1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 #include <ctype.h>
29 #include <errno.h>
30 #include <fcntl.h>
31 #include <poll.h>
32 #include <stdatomic.h>
33 #include <stdbool.h>
34 #include <stddef.h>
35 #include <stdint.h>
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <unistd.h>
40 #include <new>
41 
42 #include <linux/xattr.h>
43 #include <netinet/in.h>
44 #include <sys/mman.h>
45 #include <sys/select.h>
46 #include <sys/socket.h>
47 #include <sys/stat.h>
48 #include <sys/types.h>
49 #include <sys/un.h>
50 #include <sys/xattr.h>
51 
52 #define _REALLY_INCLUDE_SYS__SYSTEM_PROPERTIES_H_
53 #include <sys/_system_properties.h>
54 #include <sys/system_properties.h>
55 
56 #include "private/bionic_futex.h"
57 #include "private/bionic_lock.h"
58 #include "private/bionic_macros.h"
59 #include "private/libc_logging.h"
60 
61 static const char property_service_socket[] = "/dev/socket/" PROP_SERVICE_NAME;
62 
63 
64 /*
65  * Properties are stored in a hybrid trie/binary tree structure.
66  * Each property's name is delimited at '.' characters, and the tokens are put
67  * into a trie structure.  Siblings at each level of the trie are stored in a
68  * binary tree.  For instance, "ro.secure"="1" could be stored as follows:
69  *
70  * +-----+   children    +----+   children    +--------+
71  * |     |-------------->| ro |-------------->| secure |
72  * +-----+               +----+               +--------+
73  *                       /    \                /   |
74  *                 left /      \ right   left /    |  prop   +===========+
75  *                     v        v            v     +-------->| ro.secure |
76  *                  +-----+   +-----+     +-----+            +-----------+
77  *                  | net |   | sys |     | com |            |     1     |
78  *                  +-----+   +-----+     +-----+            +===========+
79  */
80 
81 // Represents a node in the trie.
82 struct prop_bt {
83     uint8_t namelen;
84     uint8_t reserved[3];
85 
86     // The property trie is updated only by the init process (single threaded) which provides
87     // property service. And it can be read by multiple threads at the same time.
88     // As the property trie is not protected by locks, we use atomic_uint_least32_t types for the
89     // left, right, children "pointers" in the trie node. To make sure readers who see the
90     // change of "pointers" can also notice the change of prop_bt structure contents pointed by
91     // the "pointers", we always use release-consume ordering pair when accessing these "pointers".
92 
93     // prop "points" to prop_info structure if there is a propery associated with the trie node.
94     // Its situation is similar to the left, right, children "pointers". So we use
95     // atomic_uint_least32_t and release-consume ordering to protect it as well.
96 
97     // We should also avoid rereading these fields redundantly, since not
98     // all processor implementations ensure that multiple loads from the
99     // same field are carried out in the right order.
100     atomic_uint_least32_t prop;
101 
102     atomic_uint_least32_t left;
103     atomic_uint_least32_t right;
104 
105     atomic_uint_least32_t children;
106 
107     char name[0];
108 
prop_btprop_bt109     prop_bt(const char *name, const uint8_t name_length) {
110         this->namelen = name_length;
111         memcpy(this->name, name, name_length);
112         this->name[name_length] = '\0';
113     }
114 
115 private:
116     DISALLOW_COPY_AND_ASSIGN(prop_bt);
117 };
118 
119 class prop_area {
120 public:
121 
prop_area(const uint32_t magic,const uint32_t version)122     prop_area(const uint32_t magic, const uint32_t version) :
123         magic_(magic), version_(version) {
124         atomic_init(&serial_, 0);
125         memset(reserved_, 0, sizeof(reserved_));
126         // Allocate enough space for the root node.
127         bytes_used_ = sizeof(prop_bt);
128     }
129 
130     const prop_info *find(const char *name);
131     bool add(const char *name, unsigned int namelen,
132              const char *value, unsigned int valuelen);
133 
134     bool foreach(void (*propfn)(const prop_info *pi, void *cookie), void *cookie);
135 
serial()136     atomic_uint_least32_t *serial() { return &serial_; }
magic() const137     uint32_t magic() const { return magic_; }
version() const138     uint32_t version() const { return version_; }
139 
140 private:
141     void *allocate_obj(const size_t size, uint_least32_t *const off);
142     prop_bt *new_prop_bt(const char *name, uint8_t namelen, uint_least32_t *const off);
143     prop_info *new_prop_info(const char *name, uint8_t namelen,
144                              const char *value, uint8_t valuelen,
145                              uint_least32_t *const off);
146     void *to_prop_obj(uint_least32_t off);
147     prop_bt *to_prop_bt(atomic_uint_least32_t *off_p);
148     prop_info *to_prop_info(atomic_uint_least32_t *off_p);
149 
150     prop_bt *root_node();
151 
152     prop_bt *find_prop_bt(prop_bt *const bt, const char *name,
153                           uint8_t namelen, bool alloc_if_needed);
154 
155     const prop_info *find_property(prop_bt *const trie, const char *name,
156                                    uint8_t namelen, const char *value,
157                                    uint8_t valuelen, bool alloc_if_needed);
158 
159     bool foreach_property(prop_bt *const trie,
160                           void (*propfn)(const prop_info *pi, void *cookie),
161                           void *cookie);
162 
163     uint32_t bytes_used_;
164     atomic_uint_least32_t serial_;
165     uint32_t magic_;
166     uint32_t version_;
167     uint32_t reserved_[28];
168     char data_[0];
169 
170     DISALLOW_COPY_AND_ASSIGN(prop_area);
171 };
172 
173 struct prop_info {
174     atomic_uint_least32_t serial;
175     char value[PROP_VALUE_MAX];
176     char name[0];
177 
prop_infoprop_info178     prop_info(const char *name, const uint8_t namelen, const char *value,
179               const uint8_t valuelen) {
180         memcpy(this->name, name, namelen);
181         this->name[namelen] = '\0';
182         atomic_init(&this->serial, valuelen << 24);
183         memcpy(this->value, value, valuelen);
184         this->value[valuelen] = '\0';
185     }
186 private:
187     DISALLOW_COPY_AND_ASSIGN(prop_info);
188 };
189 
190 struct find_nth_cookie {
191     uint32_t count;
192     const uint32_t n;
193     const prop_info *pi;
194 
find_nth_cookiefind_nth_cookie195     find_nth_cookie(uint32_t n) : count(0), n(n), pi(NULL) {
196     }
197 };
198 
199 static char property_filename[PROP_FILENAME_MAX] = PROP_FILENAME;
200 static bool compat_mode = false;
201 static size_t pa_data_size;
202 static size_t pa_size;
203 static bool initialized = false;
204 
205 // NOTE: This isn't static because system_properties_compat.c
206 // requires it.
207 prop_area *__system_property_area__ = NULL;
208 
get_fd_from_env(void)209 static int get_fd_from_env(void)
210 {
211     // This environment variable consistes of two decimal integer
212     // values separated by a ",". The first value is a file descriptor
213     // and the second is the size of the system properties area. The
214     // size is currently unused.
215     char *env = getenv("ANDROID_PROPERTY_WORKSPACE");
216 
217     if (!env) {
218         return -1;
219     }
220 
221     return atoi(env);
222 }
223 
map_prop_area_rw(const char * filename,const char * context,bool * fsetxattr_failed)224 static prop_area* map_prop_area_rw(const char* filename, const char* context,
225                                    bool* fsetxattr_failed) {
226     /* dev is a tmpfs that we can use to carve a shared workspace
227      * out of, so let's do that...
228      */
229     const int fd = open(filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC | O_EXCL, 0444);
230 
231     if (fd < 0) {
232         if (errno == EACCES) {
233             /* for consistency with the case where the process has already
234              * mapped the page in and segfaults when trying to write to it
235              */
236             abort();
237         }
238         return nullptr;
239     }
240 
241     if (context) {
242         if (fsetxattr(fd, XATTR_NAME_SELINUX, context, strlen(context) + 1, 0) != 0) {
243             __libc_format_log(ANDROID_LOG_ERROR, "libc",
244                               "fsetxattr failed to set context (%s) for \"%s\"", context, filename);
245             /*
246              * fsetxattr() will fail during system properties tests due to selinux policy.
247              * We do not want to create a custom policy for the tester, so we will continue in
248              * this function but set a flag that an error has occurred.
249              * Init, which is the only daemon that should ever call this function will abort
250              * when this error occurs.
251              * Otherwise, the tester will ignore it and continue, albeit without any selinux
252              * property separation.
253              */
254             if (fsetxattr_failed) {
255                 *fsetxattr_failed = true;
256             }
257         }
258     }
259 
260     if (ftruncate(fd, PA_SIZE) < 0) {
261         close(fd);
262         return nullptr;
263     }
264 
265     pa_size = PA_SIZE;
266     pa_data_size = pa_size - sizeof(prop_area);
267     compat_mode = false;
268 
269     void *const memory_area = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
270     if (memory_area == MAP_FAILED) {
271         close(fd);
272         return nullptr;
273     }
274 
275     prop_area *pa = new(memory_area) prop_area(PROP_AREA_MAGIC, PROP_AREA_VERSION);
276 
277     close(fd);
278     return pa;
279 }
280 
map_fd_ro(const int fd)281 static prop_area* map_fd_ro(const int fd) {
282     struct stat fd_stat;
283     if (fstat(fd, &fd_stat) < 0) {
284         return nullptr;
285     }
286 
287     if ((fd_stat.st_uid != 0)
288             || (fd_stat.st_gid != 0)
289             || ((fd_stat.st_mode & (S_IWGRP | S_IWOTH)) != 0)
290             || (fd_stat.st_size < static_cast<off_t>(sizeof(prop_area))) ) {
291         return nullptr;
292     }
293 
294     pa_size = fd_stat.st_size;
295     pa_data_size = pa_size - sizeof(prop_area);
296 
297     void* const map_result = mmap(NULL, pa_size, PROT_READ, MAP_SHARED, fd, 0);
298     if (map_result == MAP_FAILED) {
299         return nullptr;
300     }
301 
302     prop_area* pa = reinterpret_cast<prop_area*>(map_result);
303     if ((pa->magic() != PROP_AREA_MAGIC) ||
304         (pa->version() != PROP_AREA_VERSION &&
305          pa->version() != PROP_AREA_VERSION_COMPAT)) {
306         munmap(pa, pa_size);
307         return nullptr;
308     }
309 
310     if (pa->version() == PROP_AREA_VERSION_COMPAT) {
311         compat_mode = true;
312     }
313 
314     return pa;
315 }
316 
map_prop_area(const char * filename,bool is_legacy)317 static prop_area* map_prop_area(const char* filename, bool is_legacy) {
318     int fd = open(filename, O_CLOEXEC | O_NOFOLLOW | O_RDONLY);
319     bool close_fd = true;
320     if (fd == -1 && errno == ENOENT && is_legacy) {
321         /*
322          * For backwards compatibility, if the file doesn't
323          * exist, we use the environment to get the file descriptor.
324          * For security reasons, we only use this backup if the kernel
325          * returns ENOENT. We don't want to use the backup if the kernel
326          * returns other errors such as ENOMEM or ENFILE, since it
327          * might be possible for an external program to trigger this
328          * condition.
329          * Only do this for the legacy prop file, secured prop files
330          * do not have a backup
331          */
332         fd = get_fd_from_env();
333         close_fd = false;
334     }
335 
336     if (fd < 0) {
337         return nullptr;
338     }
339 
340     prop_area* map_result = map_fd_ro(fd);
341     if (close_fd) {
342         close(fd);
343     }
344 
345     return map_result;
346 }
347 
allocate_obj(const size_t size,uint_least32_t * const off)348 void *prop_area::allocate_obj(const size_t size, uint_least32_t *const off)
349 {
350     const size_t aligned = BIONIC_ALIGN(size, sizeof(uint_least32_t));
351     if (bytes_used_ + aligned > pa_data_size) {
352         return NULL;
353     }
354 
355     *off = bytes_used_;
356     bytes_used_ += aligned;
357     return data_ + *off;
358 }
359 
new_prop_bt(const char * name,uint8_t namelen,uint_least32_t * const off)360 prop_bt *prop_area::new_prop_bt(const char *name, uint8_t namelen, uint_least32_t *const off)
361 {
362     uint_least32_t new_offset;
363     void *const p = allocate_obj(sizeof(prop_bt) + namelen + 1, &new_offset);
364     if (p != NULL) {
365         prop_bt* bt = new(p) prop_bt(name, namelen);
366         *off = new_offset;
367         return bt;
368     }
369 
370     return NULL;
371 }
372 
new_prop_info(const char * name,uint8_t namelen,const char * value,uint8_t valuelen,uint_least32_t * const off)373 prop_info *prop_area::new_prop_info(const char *name, uint8_t namelen,
374         const char *value, uint8_t valuelen, uint_least32_t *const off)
375 {
376     uint_least32_t new_offset;
377     void* const p = allocate_obj(sizeof(prop_info) + namelen + 1, &new_offset);
378     if (p != NULL) {
379         prop_info* info = new(p) prop_info(name, namelen, value, valuelen);
380         *off = new_offset;
381         return info;
382     }
383 
384     return NULL;
385 }
386 
to_prop_obj(uint_least32_t off)387 void *prop_area::to_prop_obj(uint_least32_t off)
388 {
389     if (off > pa_data_size)
390         return NULL;
391 
392     return (data_ + off);
393 }
394 
to_prop_bt(atomic_uint_least32_t * off_p)395 inline prop_bt *prop_area::to_prop_bt(atomic_uint_least32_t* off_p) {
396   uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume);
397   return reinterpret_cast<prop_bt*>(to_prop_obj(off));
398 }
399 
to_prop_info(atomic_uint_least32_t * off_p)400 inline prop_info *prop_area::to_prop_info(atomic_uint_least32_t* off_p) {
401   uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume);
402   return reinterpret_cast<prop_info*>(to_prop_obj(off));
403 }
404 
root_node()405 inline prop_bt *prop_area::root_node()
406 {
407     return reinterpret_cast<prop_bt*>(to_prop_obj(0));
408 }
409 
cmp_prop_name(const char * one,uint8_t one_len,const char * two,uint8_t two_len)410 static int cmp_prop_name(const char *one, uint8_t one_len, const char *two,
411         uint8_t two_len)
412 {
413     if (one_len < two_len)
414         return -1;
415     else if (one_len > two_len)
416         return 1;
417     else
418         return strncmp(one, two, one_len);
419 }
420 
find_prop_bt(prop_bt * const bt,const char * name,uint8_t namelen,bool alloc_if_needed)421 prop_bt *prop_area::find_prop_bt(prop_bt *const bt, const char *name,
422                                  uint8_t namelen, bool alloc_if_needed)
423 {
424 
425     prop_bt* current = bt;
426     while (true) {
427         if (!current) {
428             return NULL;
429         }
430 
431         const int ret = cmp_prop_name(name, namelen, current->name, current->namelen);
432         if (ret == 0) {
433             return current;
434         }
435 
436         if (ret < 0) {
437             uint_least32_t left_offset = atomic_load_explicit(&current->left, memory_order_relaxed);
438             if (left_offset != 0) {
439                 current = to_prop_bt(&current->left);
440             } else {
441                 if (!alloc_if_needed) {
442                    return NULL;
443                 }
444 
445                 uint_least32_t new_offset;
446                 prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset);
447                 if (new_bt) {
448                     atomic_store_explicit(&current->left, new_offset, memory_order_release);
449                 }
450                 return new_bt;
451             }
452         } else {
453             uint_least32_t right_offset = atomic_load_explicit(&current->right, memory_order_relaxed);
454             if (right_offset != 0) {
455                 current = to_prop_bt(&current->right);
456             } else {
457                 if (!alloc_if_needed) {
458                    return NULL;
459                 }
460 
461                 uint_least32_t new_offset;
462                 prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset);
463                 if (new_bt) {
464                     atomic_store_explicit(&current->right, new_offset, memory_order_release);
465                 }
466                 return new_bt;
467             }
468         }
469     }
470 }
471 
find_property(prop_bt * const trie,const char * name,uint8_t namelen,const char * value,uint8_t valuelen,bool alloc_if_needed)472 const prop_info *prop_area::find_property(prop_bt *const trie, const char *name,
473         uint8_t namelen, const char *value, uint8_t valuelen,
474         bool alloc_if_needed)
475 {
476     if (!trie) return NULL;
477 
478     const char *remaining_name = name;
479     prop_bt* current = trie;
480     while (true) {
481         const char *sep = strchr(remaining_name, '.');
482         const bool want_subtree = (sep != NULL);
483         const uint8_t substr_size = (want_subtree) ?
484             sep - remaining_name : strlen(remaining_name);
485 
486         if (!substr_size) {
487             return NULL;
488         }
489 
490         prop_bt* root = NULL;
491         uint_least32_t children_offset = atomic_load_explicit(&current->children, memory_order_relaxed);
492         if (children_offset != 0) {
493             root = to_prop_bt(&current->children);
494         } else if (alloc_if_needed) {
495             uint_least32_t new_offset;
496             root = new_prop_bt(remaining_name, substr_size, &new_offset);
497             if (root) {
498                 atomic_store_explicit(&current->children, new_offset, memory_order_release);
499             }
500         }
501 
502         if (!root) {
503             return NULL;
504         }
505 
506         current = find_prop_bt(root, remaining_name, substr_size, alloc_if_needed);
507         if (!current) {
508             return NULL;
509         }
510 
511         if (!want_subtree)
512             break;
513 
514         remaining_name = sep + 1;
515     }
516 
517     uint_least32_t prop_offset = atomic_load_explicit(&current->prop, memory_order_relaxed);
518     if (prop_offset != 0) {
519         return to_prop_info(&current->prop);
520     } else if (alloc_if_needed) {
521         uint_least32_t new_offset;
522         prop_info* new_info = new_prop_info(name, namelen, value, valuelen, &new_offset);
523         if (new_info) {
524             atomic_store_explicit(&current->prop, new_offset, memory_order_release);
525         }
526 
527         return new_info;
528     } else {
529         return NULL;
530     }
531 }
532 
send_prop_msg(const prop_msg * msg)533 static int send_prop_msg(const prop_msg *msg)
534 {
535     const int fd = socket(AF_LOCAL, SOCK_STREAM | SOCK_CLOEXEC, 0);
536     if (fd == -1) {
537         return -1;
538     }
539 
540     const size_t namelen = strlen(property_service_socket);
541 
542     sockaddr_un addr;
543     memset(&addr, 0, sizeof(addr));
544     strlcpy(addr.sun_path, property_service_socket, sizeof(addr.sun_path));
545     addr.sun_family = AF_LOCAL;
546     socklen_t alen = namelen + offsetof(sockaddr_un, sun_path) + 1;
547     if (TEMP_FAILURE_RETRY(connect(fd, reinterpret_cast<sockaddr*>(&addr), alen)) < 0) {
548         close(fd);
549         return -1;
550     }
551 
552     const int num_bytes = TEMP_FAILURE_RETRY(send(fd, msg, sizeof(prop_msg), 0));
553 
554     int result = -1;
555     if (num_bytes == sizeof(prop_msg)) {
556         // We successfully wrote to the property server but now we
557         // wait for the property server to finish its work.  It
558         // acknowledges its completion by closing the socket so we
559         // poll here (on nothing), waiting for the socket to close.
560         // If you 'adb shell setprop foo bar' you'll see the POLLHUP
561         // once the socket closes.  Out of paranoia we cap our poll
562         // at 250 ms.
563         pollfd pollfds[1];
564         pollfds[0].fd = fd;
565         pollfds[0].events = 0;
566         const int poll_result = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */));
567         if (poll_result == 1 && (pollfds[0].revents & POLLHUP) != 0) {
568             result = 0;
569         } else {
570             // Ignore the timeout and treat it like a success anyway.
571             // The init process is single-threaded and its property
572             // service is sometimes slow to respond (perhaps it's off
573             // starting a child process or something) and thus this
574             // times out and the caller thinks it failed, even though
575             // it's still getting around to it.  So we fake it here,
576             // mostly for ctl.* properties, but we do try and wait 250
577             // ms so callers who do read-after-write can reliably see
578             // what they've written.  Most of the time.
579             // TODO: fix the system properties design.
580             result = 0;
581         }
582     }
583 
584     close(fd);
585     return result;
586 }
587 
find_nth_fn(const prop_info * pi,void * ptr)588 static void find_nth_fn(const prop_info *pi, void *ptr)
589 {
590     find_nth_cookie *cookie = reinterpret_cast<find_nth_cookie*>(ptr);
591 
592     if (cookie->n == cookie->count)
593         cookie->pi = pi;
594 
595     cookie->count++;
596 }
597 
foreach_property(prop_bt * const trie,void (* propfn)(const prop_info * pi,void * cookie),void * cookie)598 bool prop_area::foreach_property(prop_bt *const trie,
599         void (*propfn)(const prop_info *pi, void *cookie), void *cookie)
600 {
601     if (!trie)
602         return false;
603 
604     uint_least32_t left_offset = atomic_load_explicit(&trie->left, memory_order_relaxed);
605     if (left_offset != 0) {
606         const int err = foreach_property(to_prop_bt(&trie->left), propfn, cookie);
607         if (err < 0)
608             return false;
609     }
610     uint_least32_t prop_offset = atomic_load_explicit(&trie->prop, memory_order_relaxed);
611     if (prop_offset != 0) {
612         prop_info *info = to_prop_info(&trie->prop);
613         if (!info)
614             return false;
615         propfn(info, cookie);
616     }
617     uint_least32_t children_offset = atomic_load_explicit(&trie->children, memory_order_relaxed);
618     if (children_offset != 0) {
619         const int err = foreach_property(to_prop_bt(&trie->children), propfn, cookie);
620         if (err < 0)
621             return false;
622     }
623     uint_least32_t right_offset = atomic_load_explicit(&trie->right, memory_order_relaxed);
624     if (right_offset != 0) {
625         const int err = foreach_property(to_prop_bt(&trie->right), propfn, cookie);
626         if (err < 0)
627             return false;
628     }
629 
630     return true;
631 }
632 
find(const char * name)633 const prop_info *prop_area::find(const char *name) {
634     return find_property(root_node(), name, strlen(name), nullptr, 0, false);
635 }
636 
add(const char * name,unsigned int namelen,const char * value,unsigned int valuelen)637 bool prop_area::add(const char *name, unsigned int namelen,
638                     const char *value, unsigned int valuelen) {
639     return find_property(root_node(), name, namelen, value, valuelen, true);
640 }
641 
foreach(void (* propfn)(const prop_info * pi,void * cookie),void * cookie)642 bool prop_area::foreach(void (*propfn)(const prop_info* pi, void* cookie), void* cookie) {
643     return foreach_property(root_node(), propfn, cookie);
644 }
645 
646 class context_node {
647 public:
context_node(context_node * next,const char * context,prop_area * pa)648     context_node(context_node* next, const char* context, prop_area* pa)
649         : next(next), context_(strdup(context)), pa_(pa), no_access_(false) {
650         lock_.init(false);
651     }
~context_node()652     ~context_node() {
653         unmap();
654         free(context_);
655     }
656     bool open(bool access_rw, bool* fsetxattr_failed);
657     bool check_access_and_open();
658     void reset_access();
659 
context() const660     const char* context() const { return context_; }
pa()661     prop_area* pa() { return pa_; }
662 
663     context_node* next;
664 
665 private:
666     bool check_access();
667     void unmap();
668 
669     Lock lock_;
670     char* context_;
671     prop_area* pa_;
672     bool no_access_;
673 };
674 
675 struct prefix_node {
prefix_nodeprefix_node676     prefix_node(struct prefix_node* next, const char* prefix, context_node* context)
677         : prefix(strdup(prefix)), prefix_len(strlen(prefix)), context(context), next(next) {
678     }
~prefix_nodeprefix_node679     ~prefix_node() {
680         free(prefix);
681     }
682     char* prefix;
683     const size_t prefix_len;
684     context_node* context;
685     struct prefix_node* next;
686 };
687 
688 template <typename List, typename... Args>
list_add(List ** list,Args...args)689 static inline void list_add(List** list, Args... args) {
690     *list = new List(*list, args...);
691 }
692 
list_add_after_len(prefix_node ** list,const char * prefix,context_node * context)693 static void list_add_after_len(prefix_node** list, const char* prefix, context_node* context) {
694     size_t prefix_len = strlen(prefix);
695 
696     auto next_list = list;
697 
698     while (*next_list) {
699         if ((*next_list)->prefix_len < prefix_len || (*next_list)->prefix[0] == '*') {
700             list_add(next_list, prefix, context);
701             return;
702         }
703         next_list = &(*next_list)->next;
704     }
705     list_add(next_list, prefix, context);
706 }
707 
708 template <typename List, typename Func>
list_foreach(List * list,Func func)709 static void list_foreach(List* list, Func func) {
710     while (list) {
711         func(list);
712         list = list->next;
713     }
714 }
715 
716 template <typename List, typename Func>
list_find(List * list,Func func)717 static List* list_find(List* list, Func func) {
718     while (list) {
719         if (func(list)) {
720             return list;
721         }
722         list = list->next;
723     }
724     return nullptr;
725 }
726 
727 template <typename List>
list_free(List ** list)728 static void list_free(List** list) {
729     while (*list) {
730         auto old_list = *list;
731         *list = old_list->next;
732         delete old_list;
733     }
734 }
735 
736 static prefix_node* prefixes = nullptr;
737 static context_node* contexts = nullptr;
738 
739 /*
740  * pthread_mutex_lock() calls into system_properties in the case of contention.
741  * This creates a risk of dead lock if any system_properties functions
742  * use pthread locks after system_property initialization.
743  *
744  * For this reason, the below three functions use a bionic Lock and static
745  * allocation of memory for each filename.
746  */
747 
open(bool access_rw,bool * fsetxattr_failed)748 bool context_node::open(bool access_rw, bool* fsetxattr_failed) {
749     lock_.lock();
750     if (pa_) {
751         lock_.unlock();
752         return true;
753     }
754 
755     char filename[PROP_FILENAME_MAX];
756     int len = __libc_format_buffer(filename, sizeof(filename), "%s/%s",
757                                    property_filename, context_);
758     if (len < 0 || len > PROP_FILENAME_MAX) {
759         lock_.unlock();
760         return false;
761     }
762 
763     if (access_rw) {
764         pa_ = map_prop_area_rw(filename, context_, fsetxattr_failed);
765     } else {
766         pa_ = map_prop_area(filename, false);
767     }
768     lock_.unlock();
769     return pa_;
770 }
771 
check_access_and_open()772 bool context_node::check_access_and_open() {
773     if (!pa_ && !no_access_) {
774         if (!check_access() || !open(false, nullptr)) {
775             no_access_ = true;
776         }
777     }
778     return pa_;
779 }
780 
reset_access()781 void context_node::reset_access() {
782     if (!check_access()) {
783         unmap();
784         no_access_ = true;
785     } else {
786         no_access_ = false;
787     }
788 }
789 
check_access()790 bool context_node::check_access() {
791     char filename[PROP_FILENAME_MAX];
792     int len = __libc_format_buffer(filename, sizeof(filename), "%s/%s",
793                                    property_filename, context_);
794     if (len < 0 || len > PROP_FILENAME_MAX) {
795         return false;
796     }
797 
798     return access(filename, R_OK) == 0;
799 }
800 
unmap()801 void context_node::unmap() {
802     if (!pa_) {
803         return;
804     }
805 
806     munmap(pa_, pa_size);
807     if (pa_ == __system_property_area__) {
808         __system_property_area__ = nullptr;
809     }
810     pa_ = nullptr;
811 }
812 
map_system_property_area(bool access_rw,bool * fsetxattr_failed)813 static bool map_system_property_area(bool access_rw, bool* fsetxattr_failed) {
814     char filename[PROP_FILENAME_MAX];
815     int len = __libc_format_buffer(filename, sizeof(filename),
816                                    "%s/properties_serial", property_filename);
817     if (len < 0 || len > PROP_FILENAME_MAX) {
818         __system_property_area__ = nullptr;
819         return false;
820     }
821 
822     if (access_rw) {
823         __system_property_area__ =
824             map_prop_area_rw(filename, "u:object_r:properties_serial:s0", fsetxattr_failed);
825     } else {
826         __system_property_area__ = map_prop_area(filename, false);
827     }
828     return __system_property_area__;
829 }
830 
get_prop_area_for_name(const char * name)831 static prop_area* get_prop_area_for_name(const char* name) {
832     auto entry = list_find(prefixes, [name](prefix_node* l) {
833         return l->prefix[0] == '*' || !strncmp(l->prefix, name, l->prefix_len);
834     });
835     if (!entry) {
836         return nullptr;
837     }
838 
839     auto cnode = entry->context;
840     if (!cnode->pa()) {
841         /*
842          * We explicitly do not check no_access_ in this case because unlike the
843          * case of foreach(), we want to generate an selinux audit for each
844          * non-permitted property access in this function.
845          */
846         cnode->open(false, nullptr);
847     }
848     return cnode->pa();
849 }
850 
851 /*
852  * The below two functions are duplicated from label_support.c in libselinux.
853  * TODO: Find a location suitable for these functions such that both libc and
854  * libselinux can share a common source file.
855  */
856 
857 /*
858  * The read_spec_entries and read_spec_entry functions may be used to
859  * replace sscanf to read entries from spec files. The file and
860  * property services now use these.
861  */
862 
863 /* Read an entry from a spec file (e.g. file_contexts) */
read_spec_entry(char ** entry,char ** ptr,int * len)864 static inline int read_spec_entry(char **entry, char **ptr, int *len)
865 {
866     *entry = NULL;
867     char *tmp_buf = NULL;
868 
869     while (isspace(**ptr) && **ptr != '\0')
870         (*ptr)++;
871 
872     tmp_buf = *ptr;
873     *len = 0;
874 
875     while (!isspace(**ptr) && **ptr != '\0') {
876         (*ptr)++;
877         (*len)++;
878     }
879 
880     if (*len) {
881         *entry = strndup(tmp_buf, *len);
882         if (!*entry)
883             return -1;
884     }
885 
886     return 0;
887 }
888 
889 /*
890  * line_buf - Buffer containing the spec entries .
891  * num_args - The number of spec parameter entries to process.
892  * ...      - A 'char **spec_entry' for each parameter.
893  * returns  - The number of items processed.
894  *
895  * This function calls read_spec_entry() to do the actual string processing.
896  */
read_spec_entries(char * line_buf,int num_args,...)897 static int read_spec_entries(char *line_buf, int num_args, ...)
898 {
899     char **spec_entry, *buf_p;
900     int len, rc, items, entry_len = 0;
901     va_list ap;
902 
903     len = strlen(line_buf);
904     if (line_buf[len - 1] == '\n')
905         line_buf[len - 1] = '\0';
906     else
907         /* Handle case if line not \n terminated by bumping
908          * the len for the check below (as the line is NUL
909          * terminated by getline(3)) */
910         len++;
911 
912     buf_p = line_buf;
913     while (isspace(*buf_p))
914         buf_p++;
915 
916     /* Skip comment lines and empty lines. */
917     if (*buf_p == '#' || *buf_p == '\0')
918         return 0;
919 
920     /* Process the spec file entries */
921     va_start(ap, num_args);
922 
923     items = 0;
924     while (items < num_args) {
925         spec_entry = va_arg(ap, char **);
926 
927         if (len - 1 == buf_p - line_buf) {
928             va_end(ap);
929             return items;
930         }
931 
932         rc = read_spec_entry(spec_entry, &buf_p, &entry_len);
933         if (rc < 0) {
934             va_end(ap);
935             return rc;
936         }
937         if (entry_len)
938             items++;
939     }
940     va_end(ap);
941     return items;
942 }
943 
initialize_properties()944 static bool initialize_properties() {
945     FILE* file = fopen("/property_contexts", "re");
946 
947     if (!file) {
948         return false;
949     }
950 
951     char* buffer = nullptr;
952     size_t line_len;
953     char* prop_prefix = nullptr;
954     char* context = nullptr;
955 
956     while (getline(&buffer, &line_len, file) > 0) {
957         int items = read_spec_entries(buffer, 2, &prop_prefix, &context);
958         if (items <= 0) {
959             continue;
960         }
961         if (items == 1) {
962             free(prop_prefix);
963             continue;
964         }
965         /*
966          * init uses ctl.* properties as an IPC mechanism and does not write them
967          * to a property file, therefore we do not need to create property files
968          * to store them.
969          */
970         if (!strncmp(prop_prefix, "ctl.", 4)) {
971             free(prop_prefix);
972             free(context);
973             continue;
974         }
975 
976         auto old_context = list_find(
977             contexts, [context](context_node* l) { return !strcmp(l->context(), context); });
978         if (old_context) {
979             list_add_after_len(&prefixes, prop_prefix, old_context);
980         } else {
981             list_add(&contexts, context, nullptr);
982             list_add_after_len(&prefixes, prop_prefix, contexts);
983         }
984         free(prop_prefix);
985         free(context);
986     }
987 
988     free(buffer);
989     fclose(file);
990     return true;
991 }
992 
is_dir(const char * pathname)993 static bool is_dir(const char* pathname) {
994     struct stat info;
995     if (stat(pathname, &info) == -1) {
996         return false;
997     }
998     return S_ISDIR(info.st_mode);
999 }
1000 
free_and_unmap_contexts()1001 static void free_and_unmap_contexts() {
1002     list_free(&prefixes);
1003     list_free(&contexts);
1004     if (__system_property_area__) {
1005         munmap(__system_property_area__, pa_size);
1006         __system_property_area__ = nullptr;
1007     }
1008 }
1009 
__system_properties_init()1010 int __system_properties_init()
1011 {
1012     if (initialized) {
1013         list_foreach(contexts, [](context_node* l) { l->reset_access(); });
1014         return 0;
1015     }
1016     if (is_dir(property_filename)) {
1017         if (!initialize_properties()) {
1018             return -1;
1019         }
1020         if (!map_system_property_area(false, nullptr)) {
1021             free_and_unmap_contexts();
1022             return -1;
1023         }
1024     } else {
1025         __system_property_area__ = map_prop_area(property_filename, true);
1026         if (!__system_property_area__) {
1027             return -1;
1028         }
1029         list_add(&contexts, "legacy_system_prop_area", __system_property_area__);
1030         list_add_after_len(&prefixes, "*", contexts);
1031     }
1032     initialized = true;
1033     return 0;
1034 }
1035 
__system_property_set_filename(const char * filename)1036 int __system_property_set_filename(const char *filename)
1037 {
1038     size_t len = strlen(filename);
1039     if (len >= sizeof(property_filename))
1040         return -1;
1041 
1042     strcpy(property_filename, filename);
1043     return 0;
1044 }
1045 
__system_property_area_init()1046 int __system_property_area_init()
1047 {
1048     free_and_unmap_contexts();
1049     mkdir(property_filename, S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
1050     if (!initialize_properties()) {
1051         return -1;
1052     }
1053     bool open_failed = false;
1054     bool fsetxattr_failed = false;
1055     list_foreach(contexts, [&fsetxattr_failed, &open_failed](context_node* l) {
1056         if (!l->open(true, &fsetxattr_failed)) {
1057             open_failed = true;
1058         }
1059     });
1060     if (open_failed || !map_system_property_area(true, &fsetxattr_failed)) {
1061         free_and_unmap_contexts();
1062         return -1;
1063     }
1064     initialized = true;
1065     return fsetxattr_failed ? -2 : 0;
1066 }
1067 
__system_property_area_serial()1068 unsigned int __system_property_area_serial()
1069 {
1070     prop_area *pa = __system_property_area__;
1071     if (!pa) {
1072         return -1;
1073     }
1074     // Make sure this read fulfilled before __system_property_serial
1075     return atomic_load_explicit(pa->serial(), memory_order_acquire);
1076 }
1077 
__system_property_find(const char * name)1078 const prop_info *__system_property_find(const char *name)
1079 {
1080     if (!__system_property_area__) {
1081         return nullptr;
1082     }
1083 
1084     if (__predict_false(compat_mode)) {
1085         return __system_property_find_compat(name);
1086     }
1087 
1088     prop_area* pa = get_prop_area_for_name(name);
1089     if (!pa) {
1090         __libc_format_log(ANDROID_LOG_ERROR, "libc", "Access denied finding property \"%s\"", name);
1091         return nullptr;
1092     }
1093 
1094     return pa->find(name);
1095 }
1096 
1097 // The C11 standard doesn't allow atomic loads from const fields,
1098 // though C++11 does.  Fudge it until standards get straightened out.
load_const_atomic(const atomic_uint_least32_t * s,memory_order mo)1099 static inline uint_least32_t load_const_atomic(const atomic_uint_least32_t* s,
1100                                                memory_order mo) {
1101     atomic_uint_least32_t* non_const_s = const_cast<atomic_uint_least32_t*>(s);
1102     return atomic_load_explicit(non_const_s, mo);
1103 }
1104 
__system_property_read(const prop_info * pi,char * name,char * value)1105 int __system_property_read(const prop_info *pi, char *name, char *value)
1106 {
1107     if (__predict_false(compat_mode)) {
1108         return __system_property_read_compat(pi, name, value);
1109     }
1110 
1111     while (true) {
1112         uint32_t serial = __system_property_serial(pi); // acquire semantics
1113         size_t len = SERIAL_VALUE_LEN(serial);
1114         memcpy(value, pi->value, len + 1);
1115         // TODO: Fix the synchronization scheme here.
1116         // There is no fully supported way to implement this kind
1117         // of synchronization in C++11, since the memcpy races with
1118         // updates to pi, and the data being accessed is not atomic.
1119         // The following fence is unintuitive, but would be the
1120         // correct one if memcpy used memory_order_relaxed atomic accesses.
1121         // In practice it seems unlikely that the generated code would
1122         // would be any different, so this should be OK.
1123         atomic_thread_fence(memory_order_acquire);
1124         if (serial ==
1125                 load_const_atomic(&(pi->serial), memory_order_relaxed)) {
1126             if (name != 0) {
1127                 strcpy(name, pi->name);
1128             }
1129             return len;
1130         }
1131     }
1132 }
1133 
__system_property_get(const char * name,char * value)1134 int __system_property_get(const char *name, char *value)
1135 {
1136     const prop_info *pi = __system_property_find(name);
1137 
1138     if (pi != 0) {
1139         return __system_property_read(pi, 0, value);
1140     } else {
1141         value[0] = 0;
1142         return 0;
1143     }
1144 }
1145 
__system_property_set(const char * key,const char * value)1146 int __system_property_set(const char *key, const char *value)
1147 {
1148     if (key == 0) return -1;
1149     if (value == 0) value = "";
1150     if (strlen(key) >= PROP_NAME_MAX) return -1;
1151     if (strlen(value) >= PROP_VALUE_MAX) return -1;
1152 
1153     prop_msg msg;
1154     memset(&msg, 0, sizeof msg);
1155     msg.cmd = PROP_MSG_SETPROP;
1156     strlcpy(msg.name, key, sizeof msg.name);
1157     strlcpy(msg.value, value, sizeof msg.value);
1158 
1159     const int err = send_prop_msg(&msg);
1160     if (err < 0) {
1161         return err;
1162     }
1163 
1164     return 0;
1165 }
1166 
__system_property_update(prop_info * pi,const char * value,unsigned int len)1167 int __system_property_update(prop_info *pi, const char *value, unsigned int len)
1168 {
1169     if (len >= PROP_VALUE_MAX)
1170         return -1;
1171 
1172     prop_area* pa = __system_property_area__;
1173 
1174     if (!pa) {
1175         return -1;
1176     }
1177 
1178     uint32_t serial = atomic_load_explicit(&pi->serial, memory_order_relaxed);
1179     serial |= 1;
1180     atomic_store_explicit(&pi->serial, serial, memory_order_relaxed);
1181     // The memcpy call here also races.  Again pretend it
1182     // used memory_order_relaxed atomics, and use the analogous
1183     // counterintuitive fence.
1184     atomic_thread_fence(memory_order_release);
1185     memcpy(pi->value, value, len + 1);
1186     atomic_store_explicit(
1187         &pi->serial,
1188         (len << 24) | ((serial + 1) & 0xffffff),
1189         memory_order_release);
1190     __futex_wake(&pi->serial, INT32_MAX);
1191 
1192     atomic_store_explicit(
1193         pa->serial(),
1194         atomic_load_explicit(pa->serial(), memory_order_relaxed) + 1,
1195         memory_order_release);
1196     __futex_wake(pa->serial(), INT32_MAX);
1197 
1198     return 0;
1199 }
1200 
__system_property_add(const char * name,unsigned int namelen,const char * value,unsigned int valuelen)1201 int __system_property_add(const char *name, unsigned int namelen,
1202             const char *value, unsigned int valuelen)
1203 {
1204     if (namelen >= PROP_NAME_MAX)
1205         return -1;
1206     if (valuelen >= PROP_VALUE_MAX)
1207         return -1;
1208     if (namelen < 1)
1209         return -1;
1210 
1211     if (!__system_property_area__) {
1212         return -1;
1213     }
1214 
1215     prop_area* pa = get_prop_area_for_name(name);
1216 
1217     if (!pa) {
1218         __libc_format_log(ANDROID_LOG_ERROR, "libc", "Access denied adding property \"%s\"", name);
1219         return -1;
1220     }
1221 
1222     bool ret = pa->add(name, namelen, value, valuelen);
1223     if (!ret)
1224         return -1;
1225 
1226     // There is only a single mutator, but we want to make sure that
1227     // updates are visible to a reader waiting for the update.
1228     atomic_store_explicit(
1229         __system_property_area__->serial(),
1230         atomic_load_explicit(__system_property_area__->serial(), memory_order_relaxed) + 1,
1231         memory_order_release);
1232     __futex_wake(__system_property_area__->serial(), INT32_MAX);
1233     return 0;
1234 }
1235 
1236 // Wait for non-locked serial, and retrieve it with acquire semantics.
__system_property_serial(const prop_info * pi)1237 unsigned int __system_property_serial(const prop_info *pi)
1238 {
1239     uint32_t serial = load_const_atomic(&pi->serial, memory_order_acquire);
1240     while (SERIAL_DIRTY(serial)) {
1241         __futex_wait(const_cast<volatile void *>(
1242                         reinterpret_cast<const void *>(&pi->serial)),
1243                      serial, NULL);
1244         serial = load_const_atomic(&pi->serial, memory_order_acquire);
1245     }
1246     return serial;
1247 }
1248 
__system_property_wait_any(unsigned int serial)1249 unsigned int __system_property_wait_any(unsigned int serial)
1250 {
1251     prop_area *pa = __system_property_area__;
1252     uint32_t my_serial;
1253 
1254     if (!pa) {
1255         return 0;
1256     }
1257 
1258     do {
1259         __futex_wait(pa->serial(), serial, NULL);
1260         my_serial = atomic_load_explicit(pa->serial(), memory_order_acquire);
1261     } while (my_serial == serial);
1262 
1263     return my_serial;
1264 }
1265 
__system_property_find_nth(unsigned n)1266 const prop_info *__system_property_find_nth(unsigned n)
1267 {
1268     find_nth_cookie cookie(n);
1269 
1270     const int err = __system_property_foreach(find_nth_fn, &cookie);
1271     if (err < 0) {
1272         return NULL;
1273     }
1274 
1275     return cookie.pi;
1276 }
1277 
__system_property_foreach(void (* propfn)(const prop_info * pi,void * cookie),void * cookie)1278 int __system_property_foreach(void (*propfn)(const prop_info *pi, void *cookie),
1279         void *cookie)
1280 {
1281     if (!__system_property_area__) {
1282         return -1;
1283     }
1284 
1285     if (__predict_false(compat_mode)) {
1286         return __system_property_foreach_compat(propfn, cookie);
1287     }
1288 
1289     list_foreach(contexts, [propfn, cookie](context_node* l) {
1290         if (l->check_access_and_open()) {
1291             l->pa()->foreach(propfn, cookie);
1292         }
1293     });
1294     return 0;
1295 }
1296