1 //===-- sanitizer_coverage.cc ---------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Sanitizer Coverage.
11 // This file implements run-time support for a poor man's coverage tool.
12 //
13 // Compiler instrumentation:
14 // For every interesting basic block the compiler injects the following code:
15 // if (Guard < 0) {
16 // __sanitizer_cov(&Guard);
17 // }
18 // At the module start up time __sanitizer_cov_module_init sets the guards
19 // to consecutive negative numbers (-1, -2, -3, ...).
20 // It's fine to call __sanitizer_cov more than once for a given block.
21 //
22 // Run-time:
23 // - __sanitizer_cov(): record that we've executed the PC (GET_CALLER_PC).
24 // and atomically set Guard to -Guard.
25 // - __sanitizer_cov_dump: dump the coverage data to disk.
26 // For every module of the current process that has coverage data
27 // this will create a file module_name.PID.sancov.
28 //
29 // The file format is simple: the first 8 bytes is the magic,
30 // one of 0xC0BFFFFFFFFFFF64 and 0xC0BFFFFFFFFFFF32. The last byte of the
31 // magic defines the size of the following offsets.
32 // The rest of the data is the offsets in the module.
33 //
34 // Eventually, this coverage implementation should be obsoleted by a more
35 // powerful general purpose Clang/LLVM coverage instrumentation.
36 // Consider this implementation as prototype.
37 //
38 // FIXME: support (or at least test with) dlclose.
39 //===----------------------------------------------------------------------===//
40
41 #include "sanitizer_allocator_internal.h"
42 #include "sanitizer_common.h"
43 #include "sanitizer_libc.h"
44 #include "sanitizer_mutex.h"
45 #include "sanitizer_procmaps.h"
46 #include "sanitizer_stacktrace.h"
47 #include "sanitizer_symbolizer.h"
48 #include "sanitizer_flags.h"
49
50 static const u64 kMagic64 = 0xC0BFFFFFFFFFFF64ULL;
51 static const u64 kMagic32 = 0xC0BFFFFFFFFFFF32ULL;
52
53 static atomic_uint32_t dump_once_guard; // Ensure that CovDump runs only once.
54
55 static atomic_uintptr_t coverage_counter;
56 static atomic_uintptr_t caller_callee_counter;
57
ResetGlobalCounters()58 static void ResetGlobalCounters() {
59 return atomic_store(&coverage_counter, 0, memory_order_relaxed);
60 return atomic_store(&caller_callee_counter, 0, memory_order_relaxed);
61 }
62
63 // pc_array is the array containing the covered PCs.
64 // To make the pc_array thread- and async-signal-safe it has to be large enough.
65 // 128M counters "ought to be enough for anybody" (4M on 32-bit).
66
67 // With coverage_direct=1 in ASAN_OPTIONS, pc_array memory is mapped to a file.
68 // In this mode, __sanitizer_cov_dump does nothing, and CovUpdateMapping()
69 // dump current memory layout to another file.
70
71 static bool cov_sandboxed = false;
72 static fd_t cov_fd = kInvalidFd;
73 static unsigned int cov_max_block_size = 0;
74 static bool coverage_enabled = false;
75 static const char *coverage_dir;
76
77 namespace __sanitizer {
78
79 class CoverageData {
80 public:
81 void Init();
82 void Enable();
83 void Disable();
84 void ReInit();
85 void BeforeFork();
86 void AfterFork(int child_pid);
87 void Extend(uptr npcs);
88 void Add(uptr pc, u32 *guard);
89 void IndirCall(uptr caller, uptr callee, uptr callee_cache[],
90 uptr cache_size);
91 void DumpCallerCalleePairs();
92 void DumpTrace();
93 void DumpAsBitSet();
94 void DumpCounters();
95 void DumpOffsets();
96 void DumpAll();
97
98 ALWAYS_INLINE
99 void TraceBasicBlock(u32 *id);
100
101 void InitializeGuardArray(s32 *guards);
102 void InitializeGuards(s32 *guards, uptr n, const char *module_name,
103 uptr caller_pc);
104 void InitializeCounters(u8 *counters, uptr n);
105 void ReinitializeGuards();
106 uptr GetNumberOf8bitCounters();
107 uptr Update8bitCounterBitsetAndClearCounters(u8 *bitset);
108
109 uptr *data();
110 uptr size();
111
112 private:
113 void DirectOpen();
114 void UpdateModuleNameVec(uptr caller_pc, uptr range_beg, uptr range_end);
115
116 // Maximal size pc array may ever grow.
117 // We MmapNoReserve this space to ensure that the array is contiguous.
118 static const uptr kPcArrayMaxSize = FIRST_32_SECOND_64(
119 1 << (SANITIZER_ANDROID ? 24 : (SANITIZER_WINDOWS ? 27 : 26)),
120 1 << 27);
121 // The amount file mapping for the pc array is grown by.
122 static const uptr kPcArrayMmapSize = 64 * 1024;
123
124 // pc_array is allocated with MmapNoReserveOrDie and so it uses only as
125 // much RAM as it really needs.
126 uptr *pc_array;
127 // Index of the first available pc_array slot.
128 atomic_uintptr_t pc_array_index;
129 // Array size.
130 atomic_uintptr_t pc_array_size;
131 // Current file mapped size of the pc array.
132 uptr pc_array_mapped_size;
133 // Descriptor of the file mapped pc array.
134 fd_t pc_fd;
135
136 // Vector of coverage guard arrays, protected by mu.
137 InternalMmapVectorNoCtor<s32*> guard_array_vec;
138
139 struct NamedPcRange {
140 const char *copied_module_name;
141 uptr beg, end; // elements [beg,end) in pc_array.
142 };
143
144 // Vector of module and compilation unit pc ranges.
145 InternalMmapVectorNoCtor<NamedPcRange> comp_unit_name_vec;
146 InternalMmapVectorNoCtor<NamedPcRange> module_name_vec;
147
148 struct CounterAndSize {
149 u8 *counters;
150 uptr n;
151 };
152
153 InternalMmapVectorNoCtor<CounterAndSize> counters_vec;
154 uptr num_8bit_counters;
155
156 // Caller-Callee (cc) array, size and current index.
157 static const uptr kCcArrayMaxSize = FIRST_32_SECOND_64(1 << 18, 1 << 24);
158 uptr **cc_array;
159 atomic_uintptr_t cc_array_index;
160 atomic_uintptr_t cc_array_size;
161
162 // Tracing event array, size and current pointer.
163 // We record all events (basic block entries) in a global buffer of u32
164 // values. Each such value is the index in pc_array.
165 // So far the tracing is highly experimental:
166 // - not thread-safe;
167 // - does not support long traces;
168 // - not tuned for performance.
169 static const uptr kTrEventArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 30);
170 u32 *tr_event_array;
171 uptr tr_event_array_size;
172 u32 *tr_event_pointer;
173 static const uptr kTrPcArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 27);
174
175 StaticSpinMutex mu;
176 };
177
178 static CoverageData coverage_data;
179
180 void CovUpdateMapping(const char *path, uptr caller_pc = 0);
181
DirectOpen()182 void CoverageData::DirectOpen() {
183 InternalScopedString path(kMaxPathLength);
184 internal_snprintf((char *)path.data(), path.size(), "%s/%zd.sancov.raw",
185 coverage_dir, internal_getpid());
186 pc_fd = OpenFile(path.data(), RdWr);
187 if (pc_fd == kInvalidFd) {
188 Report("Coverage: failed to open %s for reading/writing\n", path.data());
189 Die();
190 }
191
192 pc_array_mapped_size = 0;
193 CovUpdateMapping(coverage_dir);
194 }
195
Init()196 void CoverageData::Init() {
197 pc_fd = kInvalidFd;
198 }
199
Enable()200 void CoverageData::Enable() {
201 if (pc_array)
202 return;
203 pc_array = reinterpret_cast<uptr *>(
204 MmapNoReserveOrDie(sizeof(uptr) * kPcArrayMaxSize, "CovInit"));
205 atomic_store(&pc_array_index, 0, memory_order_relaxed);
206 if (common_flags()->coverage_direct) {
207 atomic_store(&pc_array_size, 0, memory_order_relaxed);
208 } else {
209 atomic_store(&pc_array_size, kPcArrayMaxSize, memory_order_relaxed);
210 }
211
212 cc_array = reinterpret_cast<uptr **>(MmapNoReserveOrDie(
213 sizeof(uptr *) * kCcArrayMaxSize, "CovInit::cc_array"));
214 atomic_store(&cc_array_size, kCcArrayMaxSize, memory_order_relaxed);
215 atomic_store(&cc_array_index, 0, memory_order_relaxed);
216
217 // Allocate tr_event_array with a guard page at the end.
218 tr_event_array = reinterpret_cast<u32 *>(MmapNoReserveOrDie(
219 sizeof(tr_event_array[0]) * kTrEventArrayMaxSize + GetMmapGranularity(),
220 "CovInit::tr_event_array"));
221 MprotectNoAccess(
222 reinterpret_cast<uptr>(&tr_event_array[kTrEventArrayMaxSize]),
223 GetMmapGranularity());
224 tr_event_array_size = kTrEventArrayMaxSize;
225 tr_event_pointer = tr_event_array;
226
227 num_8bit_counters = 0;
228 }
229
InitializeGuardArray(s32 * guards)230 void CoverageData::InitializeGuardArray(s32 *guards) {
231 Enable(); // Make sure coverage is enabled at this point.
232 s32 n = guards[0];
233 for (s32 j = 1; j <= n; j++) {
234 uptr idx = atomic_load_relaxed(&pc_array_index);
235 atomic_store_relaxed(&pc_array_index, idx + 1);
236 guards[j] = -static_cast<s32>(idx + 1);
237 }
238 }
239
Disable()240 void CoverageData::Disable() {
241 if (pc_array) {
242 UnmapOrDie(pc_array, sizeof(uptr) * kPcArrayMaxSize);
243 pc_array = nullptr;
244 }
245 if (cc_array) {
246 UnmapOrDie(cc_array, sizeof(uptr *) * kCcArrayMaxSize);
247 cc_array = nullptr;
248 }
249 if (tr_event_array) {
250 UnmapOrDie(tr_event_array,
251 sizeof(tr_event_array[0]) * kTrEventArrayMaxSize +
252 GetMmapGranularity());
253 tr_event_array = nullptr;
254 tr_event_pointer = nullptr;
255 }
256 if (pc_fd != kInvalidFd) {
257 CloseFile(pc_fd);
258 pc_fd = kInvalidFd;
259 }
260 }
261
ReinitializeGuards()262 void CoverageData::ReinitializeGuards() {
263 // Assuming single thread.
264 atomic_store(&pc_array_index, 0, memory_order_relaxed);
265 for (uptr i = 0; i < guard_array_vec.size(); i++)
266 InitializeGuardArray(guard_array_vec[i]);
267 }
268
ReInit()269 void CoverageData::ReInit() {
270 Disable();
271 if (coverage_enabled) {
272 if (common_flags()->coverage_direct) {
273 // In memory-mapped mode we must extend the new file to the known array
274 // size.
275 uptr size = atomic_load(&pc_array_size, memory_order_relaxed);
276 uptr npcs = size / sizeof(uptr);
277 Enable();
278 if (size) Extend(npcs);
279 if (coverage_enabled) CovUpdateMapping(coverage_dir);
280 } else {
281 Enable();
282 }
283 }
284 // Re-initialize the guards.
285 // We are single-threaded now, no need to grab any lock.
286 CHECK_EQ(atomic_load(&pc_array_index, memory_order_relaxed), 0);
287 ReinitializeGuards();
288 }
289
BeforeFork()290 void CoverageData::BeforeFork() {
291 mu.Lock();
292 }
293
AfterFork(int child_pid)294 void CoverageData::AfterFork(int child_pid) {
295 // We are single-threaded so it's OK to release the lock early.
296 mu.Unlock();
297 if (child_pid == 0) ReInit();
298 }
299
300 // Extend coverage PC array to fit additional npcs elements.
Extend(uptr npcs)301 void CoverageData::Extend(uptr npcs) {
302 if (!common_flags()->coverage_direct) return;
303 SpinMutexLock l(&mu);
304
305 uptr size = atomic_load(&pc_array_size, memory_order_relaxed);
306 size += npcs * sizeof(uptr);
307
308 if (coverage_enabled && size > pc_array_mapped_size) {
309 if (pc_fd == kInvalidFd) DirectOpen();
310 CHECK_NE(pc_fd, kInvalidFd);
311
312 uptr new_mapped_size = pc_array_mapped_size;
313 while (size > new_mapped_size) new_mapped_size += kPcArrayMmapSize;
314 CHECK_LE(new_mapped_size, sizeof(uptr) * kPcArrayMaxSize);
315
316 // Extend the file and map the new space at the end of pc_array.
317 uptr res = internal_ftruncate(pc_fd, new_mapped_size);
318 int err;
319 if (internal_iserror(res, &err)) {
320 Printf("failed to extend raw coverage file: %d\n", err);
321 Die();
322 }
323
324 uptr next_map_base = ((uptr)pc_array) + pc_array_mapped_size;
325 void *p = MapWritableFileToMemory((void *)next_map_base,
326 new_mapped_size - pc_array_mapped_size,
327 pc_fd, pc_array_mapped_size);
328 CHECK_EQ((uptr)p, next_map_base);
329 pc_array_mapped_size = new_mapped_size;
330 }
331
332 atomic_store(&pc_array_size, size, memory_order_release);
333 }
334
InitializeCounters(u8 * counters,uptr n)335 void CoverageData::InitializeCounters(u8 *counters, uptr n) {
336 if (!counters) return;
337 CHECK_EQ(reinterpret_cast<uptr>(counters) % 16, 0);
338 n = RoundUpTo(n, 16); // The compiler must ensure that counters is 16-aligned.
339 SpinMutexLock l(&mu);
340 counters_vec.push_back({counters, n});
341 num_8bit_counters += n;
342 }
343
UpdateModuleNameVec(uptr caller_pc,uptr range_beg,uptr range_end)344 void CoverageData::UpdateModuleNameVec(uptr caller_pc, uptr range_beg,
345 uptr range_end) {
346 auto sym = Symbolizer::GetOrInit();
347 if (!sym)
348 return;
349 const char *module_name = sym->GetModuleNameForPc(caller_pc);
350 if (!module_name) return;
351 if (module_name_vec.empty() ||
352 module_name_vec.back().copied_module_name != module_name)
353 module_name_vec.push_back({module_name, range_beg, range_end});
354 else
355 module_name_vec.back().end = range_end;
356 }
357
InitializeGuards(s32 * guards,uptr n,const char * comp_unit_name,uptr caller_pc)358 void CoverageData::InitializeGuards(s32 *guards, uptr n,
359 const char *comp_unit_name,
360 uptr caller_pc) {
361 // The array 'guards' has n+1 elements, we use the element zero
362 // to store 'n'.
363 CHECK_LT(n, 1 << 30);
364 guards[0] = static_cast<s32>(n);
365 InitializeGuardArray(guards);
366 SpinMutexLock l(&mu);
367 uptr range_end = atomic_load(&pc_array_index, memory_order_relaxed);
368 uptr range_beg = range_end - n;
369 comp_unit_name_vec.push_back({comp_unit_name, range_beg, range_end});
370 guard_array_vec.push_back(guards);
371 UpdateModuleNameVec(caller_pc, range_beg, range_end);
372 }
373
374 static const uptr kBundleCounterBits = 16;
375
376 // When coverage_order_pcs==true and SANITIZER_WORDSIZE==64
377 // we insert the global counter into the first 16 bits of the PC.
BundlePcAndCounter(uptr pc,uptr counter)378 uptr BundlePcAndCounter(uptr pc, uptr counter) {
379 if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs)
380 return pc;
381 static const uptr kMaxCounter = (1 << kBundleCounterBits) - 1;
382 if (counter > kMaxCounter)
383 counter = kMaxCounter;
384 CHECK_EQ(0, pc >> (SANITIZER_WORDSIZE - kBundleCounterBits));
385 return pc | (counter << (SANITIZER_WORDSIZE - kBundleCounterBits));
386 }
387
UnbundlePc(uptr bundle)388 uptr UnbundlePc(uptr bundle) {
389 if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs)
390 return bundle;
391 return (bundle << kBundleCounterBits) >> kBundleCounterBits;
392 }
393
UnbundleCounter(uptr bundle)394 uptr UnbundleCounter(uptr bundle) {
395 if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs)
396 return 0;
397 return bundle >> (SANITIZER_WORDSIZE - kBundleCounterBits);
398 }
399
400 // If guard is negative, atomically set it to -guard and store the PC in
401 // pc_array.
Add(uptr pc,u32 * guard)402 void CoverageData::Add(uptr pc, u32 *guard) {
403 atomic_uint32_t *atomic_guard = reinterpret_cast<atomic_uint32_t*>(guard);
404 s32 guard_value = atomic_load(atomic_guard, memory_order_relaxed);
405 if (guard_value >= 0) return;
406
407 atomic_store(atomic_guard, -guard_value, memory_order_relaxed);
408 if (!pc_array) return;
409
410 uptr idx = -guard_value - 1;
411 if (idx >= atomic_load(&pc_array_index, memory_order_acquire))
412 return; // May happen after fork when pc_array_index becomes 0.
413 CHECK_LT(idx * sizeof(uptr),
414 atomic_load(&pc_array_size, memory_order_acquire));
415 uptr counter = atomic_fetch_add(&coverage_counter, 1, memory_order_relaxed);
416 pc_array[idx] = BundlePcAndCounter(pc, counter);
417 }
418
419 // Registers a pair caller=>callee.
420 // When a given caller is seen for the first time, the callee_cache is added
421 // to the global array cc_array, callee_cache[0] is set to caller and
422 // callee_cache[1] is set to cache_size.
423 // Then we are trying to add callee to callee_cache [2,cache_size) if it is
424 // not there yet.
425 // If the cache is full we drop the callee (may want to fix this later).
IndirCall(uptr caller,uptr callee,uptr callee_cache[],uptr cache_size)426 void CoverageData::IndirCall(uptr caller, uptr callee, uptr callee_cache[],
427 uptr cache_size) {
428 if (!cc_array) return;
429 atomic_uintptr_t *atomic_callee_cache =
430 reinterpret_cast<atomic_uintptr_t *>(callee_cache);
431 uptr zero = 0;
432 if (atomic_compare_exchange_strong(&atomic_callee_cache[0], &zero, caller,
433 memory_order_seq_cst)) {
434 uptr idx = atomic_fetch_add(&cc_array_index, 1, memory_order_relaxed);
435 CHECK_LT(idx * sizeof(uptr),
436 atomic_load(&cc_array_size, memory_order_acquire));
437 callee_cache[1] = cache_size;
438 cc_array[idx] = callee_cache;
439 }
440 CHECK_EQ(atomic_load(&atomic_callee_cache[0], memory_order_relaxed), caller);
441 for (uptr i = 2; i < cache_size; i++) {
442 uptr was = 0;
443 if (atomic_compare_exchange_strong(&atomic_callee_cache[i], &was, callee,
444 memory_order_seq_cst)) {
445 atomic_fetch_add(&caller_callee_counter, 1, memory_order_relaxed);
446 return;
447 }
448 if (was == callee) // Already have this callee.
449 return;
450 }
451 }
452
GetNumberOf8bitCounters()453 uptr CoverageData::GetNumberOf8bitCounters() {
454 return num_8bit_counters;
455 }
456
457 // Map every 8bit counter to a 8-bit bitset and clear the counter.
Update8bitCounterBitsetAndClearCounters(u8 * bitset)458 uptr CoverageData::Update8bitCounterBitsetAndClearCounters(u8 *bitset) {
459 uptr num_new_bits = 0;
460 uptr cur = 0;
461 // For better speed we map 8 counters to 8 bytes of bitset at once.
462 static const uptr kBatchSize = 8;
463 CHECK_EQ(reinterpret_cast<uptr>(bitset) % kBatchSize, 0);
464 for (uptr i = 0, len = counters_vec.size(); i < len; i++) {
465 u8 *c = counters_vec[i].counters;
466 uptr n = counters_vec[i].n;
467 CHECK_EQ(n % 16, 0);
468 CHECK_EQ(cur % kBatchSize, 0);
469 CHECK_EQ(reinterpret_cast<uptr>(c) % kBatchSize, 0);
470 if (!bitset) {
471 internal_bzero_aligned16(c, n);
472 cur += n;
473 continue;
474 }
475 for (uptr j = 0; j < n; j += kBatchSize, cur += kBatchSize) {
476 CHECK_LT(cur, num_8bit_counters);
477 u64 *pc64 = reinterpret_cast<u64*>(c + j);
478 u64 *pb64 = reinterpret_cast<u64*>(bitset + cur);
479 u64 c64 = *pc64;
480 u64 old_bits_64 = *pb64;
481 u64 new_bits_64 = old_bits_64;
482 if (c64) {
483 *pc64 = 0;
484 for (uptr k = 0; k < kBatchSize; k++) {
485 u64 x = (c64 >> (8 * k)) & 0xff;
486 if (x) {
487 u64 bit = 0;
488 /**/ if (x >= 128) bit = 128;
489 else if (x >= 32) bit = 64;
490 else if (x >= 16) bit = 32;
491 else if (x >= 8) bit = 16;
492 else if (x >= 4) bit = 8;
493 else if (x >= 3) bit = 4;
494 else if (x >= 2) bit = 2;
495 else if (x >= 1) bit = 1;
496 u64 mask = bit << (8 * k);
497 if (!(new_bits_64 & mask)) {
498 num_new_bits++;
499 new_bits_64 |= mask;
500 }
501 }
502 }
503 *pb64 = new_bits_64;
504 }
505 }
506 }
507 CHECK_EQ(cur, num_8bit_counters);
508 return num_new_bits;
509 }
510
data()511 uptr *CoverageData::data() {
512 return pc_array;
513 }
514
size()515 uptr CoverageData::size() {
516 return atomic_load(&pc_array_index, memory_order_relaxed);
517 }
518
519 // Block layout for packed file format: header, followed by module name (no
520 // trailing zero), followed by data blob.
521 struct CovHeader {
522 int pid;
523 unsigned int module_name_length;
524 unsigned int data_length;
525 };
526
CovWritePacked(int pid,const char * module,const void * blob,unsigned int blob_size)527 static void CovWritePacked(int pid, const char *module, const void *blob,
528 unsigned int blob_size) {
529 if (cov_fd == kInvalidFd) return;
530 unsigned module_name_length = internal_strlen(module);
531 CovHeader header = {pid, module_name_length, blob_size};
532
533 if (cov_max_block_size == 0) {
534 // Writing to a file. Just go ahead.
535 WriteToFile(cov_fd, &header, sizeof(header));
536 WriteToFile(cov_fd, module, module_name_length);
537 WriteToFile(cov_fd, blob, blob_size);
538 } else {
539 // Writing to a socket. We want to split the data into appropriately sized
540 // blocks.
541 InternalScopedBuffer<char> block(cov_max_block_size);
542 CHECK_EQ((uptr)block.data(), (uptr)(CovHeader *)block.data());
543 uptr header_size_with_module = sizeof(header) + module_name_length;
544 CHECK_LT(header_size_with_module, cov_max_block_size);
545 unsigned int max_payload_size =
546 cov_max_block_size - header_size_with_module;
547 char *block_pos = block.data();
548 internal_memcpy(block_pos, &header, sizeof(header));
549 block_pos += sizeof(header);
550 internal_memcpy(block_pos, module, module_name_length);
551 block_pos += module_name_length;
552 char *block_data_begin = block_pos;
553 const char *blob_pos = (const char *)blob;
554 while (blob_size > 0) {
555 unsigned int payload_size = Min(blob_size, max_payload_size);
556 blob_size -= payload_size;
557 internal_memcpy(block_data_begin, blob_pos, payload_size);
558 blob_pos += payload_size;
559 ((CovHeader *)block.data())->data_length = payload_size;
560 WriteToFile(cov_fd, block.data(), header_size_with_module + payload_size);
561 }
562 }
563 }
564
565 // If packed = false: <name>.<pid>.<sancov> (name = module name).
566 // If packed = true and name == 0: <pid>.<sancov>.<packed>.
567 // If packed = true and name != 0: <name>.<sancov>.<packed> (name is
568 // user-supplied).
CovOpenFile(InternalScopedString * path,bool packed,const char * name,const char * extension="sancov")569 static fd_t CovOpenFile(InternalScopedString *path, bool packed,
570 const char *name, const char *extension = "sancov") {
571 path->clear();
572 if (!packed) {
573 CHECK(name);
574 path->append("%s/%s.%zd.%s", coverage_dir, name, internal_getpid(),
575 extension);
576 } else {
577 if (!name)
578 path->append("%s/%zd.%s.packed", coverage_dir, internal_getpid(),
579 extension);
580 else
581 path->append("%s/%s.%s.packed", coverage_dir, name, extension);
582 }
583 error_t err;
584 fd_t fd = OpenFile(path->data(), WrOnly, &err);
585 if (fd == kInvalidFd)
586 Report("SanitizerCoverage: failed to open %s for writing (reason: %d)\n",
587 path->data(), err);
588 return fd;
589 }
590
591 // Dump trace PCs and trace events into two separate files.
DumpTrace()592 void CoverageData::DumpTrace() {
593 uptr max_idx = tr_event_pointer - tr_event_array;
594 if (!max_idx) return;
595 auto sym = Symbolizer::GetOrInit();
596 if (!sym)
597 return;
598 InternalScopedString out(32 << 20);
599 for (uptr i = 0, n = size(); i < n; i++) {
600 const char *module_name = "<unknown>";
601 uptr module_address = 0;
602 sym->GetModuleNameAndOffsetForPC(UnbundlePc(pc_array[i]), &module_name,
603 &module_address);
604 out.append("%s 0x%zx\n", module_name, module_address);
605 }
606 InternalScopedString path(kMaxPathLength);
607 fd_t fd = CovOpenFile(&path, false, "trace-points");
608 if (fd == kInvalidFd) return;
609 WriteToFile(fd, out.data(), out.length());
610 CloseFile(fd);
611
612 fd = CovOpenFile(&path, false, "trace-compunits");
613 if (fd == kInvalidFd) return;
614 out.clear();
615 for (uptr i = 0; i < comp_unit_name_vec.size(); i++)
616 out.append("%s\n", comp_unit_name_vec[i].copied_module_name);
617 WriteToFile(fd, out.data(), out.length());
618 CloseFile(fd);
619
620 fd = CovOpenFile(&path, false, "trace-events");
621 if (fd == kInvalidFd) return;
622 uptr bytes_to_write = max_idx * sizeof(tr_event_array[0]);
623 u8 *event_bytes = reinterpret_cast<u8*>(tr_event_array);
624 // The trace file could be huge, and may not be written with a single syscall.
625 while (bytes_to_write) {
626 uptr actually_written;
627 if (WriteToFile(fd, event_bytes, bytes_to_write, &actually_written) &&
628 actually_written <= bytes_to_write) {
629 bytes_to_write -= actually_written;
630 event_bytes += actually_written;
631 } else {
632 break;
633 }
634 }
635 CloseFile(fd);
636 VReport(1, " CovDump: Trace: %zd PCs written\n", size());
637 VReport(1, " CovDump: Trace: %zd Events written\n", max_idx);
638 }
639
640 // This function dumps the caller=>callee pairs into a file as a sequence of
641 // lines like "module_name offset".
DumpCallerCalleePairs()642 void CoverageData::DumpCallerCalleePairs() {
643 uptr max_idx = atomic_load(&cc_array_index, memory_order_relaxed);
644 if (!max_idx) return;
645 auto sym = Symbolizer::GetOrInit();
646 if (!sym)
647 return;
648 InternalScopedString out(32 << 20);
649 uptr total = 0;
650 for (uptr i = 0; i < max_idx; i++) {
651 uptr *cc_cache = cc_array[i];
652 CHECK(cc_cache);
653 uptr caller = cc_cache[0];
654 uptr n_callees = cc_cache[1];
655 const char *caller_module_name = "<unknown>";
656 uptr caller_module_address = 0;
657 sym->GetModuleNameAndOffsetForPC(caller, &caller_module_name,
658 &caller_module_address);
659 for (uptr j = 2; j < n_callees; j++) {
660 uptr callee = cc_cache[j];
661 if (!callee) break;
662 total++;
663 const char *callee_module_name = "<unknown>";
664 uptr callee_module_address = 0;
665 sym->GetModuleNameAndOffsetForPC(callee, &callee_module_name,
666 &callee_module_address);
667 out.append("%s 0x%zx\n%s 0x%zx\n", caller_module_name,
668 caller_module_address, callee_module_name,
669 callee_module_address);
670 }
671 }
672 InternalScopedString path(kMaxPathLength);
673 fd_t fd = CovOpenFile(&path, false, "caller-callee");
674 if (fd == kInvalidFd) return;
675 WriteToFile(fd, out.data(), out.length());
676 CloseFile(fd);
677 VReport(1, " CovDump: %zd caller-callee pairs written\n", total);
678 }
679
680 // Record the current PC into the event buffer.
681 // Every event is a u32 value (index in tr_pc_array_index) so we compute
682 // it once and then cache in the provided 'cache' storage.
683 //
684 // This function will eventually be inlined by the compiler.
TraceBasicBlock(u32 * id)685 void CoverageData::TraceBasicBlock(u32 *id) {
686 // Will trap here if
687 // 1. coverage is not enabled at run-time.
688 // 2. The array tr_event_array is full.
689 *tr_event_pointer = *id - 1;
690 tr_event_pointer++;
691 }
692
DumpCounters()693 void CoverageData::DumpCounters() {
694 if (!common_flags()->coverage_counters) return;
695 uptr n = coverage_data.GetNumberOf8bitCounters();
696 if (!n) return;
697 InternalScopedBuffer<u8> bitset(n);
698 coverage_data.Update8bitCounterBitsetAndClearCounters(bitset.data());
699 InternalScopedString path(kMaxPathLength);
700
701 for (uptr m = 0; m < module_name_vec.size(); m++) {
702 auto r = module_name_vec[m];
703 CHECK(r.copied_module_name);
704 CHECK_LE(r.beg, r.end);
705 CHECK_LE(r.end, size());
706 const char *base_name = StripModuleName(r.copied_module_name);
707 fd_t fd =
708 CovOpenFile(&path, /* packed */ false, base_name, "counters-sancov");
709 if (fd == kInvalidFd) return;
710 WriteToFile(fd, bitset.data() + r.beg, r.end - r.beg);
711 CloseFile(fd);
712 VReport(1, " CovDump: %zd counters written for '%s'\n", r.end - r.beg,
713 base_name);
714 }
715 }
716
DumpAsBitSet()717 void CoverageData::DumpAsBitSet() {
718 if (!common_flags()->coverage_bitset) return;
719 if (!size()) return;
720 InternalScopedBuffer<char> out(size());
721 InternalScopedString path(kMaxPathLength);
722 for (uptr m = 0; m < module_name_vec.size(); m++) {
723 uptr n_set_bits = 0;
724 auto r = module_name_vec[m];
725 CHECK(r.copied_module_name);
726 CHECK_LE(r.beg, r.end);
727 CHECK_LE(r.end, size());
728 for (uptr i = r.beg; i < r.end; i++) {
729 uptr pc = UnbundlePc(pc_array[i]);
730 out[i] = pc ? '1' : '0';
731 if (pc)
732 n_set_bits++;
733 }
734 const char *base_name = StripModuleName(r.copied_module_name);
735 fd_t fd = CovOpenFile(&path, /* packed */false, base_name, "bitset-sancov");
736 if (fd == kInvalidFd) return;
737 WriteToFile(fd, out.data() + r.beg, r.end - r.beg);
738 CloseFile(fd);
739 VReport(1,
740 " CovDump: bitset of %zd bits written for '%s', %zd bits are set\n",
741 r.end - r.beg, base_name, n_set_bits);
742 }
743 }
744
DumpOffsets()745 void CoverageData::DumpOffsets() {
746 auto sym = Symbolizer::GetOrInit();
747 if (!common_flags()->coverage_pcs) return;
748 CHECK_NE(sym, nullptr);
749 InternalMmapVector<uptr> offsets(0);
750 InternalScopedString path(kMaxPathLength);
751 for (uptr m = 0; m < module_name_vec.size(); m++) {
752 offsets.clear();
753 uptr num_words_for_magic = SANITIZER_WORDSIZE == 64 ? 1 : 2;
754 for (uptr i = 0; i < num_words_for_magic; i++)
755 offsets.push_back(0);
756 auto r = module_name_vec[m];
757 CHECK(r.copied_module_name);
758 CHECK_LE(r.beg, r.end);
759 CHECK_LE(r.end, size());
760 for (uptr i = r.beg; i < r.end; i++) {
761 uptr pc = UnbundlePc(pc_array[i]);
762 uptr counter = UnbundleCounter(pc_array[i]);
763 if (!pc) continue; // Not visited.
764 uptr offset = 0;
765 sym->GetModuleNameAndOffsetForPC(pc, nullptr, &offset);
766 offsets.push_back(BundlePcAndCounter(offset, counter));
767 }
768
769 CHECK_GE(offsets.size(), num_words_for_magic);
770 SortArray(offsets.data(), offsets.size());
771 for (uptr i = 0; i < offsets.size(); i++)
772 offsets[i] = UnbundlePc(offsets[i]);
773
774 uptr num_offsets = offsets.size() - num_words_for_magic;
775 u64 *magic_p = reinterpret_cast<u64*>(offsets.data());
776 CHECK_EQ(*magic_p, 0ULL);
777 // FIXME: we may want to write 32-bit offsets even in 64-mode
778 // if all the offsets are small enough.
779 *magic_p = SANITIZER_WORDSIZE == 64 ? kMagic64 : kMagic32;
780
781 const char *module_name = StripModuleName(r.copied_module_name);
782 if (cov_sandboxed) {
783 if (cov_fd != kInvalidFd) {
784 CovWritePacked(internal_getpid(), module_name, offsets.data(),
785 offsets.size() * sizeof(offsets[0]));
786 VReport(1, " CovDump: %zd PCs written to packed file\n", num_offsets);
787 }
788 } else {
789 // One file per module per process.
790 fd_t fd = CovOpenFile(&path, false /* packed */, module_name);
791 if (fd == kInvalidFd) continue;
792 WriteToFile(fd, offsets.data(), offsets.size() * sizeof(offsets[0]));
793 CloseFile(fd);
794 VReport(1, " CovDump: %s: %zd PCs written\n", path.data(), num_offsets);
795 }
796 }
797 if (cov_fd != kInvalidFd)
798 CloseFile(cov_fd);
799 }
800
DumpAll()801 void CoverageData::DumpAll() {
802 if (!coverage_enabled || common_flags()->coverage_direct) return;
803 if (atomic_fetch_add(&dump_once_guard, 1, memory_order_relaxed))
804 return;
805 DumpAsBitSet();
806 DumpCounters();
807 DumpTrace();
808 DumpOffsets();
809 DumpCallerCalleePairs();
810 }
811
CovPrepareForSandboxing(__sanitizer_sandbox_arguments * args)812 void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {
813 if (!args) return;
814 if (!coverage_enabled) return;
815 cov_sandboxed = args->coverage_sandboxed;
816 if (!cov_sandboxed) return;
817 cov_max_block_size = args->coverage_max_block_size;
818 if (args->coverage_fd >= 0) {
819 cov_fd = (fd_t)args->coverage_fd;
820 } else {
821 InternalScopedString path(kMaxPathLength);
822 // Pre-open the file now. The sandbox won't allow us to do it later.
823 cov_fd = CovOpenFile(&path, true /* packed */, nullptr);
824 }
825 }
826
MaybeOpenCovFile(const char * name)827 fd_t MaybeOpenCovFile(const char *name) {
828 CHECK(name);
829 if (!coverage_enabled) return kInvalidFd;
830 InternalScopedString path(kMaxPathLength);
831 return CovOpenFile(&path, true /* packed */, name);
832 }
833
CovBeforeFork()834 void CovBeforeFork() {
835 coverage_data.BeforeFork();
836 }
837
CovAfterFork(int child_pid)838 void CovAfterFork(int child_pid) {
839 coverage_data.AfterFork(child_pid);
840 }
841
MaybeDumpCoverage()842 static void MaybeDumpCoverage() {
843 if (common_flags()->coverage)
844 __sanitizer_cov_dump();
845 }
846
InitializeCoverage(bool enabled,const char * dir)847 void InitializeCoverage(bool enabled, const char *dir) {
848 if (coverage_enabled)
849 return; // May happen if two sanitizer enable coverage in the same process.
850 coverage_enabled = enabled;
851 coverage_dir = dir;
852 coverage_data.Init();
853 if (enabled) coverage_data.Enable();
854 if (!common_flags()->coverage_direct) Atexit(__sanitizer_cov_dump);
855 AddDieCallback(MaybeDumpCoverage);
856 }
857
ReInitializeCoverage(bool enabled,const char * dir)858 void ReInitializeCoverage(bool enabled, const char *dir) {
859 coverage_enabled = enabled;
860 coverage_dir = dir;
861 coverage_data.ReInit();
862 }
863
CoverageUpdateMapping()864 void CoverageUpdateMapping() {
865 if (coverage_enabled)
866 CovUpdateMapping(coverage_dir);
867 }
868
869 } // namespace __sanitizer
870
871 extern "C" {
__sanitizer_cov(u32 * guard)872 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov(u32 *guard) {
873 coverage_data.Add(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()),
874 guard);
875 }
__sanitizer_cov_with_check(u32 * guard)876 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_with_check(u32 *guard) {
877 atomic_uint32_t *atomic_guard = reinterpret_cast<atomic_uint32_t*>(guard);
878 if (static_cast<s32>(
879 __sanitizer::atomic_load(atomic_guard, memory_order_relaxed)) < 0)
880 __sanitizer_cov(guard);
881 }
882 SANITIZER_INTERFACE_ATTRIBUTE void
__sanitizer_cov_indir_call16(uptr callee,uptr callee_cache16[])883 __sanitizer_cov_indir_call16(uptr callee, uptr callee_cache16[]) {
884 coverage_data.IndirCall(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()),
885 callee, callee_cache16, 16);
886 }
__sanitizer_cov_init()887 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_init() {
888 coverage_enabled = true;
889 coverage_dir = common_flags()->coverage_dir;
890 coverage_data.Init();
891 }
__sanitizer_cov_dump()892 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() {
893 coverage_data.DumpAll();
894 }
895 SANITIZER_INTERFACE_ATTRIBUTE void
__sanitizer_cov_module_init(s32 * guards,uptr npcs,u8 * counters,const char * comp_unit_name)896 __sanitizer_cov_module_init(s32 *guards, uptr npcs, u8 *counters,
897 const char *comp_unit_name) {
898 coverage_data.InitializeGuards(guards, npcs, comp_unit_name, GET_CALLER_PC());
899 coverage_data.InitializeCounters(counters, npcs);
900 if (!common_flags()->coverage_direct) return;
901 if (SANITIZER_ANDROID && coverage_enabled) {
902 // dlopen/dlclose interceptors do not work on Android, so we rely on
903 // Extend() calls to update .sancov.map.
904 CovUpdateMapping(coverage_dir, GET_CALLER_PC());
905 }
906 coverage_data.Extend(npcs);
907 }
908 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_maybe_open_cov_file(const char * name)909 sptr __sanitizer_maybe_open_cov_file(const char *name) {
910 return (sptr)MaybeOpenCovFile(name);
911 }
912 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_total_unique_coverage()913 uptr __sanitizer_get_total_unique_coverage() {
914 return atomic_load(&coverage_counter, memory_order_relaxed);
915 }
916
917 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_total_unique_caller_callee_pairs()918 uptr __sanitizer_get_total_unique_caller_callee_pairs() {
919 return atomic_load(&caller_callee_counter, memory_order_relaxed);
920 }
921
922 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_cov_trace_func_enter(u32 * id)923 void __sanitizer_cov_trace_func_enter(u32 *id) {
924 __sanitizer_cov_with_check(id);
925 coverage_data.TraceBasicBlock(id);
926 }
927 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_cov_trace_basic_block(u32 * id)928 void __sanitizer_cov_trace_basic_block(u32 *id) {
929 __sanitizer_cov_with_check(id);
930 coverage_data.TraceBasicBlock(id);
931 }
932 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_reset_coverage()933 void __sanitizer_reset_coverage() {
934 ResetGlobalCounters();
935 coverage_data.ReinitializeGuards();
936 internal_bzero_aligned16(
937 coverage_data.data(),
938 RoundUpTo(coverage_data.size() * sizeof(coverage_data.data()[0]), 16));
939 }
940 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_coverage_guards(uptr ** data)941 uptr __sanitizer_get_coverage_guards(uptr **data) {
942 *data = coverage_data.data();
943 return coverage_data.size();
944 }
945
946 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_number_of_counters()947 uptr __sanitizer_get_number_of_counters() {
948 return coverage_data.GetNumberOf8bitCounters();
949 }
950
951 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_update_counter_bitset_and_clear_counters(u8 * bitset)952 uptr __sanitizer_update_counter_bitset_and_clear_counters(u8 *bitset) {
953 return coverage_data.Update8bitCounterBitsetAndClearCounters(bitset);
954 }
955 // Default empty implementations (weak). Users should redefine them.
956 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__sanitizer_cov_trace_cmp()957 void __sanitizer_cov_trace_cmp() {}
958 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__sanitizer_cov_trace_switch()959 void __sanitizer_cov_trace_switch() {}
960 } // extern "C"
961