT(_exit);
2707
2708 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2709 // Need to setup it, because interceptors check that the function is resolved.
2710 // But atexit is emitted directly into the module, so can't be resolved.
2711 REAL(atexit) = (int(*)(void(*)()))unreachable;
2712 #endif
2713
2714 if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2715 Printf("ThreadSanitizer: failed to setup atexit callback\n");
2716 Die();
2717 }
2718
2719 #if !SANITIZER_MAC
2720 if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
2721 Printf("ThreadSanitizer: failed to create thread key\n");
2722 Die();
2723 }
2724 #endif
2725
2726 FdInit();
2727 }
2728
2729 } // namespace __tsan
2730
2731 // Invisible barrier for tests.
2732 // There were several unsuccessful iterations for this functionality:
2733 // 1. Initially it was implemented in user code using
2734 // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
2735 // MacOS. Futexes are linux-specific for this matter.
2736 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
2737 // "as-if synchronized via sleep" messages in reports which failed some
2738 // output tests.
2739 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
2740 // visible events, which lead to "failed to restore stack trace" failures.
2741 // Note that no_sanitize_thread attribute does not turn off atomic interception
2742 // so attaching it to the function defined in user code does not help.
2743 // That's why we now have what we have.
2744 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_barrier_init(u64 * barrier,u32 count)2745 void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
2746 if (count >= (1 << 8)) {
2747 Printf("barrier_init: count is too large (%d)\n", count);
2748 Die();
2749 }
2750 // 8 lsb is thread count, the remaining are count of entered threads.
2751 *barrier = count;
2752 }
2753
2754 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_barrier_wait(u64 * barrier)2755 void __tsan_testonly_barrier_wait(u64 *barrier) {
2756 unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
2757 unsigned old_epoch = (old >> 8) / (old & 0xff);
2758 for (;;) {
2759 unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
2760 unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
2761 if (cur_epoch != old_epoch)
2762 return;
2763 internal_sched_yield();
2764 }
2765 }
2766