1 /* ELF linking support for BFD.
2    Copyright (C) 1995-2014 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 
31 /* This struct is used to pass information to routines called via
32    elf_link_hash_traverse which must return failure.  */
33 
34 struct elf_info_failed
35 {
36   struct bfd_link_info *info;
37   bfd_boolean failed;
38 };
39 
40 /* This structure is used to pass information to
41    _bfd_elf_link_find_version_dependencies.  */
42 
43 struct elf_find_verdep_info
44 {
45   /* General link information.  */
46   struct bfd_link_info *info;
47   /* The number of dependencies.  */
48   unsigned int vers;
49   /* Whether we had a failure.  */
50   bfd_boolean failed;
51 };
52 
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54   (struct elf_link_hash_entry *, struct elf_info_failed *);
55 
56 /* Define a symbol in a dynamic linkage section.  */
57 
58 struct elf_link_hash_entry *
_bfd_elf_define_linkage_sym(bfd * abfd,struct bfd_link_info * info,asection * sec,const char * name)59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 			     struct bfd_link_info *info,
61 			     asection *sec,
62 			     const char *name)
63 {
64   struct elf_link_hash_entry *h;
65   struct bfd_link_hash_entry *bh;
66   const struct elf_backend_data *bed;
67 
68   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69   if (h != NULL)
70     {
71       /* Zap symbol defined in an as-needed lib that wasn't linked.
72 	 This is a symptom of a larger problem:  Absolute symbols
73 	 defined in shared libraries can't be overridden, because we
74 	 lose the link to the bfd which is via the symbol section.  */
75       h->root.type = bfd_link_hash_new;
76     }
77 
78   bh = &h->root;
79   if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 					 sec, 0, NULL, FALSE,
81 					 get_elf_backend_data (abfd)->collect,
82 					 &bh))
83     return NULL;
84   h = (struct elf_link_hash_entry *) bh;
85   h->def_regular = 1;
86   h->non_elf = 0;
87   h->type = STT_OBJECT;
88   if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89     h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90 
91   bed = get_elf_backend_data (abfd);
92   (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93   return h;
94 }
95 
96 bfd_boolean
_bfd_elf_create_got_section(bfd * abfd,struct bfd_link_info * info)97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99   flagword flags;
100   asection *s;
101   struct elf_link_hash_entry *h;
102   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103   struct elf_link_hash_table *htab = elf_hash_table (info);
104 
105   /* This function may be called more than once.  */
106   s = bfd_get_linker_section (abfd, ".got");
107   if (s != NULL)
108     return TRUE;
109 
110   flags = bed->dynamic_sec_flags;
111 
112   s = bfd_make_section_anyway_with_flags (abfd,
113 					  (bed->rela_plts_and_copies_p
114 					   ? ".rela.got" : ".rel.got"),
115 					  (bed->dynamic_sec_flags
116 					   | SEC_READONLY));
117   if (s == NULL
118       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119     return FALSE;
120   htab->srelgot = s;
121 
122   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123   if (s == NULL
124       || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125     return FALSE;
126   htab->sgot = s;
127 
128   if (bed->want_got_plt)
129     {
130       s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131       if (s == NULL
132 	  || !bfd_set_section_alignment (abfd, s,
133 					 bed->s->log_file_align))
134 	return FALSE;
135       htab->sgotplt = s;
136     }
137 
138   /* The first bit of the global offset table is the header.  */
139   s->size += bed->got_header_size;
140 
141   if (bed->want_got_sym)
142     {
143       /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 	 (or .got.plt) section.  We don't do this in the linker script
145 	 because we don't want to define the symbol if we are not creating
146 	 a global offset table.  */
147       h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 				       "_GLOBAL_OFFSET_TABLE_");
149       elf_hash_table (info)->hgot = h;
150       if (h == NULL)
151 	return FALSE;
152     }
153 
154   return TRUE;
155 }
156 
157 /* Create a strtab to hold the dynamic symbol names.  */
158 static bfd_boolean
_bfd_elf_link_create_dynstrtab(bfd * abfd,struct bfd_link_info * info)159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161   struct elf_link_hash_table *hash_table;
162 
163   hash_table = elf_hash_table (info);
164   if (hash_table->dynobj == NULL)
165     hash_table->dynobj = abfd;
166 
167   if (hash_table->dynstr == NULL)
168     {
169       hash_table->dynstr = _bfd_elf_strtab_init ();
170       if (hash_table->dynstr == NULL)
171 	return FALSE;
172     }
173   return TRUE;
174 }
175 
176 /* Create some sections which will be filled in with dynamic linking
177    information.  ABFD is an input file which requires dynamic sections
178    to be created.  The dynamic sections take up virtual memory space
179    when the final executable is run, so we need to create them before
180    addresses are assigned to the output sections.  We work out the
181    actual contents and size of these sections later.  */
182 
183 bfd_boolean
_bfd_elf_link_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186   flagword flags;
187   asection *s;
188   const struct elf_backend_data *bed;
189   struct elf_link_hash_entry *h;
190 
191   if (! is_elf_hash_table (info->hash))
192     return FALSE;
193 
194   if (elf_hash_table (info)->dynamic_sections_created)
195     return TRUE;
196 
197   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198     return FALSE;
199 
200   abfd = elf_hash_table (info)->dynobj;
201   bed = get_elf_backend_data (abfd);
202 
203   flags = bed->dynamic_sec_flags;
204 
205   /* A dynamically linked executable has a .interp section, but a
206      shared library does not.  */
207   if (info->executable)
208     {
209       s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 					      flags | SEC_READONLY);
211       if (s == NULL)
212 	return FALSE;
213     }
214 
215   /* Create sections to hold version informations.  These are removed
216      if they are not needed.  */
217   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 					  flags | SEC_READONLY);
219   if (s == NULL
220       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221     return FALSE;
222 
223   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 					  flags | SEC_READONLY);
225   if (s == NULL
226       || ! bfd_set_section_alignment (abfd, s, 1))
227     return FALSE;
228 
229   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 					  flags | SEC_READONLY);
231   if (s == NULL
232       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233     return FALSE;
234 
235   s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 					  flags | SEC_READONLY);
237   if (s == NULL
238       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239     return FALSE;
240 
241   s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 					  flags | SEC_READONLY);
243   if (s == NULL)
244     return FALSE;
245 
246   s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247   if (s == NULL
248       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249     return FALSE;
250 
251   /* The special symbol _DYNAMIC is always set to the start of the
252      .dynamic section.  We could set _DYNAMIC in a linker script, but we
253      only want to define it if we are, in fact, creating a .dynamic
254      section.  We don't want to define it if there is no .dynamic
255      section, since on some ELF platforms the start up code examines it
256      to decide how to initialize the process.  */
257   h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258   elf_hash_table (info)->hdynamic = h;
259   if (h == NULL)
260     return FALSE;
261 
262   if (info->emit_hash)
263     {
264       s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 					      flags | SEC_READONLY);
266       if (s == NULL
267 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 	return FALSE;
269       elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270     }
271 
272   if (info->emit_gnu_hash)
273     {
274       s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 					      flags | SEC_READONLY);
276       if (s == NULL
277 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 	return FALSE;
279       /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 	 4 32-bit words followed by variable count of 64-bit words, then
281 	 variable count of 32-bit words.  */
282       if (bed->s->arch_size == 64)
283 	elf_section_data (s)->this_hdr.sh_entsize = 0;
284       else
285 	elf_section_data (s)->this_hdr.sh_entsize = 4;
286     }
287 
288   /* Let the backend create the rest of the sections.  This lets the
289      backend set the right flags.  The backend will normally create
290      the .got and .plt sections.  */
291   if (bed->elf_backend_create_dynamic_sections == NULL
292       || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293     return FALSE;
294 
295   elf_hash_table (info)->dynamic_sections_created = TRUE;
296 
297   return TRUE;
298 }
299 
300 /* Create dynamic sections when linking against a dynamic object.  */
301 
302 bfd_boolean
_bfd_elf_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305   flagword flags, pltflags;
306   struct elf_link_hash_entry *h;
307   asection *s;
308   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309   struct elf_link_hash_table *htab = elf_hash_table (info);
310 
311   /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312      .rel[a].bss sections.  */
313   flags = bed->dynamic_sec_flags;
314 
315   pltflags = flags;
316   if (bed->plt_not_loaded)
317     /* We do not clear SEC_ALLOC here because we still want the OS to
318        allocate space for the section; it's just that there's nothing
319        to read in from the object file.  */
320     pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321   else
322     pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323   if (bed->plt_readonly)
324     pltflags |= SEC_READONLY;
325 
326   s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327   if (s == NULL
328       || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329     return FALSE;
330   htab->splt = s;
331 
332   /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333      .plt section.  */
334   if (bed->want_plt_sym)
335     {
336       h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 				       "_PROCEDURE_LINKAGE_TABLE_");
338       elf_hash_table (info)->hplt = h;
339       if (h == NULL)
340 	return FALSE;
341     }
342 
343   s = bfd_make_section_anyway_with_flags (abfd,
344 					  (bed->rela_plts_and_copies_p
345 					   ? ".rela.plt" : ".rel.plt"),
346 					  flags | SEC_READONLY);
347   if (s == NULL
348       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349     return FALSE;
350   htab->srelplt = s;
351 
352   if (! _bfd_elf_create_got_section (abfd, info))
353     return FALSE;
354 
355   if (bed->want_dynbss)
356     {
357       /* The .dynbss section is a place to put symbols which are defined
358 	 by dynamic objects, are referenced by regular objects, and are
359 	 not functions.  We must allocate space for them in the process
360 	 image and use a R_*_COPY reloc to tell the dynamic linker to
361 	 initialize them at run time.  The linker script puts the .dynbss
362 	 section into the .bss section of the final image.  */
363       s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 					      (SEC_ALLOC | SEC_LINKER_CREATED));
365       if (s == NULL)
366 	return FALSE;
367 
368       /* The .rel[a].bss section holds copy relocs.  This section is not
369 	 normally needed.  We need to create it here, though, so that the
370 	 linker will map it to an output section.  We can't just create it
371 	 only if we need it, because we will not know whether we need it
372 	 until we have seen all the input files, and the first time the
373 	 main linker code calls BFD after examining all the input files
374 	 (size_dynamic_sections) the input sections have already been
375 	 mapped to the output sections.  If the section turns out not to
376 	 be needed, we can discard it later.  We will never need this
377 	 section when generating a shared object, since they do not use
378 	 copy relocs.  */
379       if (! info->shared)
380 	{
381 	  s = bfd_make_section_anyway_with_flags (abfd,
382 						  (bed->rela_plts_and_copies_p
383 						   ? ".rela.bss" : ".rel.bss"),
384 						  flags | SEC_READONLY);
385 	  if (s == NULL
386 	      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 	    return FALSE;
388 	}
389     }
390 
391   return TRUE;
392 }
393 
394 /* Record a new dynamic symbol.  We record the dynamic symbols as we
395    read the input files, since we need to have a list of all of them
396    before we can determine the final sizes of the output sections.
397    Note that we may actually call this function even though we are not
398    going to output any dynamic symbols; in some cases we know that a
399    symbol should be in the dynamic symbol table, but only if there is
400    one.  */
401 
402 bfd_boolean
bfd_elf_link_record_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 				    struct elf_link_hash_entry *h)
405 {
406   if (h->dynindx == -1)
407     {
408       struct elf_strtab_hash *dynstr;
409       char *p;
410       const char *name;
411       bfd_size_type indx;
412 
413       /* XXX: The ABI draft says the linker must turn hidden and
414 	 internal symbols into STB_LOCAL symbols when producing the
415 	 DSO. However, if ld.so honors st_other in the dynamic table,
416 	 this would not be necessary.  */
417       switch (ELF_ST_VISIBILITY (h->other))
418 	{
419 	case STV_INTERNAL:
420 	case STV_HIDDEN:
421 	  if (h->root.type != bfd_link_hash_undefined
422 	      && h->root.type != bfd_link_hash_undefweak)
423 	    {
424 	      h->forced_local = 1;
425 	      if (!elf_hash_table (info)->is_relocatable_executable)
426 		return TRUE;
427 	    }
428 
429 	default:
430 	  break;
431 	}
432 
433       h->dynindx = elf_hash_table (info)->dynsymcount;
434       ++elf_hash_table (info)->dynsymcount;
435 
436       dynstr = elf_hash_table (info)->dynstr;
437       if (dynstr == NULL)
438 	{
439 	  /* Create a strtab to hold the dynamic symbol names.  */
440 	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 	  if (dynstr == NULL)
442 	    return FALSE;
443 	}
444 
445       /* We don't put any version information in the dynamic string
446 	 table.  */
447       name = h->root.root.string;
448       p = strchr (name, ELF_VER_CHR);
449       if (p != NULL)
450 	/* We know that the p points into writable memory.  In fact,
451 	   there are only a few symbols that have read-only names, being
452 	   those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 	   by the backends.  Most symbols will have names pointing into
454 	   an ELF string table read from a file, or to objalloc memory.  */
455 	*p = 0;
456 
457       indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458 
459       if (p != NULL)
460 	*p = ELF_VER_CHR;
461 
462       if (indx == (bfd_size_type) -1)
463 	return FALSE;
464       h->dynstr_index = indx;
465     }
466 
467   return TRUE;
468 }
469 
470 /* Mark a symbol dynamic.  */
471 
472 static void
bfd_elf_link_mark_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 				  struct elf_link_hash_entry *h,
475 				  Elf_Internal_Sym *sym)
476 {
477   struct bfd_elf_dynamic_list *d = info->dynamic_list;
478 
479   /* It may be called more than once on the same H.  */
480   if(h->dynamic || info->relocatable)
481     return;
482 
483   if ((info->dynamic_data
484        && (h->type == STT_OBJECT
485 	   || (sym != NULL
486 	       && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487       || (d != NULL
488 	  && h->root.type == bfd_link_hash_new
489 	  && (*d->match) (&d->head, NULL, h->root.root.string)))
490     h->dynamic = 1;
491 }
492 
493 /* Record an assignment to a symbol made by a linker script.  We need
494    this in case some dynamic object refers to this symbol.  */
495 
496 bfd_boolean
bfd_elf_record_link_assignment(bfd * output_bfd,struct bfd_link_info * info,const char * name,bfd_boolean provide,bfd_boolean hidden)497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 				struct bfd_link_info *info,
499 				const char *name,
500 				bfd_boolean provide,
501 				bfd_boolean hidden)
502 {
503   struct elf_link_hash_entry *h, *hv;
504   struct elf_link_hash_table *htab;
505   const struct elf_backend_data *bed;
506 
507   if (!is_elf_hash_table (info->hash))
508     return TRUE;
509 
510   htab = elf_hash_table (info);
511   h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512   if (h == NULL)
513     return provide;
514 
515   switch (h->root.type)
516     {
517     case bfd_link_hash_defined:
518     case bfd_link_hash_defweak:
519     case bfd_link_hash_common:
520       break;
521     case bfd_link_hash_undefweak:
522     case bfd_link_hash_undefined:
523       /* Since we're defining the symbol, don't let it seem to have not
524 	 been defined.  record_dynamic_symbol and size_dynamic_sections
525 	 may depend on this.  */
526       h->root.type = bfd_link_hash_new;
527       if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 	bfd_link_repair_undef_list (&htab->root);
529       break;
530     case bfd_link_hash_new:
531       bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532       h->non_elf = 0;
533       break;
534     case bfd_link_hash_indirect:
535       /* We had a versioned symbol in a dynamic library.  We make the
536 	 the versioned symbol point to this one.  */
537       bed = get_elf_backend_data (output_bfd);
538       hv = h;
539       while (hv->root.type == bfd_link_hash_indirect
540 	     || hv->root.type == bfd_link_hash_warning)
541 	hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542       /* We don't need to update h->root.u since linker will set them
543 	 later.  */
544       h->root.type = bfd_link_hash_undefined;
545       hv->root.type = bfd_link_hash_indirect;
546       hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547       (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548       break;
549     case bfd_link_hash_warning:
550       abort ();
551       break;
552     }
553 
554   /* If this symbol is being provided by the linker script, and it is
555      currently defined by a dynamic object, but not by a regular
556      object, then mark it as undefined so that the generic linker will
557      force the correct value.  */
558   if (provide
559       && h->def_dynamic
560       && !h->def_regular)
561     h->root.type = bfd_link_hash_undefined;
562 
563   /* If this symbol is not being provided by the linker script, and it is
564      currently defined by a dynamic object, but not by a regular object,
565      then clear out any version information because the symbol will not be
566      associated with the dynamic object any more.  */
567   if (!provide
568       && h->def_dynamic
569       && !h->def_regular)
570     h->verinfo.verdef = NULL;
571 
572   h->def_regular = 1;
573 
574   if (hidden)
575     {
576       bed = get_elf_backend_data (output_bfd);
577       if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 	h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579       (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580     }
581 
582   /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583      and executables.  */
584   if (!info->relocatable
585       && h->dynindx != -1
586       && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588     h->forced_local = 1;
589 
590   if ((h->def_dynamic
591        || h->ref_dynamic
592        || info->shared
593        || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594       && h->dynindx == -1)
595     {
596       if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 	return FALSE;
598 
599       /* If this is a weak defined symbol, and we know a corresponding
600 	 real symbol from the same dynamic object, make sure the real
601 	 symbol is also made into a dynamic symbol.  */
602       if (h->u.weakdef != NULL
603 	  && h->u.weakdef->dynindx == -1)
604 	{
605 	  if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 	    return FALSE;
607 	}
608     }
609 
610   return TRUE;
611 }
612 
613 /* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
614    success, and 2 on a failure caused by attempting to record a symbol
615    in a discarded section, eg. a discarded link-once section symbol.  */
616 
617 int
bfd_elf_link_record_local_dynamic_symbol(struct bfd_link_info * info,bfd * input_bfd,long input_indx)618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 					  bfd *input_bfd,
620 					  long input_indx)
621 {
622   bfd_size_type amt;
623   struct elf_link_local_dynamic_entry *entry;
624   struct elf_link_hash_table *eht;
625   struct elf_strtab_hash *dynstr;
626   unsigned long dynstr_index;
627   char *name;
628   Elf_External_Sym_Shndx eshndx;
629   char esym[sizeof (Elf64_External_Sym)];
630 
631   if (! is_elf_hash_table (info->hash))
632     return 0;
633 
634   /* See if the entry exists already.  */
635   for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636     if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637       return 1;
638 
639   amt = sizeof (*entry);
640   entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641   if (entry == NULL)
642     return 0;
643 
644   /* Go find the symbol, so that we can find it's name.  */
645   if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 			     1, input_indx, &entry->isym, esym, &eshndx))
647     {
648       bfd_release (input_bfd, entry);
649       return 0;
650     }
651 
652   if (entry->isym.st_shndx != SHN_UNDEF
653       && entry->isym.st_shndx < SHN_LORESERVE)
654     {
655       asection *s;
656 
657       s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658       if (s == NULL || bfd_is_abs_section (s->output_section))
659 	{
660 	  /* We can still bfd_release here as nothing has done another
661 	     bfd_alloc.  We can't do this later in this function.  */
662 	  bfd_release (input_bfd, entry);
663 	  return 2;
664 	}
665     }
666 
667   name = (bfd_elf_string_from_elf_section
668 	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 	   entry->isym.st_name));
670 
671   dynstr = elf_hash_table (info)->dynstr;
672   if (dynstr == NULL)
673     {
674       /* Create a strtab to hold the dynamic symbol names.  */
675       elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676       if (dynstr == NULL)
677 	return 0;
678     }
679 
680   dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681   if (dynstr_index == (unsigned long) -1)
682     return 0;
683   entry->isym.st_name = dynstr_index;
684 
685   eht = elf_hash_table (info);
686 
687   entry->next = eht->dynlocal;
688   eht->dynlocal = entry;
689   entry->input_bfd = input_bfd;
690   entry->input_indx = input_indx;
691   eht->dynsymcount++;
692 
693   /* Whatever binding the symbol had before, it's now local.  */
694   entry->isym.st_info
695     = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696 
697   /* The dynindx will be set at the end of size_dynamic_sections.  */
698 
699   return 1;
700 }
701 
702 /* Return the dynindex of a local dynamic symbol.  */
703 
704 long
_bfd_elf_link_lookup_local_dynindx(struct bfd_link_info * info,bfd * input_bfd,long input_indx)705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 				    bfd *input_bfd,
707 				    long input_indx)
708 {
709   struct elf_link_local_dynamic_entry *e;
710 
711   for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712     if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713       return e->dynindx;
714   return -1;
715 }
716 
717 /* This function is used to renumber the dynamic symbols, if some of
718    them are removed because they are marked as local.  This is called
719    via elf_link_hash_traverse.  */
720 
721 static bfd_boolean
elf_link_renumber_hash_table_dynsyms(struct elf_link_hash_entry * h,void * data)722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 				      void *data)
724 {
725   size_t *count = (size_t *) data;
726 
727   if (h->forced_local)
728     return TRUE;
729 
730   if (h->dynindx != -1)
731     h->dynindx = ++(*count);
732 
733   return TRUE;
734 }
735 
736 
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738    STB_LOCAL binding.  */
739 
740 static bfd_boolean
elf_link_renumber_local_hash_table_dynsyms(struct elf_link_hash_entry * h,void * data)741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 					    void *data)
743 {
744   size_t *count = (size_t *) data;
745 
746   if (!h->forced_local)
747     return TRUE;
748 
749   if (h->dynindx != -1)
750     h->dynindx = ++(*count);
751 
752   return TRUE;
753 }
754 
755 /* Return true if the dynamic symbol for a given section should be
756    omitted when creating a shared library.  */
757 bfd_boolean
_bfd_elf_link_omit_section_dynsym(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info,asection * p)758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 				   struct bfd_link_info *info,
760 				   asection *p)
761 {
762   struct elf_link_hash_table *htab;
763 
764   switch (elf_section_data (p)->this_hdr.sh_type)
765     {
766     case SHT_PROGBITS:
767     case SHT_NOBITS:
768       /* If sh_type is yet undecided, assume it could be
769 	 SHT_PROGBITS/SHT_NOBITS.  */
770     case SHT_NULL:
771       htab = elf_hash_table (info);
772       if (p == htab->tls_sec)
773 	return FALSE;
774 
775       if (htab->text_index_section != NULL)
776 	return p != htab->text_index_section && p != htab->data_index_section;
777 
778       if (strcmp (p->name, ".got") == 0
779 	  || strcmp (p->name, ".got.plt") == 0
780 	  || strcmp (p->name, ".plt") == 0)
781 	{
782 	  asection *ip;
783 
784 	  if (htab->dynobj != NULL
785 	      && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 	      && ip->output_section == p)
787 	    return TRUE;
788 	}
789       return FALSE;
790 
791       /* There shouldn't be section relative relocations
792 	 against any other section.  */
793     default:
794       return TRUE;
795     }
796 }
797 
798 /* Assign dynsym indices.  In a shared library we generate a section
799    symbol for each output section, which come first.  Next come symbols
800    which have been forced to local binding.  Then all of the back-end
801    allocated local dynamic syms, followed by the rest of the global
802    symbols.  */
803 
804 static unsigned long
_bfd_elf_link_renumber_dynsyms(bfd * output_bfd,struct bfd_link_info * info,unsigned long * section_sym_count)805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 				struct bfd_link_info *info,
807 				unsigned long *section_sym_count)
808 {
809   unsigned long dynsymcount = 0;
810 
811   if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812     {
813       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814       asection *p;
815       for (p = output_bfd->sections; p ; p = p->next)
816 	if ((p->flags & SEC_EXCLUDE) == 0
817 	    && (p->flags & SEC_ALLOC) != 0
818 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 	  elf_section_data (p)->dynindx = ++dynsymcount;
820 	else
821 	  elf_section_data (p)->dynindx = 0;
822     }
823   *section_sym_count = dynsymcount;
824 
825   elf_link_hash_traverse (elf_hash_table (info),
826 			  elf_link_renumber_local_hash_table_dynsyms,
827 			  &dynsymcount);
828 
829   if (elf_hash_table (info)->dynlocal)
830     {
831       struct elf_link_local_dynamic_entry *p;
832       for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 	p->dynindx = ++dynsymcount;
834     }
835 
836   elf_link_hash_traverse (elf_hash_table (info),
837 			  elf_link_renumber_hash_table_dynsyms,
838 			  &dynsymcount);
839 
840   /* There is an unused NULL entry at the head of the table which
841      we must account for in our count.  Unless there weren't any
842      symbols, which means we'll have no table at all.  */
843   if (dynsymcount != 0)
844     ++dynsymcount;
845 
846   elf_hash_table (info)->dynsymcount = dynsymcount;
847   return dynsymcount;
848 }
849 
850 /* Merge st_other field.  */
851 
852 static void
elf_merge_st_other(bfd * abfd,struct elf_link_hash_entry * h,const Elf_Internal_Sym * isym,bfd_boolean definition,bfd_boolean dynamic)853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 		    const Elf_Internal_Sym *isym,
855 		    bfd_boolean definition, bfd_boolean dynamic)
856 {
857   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858 
859   /* If st_other has a processor-specific meaning, specific
860      code might be needed here.  */
861   if (bed->elf_backend_merge_symbol_attribute)
862     (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
863 						dynamic);
864 
865   if (!dynamic)
866     {
867       unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
868       unsigned hvis = ELF_ST_VISIBILITY (h->other);
869 
870       /* Keep the most constraining visibility.  Leave the remainder
871 	 of the st_other field to elf_backend_merge_symbol_attribute.  */
872       if (symvis - 1 < hvis - 1)
873 	h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
874     }
875 }
876 
877 /* This function is called when we want to merge a new symbol with an
878    existing symbol.  It handles the various cases which arise when we
879    find a definition in a dynamic object, or when there is already a
880    definition in a dynamic object.  The new symbol is described by
881    NAME, SYM, PSEC, and PVALUE.  We set SYM_HASH to the hash table
882    entry.  We set POLDBFD to the old symbol's BFD.  We set POLD_WEAK
883    if the old symbol was weak.  We set POLD_ALIGNMENT to the alignment
884    of an old common symbol.  We set OVERRIDE if the old symbol is
885    overriding a new definition.  We set TYPE_CHANGE_OK if it is OK for
886    the type to change.  We set SIZE_CHANGE_OK if it is OK for the size
887    to change.  By OK to change, we mean that we shouldn't warn if the
888    type or size does change.  */
889 
890 static bfd_boolean
_bfd_elf_merge_symbol(bfd * abfd,struct bfd_link_info * info,const char * name,Elf_Internal_Sym * sym,asection ** psec,bfd_vma * pvalue,struct elf_link_hash_entry ** sym_hash,bfd ** poldbfd,bfd_boolean * pold_weak,unsigned int * pold_alignment,bfd_boolean * skip,bfd_boolean * override,bfd_boolean * type_change_ok,bfd_boolean * size_change_ok)891 _bfd_elf_merge_symbol (bfd *abfd,
892 		       struct bfd_link_info *info,
893 		       const char *name,
894 		       Elf_Internal_Sym *sym,
895 		       asection **psec,
896 		       bfd_vma *pvalue,
897 		       struct elf_link_hash_entry **sym_hash,
898 		       bfd **poldbfd,
899 		       bfd_boolean *pold_weak,
900 		       unsigned int *pold_alignment,
901 		       bfd_boolean *skip,
902 		       bfd_boolean *override,
903 		       bfd_boolean *type_change_ok,
904 		       bfd_boolean *size_change_ok)
905 {
906   asection *sec, *oldsec;
907   struct elf_link_hash_entry *h;
908   struct elf_link_hash_entry *hi;
909   struct elf_link_hash_entry *flip;
910   int bind;
911   bfd *oldbfd;
912   bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
913   bfd_boolean newweak, oldweak, newfunc, oldfunc;
914   const struct elf_backend_data *bed;
915 
916   *skip = FALSE;
917   *override = FALSE;
918 
919   sec = *psec;
920   bind = ELF_ST_BIND (sym->st_info);
921 
922   if (! bfd_is_und_section (sec))
923     h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
924   else
925     h = ((struct elf_link_hash_entry *)
926 	 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
927   if (h == NULL)
928     return FALSE;
929   *sym_hash = h;
930 
931   bed = get_elf_backend_data (abfd);
932 
933   /* For merging, we only care about real symbols.  But we need to make
934      sure that indirect symbol dynamic flags are updated.  */
935   hi = h;
936   while (h->root.type == bfd_link_hash_indirect
937 	 || h->root.type == bfd_link_hash_warning)
938     h = (struct elf_link_hash_entry *) h->root.u.i.link;
939 
940   /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
941      existing symbol.  */
942 
943   oldbfd = NULL;
944   oldsec = NULL;
945   switch (h->root.type)
946     {
947     default:
948       break;
949 
950     case bfd_link_hash_undefined:
951     case bfd_link_hash_undefweak:
952       oldbfd = h->root.u.undef.abfd;
953       break;
954 
955     case bfd_link_hash_defined:
956     case bfd_link_hash_defweak:
957       oldbfd = h->root.u.def.section->owner;
958       oldsec = h->root.u.def.section;
959       break;
960 
961     case bfd_link_hash_common:
962       oldbfd = h->root.u.c.p->section->owner;
963       oldsec = h->root.u.c.p->section;
964       if (pold_alignment)
965 	*pold_alignment = h->root.u.c.p->alignment_power;
966       break;
967     }
968   if (poldbfd && *poldbfd == NULL)
969     *poldbfd = oldbfd;
970 
971   /* Differentiate strong and weak symbols.  */
972   newweak = bind == STB_WEAK;
973   oldweak = (h->root.type == bfd_link_hash_defweak
974 	     || h->root.type == bfd_link_hash_undefweak);
975   if (pold_weak)
976     *pold_weak = oldweak;
977 
978   /* This code is for coping with dynamic objects, and is only useful
979      if we are doing an ELF link.  */
980   if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
981     return TRUE;
982 
983   /* We have to check it for every instance since the first few may be
984      references and not all compilers emit symbol type for undefined
985      symbols.  */
986   bfd_elf_link_mark_dynamic_symbol (info, h, sym);
987 
988   /* NEWDYN and OLDDYN indicate whether the new or old symbol,
989      respectively, is from a dynamic object.  */
990 
991   newdyn = (abfd->flags & DYNAMIC) != 0;
992 
993   /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
994      syms and defined syms in dynamic libraries respectively.
995      ref_dynamic on the other hand can be set for a symbol defined in
996      a dynamic library, and def_dynamic may not be set;  When the
997      definition in a dynamic lib is overridden by a definition in the
998      executable use of the symbol in the dynamic lib becomes a
999      reference to the executable symbol.  */
1000   if (newdyn)
1001     {
1002       if (bfd_is_und_section (sec))
1003 	{
1004 	  if (bind != STB_WEAK)
1005 	    {
1006 	      h->ref_dynamic_nonweak = 1;
1007 	      hi->ref_dynamic_nonweak = 1;
1008 	    }
1009 	}
1010       else
1011 	{
1012 	  h->dynamic_def = 1;
1013 	  hi->dynamic_def = 1;
1014 	}
1015     }
1016 
1017   /* If we just created the symbol, mark it as being an ELF symbol.
1018      Other than that, there is nothing to do--there is no merge issue
1019      with a newly defined symbol--so we just return.  */
1020 
1021   if (h->root.type == bfd_link_hash_new)
1022     {
1023       h->non_elf = 0;
1024       return TRUE;
1025     }
1026 
1027   /* In cases involving weak versioned symbols, we may wind up trying
1028      to merge a symbol with itself.  Catch that here, to avoid the
1029      confusion that results if we try to override a symbol with
1030      itself.  The additional tests catch cases like
1031      _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1032      dynamic object, which we do want to handle here.  */
1033   if (abfd == oldbfd
1034       && (newweak || oldweak)
1035       && ((abfd->flags & DYNAMIC) == 0
1036 	  || !h->def_regular))
1037     return TRUE;
1038 
1039   olddyn = FALSE;
1040   if (oldbfd != NULL)
1041     olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042   else if (oldsec != NULL)
1043     {
1044       /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 	 indices used by MIPS ELF.  */
1046       olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1047     }
1048 
1049   /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050      respectively, appear to be a definition rather than reference.  */
1051 
1052   newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1053 
1054   olddef = (h->root.type != bfd_link_hash_undefined
1055 	    && h->root.type != bfd_link_hash_undefweak
1056 	    && h->root.type != bfd_link_hash_common);
1057 
1058   /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059      respectively, appear to be a function.  */
1060 
1061   newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 	     && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1063 
1064   oldfunc = (h->type != STT_NOTYPE
1065 	     && bed->is_function_type (h->type));
1066 
1067   /* When we try to create a default indirect symbol from the dynamic
1068      definition with the default version, we skip it if its type and
1069      the type of existing regular definition mismatch.  */
1070   if (pold_alignment == NULL
1071       && newdyn
1072       && newdef
1073       && !olddyn
1074       && (((olddef || h->root.type == bfd_link_hash_common)
1075 	   && ELF_ST_TYPE (sym->st_info) != h->type
1076 	   && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1077 	   && h->type != STT_NOTYPE
1078 	   && !(newfunc && oldfunc))
1079 	  || (olddef
1080 	      && ((h->type == STT_GNU_IFUNC)
1081 		  != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1082     {
1083       *skip = TRUE;
1084       return TRUE;
1085     }
1086 
1087   /* Check TLS symbols.  We don't check undefined symbols introduced
1088      by "ld -u" which have no type (and oldbfd NULL), and we don't
1089      check symbols from plugins because they also have no type.  */
1090   if (oldbfd != NULL
1091       && (oldbfd->flags & BFD_PLUGIN) == 0
1092       && (abfd->flags & BFD_PLUGIN) == 0
1093       && ELF_ST_TYPE (sym->st_info) != h->type
1094       && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1095     {
1096       bfd *ntbfd, *tbfd;
1097       bfd_boolean ntdef, tdef;
1098       asection *ntsec, *tsec;
1099 
1100       if (h->type == STT_TLS)
1101 	{
1102 	  ntbfd = abfd;
1103 	  ntsec = sec;
1104 	  ntdef = newdef;
1105 	  tbfd = oldbfd;
1106 	  tsec = oldsec;
1107 	  tdef = olddef;
1108 	}
1109       else
1110 	{
1111 	  ntbfd = oldbfd;
1112 	  ntsec = oldsec;
1113 	  ntdef = olddef;
1114 	  tbfd = abfd;
1115 	  tsec = sec;
1116 	  tdef = newdef;
1117 	}
1118 
1119       if (tdef && ntdef)
1120 	(*_bfd_error_handler)
1121 	  (_("%s: TLS definition in %B section %A "
1122 	     "mismatches non-TLS definition in %B section %A"),
1123 	   tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1124       else if (!tdef && !ntdef)
1125 	(*_bfd_error_handler)
1126 	  (_("%s: TLS reference in %B "
1127 	     "mismatches non-TLS reference in %B"),
1128 	   tbfd, ntbfd, h->root.root.string);
1129       else if (tdef)
1130 	(*_bfd_error_handler)
1131 	  (_("%s: TLS definition in %B section %A "
1132 	     "mismatches non-TLS reference in %B"),
1133 	   tbfd, tsec, ntbfd, h->root.root.string);
1134       else
1135 	(*_bfd_error_handler)
1136 	  (_("%s: TLS reference in %B "
1137 	     "mismatches non-TLS definition in %B section %A"),
1138 	   tbfd, ntbfd, ntsec, h->root.root.string);
1139 
1140       bfd_set_error (bfd_error_bad_value);
1141       return FALSE;
1142     }
1143 
1144   /* If the old symbol has non-default visibility, we ignore the new
1145      definition from a dynamic object.  */
1146   if (newdyn
1147       && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1148       && !bfd_is_und_section (sec))
1149     {
1150       *skip = TRUE;
1151       /* Make sure this symbol is dynamic.  */
1152       h->ref_dynamic = 1;
1153       hi->ref_dynamic = 1;
1154       /* A protected symbol has external availability. Make sure it is
1155 	 recorded as dynamic.
1156 
1157 	 FIXME: Should we check type and size for protected symbol?  */
1158       if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1159 	return bfd_elf_link_record_dynamic_symbol (info, h);
1160       else
1161 	return TRUE;
1162     }
1163   else if (!newdyn
1164 	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1165 	   && h->def_dynamic)
1166     {
1167       /* If the new symbol with non-default visibility comes from a
1168 	 relocatable file and the old definition comes from a dynamic
1169 	 object, we remove the old definition.  */
1170       if (hi->root.type == bfd_link_hash_indirect)
1171 	{
1172 	  /* Handle the case where the old dynamic definition is
1173 	     default versioned.  We need to copy the symbol info from
1174 	     the symbol with default version to the normal one if it
1175 	     was referenced before.  */
1176 	  if (h->ref_regular)
1177 	    {
1178 	      hi->root.type = h->root.type;
1179 	      h->root.type = bfd_link_hash_indirect;
1180 	      (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1181 
1182 	      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1183 	      if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1184 		{
1185 		  /* If the new symbol is hidden or internal, completely undo
1186 		     any dynamic link state.  */
1187 		  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1188 		  h->forced_local = 0;
1189 		  h->ref_dynamic = 0;
1190 		}
1191 	      else
1192 		h->ref_dynamic = 1;
1193 
1194 	      h->def_dynamic = 0;
1195 	      /* FIXME: Should we check type and size for protected symbol?  */
1196 	      h->size = 0;
1197 	      h->type = 0;
1198 
1199 	      h = hi;
1200 	    }
1201 	  else
1202 	    h = hi;
1203 	}
1204 
1205       /* If the old symbol was undefined before, then it will still be
1206 	 on the undefs list.  If the new symbol is undefined or
1207 	 common, we can't make it bfd_link_hash_new here, because new
1208 	 undefined or common symbols will be added to the undefs list
1209 	 by _bfd_generic_link_add_one_symbol.  Symbols may not be
1210 	 added twice to the undefs list.  Also, if the new symbol is
1211 	 undefweak then we don't want to lose the strong undef.  */
1212       if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1213 	{
1214 	  h->root.type = bfd_link_hash_undefined;
1215 	  h->root.u.undef.abfd = abfd;
1216 	}
1217       else
1218 	{
1219 	  h->root.type = bfd_link_hash_new;
1220 	  h->root.u.undef.abfd = NULL;
1221 	}
1222 
1223       if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1224 	{
1225 	  /* If the new symbol is hidden or internal, completely undo
1226 	     any dynamic link state.  */
1227 	  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1228 	  h->forced_local = 0;
1229 	  h->ref_dynamic = 0;
1230 	}
1231       else
1232 	h->ref_dynamic = 1;
1233       h->def_dynamic = 0;
1234       /* FIXME: Should we check type and size for protected symbol?  */
1235       h->size = 0;
1236       h->type = 0;
1237       return TRUE;
1238     }
1239 
1240   /* If a new weak symbol definition comes from a regular file and the
1241      old symbol comes from a dynamic library, we treat the new one as
1242      strong.  Similarly, an old weak symbol definition from a regular
1243      file is treated as strong when the new symbol comes from a dynamic
1244      library.  Further, an old weak symbol from a dynamic library is
1245      treated as strong if the new symbol is from a dynamic library.
1246      This reflects the way glibc's ld.so works.
1247 
1248      Do this before setting *type_change_ok or *size_change_ok so that
1249      we warn properly when dynamic library symbols are overridden.  */
1250 
1251   if (newdef && !newdyn && olddyn)
1252     newweak = FALSE;
1253   if (olddef && newdyn)
1254     oldweak = FALSE;
1255 
1256   /* Allow changes between different types of function symbol.  */
1257   if (newfunc && oldfunc)
1258     *type_change_ok = TRUE;
1259 
1260   /* It's OK to change the type if either the existing symbol or the
1261      new symbol is weak.  A type change is also OK if the old symbol
1262      is undefined and the new symbol is defined.  */
1263 
1264   if (oldweak
1265       || newweak
1266       || (newdef
1267 	  && h->root.type == bfd_link_hash_undefined))
1268     *type_change_ok = TRUE;
1269 
1270   /* It's OK to change the size if either the existing symbol or the
1271      new symbol is weak, or if the old symbol is undefined.  */
1272 
1273   if (*type_change_ok
1274       || h->root.type == bfd_link_hash_undefined)
1275     *size_change_ok = TRUE;
1276 
1277   /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1278      symbol, respectively, appears to be a common symbol in a dynamic
1279      object.  If a symbol appears in an uninitialized section, and is
1280      not weak, and is not a function, then it may be a common symbol
1281      which was resolved when the dynamic object was created.  We want
1282      to treat such symbols specially, because they raise special
1283      considerations when setting the symbol size: if the symbol
1284      appears as a common symbol in a regular object, and the size in
1285      the regular object is larger, we must make sure that we use the
1286      larger size.  This problematic case can always be avoided in C,
1287      but it must be handled correctly when using Fortran shared
1288      libraries.
1289 
1290      Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1291      likewise for OLDDYNCOMMON and OLDDEF.
1292 
1293      Note that this test is just a heuristic, and that it is quite
1294      possible to have an uninitialized symbol in a shared object which
1295      is really a definition, rather than a common symbol.  This could
1296      lead to some minor confusion when the symbol really is a common
1297      symbol in some regular object.  However, I think it will be
1298      harmless.  */
1299 
1300   if (newdyn
1301       && newdef
1302       && !newweak
1303       && (sec->flags & SEC_ALLOC) != 0
1304       && (sec->flags & SEC_LOAD) == 0
1305       && sym->st_size > 0
1306       && !newfunc)
1307     newdyncommon = TRUE;
1308   else
1309     newdyncommon = FALSE;
1310 
1311   if (olddyn
1312       && olddef
1313       && h->root.type == bfd_link_hash_defined
1314       && h->def_dynamic
1315       && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1316       && (h->root.u.def.section->flags & SEC_LOAD) == 0
1317       && h->size > 0
1318       && !oldfunc)
1319     olddyncommon = TRUE;
1320   else
1321     olddyncommon = FALSE;
1322 
1323   /* We now know everything about the old and new symbols.  We ask the
1324      backend to check if we can merge them.  */
1325   if (bed->merge_symbol != NULL)
1326     {
1327       if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1328 	return FALSE;
1329       sec = *psec;
1330     }
1331 
1332   /* If both the old and the new symbols look like common symbols in a
1333      dynamic object, set the size of the symbol to the larger of the
1334      two.  */
1335 
1336   if (olddyncommon
1337       && newdyncommon
1338       && sym->st_size != h->size)
1339     {
1340       /* Since we think we have two common symbols, issue a multiple
1341 	 common warning if desired.  Note that we only warn if the
1342 	 size is different.  If the size is the same, we simply let
1343 	 the old symbol override the new one as normally happens with
1344 	 symbols defined in dynamic objects.  */
1345 
1346       if (! ((*info->callbacks->multiple_common)
1347 	     (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1348 	return FALSE;
1349 
1350       if (sym->st_size > h->size)
1351 	h->size = sym->st_size;
1352 
1353       *size_change_ok = TRUE;
1354     }
1355 
1356   /* If we are looking at a dynamic object, and we have found a
1357      definition, we need to see if the symbol was already defined by
1358      some other object.  If so, we want to use the existing
1359      definition, and we do not want to report a multiple symbol
1360      definition error; we do this by clobbering *PSEC to be
1361      bfd_und_section_ptr.
1362 
1363      We treat a common symbol as a definition if the symbol in the
1364      shared library is a function, since common symbols always
1365      represent variables; this can cause confusion in principle, but
1366      any such confusion would seem to indicate an erroneous program or
1367      shared library.  We also permit a common symbol in a regular
1368      object to override a weak symbol in a shared object.  */
1369 
1370   if (newdyn
1371       && newdef
1372       && (olddef
1373 	  || (h->root.type == bfd_link_hash_common
1374 	      && (newweak || newfunc))))
1375     {
1376       *override = TRUE;
1377       newdef = FALSE;
1378       newdyncommon = FALSE;
1379 
1380       *psec = sec = bfd_und_section_ptr;
1381       *size_change_ok = TRUE;
1382 
1383       /* If we get here when the old symbol is a common symbol, then
1384 	 we are explicitly letting it override a weak symbol or
1385 	 function in a dynamic object, and we don't want to warn about
1386 	 a type change.  If the old symbol is a defined symbol, a type
1387 	 change warning may still be appropriate.  */
1388 
1389       if (h->root.type == bfd_link_hash_common)
1390 	*type_change_ok = TRUE;
1391     }
1392 
1393   /* Handle the special case of an old common symbol merging with a
1394      new symbol which looks like a common symbol in a shared object.
1395      We change *PSEC and *PVALUE to make the new symbol look like a
1396      common symbol, and let _bfd_generic_link_add_one_symbol do the
1397      right thing.  */
1398 
1399   if (newdyncommon
1400       && h->root.type == bfd_link_hash_common)
1401     {
1402       *override = TRUE;
1403       newdef = FALSE;
1404       newdyncommon = FALSE;
1405       *pvalue = sym->st_size;
1406       *psec = sec = bed->common_section (oldsec);
1407       *size_change_ok = TRUE;
1408     }
1409 
1410   /* Skip weak definitions of symbols that are already defined.  */
1411   if (newdef && olddef && newweak)
1412     {
1413       /* Don't skip new non-IR weak syms.  */
1414       if (!(oldbfd != NULL
1415 	    && (oldbfd->flags & BFD_PLUGIN) != 0
1416 	    && (abfd->flags & BFD_PLUGIN) == 0))
1417 	{
1418 	  newdef = FALSE;
1419 	  *skip = TRUE;
1420 	}
1421 
1422       /* Merge st_other.  If the symbol already has a dynamic index,
1423 	 but visibility says it should not be visible, turn it into a
1424 	 local symbol.  */
1425       elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1426       if (h->dynindx != -1)
1427 	switch (ELF_ST_VISIBILITY (h->other))
1428 	  {
1429 	  case STV_INTERNAL:
1430 	  case STV_HIDDEN:
1431 	    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 	    break;
1433 	  }
1434     }
1435 
1436   /* If the old symbol is from a dynamic object, and the new symbol is
1437      a definition which is not from a dynamic object, then the new
1438      symbol overrides the old symbol.  Symbols from regular files
1439      always take precedence over symbols from dynamic objects, even if
1440      they are defined after the dynamic object in the link.
1441 
1442      As above, we again permit a common symbol in a regular object to
1443      override a definition in a shared object if the shared object
1444      symbol is a function or is weak.  */
1445 
1446   flip = NULL;
1447   if (!newdyn
1448       && (newdef
1449 	  || (bfd_is_com_section (sec)
1450 	      && (oldweak || oldfunc)))
1451       && olddyn
1452       && olddef
1453       && h->def_dynamic)
1454     {
1455       /* Change the hash table entry to undefined, and let
1456 	 _bfd_generic_link_add_one_symbol do the right thing with the
1457 	 new definition.  */
1458 
1459       h->root.type = bfd_link_hash_undefined;
1460       h->root.u.undef.abfd = h->root.u.def.section->owner;
1461       *size_change_ok = TRUE;
1462 
1463       olddef = FALSE;
1464       olddyncommon = FALSE;
1465 
1466       /* We again permit a type change when a common symbol may be
1467 	 overriding a function.  */
1468 
1469       if (bfd_is_com_section (sec))
1470 	{
1471 	  if (oldfunc)
1472 	    {
1473 	      /* If a common symbol overrides a function, make sure
1474 		 that it isn't defined dynamically nor has type
1475 		 function.  */
1476 	      h->def_dynamic = 0;
1477 	      h->type = STT_NOTYPE;
1478 	    }
1479 	  *type_change_ok = TRUE;
1480 	}
1481 
1482       if (hi->root.type == bfd_link_hash_indirect)
1483 	flip = hi;
1484       else
1485 	/* This union may have been set to be non-NULL when this symbol
1486 	   was seen in a dynamic object.  We must force the union to be
1487 	   NULL, so that it is correct for a regular symbol.  */
1488 	h->verinfo.vertree = NULL;
1489     }
1490 
1491   /* Handle the special case of a new common symbol merging with an
1492      old symbol that looks like it might be a common symbol defined in
1493      a shared object.  Note that we have already handled the case in
1494      which a new common symbol should simply override the definition
1495      in the shared library.  */
1496 
1497   if (! newdyn
1498       && bfd_is_com_section (sec)
1499       && olddyncommon)
1500     {
1501       /* It would be best if we could set the hash table entry to a
1502 	 common symbol, but we don't know what to use for the section
1503 	 or the alignment.  */
1504       if (! ((*info->callbacks->multiple_common)
1505 	     (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1506 	return FALSE;
1507 
1508       /* If the presumed common symbol in the dynamic object is
1509 	 larger, pretend that the new symbol has its size.  */
1510 
1511       if (h->size > *pvalue)
1512 	*pvalue = h->size;
1513 
1514       /* We need to remember the alignment required by the symbol
1515 	 in the dynamic object.  */
1516       BFD_ASSERT (pold_alignment);
1517       *pold_alignment = h->root.u.def.section->alignment_power;
1518 
1519       olddef = FALSE;
1520       olddyncommon = FALSE;
1521 
1522       h->root.type = bfd_link_hash_undefined;
1523       h->root.u.undef.abfd = h->root.u.def.section->owner;
1524 
1525       *size_change_ok = TRUE;
1526       *type_change_ok = TRUE;
1527 
1528       if (hi->root.type == bfd_link_hash_indirect)
1529 	flip = hi;
1530       else
1531 	h->verinfo.vertree = NULL;
1532     }
1533 
1534   if (flip != NULL)
1535     {
1536       /* Handle the case where we had a versioned symbol in a dynamic
1537 	 library and now find a definition in a normal object.  In this
1538 	 case, we make the versioned symbol point to the normal one.  */
1539       flip->root.type = h->root.type;
1540       flip->root.u.undef.abfd = h->root.u.undef.abfd;
1541       h->root.type = bfd_link_hash_indirect;
1542       h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1543       (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1544       if (h->def_dynamic)
1545 	{
1546 	  h->def_dynamic = 0;
1547 	  flip->ref_dynamic = 1;
1548 	}
1549     }
1550 
1551   return TRUE;
1552 }
1553 
1554 /* This function is called to create an indirect symbol from the
1555    default for the symbol with the default version if needed. The
1556    symbol is described by H, NAME, SYM, SEC, and VALUE.  We
1557    set DYNSYM if the new indirect symbol is dynamic.  */
1558 
1559 static bfd_boolean
_bfd_elf_add_default_symbol(bfd * abfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,const char * name,Elf_Internal_Sym * sym,asection * sec,bfd_vma value,bfd ** poldbfd,bfd_boolean * dynsym)1560 _bfd_elf_add_default_symbol (bfd *abfd,
1561 			     struct bfd_link_info *info,
1562 			     struct elf_link_hash_entry *h,
1563 			     const char *name,
1564 			     Elf_Internal_Sym *sym,
1565 			     asection *sec,
1566 			     bfd_vma value,
1567 			     bfd **poldbfd,
1568 			     bfd_boolean *dynsym)
1569 {
1570   bfd_boolean type_change_ok;
1571   bfd_boolean size_change_ok;
1572   bfd_boolean skip;
1573   char *shortname;
1574   struct elf_link_hash_entry *hi;
1575   struct bfd_link_hash_entry *bh;
1576   const struct elf_backend_data *bed;
1577   bfd_boolean collect;
1578   bfd_boolean dynamic;
1579   bfd_boolean override;
1580   char *p;
1581   size_t len, shortlen;
1582   asection *tmp_sec;
1583 
1584   /* If this symbol has a version, and it is the default version, we
1585      create an indirect symbol from the default name to the fully
1586      decorated name.  This will cause external references which do not
1587      specify a version to be bound to this version of the symbol.  */
1588   p = strchr (name, ELF_VER_CHR);
1589   if (p == NULL || p[1] != ELF_VER_CHR)
1590     return TRUE;
1591 
1592   bed = get_elf_backend_data (abfd);
1593   collect = bed->collect;
1594   dynamic = (abfd->flags & DYNAMIC) != 0;
1595 
1596   shortlen = p - name;
1597   shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1598   if (shortname == NULL)
1599     return FALSE;
1600   memcpy (shortname, name, shortlen);
1601   shortname[shortlen] = '\0';
1602 
1603   /* We are going to create a new symbol.  Merge it with any existing
1604      symbol with this name.  For the purposes of the merge, act as
1605      though we were defining the symbol we just defined, although we
1606      actually going to define an indirect symbol.  */
1607   type_change_ok = FALSE;
1608   size_change_ok = FALSE;
1609   tmp_sec = sec;
1610   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1611 			      &hi, poldbfd, NULL, NULL, &skip, &override,
1612 			      &type_change_ok, &size_change_ok))
1613     return FALSE;
1614 
1615   if (skip)
1616     goto nondefault;
1617 
1618   if (! override)
1619     {
1620       bh = &hi->root;
1621       if (! (_bfd_generic_link_add_one_symbol
1622 	     (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1623 	      0, name, FALSE, collect, &bh)))
1624 	return FALSE;
1625       hi = (struct elf_link_hash_entry *) bh;
1626     }
1627   else
1628     {
1629       /* In this case the symbol named SHORTNAME is overriding the
1630 	 indirect symbol we want to add.  We were planning on making
1631 	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1632 	 is the name without a version.  NAME is the fully versioned
1633 	 name, and it is the default version.
1634 
1635 	 Overriding means that we already saw a definition for the
1636 	 symbol SHORTNAME in a regular object, and it is overriding
1637 	 the symbol defined in the dynamic object.
1638 
1639 	 When this happens, we actually want to change NAME, the
1640 	 symbol we just added, to refer to SHORTNAME.  This will cause
1641 	 references to NAME in the shared object to become references
1642 	 to SHORTNAME in the regular object.  This is what we expect
1643 	 when we override a function in a shared object: that the
1644 	 references in the shared object will be mapped to the
1645 	 definition in the regular object.  */
1646 
1647       while (hi->root.type == bfd_link_hash_indirect
1648 	     || hi->root.type == bfd_link_hash_warning)
1649 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1650 
1651       h->root.type = bfd_link_hash_indirect;
1652       h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1653       if (h->def_dynamic)
1654 	{
1655 	  h->def_dynamic = 0;
1656 	  hi->ref_dynamic = 1;
1657 	  if (hi->ref_regular
1658 	      || hi->def_regular)
1659 	    {
1660 	      if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1661 		return FALSE;
1662 	    }
1663 	}
1664 
1665       /* Now set HI to H, so that the following code will set the
1666 	 other fields correctly.  */
1667       hi = h;
1668     }
1669 
1670   /* Check if HI is a warning symbol.  */
1671   if (hi->root.type == bfd_link_hash_warning)
1672     hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1673 
1674   /* If there is a duplicate definition somewhere, then HI may not
1675      point to an indirect symbol.  We will have reported an error to
1676      the user in that case.  */
1677 
1678   if (hi->root.type == bfd_link_hash_indirect)
1679     {
1680       struct elf_link_hash_entry *ht;
1681 
1682       ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1683       (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1684 
1685       /* A reference to the SHORTNAME symbol from a dynamic library
1686 	 will be satisfied by the versioned symbol at runtime.  In
1687 	 effect, we have a reference to the versioned symbol.  */
1688       ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1689       hi->dynamic_def |= ht->dynamic_def;
1690 
1691       /* See if the new flags lead us to realize that the symbol must
1692 	 be dynamic.  */
1693       if (! *dynsym)
1694 	{
1695 	  if (! dynamic)
1696 	    {
1697 	      if (! info->executable
1698 		  || hi->def_dynamic
1699 		  || hi->ref_dynamic)
1700 		*dynsym = TRUE;
1701 	    }
1702 	  else
1703 	    {
1704 	      if (hi->ref_regular)
1705 		*dynsym = TRUE;
1706 	    }
1707 	}
1708     }
1709 
1710   /* We also need to define an indirection from the nondefault version
1711      of the symbol.  */
1712 
1713 nondefault:
1714   len = strlen (name);
1715   shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1716   if (shortname == NULL)
1717     return FALSE;
1718   memcpy (shortname, name, shortlen);
1719   memcpy (shortname + shortlen, p + 1, len - shortlen);
1720 
1721   /* Once again, merge with any existing symbol.  */
1722   type_change_ok = FALSE;
1723   size_change_ok = FALSE;
1724   tmp_sec = sec;
1725   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1726 			      &hi, poldbfd, NULL, NULL, &skip, &override,
1727 			      &type_change_ok, &size_change_ok))
1728     return FALSE;
1729 
1730   if (skip)
1731     return TRUE;
1732 
1733   if (override)
1734     {
1735       /* Here SHORTNAME is a versioned name, so we don't expect to see
1736 	 the type of override we do in the case above unless it is
1737 	 overridden by a versioned definition.  */
1738       if (hi->root.type != bfd_link_hash_defined
1739 	  && hi->root.type != bfd_link_hash_defweak)
1740 	(*_bfd_error_handler)
1741 	  (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1742 	   abfd, shortname);
1743     }
1744   else
1745     {
1746       bh = &hi->root;
1747       if (! (_bfd_generic_link_add_one_symbol
1748 	     (info, abfd, shortname, BSF_INDIRECT,
1749 	      bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1750 	return FALSE;
1751       hi = (struct elf_link_hash_entry *) bh;
1752 
1753       /* If there is a duplicate definition somewhere, then HI may not
1754 	 point to an indirect symbol.  We will have reported an error
1755 	 to the user in that case.  */
1756 
1757       if (hi->root.type == bfd_link_hash_indirect)
1758 	{
1759 	  (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1760 	  h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1761 	  hi->dynamic_def |= h->dynamic_def;
1762 
1763 	  /* See if the new flags lead us to realize that the symbol
1764 	     must be dynamic.  */
1765 	  if (! *dynsym)
1766 	    {
1767 	      if (! dynamic)
1768 		{
1769 		  if (! info->executable
1770 		      || hi->ref_dynamic)
1771 		    *dynsym = TRUE;
1772 		}
1773 	      else
1774 		{
1775 		  if (hi->ref_regular)
1776 		    *dynsym = TRUE;
1777 		}
1778 	    }
1779 	}
1780     }
1781 
1782   return TRUE;
1783 }
1784 
1785 /* This routine is used to export all defined symbols into the dynamic
1786    symbol table.  It is called via elf_link_hash_traverse.  */
1787 
1788 static bfd_boolean
_bfd_elf_export_symbol(struct elf_link_hash_entry * h,void * data)1789 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1790 {
1791   struct elf_info_failed *eif = (struct elf_info_failed *) data;
1792 
1793   /* Ignore indirect symbols.  These are added by the versioning code.  */
1794   if (h->root.type == bfd_link_hash_indirect)
1795     return TRUE;
1796 
1797   /* Ignore this if we won't export it.  */
1798   if (!eif->info->export_dynamic && !h->dynamic)
1799     return TRUE;
1800 
1801   if (h->dynindx == -1
1802       && (h->def_regular || h->ref_regular)
1803       && ! bfd_hide_sym_by_version (eif->info->version_info,
1804 				    h->root.root.string))
1805     {
1806       if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1807 	{
1808 	  eif->failed = TRUE;
1809 	  return FALSE;
1810 	}
1811     }
1812 
1813   return TRUE;
1814 }
1815 
1816 /* Look through the symbols which are defined in other shared
1817    libraries and referenced here.  Update the list of version
1818    dependencies.  This will be put into the .gnu.version_r section.
1819    This function is called via elf_link_hash_traverse.  */
1820 
1821 static bfd_boolean
_bfd_elf_link_find_version_dependencies(struct elf_link_hash_entry * h,void * data)1822 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1823 					 void *data)
1824 {
1825   struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1826   Elf_Internal_Verneed *t;
1827   Elf_Internal_Vernaux *a;
1828   bfd_size_type amt;
1829 
1830   /* We only care about symbols defined in shared objects with version
1831      information.  */
1832   if (!h->def_dynamic
1833       || h->def_regular
1834       || h->dynindx == -1
1835       || h->verinfo.verdef == NULL)
1836     return TRUE;
1837 
1838   /* See if we already know about this version.  */
1839   for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1840        t != NULL;
1841        t = t->vn_nextref)
1842     {
1843       if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1844 	continue;
1845 
1846       for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1847 	if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1848 	  return TRUE;
1849 
1850       break;
1851     }
1852 
1853   /* This is a new version.  Add it to tree we are building.  */
1854 
1855   if (t == NULL)
1856     {
1857       amt = sizeof *t;
1858       t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1859       if (t == NULL)
1860 	{
1861 	  rinfo->failed = TRUE;
1862 	  return FALSE;
1863 	}
1864 
1865       t->vn_bfd = h->verinfo.verdef->vd_bfd;
1866       t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1867       elf_tdata (rinfo->info->output_bfd)->verref = t;
1868     }
1869 
1870   amt = sizeof *a;
1871   a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1872   if (a == NULL)
1873     {
1874       rinfo->failed = TRUE;
1875       return FALSE;
1876     }
1877 
1878   /* Note that we are copying a string pointer here, and testing it
1879      above.  If bfd_elf_string_from_elf_section is ever changed to
1880      discard the string data when low in memory, this will have to be
1881      fixed.  */
1882   a->vna_nodename = h->verinfo.verdef->vd_nodename;
1883 
1884   a->vna_flags = h->verinfo.verdef->vd_flags;
1885   a->vna_nextptr = t->vn_auxptr;
1886 
1887   h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1888   ++rinfo->vers;
1889 
1890   a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1891 
1892   t->vn_auxptr = a;
1893 
1894   return TRUE;
1895 }
1896 
1897 /* Figure out appropriate versions for all the symbols.  We may not
1898    have the version number script until we have read all of the input
1899    files, so until that point we don't know which symbols should be
1900    local.  This function is called via elf_link_hash_traverse.  */
1901 
1902 static bfd_boolean
_bfd_elf_link_assign_sym_version(struct elf_link_hash_entry * h,void * data)1903 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1904 {
1905   struct elf_info_failed *sinfo;
1906   struct bfd_link_info *info;
1907   const struct elf_backend_data *bed;
1908   struct elf_info_failed eif;
1909   char *p;
1910   bfd_size_type amt;
1911 
1912   sinfo = (struct elf_info_failed *) data;
1913   info = sinfo->info;
1914 
1915   /* Fix the symbol flags.  */
1916   eif.failed = FALSE;
1917   eif.info = info;
1918   if (! _bfd_elf_fix_symbol_flags (h, &eif))
1919     {
1920       if (eif.failed)
1921 	sinfo->failed = TRUE;
1922       return FALSE;
1923     }
1924 
1925   /* We only need version numbers for symbols defined in regular
1926      objects.  */
1927   if (!h->def_regular)
1928     return TRUE;
1929 
1930   bed = get_elf_backend_data (info->output_bfd);
1931   p = strchr (h->root.root.string, ELF_VER_CHR);
1932   if (p != NULL && h->verinfo.vertree == NULL)
1933     {
1934       struct bfd_elf_version_tree *t;
1935       bfd_boolean hidden;
1936 
1937       hidden = TRUE;
1938 
1939       /* There are two consecutive ELF_VER_CHR characters if this is
1940 	 not a hidden symbol.  */
1941       ++p;
1942       if (*p == ELF_VER_CHR)
1943 	{
1944 	  hidden = FALSE;
1945 	  ++p;
1946 	}
1947 
1948       /* If there is no version string, we can just return out.  */
1949       if (*p == '\0')
1950 	{
1951 	  if (hidden)
1952 	    h->hidden = 1;
1953 	  return TRUE;
1954 	}
1955 
1956       /* Look for the version.  If we find it, it is no longer weak.  */
1957       for (t = sinfo->info->version_info; t != NULL; t = t->next)
1958 	{
1959 	  if (strcmp (t->name, p) == 0)
1960 	    {
1961 	      size_t len;
1962 	      char *alc;
1963 	      struct bfd_elf_version_expr *d;
1964 
1965 	      len = p - h->root.root.string;
1966 	      alc = (char *) bfd_malloc (len);
1967 	      if (alc == NULL)
1968 		{
1969 		  sinfo->failed = TRUE;
1970 		  return FALSE;
1971 		}
1972 	      memcpy (alc, h->root.root.string, len - 1);
1973 	      alc[len - 1] = '\0';
1974 	      if (alc[len - 2] == ELF_VER_CHR)
1975 		alc[len - 2] = '\0';
1976 
1977 	      h->verinfo.vertree = t;
1978 	      t->used = TRUE;
1979 	      d = NULL;
1980 
1981 	      if (t->globals.list != NULL)
1982 		d = (*t->match) (&t->globals, NULL, alc);
1983 
1984 	      /* See if there is anything to force this symbol to
1985 		 local scope.  */
1986 	      if (d == NULL && t->locals.list != NULL)
1987 		{
1988 		  d = (*t->match) (&t->locals, NULL, alc);
1989 		  if (d != NULL
1990 		      && h->dynindx != -1
1991 		      && ! info->export_dynamic)
1992 		    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1993 		}
1994 
1995 	      free (alc);
1996 	      break;
1997 	    }
1998 	}
1999 
2000       /* If we are building an application, we need to create a
2001 	 version node for this version.  */
2002       if (t == NULL && info->executable)
2003 	{
2004 	  struct bfd_elf_version_tree **pp;
2005 	  int version_index;
2006 
2007 	  /* If we aren't going to export this symbol, we don't need
2008 	     to worry about it.  */
2009 	  if (h->dynindx == -1)
2010 	    return TRUE;
2011 
2012 	  amt = sizeof *t;
2013 	  t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2014 	  if (t == NULL)
2015 	    {
2016 	      sinfo->failed = TRUE;
2017 	      return FALSE;
2018 	    }
2019 
2020 	  t->name = p;
2021 	  t->name_indx = (unsigned int) -1;
2022 	  t->used = TRUE;
2023 
2024 	  version_index = 1;
2025 	  /* Don't count anonymous version tag.  */
2026 	  if (sinfo->info->version_info != NULL
2027 	      && sinfo->info->version_info->vernum == 0)
2028 	    version_index = 0;
2029 	  for (pp = &sinfo->info->version_info;
2030 	       *pp != NULL;
2031 	       pp = &(*pp)->next)
2032 	    ++version_index;
2033 	  t->vernum = version_index;
2034 
2035 	  *pp = t;
2036 
2037 	  h->verinfo.vertree = t;
2038 	}
2039       else if (t == NULL)
2040 	{
2041 	  /* We could not find the version for a symbol when
2042 	     generating a shared archive.  Return an error.  */
2043 	  (*_bfd_error_handler)
2044 	    (_("%B: version node not found for symbol %s"),
2045 	     info->output_bfd, h->root.root.string);
2046 	  bfd_set_error (bfd_error_bad_value);
2047 	  sinfo->failed = TRUE;
2048 	  return FALSE;
2049 	}
2050 
2051       if (hidden)
2052 	h->hidden = 1;
2053     }
2054 
2055   /* If we don't have a version for this symbol, see if we can find
2056      something.  */
2057   if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2058     {
2059       bfd_boolean hide;
2060 
2061       h->verinfo.vertree
2062 	= bfd_find_version_for_sym (sinfo->info->version_info,
2063 				    h->root.root.string, &hide);
2064       if (h->verinfo.vertree != NULL && hide)
2065 	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
2066     }
2067 
2068   return TRUE;
2069 }
2070 
2071 /* Read and swap the relocs from the section indicated by SHDR.  This
2072    may be either a REL or a RELA section.  The relocations are
2073    translated into RELA relocations and stored in INTERNAL_RELOCS,
2074    which should have already been allocated to contain enough space.
2075    The EXTERNAL_RELOCS are a buffer where the external form of the
2076    relocations should be stored.
2077 
2078    Returns FALSE if something goes wrong.  */
2079 
2080 static bfd_boolean
elf_link_read_relocs_from_section(bfd * abfd,asection * sec,Elf_Internal_Shdr * shdr,void * external_relocs,Elf_Internal_Rela * internal_relocs)2081 elf_link_read_relocs_from_section (bfd *abfd,
2082 				   asection *sec,
2083 				   Elf_Internal_Shdr *shdr,
2084 				   void *external_relocs,
2085 				   Elf_Internal_Rela *internal_relocs)
2086 {
2087   const struct elf_backend_data *bed;
2088   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2089   const bfd_byte *erela;
2090   const bfd_byte *erelaend;
2091   Elf_Internal_Rela *irela;
2092   Elf_Internal_Shdr *symtab_hdr;
2093   size_t nsyms;
2094 
2095   /* Position ourselves at the start of the section.  */
2096   if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2097     return FALSE;
2098 
2099   /* Read the relocations.  */
2100   if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2101     return FALSE;
2102 
2103   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2104   nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2105 
2106   bed = get_elf_backend_data (abfd);
2107 
2108   /* Convert the external relocations to the internal format.  */
2109   if (shdr->sh_entsize == bed->s->sizeof_rel)
2110     swap_in = bed->s->swap_reloc_in;
2111   else if (shdr->sh_entsize == bed->s->sizeof_rela)
2112     swap_in = bed->s->swap_reloca_in;
2113   else
2114     {
2115       bfd_set_error (bfd_error_wrong_format);
2116       return FALSE;
2117     }
2118 
2119   erela = (const bfd_byte *) external_relocs;
2120   erelaend = erela + shdr->sh_size;
2121   irela = internal_relocs;
2122   while (erela < erelaend)
2123     {
2124       bfd_vma r_symndx;
2125 
2126       (*swap_in) (abfd, erela, irela);
2127       r_symndx = ELF32_R_SYM (irela->r_info);
2128       if (bed->s->arch_size == 64)
2129 	r_symndx >>= 24;
2130       if (nsyms > 0)
2131 	{
2132 	  if ((size_t) r_symndx >= nsyms)
2133 	    {
2134 	      (*_bfd_error_handler)
2135 		(_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2136 		   " for offset 0x%lx in section `%A'"),
2137 		 abfd, sec,
2138 		 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2139 	      bfd_set_error (bfd_error_bad_value);
2140 	      return FALSE;
2141 	    }
2142 	}
2143       else if (r_symndx != STN_UNDEF)
2144 	{
2145 	  (*_bfd_error_handler)
2146 	    (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2147 	       " when the object file has no symbol table"),
2148 	     abfd, sec,
2149 	     (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2150 	  bfd_set_error (bfd_error_bad_value);
2151 	  return FALSE;
2152 	}
2153       irela += bed->s->int_rels_per_ext_rel;
2154       erela += shdr->sh_entsize;
2155     }
2156 
2157   return TRUE;
2158 }
2159 
2160 /* Read and swap the relocs for a section O.  They may have been
2161    cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2162    not NULL, they are used as buffers to read into.  They are known to
2163    be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2164    the return value is allocated using either malloc or bfd_alloc,
2165    according to the KEEP_MEMORY argument.  If O has two relocation
2166    sections (both REL and RELA relocations), then the REL_HDR
2167    relocations will appear first in INTERNAL_RELOCS, followed by the
2168    RELA_HDR relocations.  */
2169 
2170 Elf_Internal_Rela *
_bfd_elf_link_read_relocs(bfd * abfd,asection * o,void * external_relocs,Elf_Internal_Rela * internal_relocs,bfd_boolean keep_memory)2171 _bfd_elf_link_read_relocs (bfd *abfd,
2172 			   asection *o,
2173 			   void *external_relocs,
2174 			   Elf_Internal_Rela *internal_relocs,
2175 			   bfd_boolean keep_memory)
2176 {
2177   void *alloc1 = NULL;
2178   Elf_Internal_Rela *alloc2 = NULL;
2179   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2180   struct bfd_elf_section_data *esdo = elf_section_data (o);
2181   Elf_Internal_Rela *internal_rela_relocs;
2182 
2183   if (esdo->relocs != NULL)
2184     return esdo->relocs;
2185 
2186   if (o->reloc_count == 0)
2187     return NULL;
2188 
2189   if (internal_relocs == NULL)
2190     {
2191       bfd_size_type size;
2192 
2193       size = o->reloc_count;
2194       size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2195       if (keep_memory)
2196 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2197       else
2198 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2199       if (internal_relocs == NULL)
2200 	goto error_return;
2201     }
2202 
2203   if (external_relocs == NULL)
2204     {
2205       bfd_size_type size = 0;
2206 
2207       if (esdo->rel.hdr)
2208 	size += esdo->rel.hdr->sh_size;
2209       if (esdo->rela.hdr)
2210 	size += esdo->rela.hdr->sh_size;
2211 
2212       alloc1 = bfd_malloc (size);
2213       if (alloc1 == NULL)
2214 	goto error_return;
2215       external_relocs = alloc1;
2216     }
2217 
2218   internal_rela_relocs = internal_relocs;
2219   if (esdo->rel.hdr)
2220     {
2221       if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2222 					      external_relocs,
2223 					      internal_relocs))
2224 	goto error_return;
2225       external_relocs = (((bfd_byte *) external_relocs)
2226 			 + esdo->rel.hdr->sh_size);
2227       internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2228 			       * bed->s->int_rels_per_ext_rel);
2229     }
2230 
2231   if (esdo->rela.hdr
2232       && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2233 					      external_relocs,
2234 					      internal_rela_relocs)))
2235     goto error_return;
2236 
2237   /* Cache the results for next time, if we can.  */
2238   if (keep_memory)
2239     esdo->relocs = internal_relocs;
2240 
2241   if (alloc1 != NULL)
2242     free (alloc1);
2243 
2244   /* Don't free alloc2, since if it was allocated we are passing it
2245      back (under the name of internal_relocs).  */
2246 
2247   return internal_relocs;
2248 
2249  error_return:
2250   if (alloc1 != NULL)
2251     free (alloc1);
2252   if (alloc2 != NULL)
2253     {
2254       if (keep_memory)
2255 	bfd_release (abfd, alloc2);
2256       else
2257 	free (alloc2);
2258     }
2259   return NULL;
2260 }
2261 
2262 /* Compute the size of, and allocate space for, REL_HDR which is the
2263    section header for a section containing relocations for O.  */
2264 
2265 static bfd_boolean
_bfd_elf_link_size_reloc_section(bfd * abfd,struct bfd_elf_section_reloc_data * reldata)2266 _bfd_elf_link_size_reloc_section (bfd *abfd,
2267 				  struct bfd_elf_section_reloc_data *reldata)
2268 {
2269   Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2270 
2271   /* That allows us to calculate the size of the section.  */
2272   rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2273 
2274   /* The contents field must last into write_object_contents, so we
2275      allocate it with bfd_alloc rather than malloc.  Also since we
2276      cannot be sure that the contents will actually be filled in,
2277      we zero the allocated space.  */
2278   rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2279   if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2280     return FALSE;
2281 
2282   if (reldata->hashes == NULL && reldata->count)
2283     {
2284       struct elf_link_hash_entry **p;
2285 
2286       p = (struct elf_link_hash_entry **)
2287           bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2288       if (p == NULL)
2289 	return FALSE;
2290 
2291       reldata->hashes = p;
2292     }
2293 
2294   return TRUE;
2295 }
2296 
2297 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2298    originated from the section given by INPUT_REL_HDR) to the
2299    OUTPUT_BFD.  */
2300 
2301 bfd_boolean
_bfd_elf_link_output_relocs(bfd * output_bfd,asection * input_section,Elf_Internal_Shdr * input_rel_hdr,Elf_Internal_Rela * internal_relocs,struct elf_link_hash_entry ** rel_hash ATTRIBUTE_UNUSED)2302 _bfd_elf_link_output_relocs (bfd *output_bfd,
2303 			     asection *input_section,
2304 			     Elf_Internal_Shdr *input_rel_hdr,
2305 			     Elf_Internal_Rela *internal_relocs,
2306 			     struct elf_link_hash_entry **rel_hash
2307 			       ATTRIBUTE_UNUSED)
2308 {
2309   Elf_Internal_Rela *irela;
2310   Elf_Internal_Rela *irelaend;
2311   bfd_byte *erel;
2312   struct bfd_elf_section_reloc_data *output_reldata;
2313   asection *output_section;
2314   const struct elf_backend_data *bed;
2315   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2316   struct bfd_elf_section_data *esdo;
2317 
2318   output_section = input_section->output_section;
2319 
2320   bed = get_elf_backend_data (output_bfd);
2321   esdo = elf_section_data (output_section);
2322   if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2323     {
2324       output_reldata = &esdo->rel;
2325       swap_out = bed->s->swap_reloc_out;
2326     }
2327   else if (esdo->rela.hdr
2328 	   && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2329     {
2330       output_reldata = &esdo->rela;
2331       swap_out = bed->s->swap_reloca_out;
2332     }
2333   else
2334     {
2335       (*_bfd_error_handler)
2336 	(_("%B: relocation size mismatch in %B section %A"),
2337 	 output_bfd, input_section->owner, input_section);
2338       bfd_set_error (bfd_error_wrong_format);
2339       return FALSE;
2340     }
2341 
2342   erel = output_reldata->hdr->contents;
2343   erel += output_reldata->count * input_rel_hdr->sh_entsize;
2344   irela = internal_relocs;
2345   irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2346 		      * bed->s->int_rels_per_ext_rel);
2347   while (irela < irelaend)
2348     {
2349       (*swap_out) (output_bfd, irela, erel);
2350       irela += bed->s->int_rels_per_ext_rel;
2351       erel += input_rel_hdr->sh_entsize;
2352     }
2353 
2354   /* Bump the counter, so that we know where to add the next set of
2355      relocations.  */
2356   output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2357 
2358   return TRUE;
2359 }
2360 
2361 /* Make weak undefined symbols in PIE dynamic.  */
2362 
2363 bfd_boolean
_bfd_elf_link_hash_fixup_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)2364 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2365 				 struct elf_link_hash_entry *h)
2366 {
2367   if (info->pie
2368       && h->dynindx == -1
2369       && h->root.type == bfd_link_hash_undefweak)
2370     return bfd_elf_link_record_dynamic_symbol (info, h);
2371 
2372   return TRUE;
2373 }
2374 
2375 /* Fix up the flags for a symbol.  This handles various cases which
2376    can only be fixed after all the input files are seen.  This is
2377    currently called by both adjust_dynamic_symbol and
2378    assign_sym_version, which is unnecessary but perhaps more robust in
2379    the face of future changes.  */
2380 
2381 static bfd_boolean
_bfd_elf_fix_symbol_flags(struct elf_link_hash_entry * h,struct elf_info_failed * eif)2382 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2383 			   struct elf_info_failed *eif)
2384 {
2385   const struct elf_backend_data *bed;
2386 
2387   /* If this symbol was mentioned in a non-ELF file, try to set
2388      DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2389      permit a non-ELF file to correctly refer to a symbol defined in
2390      an ELF dynamic object.  */
2391   if (h->non_elf)
2392     {
2393       while (h->root.type == bfd_link_hash_indirect)
2394 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2395 
2396       if (h->root.type != bfd_link_hash_defined
2397 	  && h->root.type != bfd_link_hash_defweak)
2398 	{
2399 	  h->ref_regular = 1;
2400 	  h->ref_regular_nonweak = 1;
2401 	}
2402       else
2403 	{
2404 	  if (h->root.u.def.section->owner != NULL
2405 	      && (bfd_get_flavour (h->root.u.def.section->owner)
2406 		  == bfd_target_elf_flavour))
2407 	    {
2408 	      h->ref_regular = 1;
2409 	      h->ref_regular_nonweak = 1;
2410 	    }
2411 	  else
2412 	    h->def_regular = 1;
2413 	}
2414 
2415       if (h->dynindx == -1
2416 	  && (h->def_dynamic
2417 	      || h->ref_dynamic))
2418 	{
2419 	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2420 	    {
2421 	      eif->failed = TRUE;
2422 	      return FALSE;
2423 	    }
2424 	}
2425     }
2426   else
2427     {
2428       /* Unfortunately, NON_ELF is only correct if the symbol
2429 	 was first seen in a non-ELF file.  Fortunately, if the symbol
2430 	 was first seen in an ELF file, we're probably OK unless the
2431 	 symbol was defined in a non-ELF file.  Catch that case here.
2432 	 FIXME: We're still in trouble if the symbol was first seen in
2433 	 a dynamic object, and then later in a non-ELF regular object.  */
2434       if ((h->root.type == bfd_link_hash_defined
2435 	   || h->root.type == bfd_link_hash_defweak)
2436 	  && !h->def_regular
2437 	  && (h->root.u.def.section->owner != NULL
2438 	      ? (bfd_get_flavour (h->root.u.def.section->owner)
2439 		 != bfd_target_elf_flavour)
2440 	      : (bfd_is_abs_section (h->root.u.def.section)
2441 		 && !h->def_dynamic)))
2442 	h->def_regular = 1;
2443     }
2444 
2445   /* Backend specific symbol fixup.  */
2446   bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2447   if (bed->elf_backend_fixup_symbol
2448       && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2449     return FALSE;
2450 
2451   /* If this is a final link, and the symbol was defined as a common
2452      symbol in a regular object file, and there was no definition in
2453      any dynamic object, then the linker will have allocated space for
2454      the symbol in a common section but the DEF_REGULAR
2455      flag will not have been set.  */
2456   if (h->root.type == bfd_link_hash_defined
2457       && !h->def_regular
2458       && h->ref_regular
2459       && !h->def_dynamic
2460       && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2461     h->def_regular = 1;
2462 
2463   /* If -Bsymbolic was used (which means to bind references to global
2464      symbols to the definition within the shared object), and this
2465      symbol was defined in a regular object, then it actually doesn't
2466      need a PLT entry.  Likewise, if the symbol has non-default
2467      visibility.  If the symbol has hidden or internal visibility, we
2468      will force it local.  */
2469   if (h->needs_plt
2470       && eif->info->shared
2471       && is_elf_hash_table (eif->info->hash)
2472       && (SYMBOLIC_BIND (eif->info, h)
2473 	  || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2474       && h->def_regular)
2475     {
2476       bfd_boolean force_local;
2477 
2478       force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2479 		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2480       (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2481     }
2482 
2483   /* If a weak undefined symbol has non-default visibility, we also
2484      hide it from the dynamic linker.  */
2485   if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2486       && h->root.type == bfd_link_hash_undefweak)
2487     (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2488 
2489   /* If this is a weak defined symbol in a dynamic object, and we know
2490      the real definition in the dynamic object, copy interesting flags
2491      over to the real definition.  */
2492   if (h->u.weakdef != NULL)
2493     {
2494       /* If the real definition is defined by a regular object file,
2495 	 don't do anything special.  See the longer description in
2496 	 _bfd_elf_adjust_dynamic_symbol, below.  */
2497       if (h->u.weakdef->def_regular)
2498 	h->u.weakdef = NULL;
2499       else
2500 	{
2501 	  struct elf_link_hash_entry *weakdef = h->u.weakdef;
2502 
2503 	  while (h->root.type == bfd_link_hash_indirect)
2504 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2505 
2506 	  BFD_ASSERT (h->root.type == bfd_link_hash_defined
2507 		      || h->root.type == bfd_link_hash_defweak);
2508 	  BFD_ASSERT (weakdef->def_dynamic);
2509 	  BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2510 		      || weakdef->root.type == bfd_link_hash_defweak);
2511 	  (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2512 	}
2513     }
2514 
2515   return TRUE;
2516 }
2517 
2518 /* Make the backend pick a good value for a dynamic symbol.  This is
2519    called via elf_link_hash_traverse, and also calls itself
2520    recursively.  */
2521 
2522 static bfd_boolean
_bfd_elf_adjust_dynamic_symbol(struct elf_link_hash_entry * h,void * data)2523 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2524 {
2525   struct elf_info_failed *eif = (struct elf_info_failed *) data;
2526   bfd *dynobj;
2527   const struct elf_backend_data *bed;
2528 
2529   if (! is_elf_hash_table (eif->info->hash))
2530     return FALSE;
2531 
2532   /* Ignore indirect symbols.  These are added by the versioning code.  */
2533   if (h->root.type == bfd_link_hash_indirect)
2534     return TRUE;
2535 
2536   /* Fix the symbol flags.  */
2537   if (! _bfd_elf_fix_symbol_flags (h, eif))
2538     return FALSE;
2539 
2540   /* If this symbol does not require a PLT entry, and it is not
2541      defined by a dynamic object, or is not referenced by a regular
2542      object, ignore it.  We do have to handle a weak defined symbol,
2543      even if no regular object refers to it, if we decided to add it
2544      to the dynamic symbol table.  FIXME: Do we normally need to worry
2545      about symbols which are defined by one dynamic object and
2546      referenced by another one?  */
2547   if (!h->needs_plt
2548       && h->type != STT_GNU_IFUNC
2549       && (h->def_regular
2550 	  || !h->def_dynamic
2551 	  || (!h->ref_regular
2552 	      && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2553     {
2554       h->plt = elf_hash_table (eif->info)->init_plt_offset;
2555       return TRUE;
2556     }
2557 
2558   /* If we've already adjusted this symbol, don't do it again.  This
2559      can happen via a recursive call.  */
2560   if (h->dynamic_adjusted)
2561     return TRUE;
2562 
2563   /* Don't look at this symbol again.  Note that we must set this
2564      after checking the above conditions, because we may look at a
2565      symbol once, decide not to do anything, and then get called
2566      recursively later after REF_REGULAR is set below.  */
2567   h->dynamic_adjusted = 1;
2568 
2569   /* If this is a weak definition, and we know a real definition, and
2570      the real symbol is not itself defined by a regular object file,
2571      then get a good value for the real definition.  We handle the
2572      real symbol first, for the convenience of the backend routine.
2573 
2574      Note that there is a confusing case here.  If the real definition
2575      is defined by a regular object file, we don't get the real symbol
2576      from the dynamic object, but we do get the weak symbol.  If the
2577      processor backend uses a COPY reloc, then if some routine in the
2578      dynamic object changes the real symbol, we will not see that
2579      change in the corresponding weak symbol.  This is the way other
2580      ELF linkers work as well, and seems to be a result of the shared
2581      library model.
2582 
2583      I will clarify this issue.  Most SVR4 shared libraries define the
2584      variable _timezone and define timezone as a weak synonym.  The
2585      tzset call changes _timezone.  If you write
2586        extern int timezone;
2587        int _timezone = 5;
2588        int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2589      you might expect that, since timezone is a synonym for _timezone,
2590      the same number will print both times.  However, if the processor
2591      backend uses a COPY reloc, then actually timezone will be copied
2592      into your process image, and, since you define _timezone
2593      yourself, _timezone will not.  Thus timezone and _timezone will
2594      wind up at different memory locations.  The tzset call will set
2595      _timezone, leaving timezone unchanged.  */
2596 
2597   if (h->u.weakdef != NULL)
2598     {
2599       /* If we get to this point, there is an implicit reference to
2600 	 H->U.WEAKDEF by a regular object file via the weak symbol H.  */
2601       h->u.weakdef->ref_regular = 1;
2602 
2603       /* Ensure that the backend adjust_dynamic_symbol function sees
2604 	 H->U.WEAKDEF before H by recursively calling ourselves.  */
2605       if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2606 	return FALSE;
2607     }
2608 
2609   /* If a symbol has no type and no size and does not require a PLT
2610      entry, then we are probably about to do the wrong thing here: we
2611      are probably going to create a COPY reloc for an empty object.
2612      This case can arise when a shared object is built with assembly
2613      code, and the assembly code fails to set the symbol type.  */
2614   if (h->size == 0
2615       && h->type == STT_NOTYPE
2616       && !h->needs_plt)
2617     (*_bfd_error_handler)
2618       (_("warning: type and size of dynamic symbol `%s' are not defined"),
2619        h->root.root.string);
2620 
2621   dynobj = elf_hash_table (eif->info)->dynobj;
2622   bed = get_elf_backend_data (dynobj);
2623 
2624   if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2625     {
2626       eif->failed = TRUE;
2627       return FALSE;
2628     }
2629 
2630   return TRUE;
2631 }
2632 
2633 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2634    DYNBSS.  */
2635 
2636 bfd_boolean
_bfd_elf_adjust_dynamic_copy(struct elf_link_hash_entry * h,asection * dynbss)2637 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2638 			      asection *dynbss)
2639 {
2640   unsigned int power_of_two;
2641   bfd_vma mask;
2642   asection *sec = h->root.u.def.section;
2643 
2644   /* The section aligment of definition is the maximum alignment
2645      requirement of symbols defined in the section.  Since we don't
2646      know the symbol alignment requirement, we start with the
2647      maximum alignment and check low bits of the symbol address
2648      for the minimum alignment.  */
2649   power_of_two = bfd_get_section_alignment (sec->owner, sec);
2650   mask = ((bfd_vma) 1 << power_of_two) - 1;
2651   while ((h->root.u.def.value & mask) != 0)
2652     {
2653        mask >>= 1;
2654        --power_of_two;
2655     }
2656 
2657   if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2658 						dynbss))
2659     {
2660       /* Adjust the section alignment if needed.  */
2661       if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2662 				       power_of_two))
2663 	return FALSE;
2664     }
2665 
2666   /* We make sure that the symbol will be aligned properly.  */
2667   dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2668 
2669   /* Define the symbol as being at this point in DYNBSS.  */
2670   h->root.u.def.section = dynbss;
2671   h->root.u.def.value = dynbss->size;
2672 
2673   /* Increment the size of DYNBSS to make room for the symbol.  */
2674   dynbss->size += h->size;
2675 
2676   return TRUE;
2677 }
2678 
2679 /* Adjust all external symbols pointing into SEC_MERGE sections
2680    to reflect the object merging within the sections.  */
2681 
2682 static bfd_boolean
_bfd_elf_link_sec_merge_syms(struct elf_link_hash_entry * h,void * data)2683 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2684 {
2685   asection *sec;
2686 
2687   if ((h->root.type == bfd_link_hash_defined
2688        || h->root.type == bfd_link_hash_defweak)
2689       && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2690       && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2691     {
2692       bfd *output_bfd = (bfd *) data;
2693 
2694       h->root.u.def.value =
2695 	_bfd_merged_section_offset (output_bfd,
2696 				    &h->root.u.def.section,
2697 				    elf_section_data (sec)->sec_info,
2698 				    h->root.u.def.value);
2699     }
2700 
2701   return TRUE;
2702 }
2703 
2704 /* Returns false if the symbol referred to by H should be considered
2705    to resolve local to the current module, and true if it should be
2706    considered to bind dynamically.  */
2707 
2708 bfd_boolean
_bfd_elf_dynamic_symbol_p(struct elf_link_hash_entry * h,struct bfd_link_info * info,bfd_boolean not_local_protected)2709 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2710 			   struct bfd_link_info *info,
2711 			   bfd_boolean not_local_protected)
2712 {
2713   bfd_boolean binding_stays_local_p;
2714   const struct elf_backend_data *bed;
2715   struct elf_link_hash_table *hash_table;
2716 
2717   if (h == NULL)
2718     return FALSE;
2719 
2720   while (h->root.type == bfd_link_hash_indirect
2721 	 || h->root.type == bfd_link_hash_warning)
2722     h = (struct elf_link_hash_entry *) h->root.u.i.link;
2723 
2724   /* If it was forced local, then clearly it's not dynamic.  */
2725   if (h->dynindx == -1)
2726     return FALSE;
2727   if (h->forced_local)
2728     return FALSE;
2729 
2730   /* Identify the cases where name binding rules say that a
2731      visible symbol resolves locally.  */
2732   binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2733 
2734   switch (ELF_ST_VISIBILITY (h->other))
2735     {
2736     case STV_INTERNAL:
2737     case STV_HIDDEN:
2738       return FALSE;
2739 
2740     case STV_PROTECTED:
2741       hash_table = elf_hash_table (info);
2742       if (!is_elf_hash_table (hash_table))
2743 	return FALSE;
2744 
2745       bed = get_elf_backend_data (hash_table->dynobj);
2746 
2747       /* Proper resolution for function pointer equality may require
2748 	 that these symbols perhaps be resolved dynamically, even though
2749 	 we should be resolving them to the current module.  */
2750       if (!not_local_protected || !bed->is_function_type (h->type))
2751 	binding_stays_local_p = TRUE;
2752       break;
2753 
2754     default:
2755       break;
2756     }
2757 
2758   /* If it isn't defined locally, then clearly it's dynamic.  */
2759   if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2760     return TRUE;
2761 
2762   /* Otherwise, the symbol is dynamic if binding rules don't tell
2763      us that it remains local.  */
2764   return !binding_stays_local_p;
2765 }
2766 
2767 /* Return true if the symbol referred to by H should be considered
2768    to resolve local to the current module, and false otherwise.  Differs
2769    from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2770    undefined symbols.  The two functions are virtually identical except
2771    for the place where forced_local and dynindx == -1 are tested.  If
2772    either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2773    the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2774    the symbol is local only for defined symbols.
2775    It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2776    !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2777    treatment of undefined weak symbols.  For those that do not make
2778    undefined weak symbols dynamic, both functions may return false.  */
2779 
2780 bfd_boolean
_bfd_elf_symbol_refs_local_p(struct elf_link_hash_entry * h,struct bfd_link_info * info,bfd_boolean local_protected)2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 			      struct bfd_link_info *info,
2783 			      bfd_boolean local_protected)
2784 {
2785   const struct elf_backend_data *bed;
2786   struct elf_link_hash_table *hash_table;
2787 
2788   /* If it's a local sym, of course we resolve locally.  */
2789   if (h == NULL)
2790     return TRUE;
2791 
2792   /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
2793   if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2794       || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2795     return TRUE;
2796 
2797   /* Common symbols that become definitions don't get the DEF_REGULAR
2798      flag set, so test it first, and don't bail out.  */
2799   if (ELF_COMMON_DEF_P (h))
2800     /* Do nothing.  */;
2801   /* If we don't have a definition in a regular file, then we can't
2802      resolve locally.  The sym is either undefined or dynamic.  */
2803   else if (!h->def_regular)
2804     return FALSE;
2805 
2806   /* Forced local symbols resolve locally.  */
2807   if (h->forced_local)
2808     return TRUE;
2809 
2810   /* As do non-dynamic symbols.  */
2811   if (h->dynindx == -1)
2812     return TRUE;
2813 
2814   /* At this point, we know the symbol is defined and dynamic.  In an
2815      executable it must resolve locally, likewise when building symbolic
2816      shared libraries.  */
2817   if (info->executable || SYMBOLIC_BIND (info, h))
2818     return TRUE;
2819 
2820   /* Now deal with defined dynamic symbols in shared libraries.  Ones
2821      with default visibility might not resolve locally.  */
2822   if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2823     return FALSE;
2824 
2825   hash_table = elf_hash_table (info);
2826   if (!is_elf_hash_table (hash_table))
2827     return TRUE;
2828 
2829   bed = get_elf_backend_data (hash_table->dynobj);
2830 
2831   /* STV_PROTECTED non-function symbols are local.  */
2832   if (!bed->is_function_type (h->type))
2833     return TRUE;
2834 
2835   /* Function pointer equality tests may require that STV_PROTECTED
2836      symbols be treated as dynamic symbols.  If the address of a
2837      function not defined in an executable is set to that function's
2838      plt entry in the executable, then the address of the function in
2839      a shared library must also be the plt entry in the executable.  */
2840   return local_protected;
2841 }
2842 
2843 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2844    aligned.  Returns the first TLS output section.  */
2845 
2846 struct bfd_section *
_bfd_elf_tls_setup(bfd * obfd,struct bfd_link_info * info)2847 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2848 {
2849   struct bfd_section *sec, *tls;
2850   unsigned int align = 0;
2851 
2852   for (sec = obfd->sections; sec != NULL; sec = sec->next)
2853     if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2854       break;
2855   tls = sec;
2856 
2857   for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2858     if (sec->alignment_power > align)
2859       align = sec->alignment_power;
2860 
2861   elf_hash_table (info)->tls_sec = tls;
2862 
2863   /* Ensure the alignment of the first section is the largest alignment,
2864      so that the tls segment starts aligned.  */
2865   if (tls != NULL)
2866     tls->alignment_power = align;
2867 
2868   return tls;
2869 }
2870 
2871 /* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
2872 static bfd_boolean
is_global_data_symbol_definition(bfd * abfd ATTRIBUTE_UNUSED,Elf_Internal_Sym * sym)2873 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2874 				  Elf_Internal_Sym *sym)
2875 {
2876   const struct elf_backend_data *bed;
2877 
2878   /* Local symbols do not count, but target specific ones might.  */
2879   if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2880       && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2881     return FALSE;
2882 
2883   bed = get_elf_backend_data (abfd);
2884   /* Function symbols do not count.  */
2885   if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2886     return FALSE;
2887 
2888   /* If the section is undefined, then so is the symbol.  */
2889   if (sym->st_shndx == SHN_UNDEF)
2890     return FALSE;
2891 
2892   /* If the symbol is defined in the common section, then
2893      it is a common definition and so does not count.  */
2894   if (bed->common_definition (sym))
2895     return FALSE;
2896 
2897   /* If the symbol is in a target specific section then we
2898      must rely upon the backend to tell us what it is.  */
2899   if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2900     /* FIXME - this function is not coded yet:
2901 
2902        return _bfd_is_global_symbol_definition (abfd, sym);
2903 
2904        Instead for now assume that the definition is not global,
2905        Even if this is wrong, at least the linker will behave
2906        in the same way that it used to do.  */
2907     return FALSE;
2908 
2909   return TRUE;
2910 }
2911 
2912 /* Search the symbol table of the archive element of the archive ABFD
2913    whose archive map contains a mention of SYMDEF, and determine if
2914    the symbol is defined in this element.  */
2915 static bfd_boolean
elf_link_is_defined_archive_symbol(bfd * abfd,carsym * symdef)2916 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2917 {
2918   Elf_Internal_Shdr * hdr;
2919   bfd_size_type symcount;
2920   bfd_size_type extsymcount;
2921   bfd_size_type extsymoff;
2922   Elf_Internal_Sym *isymbuf;
2923   Elf_Internal_Sym *isym;
2924   Elf_Internal_Sym *isymend;
2925   bfd_boolean result;
2926 
2927   abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2928   if (abfd == NULL)
2929     return FALSE;
2930 
2931   if (! bfd_check_format (abfd, bfd_object))
2932     return FALSE;
2933 
2934   /* Select the appropriate symbol table.  */
2935   if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2936     hdr = &elf_tdata (abfd)->symtab_hdr;
2937   else
2938     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2939 
2940   symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2941 
2942   /* The sh_info field of the symtab header tells us where the
2943      external symbols start.  We don't care about the local symbols.  */
2944   if (elf_bad_symtab (abfd))
2945     {
2946       extsymcount = symcount;
2947       extsymoff = 0;
2948     }
2949   else
2950     {
2951       extsymcount = symcount - hdr->sh_info;
2952       extsymoff = hdr->sh_info;
2953     }
2954 
2955   if (extsymcount == 0)
2956     return FALSE;
2957 
2958   /* Read in the symbol table.  */
2959   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2960 				  NULL, NULL, NULL);
2961   if (isymbuf == NULL)
2962     return FALSE;
2963 
2964   /* Scan the symbol table looking for SYMDEF.  */
2965   result = FALSE;
2966   for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2967     {
2968       const char *name;
2969 
2970       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2971 					      isym->st_name);
2972       if (name == NULL)
2973 	break;
2974 
2975       if (strcmp (name, symdef->name) == 0)
2976 	{
2977 	  result = is_global_data_symbol_definition (abfd, isym);
2978 	  break;
2979 	}
2980     }
2981 
2982   free (isymbuf);
2983 
2984   return result;
2985 }
2986 
2987 /* Add an entry to the .dynamic table.  */
2988 
2989 bfd_boolean
_bfd_elf_add_dynamic_entry(struct bfd_link_info * info,bfd_vma tag,bfd_vma val)2990 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2991 			    bfd_vma tag,
2992 			    bfd_vma val)
2993 {
2994   struct elf_link_hash_table *hash_table;
2995   const struct elf_backend_data *bed;
2996   asection *s;
2997   bfd_size_type newsize;
2998   bfd_byte *newcontents;
2999   Elf_Internal_Dyn dyn;
3000 
3001   hash_table = elf_hash_table (info);
3002   if (! is_elf_hash_table (hash_table))
3003     return FALSE;
3004 
3005   bed = get_elf_backend_data (hash_table->dynobj);
3006   s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3007   BFD_ASSERT (s != NULL);
3008 
3009   newsize = s->size + bed->s->sizeof_dyn;
3010   newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3011   if (newcontents == NULL)
3012     return FALSE;
3013 
3014   dyn.d_tag = tag;
3015   dyn.d_un.d_val = val;
3016   bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3017 
3018   s->size = newsize;
3019   s->contents = newcontents;
3020 
3021   return TRUE;
3022 }
3023 
3024 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3025    otherwise just check whether one already exists.  Returns -1 on error,
3026    1 if a DT_NEEDED tag already exists, and 0 on success.  */
3027 
3028 static int
elf_add_dt_needed_tag(bfd * abfd,struct bfd_link_info * info,const char * soname,bfd_boolean do_it)3029 elf_add_dt_needed_tag (bfd *abfd,
3030 		       struct bfd_link_info *info,
3031 		       const char *soname,
3032 		       bfd_boolean do_it)
3033 {
3034   struct elf_link_hash_table *hash_table;
3035   bfd_size_type strindex;
3036 
3037   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3038     return -1;
3039 
3040   hash_table = elf_hash_table (info);
3041   strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3042   if (strindex == (bfd_size_type) -1)
3043     return -1;
3044 
3045   if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3046     {
3047       asection *sdyn;
3048       const struct elf_backend_data *bed;
3049       bfd_byte *extdyn;
3050 
3051       bed = get_elf_backend_data (hash_table->dynobj);
3052       sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3053       if (sdyn != NULL)
3054 	for (extdyn = sdyn->contents;
3055 	     extdyn < sdyn->contents + sdyn->size;
3056 	     extdyn += bed->s->sizeof_dyn)
3057 	  {
3058 	    Elf_Internal_Dyn dyn;
3059 
3060 	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3061 	    if (dyn.d_tag == DT_NEEDED
3062 		&& dyn.d_un.d_val == strindex)
3063 	      {
3064 		_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3065 		return 1;
3066 	      }
3067 	  }
3068     }
3069 
3070   if (do_it)
3071     {
3072       if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3073 	return -1;
3074 
3075       if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3076 	return -1;
3077     }
3078   else
3079     /* We were just checking for existence of the tag.  */
3080     _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3081 
3082   return 0;
3083 }
3084 
3085 static bfd_boolean
on_needed_list(const char * soname,struct bfd_link_needed_list * needed)3086 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3087 {
3088   for (; needed != NULL; needed = needed->next)
3089     if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3090 	&& strcmp (soname, needed->name) == 0)
3091       return TRUE;
3092 
3093   return FALSE;
3094 }
3095 
3096 /* Sort symbol by value, section, and size.  */
3097 static int
elf_sort_symbol(const void * arg1,const void * arg2)3098 elf_sort_symbol (const void *arg1, const void *arg2)
3099 {
3100   const struct elf_link_hash_entry *h1;
3101   const struct elf_link_hash_entry *h2;
3102   bfd_signed_vma vdiff;
3103 
3104   h1 = *(const struct elf_link_hash_entry **) arg1;
3105   h2 = *(const struct elf_link_hash_entry **) arg2;
3106   vdiff = h1->root.u.def.value - h2->root.u.def.value;
3107   if (vdiff != 0)
3108     return vdiff > 0 ? 1 : -1;
3109   else
3110     {
3111       long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3112       if (sdiff != 0)
3113 	return sdiff > 0 ? 1 : -1;
3114     }
3115   vdiff = h1->size - h2->size;
3116   return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3117 }
3118 
3119 /* This function is used to adjust offsets into .dynstr for
3120    dynamic symbols.  This is called via elf_link_hash_traverse.  */
3121 
3122 static bfd_boolean
elf_adjust_dynstr_offsets(struct elf_link_hash_entry * h,void * data)3123 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3124 {
3125   struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3126 
3127   if (h->dynindx != -1)
3128     h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3129   return TRUE;
3130 }
3131 
3132 /* Assign string offsets in .dynstr, update all structures referencing
3133    them.  */
3134 
3135 static bfd_boolean
elf_finalize_dynstr(bfd * output_bfd,struct bfd_link_info * info)3136 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3137 {
3138   struct elf_link_hash_table *hash_table = elf_hash_table (info);
3139   struct elf_link_local_dynamic_entry *entry;
3140   struct elf_strtab_hash *dynstr = hash_table->dynstr;
3141   bfd *dynobj = hash_table->dynobj;
3142   asection *sdyn;
3143   bfd_size_type size;
3144   const struct elf_backend_data *bed;
3145   bfd_byte *extdyn;
3146 
3147   _bfd_elf_strtab_finalize (dynstr);
3148   size = _bfd_elf_strtab_size (dynstr);
3149 
3150   bed = get_elf_backend_data (dynobj);
3151   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3152   BFD_ASSERT (sdyn != NULL);
3153 
3154   /* Update all .dynamic entries referencing .dynstr strings.  */
3155   for (extdyn = sdyn->contents;
3156        extdyn < sdyn->contents + sdyn->size;
3157        extdyn += bed->s->sizeof_dyn)
3158     {
3159       Elf_Internal_Dyn dyn;
3160 
3161       bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3162       switch (dyn.d_tag)
3163 	{
3164 	case DT_STRSZ:
3165 	  dyn.d_un.d_val = size;
3166 	  break;
3167 	case DT_NEEDED:
3168 	case DT_SONAME:
3169 	case DT_RPATH:
3170 	case DT_RUNPATH:
3171 	case DT_FILTER:
3172 	case DT_AUXILIARY:
3173 	case DT_AUDIT:
3174 	case DT_DEPAUDIT:
3175 	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3176 	  break;
3177 	default:
3178 	  continue;
3179 	}
3180       bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3181     }
3182 
3183   /* Now update local dynamic symbols.  */
3184   for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3185     entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3186 						  entry->isym.st_name);
3187 
3188   /* And the rest of dynamic symbols.  */
3189   elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3190 
3191   /* Adjust version definitions.  */
3192   if (elf_tdata (output_bfd)->cverdefs)
3193     {
3194       asection *s;
3195       bfd_byte *p;
3196       bfd_size_type i;
3197       Elf_Internal_Verdef def;
3198       Elf_Internal_Verdaux defaux;
3199 
3200       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3201       p = s->contents;
3202       do
3203 	{
3204 	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3205 				   &def);
3206 	  p += sizeof (Elf_External_Verdef);
3207 	  if (def.vd_aux != sizeof (Elf_External_Verdef))
3208 	    continue;
3209 	  for (i = 0; i < def.vd_cnt; ++i)
3210 	    {
3211 	      _bfd_elf_swap_verdaux_in (output_bfd,
3212 					(Elf_External_Verdaux *) p, &defaux);
3213 	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3214 							defaux.vda_name);
3215 	      _bfd_elf_swap_verdaux_out (output_bfd,
3216 					 &defaux, (Elf_External_Verdaux *) p);
3217 	      p += sizeof (Elf_External_Verdaux);
3218 	    }
3219 	}
3220       while (def.vd_next);
3221     }
3222 
3223   /* Adjust version references.  */
3224   if (elf_tdata (output_bfd)->verref)
3225     {
3226       asection *s;
3227       bfd_byte *p;
3228       bfd_size_type i;
3229       Elf_Internal_Verneed need;
3230       Elf_Internal_Vernaux needaux;
3231 
3232       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3233       p = s->contents;
3234       do
3235 	{
3236 	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3237 				    &need);
3238 	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3239 	  _bfd_elf_swap_verneed_out (output_bfd, &need,
3240 				     (Elf_External_Verneed *) p);
3241 	  p += sizeof (Elf_External_Verneed);
3242 	  for (i = 0; i < need.vn_cnt; ++i)
3243 	    {
3244 	      _bfd_elf_swap_vernaux_in (output_bfd,
3245 					(Elf_External_Vernaux *) p, &needaux);
3246 	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3247 							 needaux.vna_name);
3248 	      _bfd_elf_swap_vernaux_out (output_bfd,
3249 					 &needaux,
3250 					 (Elf_External_Vernaux *) p);
3251 	      p += sizeof (Elf_External_Vernaux);
3252 	    }
3253 	}
3254       while (need.vn_next);
3255     }
3256 
3257   return TRUE;
3258 }
3259 
3260 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3261    The default is to only match when the INPUT and OUTPUT are exactly
3262    the same target.  */
3263 
3264 bfd_boolean
_bfd_elf_default_relocs_compatible(const bfd_target * input,const bfd_target * output)3265 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3266 				    const bfd_target *output)
3267 {
3268   return input == output;
3269 }
3270 
3271 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3272    This version is used when different targets for the same architecture
3273    are virtually identical.  */
3274 
3275 bfd_boolean
_bfd_elf_relocs_compatible(const bfd_target * input,const bfd_target * output)3276 _bfd_elf_relocs_compatible (const bfd_target *input,
3277 			    const bfd_target *output)
3278 {
3279   const struct elf_backend_data *obed, *ibed;
3280 
3281   if (input == output)
3282     return TRUE;
3283 
3284   ibed = xvec_get_elf_backend_data (input);
3285   obed = xvec_get_elf_backend_data (output);
3286 
3287   if (ibed->arch != obed->arch)
3288     return FALSE;
3289 
3290   /* If both backends are using this function, deem them compatible.  */
3291   return ibed->relocs_compatible == obed->relocs_compatible;
3292 }
3293 
3294 /* Make a special call to the linker "notice" function to tell it that
3295    we are about to handle an as-needed lib, or have finished
3296    processing the lib.  */
3297 
3298 bfd_boolean
_bfd_elf_notice_as_needed(bfd * ibfd,struct bfd_link_info * info,enum notice_asneeded_action act)3299 _bfd_elf_notice_as_needed (bfd *ibfd,
3300 			   struct bfd_link_info *info,
3301 			   enum notice_asneeded_action act)
3302 {
3303   return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3304 }
3305 
3306 /* Add symbols from an ELF object file to the linker hash table.  */
3307 
3308 static bfd_boolean
elf_link_add_object_symbols(bfd * abfd,struct bfd_link_info * info)3309 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3310 {
3311   Elf_Internal_Ehdr *ehdr;
3312   Elf_Internal_Shdr *hdr;
3313   bfd_size_type symcount;
3314   bfd_size_type extsymcount;
3315   bfd_size_type extsymoff;
3316   struct elf_link_hash_entry **sym_hash;
3317   bfd_boolean dynamic;
3318   Elf_External_Versym *extversym = NULL;
3319   Elf_External_Versym *ever;
3320   struct elf_link_hash_entry *weaks;
3321   struct elf_link_hash_entry **nondeflt_vers = NULL;
3322   bfd_size_type nondeflt_vers_cnt = 0;
3323   Elf_Internal_Sym *isymbuf = NULL;
3324   Elf_Internal_Sym *isym;
3325   Elf_Internal_Sym *isymend;
3326   const struct elf_backend_data *bed;
3327   bfd_boolean add_needed;
3328   struct elf_link_hash_table *htab;
3329   bfd_size_type amt;
3330   void *alloc_mark = NULL;
3331   struct bfd_hash_entry **old_table = NULL;
3332   unsigned int old_size = 0;
3333   unsigned int old_count = 0;
3334   void *old_tab = NULL;
3335   void *old_ent;
3336   struct bfd_link_hash_entry *old_undefs = NULL;
3337   struct bfd_link_hash_entry *old_undefs_tail = NULL;
3338   long old_dynsymcount = 0;
3339   bfd_size_type old_dynstr_size = 0;
3340   size_t tabsize = 0;
3341   asection *s;
3342   bfd_boolean just_syms;
3343 
3344   htab = elf_hash_table (info);
3345   bed = get_elf_backend_data (abfd);
3346 
3347   if ((abfd->flags & DYNAMIC) == 0)
3348     dynamic = FALSE;
3349   else
3350     {
3351       dynamic = TRUE;
3352 
3353       /* You can't use -r against a dynamic object.  Also, there's no
3354 	 hope of using a dynamic object which does not exactly match
3355 	 the format of the output file.  */
3356       if (info->relocatable
3357 	  || !is_elf_hash_table (htab)
3358 	  || info->output_bfd->xvec != abfd->xvec)
3359 	{
3360 	  if (info->relocatable)
3361 	    bfd_set_error (bfd_error_invalid_operation);
3362 	  else
3363 	    bfd_set_error (bfd_error_wrong_format);
3364 	  goto error_return;
3365 	}
3366     }
3367 
3368   ehdr = elf_elfheader (abfd);
3369   if (info->warn_alternate_em
3370       && bed->elf_machine_code != ehdr->e_machine
3371       && ((bed->elf_machine_alt1 != 0
3372 	   && ehdr->e_machine == bed->elf_machine_alt1)
3373 	  || (bed->elf_machine_alt2 != 0
3374 	      && ehdr->e_machine == bed->elf_machine_alt2)))
3375     info->callbacks->einfo
3376       (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3377        ehdr->e_machine, abfd, bed->elf_machine_code);
3378 
3379   /* As a GNU extension, any input sections which are named
3380      .gnu.warning.SYMBOL are treated as warning symbols for the given
3381      symbol.  This differs from .gnu.warning sections, which generate
3382      warnings when they are included in an output file.  */
3383   /* PR 12761: Also generate this warning when building shared libraries.  */
3384   for (s = abfd->sections; s != NULL; s = s->next)
3385     {
3386       const char *name;
3387 
3388       name = bfd_get_section_name (abfd, s);
3389       if (CONST_STRNEQ (name, ".gnu.warning."))
3390 	{
3391 	  char *msg;
3392 	  bfd_size_type sz;
3393 
3394 	  name += sizeof ".gnu.warning." - 1;
3395 
3396 	  /* If this is a shared object, then look up the symbol
3397 	     in the hash table.  If it is there, and it is already
3398 	     been defined, then we will not be using the entry
3399 	     from this shared object, so we don't need to warn.
3400 	     FIXME: If we see the definition in a regular object
3401 	     later on, we will warn, but we shouldn't.  The only
3402 	     fix is to keep track of what warnings we are supposed
3403 	     to emit, and then handle them all at the end of the
3404 	     link.  */
3405 	  if (dynamic)
3406 	    {
3407 	      struct elf_link_hash_entry *h;
3408 
3409 	      h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3410 
3411 	      /* FIXME: What about bfd_link_hash_common?  */
3412 	      if (h != NULL
3413 		  && (h->root.type == bfd_link_hash_defined
3414 		      || h->root.type == bfd_link_hash_defweak))
3415 		continue;
3416 	    }
3417 
3418 	  sz = s->size;
3419 	  msg = (char *) bfd_alloc (abfd, sz + 1);
3420 	  if (msg == NULL)
3421 	    goto error_return;
3422 
3423 	  if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3424 	    goto error_return;
3425 
3426 	  msg[sz] = '\0';
3427 
3428 	  if (! (_bfd_generic_link_add_one_symbol
3429 		 (info, abfd, name, BSF_WARNING, s, 0, msg,
3430 		  FALSE, bed->collect, NULL)))
3431 	    goto error_return;
3432 
3433 	  if (!info->relocatable && info->executable)
3434 	    {
3435 	      /* Clobber the section size so that the warning does
3436 		 not get copied into the output file.  */
3437 	      s->size = 0;
3438 
3439 	      /* Also set SEC_EXCLUDE, so that symbols defined in
3440 		 the warning section don't get copied to the output.  */
3441 	      s->flags |= SEC_EXCLUDE;
3442 	    }
3443 	}
3444     }
3445 
3446   just_syms = ((s = abfd->sections) != NULL
3447 	       && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3448 
3449   add_needed = TRUE;
3450   if (! dynamic)
3451     {
3452       /* If we are creating a shared library, create all the dynamic
3453 	 sections immediately.  We need to attach them to something,
3454 	 so we attach them to this BFD, provided it is the right
3455 	 format and is not from ld --just-symbols.  FIXME: If there
3456 	 are no input BFD's of the same format as the output, we can't
3457 	 make a shared library.  */
3458       if (!just_syms
3459 	  && info->shared
3460 	  && is_elf_hash_table (htab)
3461 	  && info->output_bfd->xvec == abfd->xvec
3462 	  && !htab->dynamic_sections_created)
3463 	{
3464 	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3465 	    goto error_return;
3466 	}
3467     }
3468   else if (!is_elf_hash_table (htab))
3469     goto error_return;
3470   else
3471     {
3472       const char *soname = NULL;
3473       char *audit = NULL;
3474       struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3475       int ret;
3476 
3477       /* ld --just-symbols and dynamic objects don't mix very well.
3478 	 ld shouldn't allow it.  */
3479       if (just_syms)
3480 	abort ();
3481 
3482       /* If this dynamic lib was specified on the command line with
3483 	 --as-needed in effect, then we don't want to add a DT_NEEDED
3484 	 tag unless the lib is actually used.  Similary for libs brought
3485 	 in by another lib's DT_NEEDED.  When --no-add-needed is used
3486 	 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3487 	 any dynamic library in DT_NEEDED tags in the dynamic lib at
3488 	 all.  */
3489       add_needed = (elf_dyn_lib_class (abfd)
3490 		    & (DYN_AS_NEEDED | DYN_DT_NEEDED
3491 		       | DYN_NO_NEEDED)) == 0;
3492 
3493       s = bfd_get_section_by_name (abfd, ".dynamic");
3494       if (s != NULL)
3495 	{
3496 	  bfd_byte *dynbuf;
3497 	  bfd_byte *extdyn;
3498 	  unsigned int elfsec;
3499 	  unsigned long shlink;
3500 
3501 	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3502 	    {
3503 error_free_dyn:
3504 	      free (dynbuf);
3505 	      goto error_return;
3506 	    }
3507 
3508 	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3509 	  if (elfsec == SHN_BAD)
3510 	    goto error_free_dyn;
3511 	  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3512 
3513 	  for (extdyn = dynbuf;
3514 	       extdyn < dynbuf + s->size;
3515 	       extdyn += bed->s->sizeof_dyn)
3516 	    {
3517 	      Elf_Internal_Dyn dyn;
3518 
3519 	      bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3520 	      if (dyn.d_tag == DT_SONAME)
3521 		{
3522 		  unsigned int tagv = dyn.d_un.d_val;
3523 		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3524 		  if (soname == NULL)
3525 		    goto error_free_dyn;
3526 		}
3527 	      if (dyn.d_tag == DT_NEEDED)
3528 		{
3529 		  struct bfd_link_needed_list *n, **pn;
3530 		  char *fnm, *anm;
3531 		  unsigned int tagv = dyn.d_un.d_val;
3532 
3533 		  amt = sizeof (struct bfd_link_needed_list);
3534 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3535 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3536 		  if (n == NULL || fnm == NULL)
3537 		    goto error_free_dyn;
3538 		  amt = strlen (fnm) + 1;
3539 		  anm = (char *) bfd_alloc (abfd, amt);
3540 		  if (anm == NULL)
3541 		    goto error_free_dyn;
3542 		  memcpy (anm, fnm, amt);
3543 		  n->name = anm;
3544 		  n->by = abfd;
3545 		  n->next = NULL;
3546 		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3547 		    ;
3548 		  *pn = n;
3549 		}
3550 	      if (dyn.d_tag == DT_RUNPATH)
3551 		{
3552 		  struct bfd_link_needed_list *n, **pn;
3553 		  char *fnm, *anm;
3554 		  unsigned int tagv = dyn.d_un.d_val;
3555 
3556 		  amt = sizeof (struct bfd_link_needed_list);
3557 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3558 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3559 		  if (n == NULL || fnm == NULL)
3560 		    goto error_free_dyn;
3561 		  amt = strlen (fnm) + 1;
3562 		  anm = (char *) bfd_alloc (abfd, amt);
3563 		  if (anm == NULL)
3564 		    goto error_free_dyn;
3565 		  memcpy (anm, fnm, amt);
3566 		  n->name = anm;
3567 		  n->by = abfd;
3568 		  n->next = NULL;
3569 		  for (pn = & runpath;
3570 		       *pn != NULL;
3571 		       pn = &(*pn)->next)
3572 		    ;
3573 		  *pn = n;
3574 		}
3575 	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
3576 	      if (!runpath && dyn.d_tag == DT_RPATH)
3577 		{
3578 		  struct bfd_link_needed_list *n, **pn;
3579 		  char *fnm, *anm;
3580 		  unsigned int tagv = dyn.d_un.d_val;
3581 
3582 		  amt = sizeof (struct bfd_link_needed_list);
3583 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3584 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3585 		  if (n == NULL || fnm == NULL)
3586 		    goto error_free_dyn;
3587 		  amt = strlen (fnm) + 1;
3588 		  anm = (char *) bfd_alloc (abfd, amt);
3589 		  if (anm == NULL)
3590 		    goto error_free_dyn;
3591 		  memcpy (anm, fnm, amt);
3592 		  n->name = anm;
3593 		  n->by = abfd;
3594 		  n->next = NULL;
3595 		  for (pn = & rpath;
3596 		       *pn != NULL;
3597 		       pn = &(*pn)->next)
3598 		    ;
3599 		  *pn = n;
3600 		}
3601 	      if (dyn.d_tag == DT_AUDIT)
3602 		{
3603 		  unsigned int tagv = dyn.d_un.d_val;
3604 		  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3605 		}
3606 	    }
3607 
3608 	  free (dynbuf);
3609 	}
3610 
3611       /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
3612 	 frees all more recently bfd_alloc'd blocks as well.  */
3613       if (runpath)
3614 	rpath = runpath;
3615 
3616       if (rpath)
3617 	{
3618 	  struct bfd_link_needed_list **pn;
3619 	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3620 	    ;
3621 	  *pn = rpath;
3622 	}
3623 
3624       /* We do not want to include any of the sections in a dynamic
3625 	 object in the output file.  We hack by simply clobbering the
3626 	 list of sections in the BFD.  This could be handled more
3627 	 cleanly by, say, a new section flag; the existing
3628 	 SEC_NEVER_LOAD flag is not the one we want, because that one
3629 	 still implies that the section takes up space in the output
3630 	 file.  */
3631       bfd_section_list_clear (abfd);
3632 
3633       /* Find the name to use in a DT_NEEDED entry that refers to this
3634 	 object.  If the object has a DT_SONAME entry, we use it.
3635 	 Otherwise, if the generic linker stuck something in
3636 	 elf_dt_name, we use that.  Otherwise, we just use the file
3637 	 name.  */
3638       if (soname == NULL || *soname == '\0')
3639 	{
3640 	  soname = elf_dt_name (abfd);
3641 	  if (soname == NULL || *soname == '\0')
3642 	    soname = bfd_get_filename (abfd);
3643 	}
3644 
3645       /* Save the SONAME because sometimes the linker emulation code
3646 	 will need to know it.  */
3647       elf_dt_name (abfd) = soname;
3648 
3649       ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3650       if (ret < 0)
3651 	goto error_return;
3652 
3653       /* If we have already included this dynamic object in the
3654 	 link, just ignore it.  There is no reason to include a
3655 	 particular dynamic object more than once.  */
3656       if (ret > 0)
3657 	return TRUE;
3658 
3659       /* Save the DT_AUDIT entry for the linker emulation code. */
3660       elf_dt_audit (abfd) = audit;
3661     }
3662 
3663   /* If this is a dynamic object, we always link against the .dynsym
3664      symbol table, not the .symtab symbol table.  The dynamic linker
3665      will only see the .dynsym symbol table, so there is no reason to
3666      look at .symtab for a dynamic object.  */
3667 
3668   if (! dynamic || elf_dynsymtab (abfd) == 0)
3669     hdr = &elf_tdata (abfd)->symtab_hdr;
3670   else
3671     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3672 
3673   symcount = hdr->sh_size / bed->s->sizeof_sym;
3674 
3675   /* The sh_info field of the symtab header tells us where the
3676      external symbols start.  We don't care about the local symbols at
3677      this point.  */
3678   if (elf_bad_symtab (abfd))
3679     {
3680       extsymcount = symcount;
3681       extsymoff = 0;
3682     }
3683   else
3684     {
3685       extsymcount = symcount - hdr->sh_info;
3686       extsymoff = hdr->sh_info;
3687     }
3688 
3689   sym_hash = elf_sym_hashes (abfd);
3690   if (extsymcount != 0)
3691     {
3692       isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3693 				      NULL, NULL, NULL);
3694       if (isymbuf == NULL)
3695 	goto error_return;
3696 
3697       if (sym_hash == NULL)
3698 	{
3699 	  /* We store a pointer to the hash table entry for each
3700 	     external symbol.  */
3701 	  amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3702 	  sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3703 	  if (sym_hash == NULL)
3704 	    goto error_free_sym;
3705 	  elf_sym_hashes (abfd) = sym_hash;
3706 	}
3707     }
3708 
3709   if (dynamic)
3710     {
3711       /* Read in any version definitions.  */
3712       if (!_bfd_elf_slurp_version_tables (abfd,
3713 					  info->default_imported_symver))
3714 	goto error_free_sym;
3715 
3716       /* Read in the symbol versions, but don't bother to convert them
3717 	 to internal format.  */
3718       if (elf_dynversym (abfd) != 0)
3719 	{
3720 	  Elf_Internal_Shdr *versymhdr;
3721 
3722 	  versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3723 	  extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3724 	  if (extversym == NULL)
3725 	    goto error_free_sym;
3726 	  amt = versymhdr->sh_size;
3727 	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3728 	      || bfd_bread (extversym, amt, abfd) != amt)
3729 	    goto error_free_vers;
3730 	}
3731     }
3732 
3733   /* If we are loading an as-needed shared lib, save the symbol table
3734      state before we start adding symbols.  If the lib turns out
3735      to be unneeded, restore the state.  */
3736   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3737     {
3738       unsigned int i;
3739       size_t entsize;
3740 
3741       for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3742 	{
3743 	  struct bfd_hash_entry *p;
3744 	  struct elf_link_hash_entry *h;
3745 
3746 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3747 	    {
3748 	      h = (struct elf_link_hash_entry *) p;
3749 	      entsize += htab->root.table.entsize;
3750 	      if (h->root.type == bfd_link_hash_warning)
3751 		entsize += htab->root.table.entsize;
3752 	    }
3753 	}
3754 
3755       tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3756       old_tab = bfd_malloc (tabsize + entsize);
3757       if (old_tab == NULL)
3758 	goto error_free_vers;
3759 
3760       /* Remember the current objalloc pointer, so that all mem for
3761 	 symbols added can later be reclaimed.  */
3762       alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3763       if (alloc_mark == NULL)
3764 	goto error_free_vers;
3765 
3766       /* Make a special call to the linker "notice" function to
3767 	 tell it that we are about to handle an as-needed lib.  */
3768       if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3769 	goto error_free_vers;
3770 
3771       /* Clone the symbol table.  Remember some pointers into the
3772 	 symbol table, and dynamic symbol count.  */
3773       old_ent = (char *) old_tab + tabsize;
3774       memcpy (old_tab, htab->root.table.table, tabsize);
3775       old_undefs = htab->root.undefs;
3776       old_undefs_tail = htab->root.undefs_tail;
3777       old_table = htab->root.table.table;
3778       old_size = htab->root.table.size;
3779       old_count = htab->root.table.count;
3780       old_dynsymcount = htab->dynsymcount;
3781       old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3782 
3783       for (i = 0; i < htab->root.table.size; i++)
3784 	{
3785 	  struct bfd_hash_entry *p;
3786 	  struct elf_link_hash_entry *h;
3787 
3788 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3789 	    {
3790 	      memcpy (old_ent, p, htab->root.table.entsize);
3791 	      old_ent = (char *) old_ent + htab->root.table.entsize;
3792 	      h = (struct elf_link_hash_entry *) p;
3793 	      if (h->root.type == bfd_link_hash_warning)
3794 		{
3795 		  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3796 		  old_ent = (char *) old_ent + htab->root.table.entsize;
3797 		}
3798 	    }
3799 	}
3800     }
3801 
3802   weaks = NULL;
3803   ever = extversym != NULL ? extversym + extsymoff : NULL;
3804   for (isym = isymbuf, isymend = isymbuf + extsymcount;
3805        isym < isymend;
3806        isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3807     {
3808       int bind;
3809       bfd_vma value;
3810       asection *sec, *new_sec;
3811       flagword flags;
3812       const char *name;
3813       struct elf_link_hash_entry *h;
3814       struct elf_link_hash_entry *hi;
3815       bfd_boolean definition;
3816       bfd_boolean size_change_ok;
3817       bfd_boolean type_change_ok;
3818       bfd_boolean new_weakdef;
3819       bfd_boolean new_weak;
3820       bfd_boolean old_weak;
3821       bfd_boolean override;
3822       bfd_boolean common;
3823       unsigned int old_alignment;
3824       bfd *old_bfd;
3825 
3826       override = FALSE;
3827 
3828       flags = BSF_NO_FLAGS;
3829       sec = NULL;
3830       value = isym->st_value;
3831       common = bed->common_definition (isym);
3832 
3833       bind = ELF_ST_BIND (isym->st_info);
3834       switch (bind)
3835 	{
3836 	case STB_LOCAL:
3837 	  /* This should be impossible, since ELF requires that all
3838 	     global symbols follow all local symbols, and that sh_info
3839 	     point to the first global symbol.  Unfortunately, Irix 5
3840 	     screws this up.  */
3841 	  continue;
3842 
3843 	case STB_GLOBAL:
3844 	  if (isym->st_shndx != SHN_UNDEF && !common)
3845 	    flags = BSF_GLOBAL;
3846 	  break;
3847 
3848 	case STB_WEAK:
3849 	  flags = BSF_WEAK;
3850 	  break;
3851 
3852 	case STB_GNU_UNIQUE:
3853 	  flags = BSF_GNU_UNIQUE;
3854 	  break;
3855 
3856 	default:
3857 	  /* Leave it up to the processor backend.  */
3858 	  break;
3859 	}
3860 
3861       if (isym->st_shndx == SHN_UNDEF)
3862 	sec = bfd_und_section_ptr;
3863       else if (isym->st_shndx == SHN_ABS)
3864 	sec = bfd_abs_section_ptr;
3865       else if (isym->st_shndx == SHN_COMMON)
3866 	{
3867 	  sec = bfd_com_section_ptr;
3868 	  /* What ELF calls the size we call the value.  What ELF
3869 	     calls the value we call the alignment.  */
3870 	  value = isym->st_size;
3871 	}
3872       else
3873 	{
3874 	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3875 	  if (sec == NULL)
3876 	    sec = bfd_abs_section_ptr;
3877 	  else if (discarded_section (sec))
3878 	    {
3879 	      /* Symbols from discarded section are undefined.  We keep
3880 		 its visibility.  */
3881 	      sec = bfd_und_section_ptr;
3882 	      isym->st_shndx = SHN_UNDEF;
3883 	    }
3884 	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3885 	    value -= sec->vma;
3886 	}
3887 
3888       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3889 					      isym->st_name);
3890       if (name == NULL)
3891 	goto error_free_vers;
3892 
3893       if (isym->st_shndx == SHN_COMMON
3894 	  && (abfd->flags & BFD_PLUGIN) != 0)
3895 	{
3896 	  asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3897 
3898 	  if (xc == NULL)
3899 	    {
3900 	      flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3901 				 | SEC_EXCLUDE);
3902 	      xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3903 	      if (xc == NULL)
3904 		goto error_free_vers;
3905 	    }
3906 	  sec = xc;
3907 	}
3908       else if (isym->st_shndx == SHN_COMMON
3909 	       && ELF_ST_TYPE (isym->st_info) == STT_TLS
3910 	       && !info->relocatable)
3911 	{
3912 	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3913 
3914 	  if (tcomm == NULL)
3915 	    {
3916 	      flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3917 				 | SEC_LINKER_CREATED);
3918 	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3919 	      if (tcomm == NULL)
3920 		goto error_free_vers;
3921 	    }
3922 	  sec = tcomm;
3923 	}
3924       else if (bed->elf_add_symbol_hook)
3925 	{
3926 	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3927 					     &sec, &value))
3928 	    goto error_free_vers;
3929 
3930 	  /* The hook function sets the name to NULL if this symbol
3931 	     should be skipped for some reason.  */
3932 	  if (name == NULL)
3933 	    continue;
3934 	}
3935 
3936       /* Sanity check that all possibilities were handled.  */
3937       if (sec == NULL)
3938 	{
3939 	  bfd_set_error (bfd_error_bad_value);
3940 	  goto error_free_vers;
3941 	}
3942 
3943       /* Silently discard TLS symbols from --just-syms.  There's
3944 	 no way to combine a static TLS block with a new TLS block
3945 	 for this executable.  */
3946       if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3947 	  && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3948 	continue;
3949 
3950       if (bfd_is_und_section (sec)
3951 	  || bfd_is_com_section (sec))
3952 	definition = FALSE;
3953       else
3954 	definition = TRUE;
3955 
3956       size_change_ok = FALSE;
3957       type_change_ok = bed->type_change_ok;
3958       old_weak = FALSE;
3959       old_alignment = 0;
3960       old_bfd = NULL;
3961       new_sec = sec;
3962 
3963       if (is_elf_hash_table (htab))
3964 	{
3965 	  Elf_Internal_Versym iver;
3966 	  unsigned int vernum = 0;
3967 	  bfd_boolean skip;
3968 
3969 	  if (ever == NULL)
3970 	    {
3971 	      if (info->default_imported_symver)
3972 		/* Use the default symbol version created earlier.  */
3973 		iver.vs_vers = elf_tdata (abfd)->cverdefs;
3974 	      else
3975 		iver.vs_vers = 0;
3976 	    }
3977 	  else
3978 	    _bfd_elf_swap_versym_in (abfd, ever, &iver);
3979 
3980 	  vernum = iver.vs_vers & VERSYM_VERSION;
3981 
3982 	  /* If this is a hidden symbol, or if it is not version
3983 	     1, we append the version name to the symbol name.
3984 	     However, we do not modify a non-hidden absolute symbol
3985 	     if it is not a function, because it might be the version
3986 	     symbol itself.  FIXME: What if it isn't?  */
3987 	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3988 	      || (vernum > 1
3989 		  && (!bfd_is_abs_section (sec)
3990 		      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3991 	    {
3992 	      const char *verstr;
3993 	      size_t namelen, verlen, newlen;
3994 	      char *newname, *p;
3995 
3996 	      if (isym->st_shndx != SHN_UNDEF)
3997 		{
3998 		  if (vernum > elf_tdata (abfd)->cverdefs)
3999 		    verstr = NULL;
4000 		  else if (vernum > 1)
4001 		    verstr =
4002 		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4003 		  else
4004 		    verstr = "";
4005 
4006 		  if (verstr == NULL)
4007 		    {
4008 		      (*_bfd_error_handler)
4009 			(_("%B: %s: invalid version %u (max %d)"),
4010 			 abfd, name, vernum,
4011 			 elf_tdata (abfd)->cverdefs);
4012 		      bfd_set_error (bfd_error_bad_value);
4013 		      goto error_free_vers;
4014 		    }
4015 		}
4016 	      else
4017 		{
4018 		  /* We cannot simply test for the number of
4019 		     entries in the VERNEED section since the
4020 		     numbers for the needed versions do not start
4021 		     at 0.  */
4022 		  Elf_Internal_Verneed *t;
4023 
4024 		  verstr = NULL;
4025 		  for (t = elf_tdata (abfd)->verref;
4026 		       t != NULL;
4027 		       t = t->vn_nextref)
4028 		    {
4029 		      Elf_Internal_Vernaux *a;
4030 
4031 		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4032 			{
4033 			  if (a->vna_other == vernum)
4034 			    {
4035 			      verstr = a->vna_nodename;
4036 			      break;
4037 			    }
4038 			}
4039 		      if (a != NULL)
4040 			break;
4041 		    }
4042 		  if (verstr == NULL)
4043 		    {
4044 		      (*_bfd_error_handler)
4045 			(_("%B: %s: invalid needed version %d"),
4046 			 abfd, name, vernum);
4047 		      bfd_set_error (bfd_error_bad_value);
4048 		      goto error_free_vers;
4049 		    }
4050 		}
4051 
4052 	      namelen = strlen (name);
4053 	      verlen = strlen (verstr);
4054 	      newlen = namelen + verlen + 2;
4055 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4056 		  && isym->st_shndx != SHN_UNDEF)
4057 		++newlen;
4058 
4059 	      newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4060 	      if (newname == NULL)
4061 		goto error_free_vers;
4062 	      memcpy (newname, name, namelen);
4063 	      p = newname + namelen;
4064 	      *p++ = ELF_VER_CHR;
4065 	      /* If this is a defined non-hidden version symbol,
4066 		 we add another @ to the name.  This indicates the
4067 		 default version of the symbol.  */
4068 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4069 		  && isym->st_shndx != SHN_UNDEF)
4070 		*p++ = ELF_VER_CHR;
4071 	      memcpy (p, verstr, verlen + 1);
4072 
4073 	      name = newname;
4074 	    }
4075 
4076 	  /* If this symbol has default visibility and the user has
4077 	     requested we not re-export it, then mark it as hidden.  */
4078 	  if (definition
4079 	      && !dynamic
4080 	      && (abfd->no_export
4081 		  || (abfd->my_archive && abfd->my_archive->no_export))
4082 	      && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4083 	    isym->st_other = (STV_HIDDEN
4084 			      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4085 
4086 	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4087 				      sym_hash, &old_bfd, &old_weak,
4088 				      &old_alignment, &skip, &override,
4089 				      &type_change_ok, &size_change_ok))
4090 	    goto error_free_vers;
4091 
4092 	  if (skip)
4093 	    continue;
4094 
4095 	  if (override)
4096 	    definition = FALSE;
4097 
4098 	  h = *sym_hash;
4099 	  while (h->root.type == bfd_link_hash_indirect
4100 		 || h->root.type == bfd_link_hash_warning)
4101 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
4102 
4103 	  if (elf_tdata (abfd)->verdef != NULL
4104 	      && vernum > 1
4105 	      && definition)
4106 	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4107 	}
4108 
4109       if (! (_bfd_generic_link_add_one_symbol
4110 	     (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4111 	      (struct bfd_link_hash_entry **) sym_hash)))
4112 	goto error_free_vers;
4113 
4114       h = *sym_hash;
4115       /* We need to make sure that indirect symbol dynamic flags are
4116 	 updated.  */
4117       hi = h;
4118       while (h->root.type == bfd_link_hash_indirect
4119 	     || h->root.type == bfd_link_hash_warning)
4120 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
4121 
4122       *sym_hash = h;
4123 
4124       new_weak = (flags & BSF_WEAK) != 0;
4125       new_weakdef = FALSE;
4126       if (dynamic
4127 	  && definition
4128 	  && new_weak
4129 	  && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4130 	  && is_elf_hash_table (htab)
4131 	  && h->u.weakdef == NULL)
4132 	{
4133 	  /* Keep a list of all weak defined non function symbols from
4134 	     a dynamic object, using the weakdef field.  Later in this
4135 	     function we will set the weakdef field to the correct
4136 	     value.  We only put non-function symbols from dynamic
4137 	     objects on this list, because that happens to be the only
4138 	     time we need to know the normal symbol corresponding to a
4139 	     weak symbol, and the information is time consuming to
4140 	     figure out.  If the weakdef field is not already NULL,
4141 	     then this symbol was already defined by some previous
4142 	     dynamic object, and we will be using that previous
4143 	     definition anyhow.  */
4144 
4145 	  h->u.weakdef = weaks;
4146 	  weaks = h;
4147 	  new_weakdef = TRUE;
4148 	}
4149 
4150       /* Set the alignment of a common symbol.  */
4151       if ((common || bfd_is_com_section (sec))
4152 	  && h->root.type == bfd_link_hash_common)
4153 	{
4154 	  unsigned int align;
4155 
4156 	  if (common)
4157 	    align = bfd_log2 (isym->st_value);
4158 	  else
4159 	    {
4160 	      /* The new symbol is a common symbol in a shared object.
4161 		 We need to get the alignment from the section.  */
4162 	      align = new_sec->alignment_power;
4163 	    }
4164 	  if (align > old_alignment)
4165 	    h->root.u.c.p->alignment_power = align;
4166 	  else
4167 	    h->root.u.c.p->alignment_power = old_alignment;
4168 	}
4169 
4170       if (is_elf_hash_table (htab))
4171 	{
4172 	  /* Set a flag in the hash table entry indicating the type of
4173 	     reference or definition we just found.  A dynamic symbol
4174 	     is one which is referenced or defined by both a regular
4175 	     object and a shared object.  */
4176 	  bfd_boolean dynsym = FALSE;
4177 
4178 	  /* Plugin symbols aren't normal.  Don't set def_regular or
4179 	     ref_regular for them, or make them dynamic.  */
4180 	  if ((abfd->flags & BFD_PLUGIN) != 0)
4181 	    ;
4182 	  else if (! dynamic)
4183 	    {
4184 	      if (! definition)
4185 		{
4186 		  h->ref_regular = 1;
4187 		  if (bind != STB_WEAK)
4188 		    h->ref_regular_nonweak = 1;
4189 		}
4190 	      else
4191 		{
4192 		  h->def_regular = 1;
4193 		  if (h->def_dynamic)
4194 		    {
4195 		      h->def_dynamic = 0;
4196 		      h->ref_dynamic = 1;
4197 		    }
4198 		}
4199 
4200 	      /* If the indirect symbol has been forced local, don't
4201 		 make the real symbol dynamic.  */
4202 	      if ((h == hi || !hi->forced_local)
4203 		  && (! info->executable
4204 		      || h->def_dynamic
4205 		      || h->ref_dynamic))
4206 		dynsym = TRUE;
4207 	    }
4208 	  else
4209 	    {
4210 	      if (! definition)
4211 		{
4212 		  h->ref_dynamic = 1;
4213 		  hi->ref_dynamic = 1;
4214 		}
4215 	      else
4216 		{
4217 		  h->def_dynamic = 1;
4218 		  hi->def_dynamic = 1;
4219 		}
4220 
4221 	      /* If the indirect symbol has been forced local, don't
4222 		 make the real symbol dynamic.  */
4223 	      if ((h == hi || !hi->forced_local)
4224 		  && (h->def_regular
4225 		      || h->ref_regular
4226 		      || (h->u.weakdef != NULL
4227 			  && ! new_weakdef
4228 			  && h->u.weakdef->dynindx != -1)))
4229 		dynsym = TRUE;
4230 	    }
4231 
4232 	  /* Check to see if we need to add an indirect symbol for
4233 	     the default name.  */
4234 	  if (definition
4235 	      || (!override && h->root.type == bfd_link_hash_common))
4236 	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4237 					      sec, value, &old_bfd, &dynsym))
4238 	      goto error_free_vers;
4239 
4240 	  /* Check the alignment when a common symbol is involved. This
4241 	     can change when a common symbol is overridden by a normal
4242 	     definition or a common symbol is ignored due to the old
4243 	     normal definition. We need to make sure the maximum
4244 	     alignment is maintained.  */
4245 	  if ((old_alignment || common)
4246 	      && h->root.type != bfd_link_hash_common)
4247 	    {
4248 	      unsigned int common_align;
4249 	      unsigned int normal_align;
4250 	      unsigned int symbol_align;
4251 	      bfd *normal_bfd;
4252 	      bfd *common_bfd;
4253 
4254 	      BFD_ASSERT (h->root.type == bfd_link_hash_defined
4255 			  || h->root.type == bfd_link_hash_defweak);
4256 
4257 	      symbol_align = ffs (h->root.u.def.value) - 1;
4258 	      if (h->root.u.def.section->owner != NULL
4259 		  && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4260 		{
4261 		  normal_align = h->root.u.def.section->alignment_power;
4262 		  if (normal_align > symbol_align)
4263 		    normal_align = symbol_align;
4264 		}
4265 	      else
4266 		normal_align = symbol_align;
4267 
4268 	      if (old_alignment)
4269 		{
4270 		  common_align = old_alignment;
4271 		  common_bfd = old_bfd;
4272 		  normal_bfd = abfd;
4273 		}
4274 	      else
4275 		{
4276 		  common_align = bfd_log2 (isym->st_value);
4277 		  common_bfd = abfd;
4278 		  normal_bfd = old_bfd;
4279 		}
4280 
4281 	      if (normal_align < common_align)
4282 		{
4283 		  /* PR binutils/2735 */
4284 		  if (normal_bfd == NULL)
4285 		    (*_bfd_error_handler)
4286 		      (_("Warning: alignment %u of common symbol `%s' in %B is"
4287 			 " greater than the alignment (%u) of its section %A"),
4288 		       common_bfd, h->root.u.def.section,
4289 		       1 << common_align, name, 1 << normal_align);
4290 		  else
4291 		    (*_bfd_error_handler)
4292 		      (_("Warning: alignment %u of symbol `%s' in %B"
4293 			 " is smaller than %u in %B"),
4294 		       normal_bfd, common_bfd,
4295 		       1 << normal_align, name, 1 << common_align);
4296 		}
4297 	    }
4298 
4299 	  /* Remember the symbol size if it isn't undefined.  */
4300 	  if (isym->st_size != 0
4301 	      && isym->st_shndx != SHN_UNDEF
4302 	      && (definition || h->size == 0))
4303 	    {
4304 	      if (h->size != 0
4305 		  && h->size != isym->st_size
4306 		  && ! size_change_ok)
4307 		(*_bfd_error_handler)
4308 		  (_("Warning: size of symbol `%s' changed"
4309 		     " from %lu in %B to %lu in %B"),
4310 		   old_bfd, abfd,
4311 		   name, (unsigned long) h->size,
4312 		   (unsigned long) isym->st_size);
4313 
4314 	      h->size = isym->st_size;
4315 	    }
4316 
4317 	  /* If this is a common symbol, then we always want H->SIZE
4318 	     to be the size of the common symbol.  The code just above
4319 	     won't fix the size if a common symbol becomes larger.  We
4320 	     don't warn about a size change here, because that is
4321 	     covered by --warn-common.  Allow changes between different
4322 	     function types.  */
4323 	  if (h->root.type == bfd_link_hash_common)
4324 	    h->size = h->root.u.c.size;
4325 
4326 	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4327 	      && ((definition && !new_weak)
4328 		  || (old_weak && h->root.type == bfd_link_hash_common)
4329 		  || h->type == STT_NOTYPE))
4330 	    {
4331 	      unsigned int type = ELF_ST_TYPE (isym->st_info);
4332 
4333 	      /* Turn an IFUNC symbol from a DSO into a normal FUNC
4334 		 symbol.  */
4335 	      if (type == STT_GNU_IFUNC
4336 		  && (abfd->flags & DYNAMIC) != 0)
4337 		type = STT_FUNC;
4338 
4339 	      if (h->type != type)
4340 		{
4341 		  if (h->type != STT_NOTYPE && ! type_change_ok)
4342 		    (*_bfd_error_handler)
4343 		      (_("Warning: type of symbol `%s' changed"
4344 			 " from %d to %d in %B"),
4345 		       abfd, name, h->type, type);
4346 
4347 		  h->type = type;
4348 		}
4349 	    }
4350 
4351 	  /* Merge st_other field.  */
4352 	  elf_merge_st_other (abfd, h, isym, definition, dynamic);
4353 
4354 	  /* We don't want to make debug symbol dynamic.  */
4355 	  if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4356 	    dynsym = FALSE;
4357 
4358 	  /* Nor should we make plugin symbols dynamic.  */
4359 	  if ((abfd->flags & BFD_PLUGIN) != 0)
4360 	    dynsym = FALSE;
4361 
4362 	  if (definition)
4363 	    {
4364 	      h->target_internal = isym->st_target_internal;
4365 	      h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4366 	    }
4367 
4368 	  if (definition && !dynamic)
4369 	    {
4370 	      char *p = strchr (name, ELF_VER_CHR);
4371 	      if (p != NULL && p[1] != ELF_VER_CHR)
4372 		{
4373 		  /* Queue non-default versions so that .symver x, x@FOO
4374 		     aliases can be checked.  */
4375 		  if (!nondeflt_vers)
4376 		    {
4377 		      amt = ((isymend - isym + 1)
4378 			     * sizeof (struct elf_link_hash_entry *));
4379 		      nondeflt_vers =
4380                           (struct elf_link_hash_entry **) bfd_malloc (amt);
4381 		      if (!nondeflt_vers)
4382 			goto error_free_vers;
4383 		    }
4384 		  nondeflt_vers[nondeflt_vers_cnt++] = h;
4385 		}
4386 	    }
4387 
4388 	  if (dynsym && h->dynindx == -1)
4389 	    {
4390 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4391 		goto error_free_vers;
4392 	      if (h->u.weakdef != NULL
4393 		  && ! new_weakdef
4394 		  && h->u.weakdef->dynindx == -1)
4395 		{
4396 		  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4397 		    goto error_free_vers;
4398 		}
4399 	    }
4400 	  else if (dynsym && h->dynindx != -1)
4401 	    /* If the symbol already has a dynamic index, but
4402 	       visibility says it should not be visible, turn it into
4403 	       a local symbol.  */
4404 	    switch (ELF_ST_VISIBILITY (h->other))
4405 	      {
4406 	      case STV_INTERNAL:
4407 	      case STV_HIDDEN:
4408 		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
4409 		dynsym = FALSE;
4410 		break;
4411 	      }
4412 
4413 	  /* Don't add DT_NEEDED for references from the dummy bfd.  */
4414 	  if (!add_needed
4415 	      && definition
4416 	      && ((dynsym
4417 		   && h->ref_regular_nonweak
4418 		   && (old_bfd == NULL
4419 		       || (old_bfd->flags & BFD_PLUGIN) == 0))
4420 		  || (h->ref_dynamic_nonweak
4421 		      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4422 		      && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4423 	    {
4424 	      int ret;
4425 	      const char *soname = elf_dt_name (abfd);
4426 
4427 	      info->callbacks->minfo ("%!", soname, old_bfd,
4428 				      h->root.root.string);
4429 
4430 	      /* A symbol from a library loaded via DT_NEEDED of some
4431 		 other library is referenced by a regular object.
4432 		 Add a DT_NEEDED entry for it.  Issue an error if
4433 		 --no-add-needed is used and the reference was not
4434 		 a weak one.  */
4435 	      if (old_bfd != NULL
4436 		  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4437 		{
4438 		  (*_bfd_error_handler)
4439 		    (_("%B: undefined reference to symbol '%s'"),
4440 		     old_bfd, name);
4441 		  bfd_set_error (bfd_error_missing_dso);
4442 		  goto error_free_vers;
4443 		}
4444 
4445 	      elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4446                   (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4447 
4448 	      add_needed = TRUE;
4449 	      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4450 	      if (ret < 0)
4451 		goto error_free_vers;
4452 
4453 	      BFD_ASSERT (ret == 0);
4454 	    }
4455 	}
4456     }
4457 
4458   if (extversym != NULL)
4459     {
4460       free (extversym);
4461       extversym = NULL;
4462     }
4463 
4464   if (isymbuf != NULL)
4465     {
4466       free (isymbuf);
4467       isymbuf = NULL;
4468     }
4469 
4470   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4471     {
4472       unsigned int i;
4473 
4474       /* Restore the symbol table.  */
4475       old_ent = (char *) old_tab + tabsize;
4476       memset (elf_sym_hashes (abfd), 0,
4477 	      extsymcount * sizeof (struct elf_link_hash_entry *));
4478       htab->root.table.table = old_table;
4479       htab->root.table.size = old_size;
4480       htab->root.table.count = old_count;
4481       memcpy (htab->root.table.table, old_tab, tabsize);
4482       htab->root.undefs = old_undefs;
4483       htab->root.undefs_tail = old_undefs_tail;
4484       _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4485       for (i = 0; i < htab->root.table.size; i++)
4486 	{
4487 	  struct bfd_hash_entry *p;
4488 	  struct elf_link_hash_entry *h;
4489 	  bfd_size_type size;
4490 	  unsigned int alignment_power;
4491 
4492 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4493 	    {
4494 	      h = (struct elf_link_hash_entry *) p;
4495 	      if (h->root.type == bfd_link_hash_warning)
4496 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
4497 	      if (h->dynindx >= old_dynsymcount
4498 		  && h->dynstr_index < old_dynstr_size)
4499 		_bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4500 
4501 	      /* Preserve the maximum alignment and size for common
4502 		 symbols even if this dynamic lib isn't on DT_NEEDED
4503 		 since it can still be loaded at run time by another
4504 		 dynamic lib.  */
4505 	      if (h->root.type == bfd_link_hash_common)
4506 		{
4507 		  size = h->root.u.c.size;
4508 		  alignment_power = h->root.u.c.p->alignment_power;
4509 		}
4510 	      else
4511 		{
4512 		  size = 0;
4513 		  alignment_power = 0;
4514 		}
4515 	      memcpy (p, old_ent, htab->root.table.entsize);
4516 	      old_ent = (char *) old_ent + htab->root.table.entsize;
4517 	      h = (struct elf_link_hash_entry *) p;
4518 	      if (h->root.type == bfd_link_hash_warning)
4519 		{
4520 		  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4521 		  old_ent = (char *) old_ent + htab->root.table.entsize;
4522 		  h = (struct elf_link_hash_entry *) h->root.u.i.link;
4523 		}
4524 	      if (h->root.type == bfd_link_hash_common)
4525 		{
4526 		  if (size > h->root.u.c.size)
4527 		    h->root.u.c.size = size;
4528 		  if (alignment_power > h->root.u.c.p->alignment_power)
4529 		    h->root.u.c.p->alignment_power = alignment_power;
4530 		}
4531 	    }
4532 	}
4533 
4534       /* Make a special call to the linker "notice" function to
4535 	 tell it that symbols added for crefs may need to be removed.  */
4536       if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4537 	goto error_free_vers;
4538 
4539       free (old_tab);
4540       objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4541 			   alloc_mark);
4542       if (nondeflt_vers != NULL)
4543 	free (nondeflt_vers);
4544       return TRUE;
4545     }
4546 
4547   if (old_tab != NULL)
4548     {
4549       if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4550 	goto error_free_vers;
4551       free (old_tab);
4552       old_tab = NULL;
4553     }
4554 
4555   /* Now that all the symbols from this input file are created, handle
4556      .symver foo, foo@BAR such that any relocs against foo become foo@BAR.  */
4557   if (nondeflt_vers != NULL)
4558     {
4559       bfd_size_type cnt, symidx;
4560 
4561       for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4562 	{
4563 	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4564 	  char *shortname, *p;
4565 
4566 	  p = strchr (h->root.root.string, ELF_VER_CHR);
4567 	  if (p == NULL
4568 	      || (h->root.type != bfd_link_hash_defined
4569 		  && h->root.type != bfd_link_hash_defweak))
4570 	    continue;
4571 
4572 	  amt = p - h->root.root.string;
4573 	  shortname = (char *) bfd_malloc (amt + 1);
4574 	  if (!shortname)
4575 	    goto error_free_vers;
4576 	  memcpy (shortname, h->root.root.string, amt);
4577 	  shortname[amt] = '\0';
4578 
4579 	  hi = (struct elf_link_hash_entry *)
4580 	       bfd_link_hash_lookup (&htab->root, shortname,
4581 				     FALSE, FALSE, FALSE);
4582 	  if (hi != NULL
4583 	      && hi->root.type == h->root.type
4584 	      && hi->root.u.def.value == h->root.u.def.value
4585 	      && hi->root.u.def.section == h->root.u.def.section)
4586 	    {
4587 	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4588 	      hi->root.type = bfd_link_hash_indirect;
4589 	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4590 	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4591 	      sym_hash = elf_sym_hashes (abfd);
4592 	      if (sym_hash)
4593 		for (symidx = 0; symidx < extsymcount; ++symidx)
4594 		  if (sym_hash[symidx] == hi)
4595 		    {
4596 		      sym_hash[symidx] = h;
4597 		      break;
4598 		    }
4599 	    }
4600 	  free (shortname);
4601 	}
4602       free (nondeflt_vers);
4603       nondeflt_vers = NULL;
4604     }
4605 
4606   /* Now set the weakdefs field correctly for all the weak defined
4607      symbols we found.  The only way to do this is to search all the
4608      symbols.  Since we only need the information for non functions in
4609      dynamic objects, that's the only time we actually put anything on
4610      the list WEAKS.  We need this information so that if a regular
4611      object refers to a symbol defined weakly in a dynamic object, the
4612      real symbol in the dynamic object is also put in the dynamic
4613      symbols; we also must arrange for both symbols to point to the
4614      same memory location.  We could handle the general case of symbol
4615      aliasing, but a general symbol alias can only be generated in
4616      assembler code, handling it correctly would be very time
4617      consuming, and other ELF linkers don't handle general aliasing
4618      either.  */
4619   if (weaks != NULL)
4620     {
4621       struct elf_link_hash_entry **hpp;
4622       struct elf_link_hash_entry **hppend;
4623       struct elf_link_hash_entry **sorted_sym_hash;
4624       struct elf_link_hash_entry *h;
4625       size_t sym_count;
4626 
4627       /* Since we have to search the whole symbol list for each weak
4628 	 defined symbol, search time for N weak defined symbols will be
4629 	 O(N^2). Binary search will cut it down to O(NlogN).  */
4630       amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4631       sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4632       if (sorted_sym_hash == NULL)
4633 	goto error_return;
4634       sym_hash = sorted_sym_hash;
4635       hpp = elf_sym_hashes (abfd);
4636       hppend = hpp + extsymcount;
4637       sym_count = 0;
4638       for (; hpp < hppend; hpp++)
4639 	{
4640 	  h = *hpp;
4641 	  if (h != NULL
4642 	      && h->root.type == bfd_link_hash_defined
4643 	      && !bed->is_function_type (h->type))
4644 	    {
4645 	      *sym_hash = h;
4646 	      sym_hash++;
4647 	      sym_count++;
4648 	    }
4649 	}
4650 
4651       qsort (sorted_sym_hash, sym_count,
4652 	     sizeof (struct elf_link_hash_entry *),
4653 	     elf_sort_symbol);
4654 
4655       while (weaks != NULL)
4656 	{
4657 	  struct elf_link_hash_entry *hlook;
4658 	  asection *slook;
4659 	  bfd_vma vlook;
4660 	  size_t i, j, idx = 0;
4661 
4662 	  hlook = weaks;
4663 	  weaks = hlook->u.weakdef;
4664 	  hlook->u.weakdef = NULL;
4665 
4666 	  BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4667 		      || hlook->root.type == bfd_link_hash_defweak
4668 		      || hlook->root.type == bfd_link_hash_common
4669 		      || hlook->root.type == bfd_link_hash_indirect);
4670 	  slook = hlook->root.u.def.section;
4671 	  vlook = hlook->root.u.def.value;
4672 
4673 	  i = 0;
4674 	  j = sym_count;
4675 	  while (i != j)
4676 	    {
4677 	      bfd_signed_vma vdiff;
4678 	      idx = (i + j) / 2;
4679 	      h = sorted_sym_hash[idx];
4680 	      vdiff = vlook - h->root.u.def.value;
4681 	      if (vdiff < 0)
4682 		j = idx;
4683 	      else if (vdiff > 0)
4684 		i = idx + 1;
4685 	      else
4686 		{
4687 		  long sdiff = slook->id - h->root.u.def.section->id;
4688 		  if (sdiff < 0)
4689 		    j = idx;
4690 		  else if (sdiff > 0)
4691 		    i = idx + 1;
4692 		  else
4693 		    break;
4694 		}
4695 	    }
4696 
4697 	  /* We didn't find a value/section match.  */
4698 	  if (i == j)
4699 	    continue;
4700 
4701 	  /* With multiple aliases, or when the weak symbol is already
4702 	     strongly defined, we have multiple matching symbols and
4703 	     the binary search above may land on any of them.  Step
4704 	     one past the matching symbol(s).  */
4705 	  while (++idx != j)
4706 	    {
4707 	      h = sorted_sym_hash[idx];
4708 	      if (h->root.u.def.section != slook
4709 		  || h->root.u.def.value != vlook)
4710 		break;
4711 	    }
4712 
4713 	  /* Now look back over the aliases.  Since we sorted by size
4714 	     as well as value and section, we'll choose the one with
4715 	     the largest size.  */
4716 	  while (idx-- != i)
4717 	    {
4718 	      h = sorted_sym_hash[idx];
4719 
4720 	      /* Stop if value or section doesn't match.  */
4721 	      if (h->root.u.def.section != slook
4722 		  || h->root.u.def.value != vlook)
4723 		break;
4724 	      else if (h != hlook)
4725 		{
4726 		  hlook->u.weakdef = h;
4727 
4728 		  /* If the weak definition is in the list of dynamic
4729 		     symbols, make sure the real definition is put
4730 		     there as well.  */
4731 		  if (hlook->dynindx != -1 && h->dynindx == -1)
4732 		    {
4733 		      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4734 			{
4735 			err_free_sym_hash:
4736 			  free (sorted_sym_hash);
4737 			  goto error_return;
4738 			}
4739 		    }
4740 
4741 		  /* If the real definition is in the list of dynamic
4742 		     symbols, make sure the weak definition is put
4743 		     there as well.  If we don't do this, then the
4744 		     dynamic loader might not merge the entries for the
4745 		     real definition and the weak definition.  */
4746 		  if (h->dynindx != -1 && hlook->dynindx == -1)
4747 		    {
4748 		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4749 			goto err_free_sym_hash;
4750 		    }
4751 		  break;
4752 		}
4753 	    }
4754 	}
4755 
4756       free (sorted_sym_hash);
4757     }
4758 
4759   if (bed->check_directives
4760       && !(*bed->check_directives) (abfd, info))
4761     return FALSE;
4762 
4763   /* If this object is the same format as the output object, and it is
4764      not a shared library, then let the backend look through the
4765      relocs.
4766 
4767      This is required to build global offset table entries and to
4768      arrange for dynamic relocs.  It is not required for the
4769      particular common case of linking non PIC code, even when linking
4770      against shared libraries, but unfortunately there is no way of
4771      knowing whether an object file has been compiled PIC or not.
4772      Looking through the relocs is not particularly time consuming.
4773      The problem is that we must either (1) keep the relocs in memory,
4774      which causes the linker to require additional runtime memory or
4775      (2) read the relocs twice from the input file, which wastes time.
4776      This would be a good case for using mmap.
4777 
4778      I have no idea how to handle linking PIC code into a file of a
4779      different format.  It probably can't be done.  */
4780   if (! dynamic
4781       && is_elf_hash_table (htab)
4782       && bed->check_relocs != NULL
4783       && elf_object_id (abfd) == elf_hash_table_id (htab)
4784       && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4785     {
4786       asection *o;
4787 
4788       for (o = abfd->sections; o != NULL; o = o->next)
4789 	{
4790 	  Elf_Internal_Rela *internal_relocs;
4791 	  bfd_boolean ok;
4792 
4793 	  if ((o->flags & SEC_RELOC) == 0
4794 	      || o->reloc_count == 0
4795 	      || ((info->strip == strip_all || info->strip == strip_debugger)
4796 		  && (o->flags & SEC_DEBUGGING) != 0)
4797 	      || bfd_is_abs_section (o->output_section))
4798 	    continue;
4799 
4800 	  internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4801 						       info->keep_memory);
4802 	  if (internal_relocs == NULL)
4803 	    goto error_return;
4804 
4805 	  ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4806 
4807 	  if (elf_section_data (o)->relocs != internal_relocs)
4808 	    free (internal_relocs);
4809 
4810 	  if (! ok)
4811 	    goto error_return;
4812 	}
4813     }
4814 
4815   /* If this is a non-traditional link, try to optimize the handling
4816      of the .stab/.stabstr sections.  */
4817   if (! dynamic
4818       && ! info->traditional_format
4819       && is_elf_hash_table (htab)
4820       && (info->strip != strip_all && info->strip != strip_debugger))
4821     {
4822       asection *stabstr;
4823 
4824       stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4825       if (stabstr != NULL)
4826 	{
4827 	  bfd_size_type string_offset = 0;
4828 	  asection *stab;
4829 
4830 	  for (stab = abfd->sections; stab; stab = stab->next)
4831 	    if (CONST_STRNEQ (stab->name, ".stab")
4832 		&& (!stab->name[5] ||
4833 		    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4834 		&& (stab->flags & SEC_MERGE) == 0
4835 		&& !bfd_is_abs_section (stab->output_section))
4836 	      {
4837 		struct bfd_elf_section_data *secdata;
4838 
4839 		secdata = elf_section_data (stab);
4840 		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4841 					       stabstr, &secdata->sec_info,
4842 					       &string_offset))
4843 		  goto error_return;
4844 		if (secdata->sec_info)
4845 		  stab->sec_info_type = SEC_INFO_TYPE_STABS;
4846 	    }
4847 	}
4848     }
4849 
4850   if (is_elf_hash_table (htab) && add_needed)
4851     {
4852       /* Add this bfd to the loaded list.  */
4853       struct elf_link_loaded_list *n;
4854 
4855       n = (struct elf_link_loaded_list *)
4856           bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4857       if (n == NULL)
4858 	goto error_return;
4859       n->abfd = abfd;
4860       n->next = htab->loaded;
4861       htab->loaded = n;
4862     }
4863 
4864   return TRUE;
4865 
4866  error_free_vers:
4867   if (old_tab != NULL)
4868     free (old_tab);
4869   if (nondeflt_vers != NULL)
4870     free (nondeflt_vers);
4871   if (extversym != NULL)
4872     free (extversym);
4873  error_free_sym:
4874   if (isymbuf != NULL)
4875     free (isymbuf);
4876  error_return:
4877   return FALSE;
4878 }
4879 
4880 /* Return the linker hash table entry of a symbol that might be
4881    satisfied by an archive symbol.  Return -1 on error.  */
4882 
4883 struct elf_link_hash_entry *
_bfd_elf_archive_symbol_lookup(bfd * abfd,struct bfd_link_info * info,const char * name)4884 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4885 				struct bfd_link_info *info,
4886 				const char *name)
4887 {
4888   struct elf_link_hash_entry *h;
4889   char *p, *copy;
4890   size_t len, first;
4891 
4892   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4893   if (h != NULL)
4894     return h;
4895 
4896   /* If this is a default version (the name contains @@), look up the
4897      symbol again with only one `@' as well as without the version.
4898      The effect is that references to the symbol with and without the
4899      version will be matched by the default symbol in the archive.  */
4900 
4901   p = strchr (name, ELF_VER_CHR);
4902   if (p == NULL || p[1] != ELF_VER_CHR)
4903     return h;
4904 
4905   /* First check with only one `@'.  */
4906   len = strlen (name);
4907   copy = (char *) bfd_alloc (abfd, len);
4908   if (copy == NULL)
4909     return (struct elf_link_hash_entry *) 0 - 1;
4910 
4911   first = p - name + 1;
4912   memcpy (copy, name, first);
4913   memcpy (copy + first, name + first + 1, len - first);
4914 
4915   h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4916   if (h == NULL)
4917     {
4918       /* We also need to check references to the symbol without the
4919 	 version.  */
4920       copy[first - 1] = '\0';
4921       h = elf_link_hash_lookup (elf_hash_table (info), copy,
4922 				FALSE, FALSE, TRUE);
4923     }
4924 
4925   bfd_release (abfd, copy);
4926   return h;
4927 }
4928 
4929 /* Add symbols from an ELF archive file to the linker hash table.  We
4930    don't use _bfd_generic_link_add_archive_symbols because we need to
4931    handle versioned symbols.
4932 
4933    Fortunately, ELF archive handling is simpler than that done by
4934    _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4935    oddities.  In ELF, if we find a symbol in the archive map, and the
4936    symbol is currently undefined, we know that we must pull in that
4937    object file.
4938 
4939    Unfortunately, we do have to make multiple passes over the symbol
4940    table until nothing further is resolved.  */
4941 
4942 static bfd_boolean
elf_link_add_archive_symbols(bfd * abfd,struct bfd_link_info * info)4943 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4944 {
4945   symindex c;
4946   unsigned char *included = NULL;
4947   carsym *symdefs;
4948   bfd_boolean loop;
4949   bfd_size_type amt;
4950   const struct elf_backend_data *bed;
4951   struct elf_link_hash_entry * (*archive_symbol_lookup)
4952     (bfd *, struct bfd_link_info *, const char *);
4953 
4954   if (! bfd_has_map (abfd))
4955     {
4956       /* An empty archive is a special case.  */
4957       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4958 	return TRUE;
4959       bfd_set_error (bfd_error_no_armap);
4960       return FALSE;
4961     }
4962 
4963   /* Keep track of all symbols we know to be already defined, and all
4964      files we know to be already included.  This is to speed up the
4965      second and subsequent passes.  */
4966   c = bfd_ardata (abfd)->symdef_count;
4967   if (c == 0)
4968     return TRUE;
4969   amt = c;
4970   amt *= sizeof (*included);
4971   included = (unsigned char *) bfd_zmalloc (amt);
4972   if (included == NULL)
4973     return FALSE;
4974 
4975   symdefs = bfd_ardata (abfd)->symdefs;
4976   bed = get_elf_backend_data (abfd);
4977   archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4978 
4979   do
4980     {
4981       file_ptr last;
4982       symindex i;
4983       carsym *symdef;
4984       carsym *symdefend;
4985 
4986       loop = FALSE;
4987       last = -1;
4988 
4989       symdef = symdefs;
4990       symdefend = symdef + c;
4991       for (i = 0; symdef < symdefend; symdef++, i++)
4992 	{
4993 	  struct elf_link_hash_entry *h;
4994 	  bfd *element;
4995 	  struct bfd_link_hash_entry *undefs_tail;
4996 	  symindex mark;
4997 
4998 	  if (included[i])
4999 	    continue;
5000 	  if (symdef->file_offset == last)
5001 	    {
5002 	      included[i] = TRUE;
5003 	      continue;
5004 	    }
5005 
5006 	  h = archive_symbol_lookup (abfd, info, symdef->name);
5007 	  if (h == (struct elf_link_hash_entry *) 0 - 1)
5008 	    goto error_return;
5009 
5010 	  if (h == NULL)
5011 	    continue;
5012 
5013 	  if (h->root.type == bfd_link_hash_common)
5014 	    {
5015 	      /* We currently have a common symbol.  The archive map contains
5016 		 a reference to this symbol, so we may want to include it.  We
5017 		 only want to include it however, if this archive element
5018 		 contains a definition of the symbol, not just another common
5019 		 declaration of it.
5020 
5021 		 Unfortunately some archivers (including GNU ar) will put
5022 		 declarations of common symbols into their archive maps, as
5023 		 well as real definitions, so we cannot just go by the archive
5024 		 map alone.  Instead we must read in the element's symbol
5025 		 table and check that to see what kind of symbol definition
5026 		 this is.  */
5027 	      if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5028 		continue;
5029 	    }
5030 	  else if (h->root.type != bfd_link_hash_undefined)
5031 	    {
5032 	      if (h->root.type != bfd_link_hash_undefweak)
5033 		/* Symbol must be defined.  Don't check it again.  */
5034 		included[i] = TRUE;
5035 	      continue;
5036 	    }
5037 
5038 	  /* We need to include this archive member.  */
5039 	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5040 	  if (element == NULL)
5041 	    goto error_return;
5042 
5043 	  if (! bfd_check_format (element, bfd_object))
5044 	    goto error_return;
5045 
5046 	  undefs_tail = info->hash->undefs_tail;
5047 
5048 	  if (!(*info->callbacks
5049 		->add_archive_element) (info, element, symdef->name, &element))
5050 	    goto error_return;
5051 	  if (!bfd_link_add_symbols (element, info))
5052 	    goto error_return;
5053 
5054 	  /* If there are any new undefined symbols, we need to make
5055 	     another pass through the archive in order to see whether
5056 	     they can be defined.  FIXME: This isn't perfect, because
5057 	     common symbols wind up on undefs_tail and because an
5058 	     undefined symbol which is defined later on in this pass
5059 	     does not require another pass.  This isn't a bug, but it
5060 	     does make the code less efficient than it could be.  */
5061 	  if (undefs_tail != info->hash->undefs_tail)
5062 	    loop = TRUE;
5063 
5064 	  /* Look backward to mark all symbols from this object file
5065 	     which we have already seen in this pass.  */
5066 	  mark = i;
5067 	  do
5068 	    {
5069 	      included[mark] = TRUE;
5070 	      if (mark == 0)
5071 		break;
5072 	      --mark;
5073 	    }
5074 	  while (symdefs[mark].file_offset == symdef->file_offset);
5075 
5076 	  /* We mark subsequent symbols from this object file as we go
5077 	     on through the loop.  */
5078 	  last = symdef->file_offset;
5079 	}
5080     }
5081   while (loop);
5082 
5083   free (included);
5084 
5085   return TRUE;
5086 
5087  error_return:
5088   if (included != NULL)
5089     free (included);
5090   return FALSE;
5091 }
5092 
5093 /* Given an ELF BFD, add symbols to the global hash table as
5094    appropriate.  */
5095 
5096 bfd_boolean
bfd_elf_link_add_symbols(bfd * abfd,struct bfd_link_info * info)5097 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5098 {
5099   switch (bfd_get_format (abfd))
5100     {
5101     case bfd_object:
5102       return elf_link_add_object_symbols (abfd, info);
5103     case bfd_archive:
5104       return elf_link_add_archive_symbols (abfd, info);
5105     default:
5106       bfd_set_error (bfd_error_wrong_format);
5107       return FALSE;
5108     }
5109 }
5110 
5111 struct hash_codes_info
5112 {
5113   unsigned long *hashcodes;
5114   bfd_boolean error;
5115 };
5116 
5117 /* This function will be called though elf_link_hash_traverse to store
5118    all hash value of the exported symbols in an array.  */
5119 
5120 static bfd_boolean
elf_collect_hash_codes(struct elf_link_hash_entry * h,void * data)5121 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5122 {
5123   struct hash_codes_info *inf = (struct hash_codes_info *) data;
5124   const char *name;
5125   char *p;
5126   unsigned long ha;
5127   char *alc = NULL;
5128 
5129   /* Ignore indirect symbols.  These are added by the versioning code.  */
5130   if (h->dynindx == -1)
5131     return TRUE;
5132 
5133   name = h->root.root.string;
5134   p = strchr (name, ELF_VER_CHR);
5135   if (p != NULL)
5136     {
5137       alc = (char *) bfd_malloc (p - name + 1);
5138       if (alc == NULL)
5139 	{
5140 	  inf->error = TRUE;
5141 	  return FALSE;
5142 	}
5143       memcpy (alc, name, p - name);
5144       alc[p - name] = '\0';
5145       name = alc;
5146     }
5147 
5148   /* Compute the hash value.  */
5149   ha = bfd_elf_hash (name);
5150 
5151   /* Store the found hash value in the array given as the argument.  */
5152   *(inf->hashcodes)++ = ha;
5153 
5154   /* And store it in the struct so that we can put it in the hash table
5155      later.  */
5156   h->u.elf_hash_value = ha;
5157 
5158   if (alc != NULL)
5159     free (alc);
5160 
5161   return TRUE;
5162 }
5163 
5164 struct collect_gnu_hash_codes
5165 {
5166   bfd *output_bfd;
5167   const struct elf_backend_data *bed;
5168   unsigned long int nsyms;
5169   unsigned long int maskbits;
5170   unsigned long int *hashcodes;
5171   unsigned long int *hashval;
5172   unsigned long int *indx;
5173   unsigned long int *counts;
5174   bfd_vma *bitmask;
5175   bfd_byte *contents;
5176   long int min_dynindx;
5177   unsigned long int bucketcount;
5178   unsigned long int symindx;
5179   long int local_indx;
5180   long int shift1, shift2;
5181   unsigned long int mask;
5182   bfd_boolean error;
5183 };
5184 
5185 /* This function will be called though elf_link_hash_traverse to store
5186    all hash value of the exported symbols in an array.  */
5187 
5188 static bfd_boolean
elf_collect_gnu_hash_codes(struct elf_link_hash_entry * h,void * data)5189 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5190 {
5191   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5192   const char *name;
5193   char *p;
5194   unsigned long ha;
5195   char *alc = NULL;
5196 
5197   /* Ignore indirect symbols.  These are added by the versioning code.  */
5198   if (h->dynindx == -1)
5199     return TRUE;
5200 
5201   /* Ignore also local symbols and undefined symbols.  */
5202   if (! (*s->bed->elf_hash_symbol) (h))
5203     return TRUE;
5204 
5205   name = h->root.root.string;
5206   p = strchr (name, ELF_VER_CHR);
5207   if (p != NULL)
5208     {
5209       alc = (char *) bfd_malloc (p - name + 1);
5210       if (alc == NULL)
5211 	{
5212 	  s->error = TRUE;
5213 	  return FALSE;
5214 	}
5215       memcpy (alc, name, p - name);
5216       alc[p - name] = '\0';
5217       name = alc;
5218     }
5219 
5220   /* Compute the hash value.  */
5221   ha = bfd_elf_gnu_hash (name);
5222 
5223   /* Store the found hash value in the array for compute_bucket_count,
5224      and also for .dynsym reordering purposes.  */
5225   s->hashcodes[s->nsyms] = ha;
5226   s->hashval[h->dynindx] = ha;
5227   ++s->nsyms;
5228   if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5229     s->min_dynindx = h->dynindx;
5230 
5231   if (alc != NULL)
5232     free (alc);
5233 
5234   return TRUE;
5235 }
5236 
5237 /* This function will be called though elf_link_hash_traverse to do
5238    final dynaminc symbol renumbering.  */
5239 
5240 static bfd_boolean
elf_renumber_gnu_hash_syms(struct elf_link_hash_entry * h,void * data)5241 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5242 {
5243   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5244   unsigned long int bucket;
5245   unsigned long int val;
5246 
5247   /* Ignore indirect symbols.  */
5248   if (h->dynindx == -1)
5249     return TRUE;
5250 
5251   /* Ignore also local symbols and undefined symbols.  */
5252   if (! (*s->bed->elf_hash_symbol) (h))
5253     {
5254       if (h->dynindx >= s->min_dynindx)
5255 	h->dynindx = s->local_indx++;
5256       return TRUE;
5257     }
5258 
5259   bucket = s->hashval[h->dynindx] % s->bucketcount;
5260   val = (s->hashval[h->dynindx] >> s->shift1)
5261 	& ((s->maskbits >> s->shift1) - 1);
5262   s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5263   s->bitmask[val]
5264     |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5265   val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5266   if (s->counts[bucket] == 1)
5267     /* Last element terminates the chain.  */
5268     val |= 1;
5269   bfd_put_32 (s->output_bfd, val,
5270 	      s->contents + (s->indx[bucket] - s->symindx) * 4);
5271   --s->counts[bucket];
5272   h->dynindx = s->indx[bucket]++;
5273   return TRUE;
5274 }
5275 
5276 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
5277 
5278 bfd_boolean
_bfd_elf_hash_symbol(struct elf_link_hash_entry * h)5279 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5280 {
5281   return !(h->forced_local
5282 	   || h->root.type == bfd_link_hash_undefined
5283 	   || h->root.type == bfd_link_hash_undefweak
5284 	   || ((h->root.type == bfd_link_hash_defined
5285 		|| h->root.type == bfd_link_hash_defweak)
5286 	       && h->root.u.def.section->output_section == NULL));
5287 }
5288 
5289 /* Array used to determine the number of hash table buckets to use
5290    based on the number of symbols there are.  If there are fewer than
5291    3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5292    fewer than 37 we use 17 buckets, and so forth.  We never use more
5293    than 32771 buckets.  */
5294 
5295 static const size_t elf_buckets[] =
5296 {
5297   1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5298   16411, 32771, 0
5299 };
5300 
5301 /* Compute bucket count for hashing table.  We do not use a static set
5302    of possible tables sizes anymore.  Instead we determine for all
5303    possible reasonable sizes of the table the outcome (i.e., the
5304    number of collisions etc) and choose the best solution.  The
5305    weighting functions are not too simple to allow the table to grow
5306    without bounds.  Instead one of the weighting factors is the size.
5307    Therefore the result is always a good payoff between few collisions
5308    (= short chain lengths) and table size.  */
5309 static size_t
compute_bucket_count(struct bfd_link_info * info ATTRIBUTE_UNUSED,unsigned long int * hashcodes ATTRIBUTE_UNUSED,unsigned long int nsyms,int gnu_hash)5310 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5311 		      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5312 		      unsigned long int nsyms,
5313 		      int gnu_hash)
5314 {
5315   size_t best_size = 0;
5316   unsigned long int i;
5317 
5318   /* We have a problem here.  The following code to optimize the table
5319      size requires an integer type with more the 32 bits.  If
5320      BFD_HOST_U_64_BIT is set we know about such a type.  */
5321 #ifdef BFD_HOST_U_64_BIT
5322   if (info->optimize)
5323     {
5324       size_t minsize;
5325       size_t maxsize;
5326       BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5327       bfd *dynobj = elf_hash_table (info)->dynobj;
5328       size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5329       const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5330       unsigned long int *counts;
5331       bfd_size_type amt;
5332       unsigned int no_improvement_count = 0;
5333 
5334       /* Possible optimization parameters: if we have NSYMS symbols we say
5335 	 that the hashing table must at least have NSYMS/4 and at most
5336 	 2*NSYMS buckets.  */
5337       minsize = nsyms / 4;
5338       if (minsize == 0)
5339 	minsize = 1;
5340       best_size = maxsize = nsyms * 2;
5341       if (gnu_hash)
5342 	{
5343 	  if (minsize < 2)
5344 	    minsize = 2;
5345 	  if ((best_size & 31) == 0)
5346 	    ++best_size;
5347 	}
5348 
5349       /* Create array where we count the collisions in.  We must use bfd_malloc
5350 	 since the size could be large.  */
5351       amt = maxsize;
5352       amt *= sizeof (unsigned long int);
5353       counts = (unsigned long int *) bfd_malloc (amt);
5354       if (counts == NULL)
5355 	return 0;
5356 
5357       /* Compute the "optimal" size for the hash table.  The criteria is a
5358 	 minimal chain length.  The minor criteria is (of course) the size
5359 	 of the table.  */
5360       for (i = minsize; i < maxsize; ++i)
5361 	{
5362 	  /* Walk through the array of hashcodes and count the collisions.  */
5363 	  BFD_HOST_U_64_BIT max;
5364 	  unsigned long int j;
5365 	  unsigned long int fact;
5366 
5367 	  if (gnu_hash && (i & 31) == 0)
5368 	    continue;
5369 
5370 	  memset (counts, '\0', i * sizeof (unsigned long int));
5371 
5372 	  /* Determine how often each hash bucket is used.  */
5373 	  for (j = 0; j < nsyms; ++j)
5374 	    ++counts[hashcodes[j] % i];
5375 
5376 	  /* For the weight function we need some information about the
5377 	     pagesize on the target.  This is information need not be 100%
5378 	     accurate.  Since this information is not available (so far) we
5379 	     define it here to a reasonable default value.  If it is crucial
5380 	     to have a better value some day simply define this value.  */
5381 # ifndef BFD_TARGET_PAGESIZE
5382 #  define BFD_TARGET_PAGESIZE	(4096)
5383 # endif
5384 
5385 	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5386 	     and the chains.  */
5387 	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5388 
5389 # if 1
5390 	  /* Variant 1: optimize for short chains.  We add the squares
5391 	     of all the chain lengths (which favors many small chain
5392 	     over a few long chains).  */
5393 	  for (j = 0; j < i; ++j)
5394 	    max += counts[j] * counts[j];
5395 
5396 	  /* This adds penalties for the overall size of the table.  */
5397 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5398 	  max *= fact * fact;
5399 # else
5400 	  /* Variant 2: Optimize a lot more for small table.  Here we
5401 	     also add squares of the size but we also add penalties for
5402 	     empty slots (the +1 term).  */
5403 	  for (j = 0; j < i; ++j)
5404 	    max += (1 + counts[j]) * (1 + counts[j]);
5405 
5406 	  /* The overall size of the table is considered, but not as
5407 	     strong as in variant 1, where it is squared.  */
5408 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5409 	  max *= fact;
5410 # endif
5411 
5412 	  /* Compare with current best results.  */
5413 	  if (max < best_chlen)
5414 	    {
5415 	      best_chlen = max;
5416 	      best_size = i;
5417               no_improvement_count = 0;
5418 	    }
5419 	  /* PR 11843: Avoid futile long searches for the best bucket size
5420 	     when there are a large number of symbols.  */
5421 	  else if (++no_improvement_count == 100)
5422 	    break;
5423 	}
5424 
5425       free (counts);
5426     }
5427   else
5428 #endif /* defined (BFD_HOST_U_64_BIT) */
5429     {
5430       /* This is the fallback solution if no 64bit type is available or if we
5431 	 are not supposed to spend much time on optimizations.  We select the
5432 	 bucket count using a fixed set of numbers.  */
5433       for (i = 0; elf_buckets[i] != 0; i++)
5434 	{
5435 	  best_size = elf_buckets[i];
5436 	  if (nsyms < elf_buckets[i + 1])
5437 	    break;
5438 	}
5439       if (gnu_hash && best_size < 2)
5440 	best_size = 2;
5441     }
5442 
5443   return best_size;
5444 }
5445 
5446 /* Size any SHT_GROUP section for ld -r.  */
5447 
5448 bfd_boolean
_bfd_elf_size_group_sections(struct bfd_link_info * info)5449 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5450 {
5451   bfd *ibfd;
5452 
5453   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5454     if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5455 	&& !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5456       return FALSE;
5457   return TRUE;
5458 }
5459 
5460 /* Set a default stack segment size.  The value in INFO wins.  If it
5461    is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5462    undefined it is initialized.  */
5463 
5464 bfd_boolean
bfd_elf_stack_segment_size(bfd * output_bfd,struct bfd_link_info * info,const char * legacy_symbol,bfd_vma default_size)5465 bfd_elf_stack_segment_size (bfd *output_bfd,
5466 			    struct bfd_link_info *info,
5467 			    const char *legacy_symbol,
5468 			    bfd_vma default_size)
5469 {
5470   struct elf_link_hash_entry *h = NULL;
5471 
5472   /* Look for legacy symbol.  */
5473   if (legacy_symbol)
5474     h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5475 			      FALSE, FALSE, FALSE);
5476   if (h && (h->root.type == bfd_link_hash_defined
5477 	    || h->root.type == bfd_link_hash_defweak)
5478       && h->def_regular
5479       && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5480     {
5481       /* The symbol has no type if specified on the command line.  */
5482       h->type = STT_OBJECT;
5483       if (info->stacksize)
5484 	(*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5485 			       output_bfd, legacy_symbol);
5486       else if (h->root.u.def.section != bfd_abs_section_ptr)
5487 	(*_bfd_error_handler) (_("%B: %s not absolute"),
5488 			       output_bfd, legacy_symbol);
5489       else
5490 	info->stacksize = h->root.u.def.value;
5491     }
5492 
5493   if (!info->stacksize)
5494     /* If the user didn't set a size, or explicitly inhibit the
5495        size, set it now.  */
5496     info->stacksize = default_size;
5497 
5498   /* Provide the legacy symbol, if it is referenced.  */
5499   if (h && (h->root.type == bfd_link_hash_undefined
5500 	    || h->root.type == bfd_link_hash_undefweak))
5501     {
5502       struct bfd_link_hash_entry *bh = NULL;
5503 
5504       if (!(_bfd_generic_link_add_one_symbol
5505 	    (info, output_bfd, legacy_symbol,
5506 	     BSF_GLOBAL, bfd_abs_section_ptr,
5507 	     info->stacksize >= 0 ? info->stacksize : 0,
5508 	     NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5509 	return FALSE;
5510 
5511       h = (struct elf_link_hash_entry *) bh;
5512       h->def_regular = 1;
5513       h->type = STT_OBJECT;
5514     }
5515 
5516   return TRUE;
5517 }
5518 
5519 /* Set up the sizes and contents of the ELF dynamic sections.  This is
5520    called by the ELF linker emulation before_allocation routine.  We
5521    must set the sizes of the sections before the linker sets the
5522    addresses of the various sections.  */
5523 
5524 bfd_boolean
bfd_elf_size_dynamic_sections(bfd * output_bfd,const char * soname,const char * rpath,const char * filter_shlib,const char * audit,const char * depaudit,const char * const * auxiliary_filters,struct bfd_link_info * info,asection ** sinterpptr)5525 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5526 			       const char *soname,
5527 			       const char *rpath,
5528 			       const char *filter_shlib,
5529 			       const char *audit,
5530 			       const char *depaudit,
5531 			       const char * const *auxiliary_filters,
5532 			       struct bfd_link_info *info,
5533 			       asection **sinterpptr)
5534 {
5535   bfd_size_type soname_indx;
5536   bfd *dynobj;
5537   const struct elf_backend_data *bed;
5538   struct elf_info_failed asvinfo;
5539 
5540   *sinterpptr = NULL;
5541 
5542   soname_indx = (bfd_size_type) -1;
5543 
5544   if (!is_elf_hash_table (info->hash))
5545     return TRUE;
5546 
5547   bed = get_elf_backend_data (output_bfd);
5548 
5549   /* Any syms created from now on start with -1 in
5550      got.refcount/offset and plt.refcount/offset.  */
5551   elf_hash_table (info)->init_got_refcount
5552     = elf_hash_table (info)->init_got_offset;
5553   elf_hash_table (info)->init_plt_refcount
5554     = elf_hash_table (info)->init_plt_offset;
5555 
5556   if (info->relocatable
5557       && !_bfd_elf_size_group_sections (info))
5558     return FALSE;
5559 
5560   /* The backend may have to create some sections regardless of whether
5561      we're dynamic or not.  */
5562   if (bed->elf_backend_always_size_sections
5563       && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5564     return FALSE;
5565 
5566   /* Determine any GNU_STACK segment requirements, after the backend
5567      has had a chance to set a default segment size.  */
5568   if (info->execstack)
5569     elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5570   else if (info->noexecstack)
5571     elf_stack_flags (output_bfd) = PF_R | PF_W;
5572   else
5573     {
5574       bfd *inputobj;
5575       asection *notesec = NULL;
5576       int exec = 0;
5577 
5578       for (inputobj = info->input_bfds;
5579 	   inputobj;
5580 	   inputobj = inputobj->link.next)
5581 	{
5582 	  asection *s;
5583 
5584 	  if (inputobj->flags
5585 	      & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5586 	    continue;
5587 	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5588 	  if (s)
5589 	    {
5590 	      if (s->flags & SEC_CODE)
5591 		exec = PF_X;
5592 	      notesec = s;
5593 	    }
5594 	  else if (bed->default_execstack)
5595 	    exec = PF_X;
5596 	}
5597       if (notesec || info->stacksize > 0)
5598 	elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5599       if (notesec && exec && info->relocatable
5600 	  && notesec->output_section != bfd_abs_section_ptr)
5601 	notesec->output_section->flags |= SEC_CODE;
5602     }
5603 
5604   dynobj = elf_hash_table (info)->dynobj;
5605 
5606   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5607     {
5608       struct elf_info_failed eif;
5609       struct elf_link_hash_entry *h;
5610       asection *dynstr;
5611       struct bfd_elf_version_tree *t;
5612       struct bfd_elf_version_expr *d;
5613       asection *s;
5614       bfd_boolean all_defined;
5615 
5616       *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5617       BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5618 
5619       if (soname != NULL)
5620 	{
5621 	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5622 					     soname, TRUE);
5623 	  if (soname_indx == (bfd_size_type) -1
5624 	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5625 	    return FALSE;
5626 	}
5627 
5628       if (info->symbolic)
5629 	{
5630 	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5631 	    return FALSE;
5632 	  info->flags |= DF_SYMBOLIC;
5633 	}
5634 
5635       if (rpath != NULL)
5636 	{
5637 	  bfd_size_type indx;
5638 	  bfd_vma tag;
5639 
5640 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5641 				      TRUE);
5642 	  if (indx == (bfd_size_type) -1)
5643 	    return FALSE;
5644 
5645 	  tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5646 	  if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5647 	    return FALSE;
5648 	}
5649 
5650       if (filter_shlib != NULL)
5651 	{
5652 	  bfd_size_type indx;
5653 
5654 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5655 				      filter_shlib, TRUE);
5656 	  if (indx == (bfd_size_type) -1
5657 	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5658 	    return FALSE;
5659 	}
5660 
5661       if (auxiliary_filters != NULL)
5662 	{
5663 	  const char * const *p;
5664 
5665 	  for (p = auxiliary_filters; *p != NULL; p++)
5666 	    {
5667 	      bfd_size_type indx;
5668 
5669 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5670 					  *p, TRUE);
5671 	      if (indx == (bfd_size_type) -1
5672 		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5673 		return FALSE;
5674 	    }
5675 	}
5676 
5677       if (audit != NULL)
5678 	{
5679 	  bfd_size_type indx;
5680 
5681 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5682 				      TRUE);
5683 	  if (indx == (bfd_size_type) -1
5684 	      || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5685 	    return FALSE;
5686 	}
5687 
5688       if (depaudit != NULL)
5689 	{
5690 	  bfd_size_type indx;
5691 
5692 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5693 				      TRUE);
5694 	  if (indx == (bfd_size_type) -1
5695 	      || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5696 	    return FALSE;
5697 	}
5698 
5699       eif.info = info;
5700       eif.failed = FALSE;
5701 
5702       /* If we are supposed to export all symbols into the dynamic symbol
5703 	 table (this is not the normal case), then do so.  */
5704       if (info->export_dynamic
5705 	  || (info->executable && info->dynamic))
5706 	{
5707 	  elf_link_hash_traverse (elf_hash_table (info),
5708 				  _bfd_elf_export_symbol,
5709 				  &eif);
5710 	  if (eif.failed)
5711 	    return FALSE;
5712 	}
5713 
5714       /* Make all global versions with definition.  */
5715       for (t = info->version_info; t != NULL; t = t->next)
5716 	for (d = t->globals.list; d != NULL; d = d->next)
5717 	  if (!d->symver && d->literal)
5718 	    {
5719 	      const char *verstr, *name;
5720 	      size_t namelen, verlen, newlen;
5721 	      char *newname, *p, leading_char;
5722 	      struct elf_link_hash_entry *newh;
5723 
5724 	      leading_char = bfd_get_symbol_leading_char (output_bfd);
5725 	      name = d->pattern;
5726 	      namelen = strlen (name) + (leading_char != '\0');
5727 	      verstr = t->name;
5728 	      verlen = strlen (verstr);
5729 	      newlen = namelen + verlen + 3;
5730 
5731 	      newname = (char *) bfd_malloc (newlen);
5732 	      if (newname == NULL)
5733 		return FALSE;
5734 	      newname[0] = leading_char;
5735 	      memcpy (newname + (leading_char != '\0'), name, namelen);
5736 
5737 	      /* Check the hidden versioned definition.  */
5738 	      p = newname + namelen;
5739 	      *p++ = ELF_VER_CHR;
5740 	      memcpy (p, verstr, verlen + 1);
5741 	      newh = elf_link_hash_lookup (elf_hash_table (info),
5742 					   newname, FALSE, FALSE,
5743 					   FALSE);
5744 	      if (newh == NULL
5745 		  || (newh->root.type != bfd_link_hash_defined
5746 		      && newh->root.type != bfd_link_hash_defweak))
5747 		{
5748 		  /* Check the default versioned definition.  */
5749 		  *p++ = ELF_VER_CHR;
5750 		  memcpy (p, verstr, verlen + 1);
5751 		  newh = elf_link_hash_lookup (elf_hash_table (info),
5752 					       newname, FALSE, FALSE,
5753 					       FALSE);
5754 		}
5755 	      free (newname);
5756 
5757 	      /* Mark this version if there is a definition and it is
5758 		 not defined in a shared object.  */
5759 	      if (newh != NULL
5760 		  && !newh->def_dynamic
5761 		  && (newh->root.type == bfd_link_hash_defined
5762 		      || newh->root.type == bfd_link_hash_defweak))
5763 		d->symver = 1;
5764 	    }
5765 
5766       /* Attach all the symbols to their version information.  */
5767       asvinfo.info = info;
5768       asvinfo.failed = FALSE;
5769 
5770       elf_link_hash_traverse (elf_hash_table (info),
5771 			      _bfd_elf_link_assign_sym_version,
5772 			      &asvinfo);
5773       if (asvinfo.failed)
5774 	return FALSE;
5775 
5776       if (!info->allow_undefined_version)
5777 	{
5778 	  /* Check if all global versions have a definition.  */
5779 	  all_defined = TRUE;
5780 	  for (t = info->version_info; t != NULL; t = t->next)
5781 	    for (d = t->globals.list; d != NULL; d = d->next)
5782 	      if (d->literal && !d->symver && !d->script)
5783 		{
5784 		  (*_bfd_error_handler)
5785 		    (_("%s: undefined version: %s"),
5786 		     d->pattern, t->name);
5787 		  all_defined = FALSE;
5788 		}
5789 
5790 	  if (!all_defined)
5791 	    {
5792 	      bfd_set_error (bfd_error_bad_value);
5793 	      return FALSE;
5794 	    }
5795 	}
5796 
5797       /* Find all symbols which were defined in a dynamic object and make
5798 	 the backend pick a reasonable value for them.  */
5799       elf_link_hash_traverse (elf_hash_table (info),
5800 			      _bfd_elf_adjust_dynamic_symbol,
5801 			      &eif);
5802       if (eif.failed)
5803 	return FALSE;
5804 
5805       /* Add some entries to the .dynamic section.  We fill in some of the
5806 	 values later, in bfd_elf_final_link, but we must add the entries
5807 	 now so that we know the final size of the .dynamic section.  */
5808 
5809       /* If there are initialization and/or finalization functions to
5810 	 call then add the corresponding DT_INIT/DT_FINI entries.  */
5811       h = (info->init_function
5812 	   ? elf_link_hash_lookup (elf_hash_table (info),
5813 				   info->init_function, FALSE,
5814 				   FALSE, FALSE)
5815 	   : NULL);
5816       if (h != NULL
5817 	  && (h->ref_regular
5818 	      || h->def_regular))
5819 	{
5820 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5821 	    return FALSE;
5822 	}
5823       h = (info->fini_function
5824 	   ? elf_link_hash_lookup (elf_hash_table (info),
5825 				   info->fini_function, FALSE,
5826 				   FALSE, FALSE)
5827 	   : NULL);
5828       if (h != NULL
5829 	  && (h->ref_regular
5830 	      || h->def_regular))
5831 	{
5832 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5833 	    return FALSE;
5834 	}
5835 
5836       s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5837       if (s != NULL && s->linker_has_input)
5838 	{
5839 	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */
5840 	  if (! info->executable)
5841 	    {
5842 	      bfd *sub;
5843 	      asection *o;
5844 
5845 	      for (sub = info->input_bfds; sub != NULL;
5846 		   sub = sub->link.next)
5847 		if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5848 		  for (o = sub->sections; o != NULL; o = o->next)
5849 		    if (elf_section_data (o)->this_hdr.sh_type
5850 			== SHT_PREINIT_ARRAY)
5851 		      {
5852 			(*_bfd_error_handler)
5853 			  (_("%B: .preinit_array section is not allowed in DSO"),
5854 			   sub);
5855 			break;
5856 		      }
5857 
5858 	      bfd_set_error (bfd_error_nonrepresentable_section);
5859 	      return FALSE;
5860 	    }
5861 
5862 	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5863 	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5864 	    return FALSE;
5865 	}
5866       s = bfd_get_section_by_name (output_bfd, ".init_array");
5867       if (s != NULL && s->linker_has_input)
5868 	{
5869 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5870 	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5871 	    return FALSE;
5872 	}
5873       s = bfd_get_section_by_name (output_bfd, ".fini_array");
5874       if (s != NULL && s->linker_has_input)
5875 	{
5876 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5877 	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5878 	    return FALSE;
5879 	}
5880 
5881       dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5882       /* If .dynstr is excluded from the link, we don't want any of
5883 	 these tags.  Strictly, we should be checking each section
5884 	 individually;  This quick check covers for the case where
5885 	 someone does a /DISCARD/ : { *(*) }.  */
5886       if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5887 	{
5888 	  bfd_size_type strsize;
5889 
5890 	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5891 	  if ((info->emit_hash
5892 	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5893 	      || (info->emit_gnu_hash
5894 		  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5895 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5896 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5897 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5898 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5899 					      bed->s->sizeof_sym))
5900 	    return FALSE;
5901 	}
5902     }
5903 
5904   /* The backend must work out the sizes of all the other dynamic
5905      sections.  */
5906   if (dynobj != NULL
5907       && bed->elf_backend_size_dynamic_sections != NULL
5908       && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5909     return FALSE;
5910 
5911   if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5912     return FALSE;
5913 
5914   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5915     {
5916       unsigned long section_sym_count;
5917       struct bfd_elf_version_tree *verdefs;
5918       asection *s;
5919 
5920       /* Set up the version definition section.  */
5921       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5922       BFD_ASSERT (s != NULL);
5923 
5924       /* We may have created additional version definitions if we are
5925 	 just linking a regular application.  */
5926       verdefs = info->version_info;
5927 
5928       /* Skip anonymous version tag.  */
5929       if (verdefs != NULL && verdefs->vernum == 0)
5930 	verdefs = verdefs->next;
5931 
5932       if (verdefs == NULL && !info->create_default_symver)
5933 	s->flags |= SEC_EXCLUDE;
5934       else
5935 	{
5936 	  unsigned int cdefs;
5937 	  bfd_size_type size;
5938 	  struct bfd_elf_version_tree *t;
5939 	  bfd_byte *p;
5940 	  Elf_Internal_Verdef def;
5941 	  Elf_Internal_Verdaux defaux;
5942 	  struct bfd_link_hash_entry *bh;
5943 	  struct elf_link_hash_entry *h;
5944 	  const char *name;
5945 
5946 	  cdefs = 0;
5947 	  size = 0;
5948 
5949 	  /* Make space for the base version.  */
5950 	  size += sizeof (Elf_External_Verdef);
5951 	  size += sizeof (Elf_External_Verdaux);
5952 	  ++cdefs;
5953 
5954 	  /* Make space for the default version.  */
5955 	  if (info->create_default_symver)
5956 	    {
5957 	      size += sizeof (Elf_External_Verdef);
5958 	      ++cdefs;
5959 	    }
5960 
5961 	  for (t = verdefs; t != NULL; t = t->next)
5962 	    {
5963 	      struct bfd_elf_version_deps *n;
5964 
5965 	      /* Don't emit base version twice.  */
5966 	      if (t->vernum == 0)
5967 		continue;
5968 
5969 	      size += sizeof (Elf_External_Verdef);
5970 	      size += sizeof (Elf_External_Verdaux);
5971 	      ++cdefs;
5972 
5973 	      for (n = t->deps; n != NULL; n = n->next)
5974 		size += sizeof (Elf_External_Verdaux);
5975 	    }
5976 
5977 	  s->size = size;
5978 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5979 	  if (s->contents == NULL && s->size != 0)
5980 	    return FALSE;
5981 
5982 	  /* Fill in the version definition section.  */
5983 
5984 	  p = s->contents;
5985 
5986 	  def.vd_version = VER_DEF_CURRENT;
5987 	  def.vd_flags = VER_FLG_BASE;
5988 	  def.vd_ndx = 1;
5989 	  def.vd_cnt = 1;
5990 	  if (info->create_default_symver)
5991 	    {
5992 	      def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5993 	      def.vd_next = sizeof (Elf_External_Verdef);
5994 	    }
5995 	  else
5996 	    {
5997 	      def.vd_aux = sizeof (Elf_External_Verdef);
5998 	      def.vd_next = (sizeof (Elf_External_Verdef)
5999 			     + sizeof (Elf_External_Verdaux));
6000 	    }
6001 
6002 	  if (soname_indx != (bfd_size_type) -1)
6003 	    {
6004 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6005 				      soname_indx);
6006 	      def.vd_hash = bfd_elf_hash (soname);
6007 	      defaux.vda_name = soname_indx;
6008 	      name = soname;
6009 	    }
6010 	  else
6011 	    {
6012 	      bfd_size_type indx;
6013 
6014 	      name = lbasename (output_bfd->filename);
6015 	      def.vd_hash = bfd_elf_hash (name);
6016 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6017 					  name, FALSE);
6018 	      if (indx == (bfd_size_type) -1)
6019 		return FALSE;
6020 	      defaux.vda_name = indx;
6021 	    }
6022 	  defaux.vda_next = 0;
6023 
6024 	  _bfd_elf_swap_verdef_out (output_bfd, &def,
6025 				    (Elf_External_Verdef *) p);
6026 	  p += sizeof (Elf_External_Verdef);
6027 	  if (info->create_default_symver)
6028 	    {
6029 	      /* Add a symbol representing this version.  */
6030 	      bh = NULL;
6031 	      if (! (_bfd_generic_link_add_one_symbol
6032 		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6033 		      0, NULL, FALSE,
6034 		      get_elf_backend_data (dynobj)->collect, &bh)))
6035 		return FALSE;
6036 	      h = (struct elf_link_hash_entry *) bh;
6037 	      h->non_elf = 0;
6038 	      h->def_regular = 1;
6039 	      h->type = STT_OBJECT;
6040 	      h->verinfo.vertree = NULL;
6041 
6042 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6043 		return FALSE;
6044 
6045 	      /* Create a duplicate of the base version with the same
6046 		 aux block, but different flags.  */
6047 	      def.vd_flags = 0;
6048 	      def.vd_ndx = 2;
6049 	      def.vd_aux = sizeof (Elf_External_Verdef);
6050 	      if (verdefs)
6051 		def.vd_next = (sizeof (Elf_External_Verdef)
6052 			       + sizeof (Elf_External_Verdaux));
6053 	      else
6054 		def.vd_next = 0;
6055 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6056 					(Elf_External_Verdef *) p);
6057 	      p += sizeof (Elf_External_Verdef);
6058 	    }
6059 	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6060 				     (Elf_External_Verdaux *) p);
6061 	  p += sizeof (Elf_External_Verdaux);
6062 
6063 	  for (t = verdefs; t != NULL; t = t->next)
6064 	    {
6065 	      unsigned int cdeps;
6066 	      struct bfd_elf_version_deps *n;
6067 
6068 	      /* Don't emit the base version twice.  */
6069 	      if (t->vernum == 0)
6070 		continue;
6071 
6072 	      cdeps = 0;
6073 	      for (n = t->deps; n != NULL; n = n->next)
6074 		++cdeps;
6075 
6076 	      /* Add a symbol representing this version.  */
6077 	      bh = NULL;
6078 	      if (! (_bfd_generic_link_add_one_symbol
6079 		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6080 		      0, NULL, FALSE,
6081 		      get_elf_backend_data (dynobj)->collect, &bh)))
6082 		return FALSE;
6083 	      h = (struct elf_link_hash_entry *) bh;
6084 	      h->non_elf = 0;
6085 	      h->def_regular = 1;
6086 	      h->type = STT_OBJECT;
6087 	      h->verinfo.vertree = t;
6088 
6089 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6090 		return FALSE;
6091 
6092 	      def.vd_version = VER_DEF_CURRENT;
6093 	      def.vd_flags = 0;
6094 	      if (t->globals.list == NULL
6095 		  && t->locals.list == NULL
6096 		  && ! t->used)
6097 		def.vd_flags |= VER_FLG_WEAK;
6098 	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6099 	      def.vd_cnt = cdeps + 1;
6100 	      def.vd_hash = bfd_elf_hash (t->name);
6101 	      def.vd_aux = sizeof (Elf_External_Verdef);
6102 	      def.vd_next = 0;
6103 
6104 	      /* If a basever node is next, it *must* be the last node in
6105 		 the chain, otherwise Verdef construction breaks.  */
6106 	      if (t->next != NULL && t->next->vernum == 0)
6107 		BFD_ASSERT (t->next->next == NULL);
6108 
6109 	      if (t->next != NULL && t->next->vernum != 0)
6110 		def.vd_next = (sizeof (Elf_External_Verdef)
6111 			       + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6112 
6113 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6114 					(Elf_External_Verdef *) p);
6115 	      p += sizeof (Elf_External_Verdef);
6116 
6117 	      defaux.vda_name = h->dynstr_index;
6118 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6119 				      h->dynstr_index);
6120 	      defaux.vda_next = 0;
6121 	      if (t->deps != NULL)
6122 		defaux.vda_next = sizeof (Elf_External_Verdaux);
6123 	      t->name_indx = defaux.vda_name;
6124 
6125 	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6126 					 (Elf_External_Verdaux *) p);
6127 	      p += sizeof (Elf_External_Verdaux);
6128 
6129 	      for (n = t->deps; n != NULL; n = n->next)
6130 		{
6131 		  if (n->version_needed == NULL)
6132 		    {
6133 		      /* This can happen if there was an error in the
6134 			 version script.  */
6135 		      defaux.vda_name = 0;
6136 		    }
6137 		  else
6138 		    {
6139 		      defaux.vda_name = n->version_needed->name_indx;
6140 		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6141 					      defaux.vda_name);
6142 		    }
6143 		  if (n->next == NULL)
6144 		    defaux.vda_next = 0;
6145 		  else
6146 		    defaux.vda_next = sizeof (Elf_External_Verdaux);
6147 
6148 		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6149 					     (Elf_External_Verdaux *) p);
6150 		  p += sizeof (Elf_External_Verdaux);
6151 		}
6152 	    }
6153 
6154 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6155 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6156 	    return FALSE;
6157 
6158 	  elf_tdata (output_bfd)->cverdefs = cdefs;
6159 	}
6160 
6161       if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6162 	{
6163 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6164 	    return FALSE;
6165 	}
6166       else if (info->flags & DF_BIND_NOW)
6167 	{
6168 	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6169 	    return FALSE;
6170 	}
6171 
6172       if (info->flags_1)
6173 	{
6174 	  if (info->executable)
6175 	    info->flags_1 &= ~ (DF_1_INITFIRST
6176 				| DF_1_NODELETE
6177 				| DF_1_NOOPEN);
6178 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6179 	    return FALSE;
6180 	}
6181 
6182       /* Work out the size of the version reference section.  */
6183 
6184       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6185       BFD_ASSERT (s != NULL);
6186       {
6187 	struct elf_find_verdep_info sinfo;
6188 
6189 	sinfo.info = info;
6190 	sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6191 	if (sinfo.vers == 0)
6192 	  sinfo.vers = 1;
6193 	sinfo.failed = FALSE;
6194 
6195 	elf_link_hash_traverse (elf_hash_table (info),
6196 				_bfd_elf_link_find_version_dependencies,
6197 				&sinfo);
6198 	if (sinfo.failed)
6199 	  return FALSE;
6200 
6201 	if (elf_tdata (output_bfd)->verref == NULL)
6202 	  s->flags |= SEC_EXCLUDE;
6203 	else
6204 	  {
6205 	    Elf_Internal_Verneed *t;
6206 	    unsigned int size;
6207 	    unsigned int crefs;
6208 	    bfd_byte *p;
6209 
6210 	    /* Build the version dependency section.  */
6211 	    size = 0;
6212 	    crefs = 0;
6213 	    for (t = elf_tdata (output_bfd)->verref;
6214 		 t != NULL;
6215 		 t = t->vn_nextref)
6216 	      {
6217 		Elf_Internal_Vernaux *a;
6218 
6219 		size += sizeof (Elf_External_Verneed);
6220 		++crefs;
6221 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6222 		  size += sizeof (Elf_External_Vernaux);
6223 	      }
6224 
6225 	    s->size = size;
6226 	    s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6227 	    if (s->contents == NULL)
6228 	      return FALSE;
6229 
6230 	    p = s->contents;
6231 	    for (t = elf_tdata (output_bfd)->verref;
6232 		 t != NULL;
6233 		 t = t->vn_nextref)
6234 	      {
6235 		unsigned int caux;
6236 		Elf_Internal_Vernaux *a;
6237 		bfd_size_type indx;
6238 
6239 		caux = 0;
6240 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6241 		  ++caux;
6242 
6243 		t->vn_version = VER_NEED_CURRENT;
6244 		t->vn_cnt = caux;
6245 		indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6246 					    elf_dt_name (t->vn_bfd) != NULL
6247 					    ? elf_dt_name (t->vn_bfd)
6248 					    : lbasename (t->vn_bfd->filename),
6249 					    FALSE);
6250 		if (indx == (bfd_size_type) -1)
6251 		  return FALSE;
6252 		t->vn_file = indx;
6253 		t->vn_aux = sizeof (Elf_External_Verneed);
6254 		if (t->vn_nextref == NULL)
6255 		  t->vn_next = 0;
6256 		else
6257 		  t->vn_next = (sizeof (Elf_External_Verneed)
6258 				+ caux * sizeof (Elf_External_Vernaux));
6259 
6260 		_bfd_elf_swap_verneed_out (output_bfd, t,
6261 					   (Elf_External_Verneed *) p);
6262 		p += sizeof (Elf_External_Verneed);
6263 
6264 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6265 		  {
6266 		    a->vna_hash = bfd_elf_hash (a->vna_nodename);
6267 		    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6268 						a->vna_nodename, FALSE);
6269 		    if (indx == (bfd_size_type) -1)
6270 		      return FALSE;
6271 		    a->vna_name = indx;
6272 		    if (a->vna_nextptr == NULL)
6273 		      a->vna_next = 0;
6274 		    else
6275 		      a->vna_next = sizeof (Elf_External_Vernaux);
6276 
6277 		    _bfd_elf_swap_vernaux_out (output_bfd, a,
6278 					       (Elf_External_Vernaux *) p);
6279 		    p += sizeof (Elf_External_Vernaux);
6280 		  }
6281 	      }
6282 
6283 	    if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6284 		|| !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6285 	      return FALSE;
6286 
6287 	    elf_tdata (output_bfd)->cverrefs = crefs;
6288 	  }
6289       }
6290 
6291       if ((elf_tdata (output_bfd)->cverrefs == 0
6292 	   && elf_tdata (output_bfd)->cverdefs == 0)
6293 	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6294 					     &section_sym_count) == 0)
6295 	{
6296 	  s = bfd_get_linker_section (dynobj, ".gnu.version");
6297 	  s->flags |= SEC_EXCLUDE;
6298 	}
6299     }
6300   return TRUE;
6301 }
6302 
6303 /* Find the first non-excluded output section.  We'll use its
6304    section symbol for some emitted relocs.  */
6305 void
_bfd_elf_init_1_index_section(bfd * output_bfd,struct bfd_link_info * info)6306 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6307 {
6308   asection *s;
6309 
6310   for (s = output_bfd->sections; s != NULL; s = s->next)
6311     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6312 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6313       {
6314 	elf_hash_table (info)->text_index_section = s;
6315 	break;
6316       }
6317 }
6318 
6319 /* Find two non-excluded output sections, one for code, one for data.
6320    We'll use their section symbols for some emitted relocs.  */
6321 void
_bfd_elf_init_2_index_sections(bfd * output_bfd,struct bfd_link_info * info)6322 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6323 {
6324   asection *s;
6325 
6326   /* Data first, since setting text_index_section changes
6327      _bfd_elf_link_omit_section_dynsym.  */
6328   for (s = output_bfd->sections; s != NULL; s = s->next)
6329     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6330 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6331       {
6332 	elf_hash_table (info)->data_index_section = s;
6333 	break;
6334       }
6335 
6336   for (s = output_bfd->sections; s != NULL; s = s->next)
6337     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6338 	 == (SEC_ALLOC | SEC_READONLY))
6339 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6340       {
6341 	elf_hash_table (info)->text_index_section = s;
6342 	break;
6343       }
6344 
6345   if (elf_hash_table (info)->text_index_section == NULL)
6346     elf_hash_table (info)->text_index_section
6347       = elf_hash_table (info)->data_index_section;
6348 }
6349 
6350 bfd_boolean
bfd_elf_size_dynsym_hash_dynstr(bfd * output_bfd,struct bfd_link_info * info)6351 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6352 {
6353   const struct elf_backend_data *bed;
6354 
6355   if (!is_elf_hash_table (info->hash))
6356     return TRUE;
6357 
6358   bed = get_elf_backend_data (output_bfd);
6359   (*bed->elf_backend_init_index_section) (output_bfd, info);
6360 
6361   if (elf_hash_table (info)->dynamic_sections_created)
6362     {
6363       bfd *dynobj;
6364       asection *s;
6365       bfd_size_type dynsymcount;
6366       unsigned long section_sym_count;
6367       unsigned int dtagcount;
6368 
6369       dynobj = elf_hash_table (info)->dynobj;
6370 
6371       /* Assign dynsym indicies.  In a shared library we generate a
6372 	 section symbol for each output section, which come first.
6373 	 Next come all of the back-end allocated local dynamic syms,
6374 	 followed by the rest of the global symbols.  */
6375 
6376       dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6377 						    &section_sym_count);
6378 
6379       /* Work out the size of the symbol version section.  */
6380       s = bfd_get_linker_section (dynobj, ".gnu.version");
6381       BFD_ASSERT (s != NULL);
6382       if (dynsymcount != 0
6383 	  && (s->flags & SEC_EXCLUDE) == 0)
6384 	{
6385 	  s->size = dynsymcount * sizeof (Elf_External_Versym);
6386 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6387 	  if (s->contents == NULL)
6388 	    return FALSE;
6389 
6390 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6391 	    return FALSE;
6392 	}
6393 
6394       /* Set the size of the .dynsym and .hash sections.  We counted
6395 	 the number of dynamic symbols in elf_link_add_object_symbols.
6396 	 We will build the contents of .dynsym and .hash when we build
6397 	 the final symbol table, because until then we do not know the
6398 	 correct value to give the symbols.  We built the .dynstr
6399 	 section as we went along in elf_link_add_object_symbols.  */
6400       s = bfd_get_linker_section (dynobj, ".dynsym");
6401       BFD_ASSERT (s != NULL);
6402       s->size = dynsymcount * bed->s->sizeof_sym;
6403 
6404       if (dynsymcount != 0)
6405 	{
6406 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6407 	  if (s->contents == NULL)
6408 	    return FALSE;
6409 
6410 	  /* The first entry in .dynsym is a dummy symbol.
6411 	     Clear all the section syms, in case we don't output them all.  */
6412 	  ++section_sym_count;
6413 	  memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6414 	}
6415 
6416       elf_hash_table (info)->bucketcount = 0;
6417 
6418       /* Compute the size of the hashing table.  As a side effect this
6419 	 computes the hash values for all the names we export.  */
6420       if (info->emit_hash)
6421 	{
6422 	  unsigned long int *hashcodes;
6423 	  struct hash_codes_info hashinf;
6424 	  bfd_size_type amt;
6425 	  unsigned long int nsyms;
6426 	  size_t bucketcount;
6427 	  size_t hash_entry_size;
6428 
6429 	  /* Compute the hash values for all exported symbols.  At the same
6430 	     time store the values in an array so that we could use them for
6431 	     optimizations.  */
6432 	  amt = dynsymcount * sizeof (unsigned long int);
6433 	  hashcodes = (unsigned long int *) bfd_malloc (amt);
6434 	  if (hashcodes == NULL)
6435 	    return FALSE;
6436 	  hashinf.hashcodes = hashcodes;
6437 	  hashinf.error = FALSE;
6438 
6439 	  /* Put all hash values in HASHCODES.  */
6440 	  elf_link_hash_traverse (elf_hash_table (info),
6441 				  elf_collect_hash_codes, &hashinf);
6442 	  if (hashinf.error)
6443 	    {
6444 	      free (hashcodes);
6445 	      return FALSE;
6446 	    }
6447 
6448 	  nsyms = hashinf.hashcodes - hashcodes;
6449 	  bucketcount
6450 	    = compute_bucket_count (info, hashcodes, nsyms, 0);
6451 	  free (hashcodes);
6452 
6453 	  if (bucketcount == 0)
6454 	    return FALSE;
6455 
6456 	  elf_hash_table (info)->bucketcount = bucketcount;
6457 
6458 	  s = bfd_get_linker_section (dynobj, ".hash");
6459 	  BFD_ASSERT (s != NULL);
6460 	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6461 	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6462 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6463 	  if (s->contents == NULL)
6464 	    return FALSE;
6465 
6466 	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6467 	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6468 		   s->contents + hash_entry_size);
6469 	}
6470 
6471       if (info->emit_gnu_hash)
6472 	{
6473 	  size_t i, cnt;
6474 	  unsigned char *contents;
6475 	  struct collect_gnu_hash_codes cinfo;
6476 	  bfd_size_type amt;
6477 	  size_t bucketcount;
6478 
6479 	  memset (&cinfo, 0, sizeof (cinfo));
6480 
6481 	  /* Compute the hash values for all exported symbols.  At the same
6482 	     time store the values in an array so that we could use them for
6483 	     optimizations.  */
6484 	  amt = dynsymcount * 2 * sizeof (unsigned long int);
6485 	  cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6486 	  if (cinfo.hashcodes == NULL)
6487 	    return FALSE;
6488 
6489 	  cinfo.hashval = cinfo.hashcodes + dynsymcount;
6490 	  cinfo.min_dynindx = -1;
6491 	  cinfo.output_bfd = output_bfd;
6492 	  cinfo.bed = bed;
6493 
6494 	  /* Put all hash values in HASHCODES.  */
6495 	  elf_link_hash_traverse (elf_hash_table (info),
6496 				  elf_collect_gnu_hash_codes, &cinfo);
6497 	  if (cinfo.error)
6498 	    {
6499 	      free (cinfo.hashcodes);
6500 	      return FALSE;
6501 	    }
6502 
6503 	  bucketcount
6504 	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6505 
6506 	  if (bucketcount == 0)
6507 	    {
6508 	      free (cinfo.hashcodes);
6509 	      return FALSE;
6510 	    }
6511 
6512 	  s = bfd_get_linker_section (dynobj, ".gnu.hash");
6513 	  BFD_ASSERT (s != NULL);
6514 
6515 	  if (cinfo.nsyms == 0)
6516 	    {
6517 	      /* Empty .gnu.hash section is special.  */
6518 	      BFD_ASSERT (cinfo.min_dynindx == -1);
6519 	      free (cinfo.hashcodes);
6520 	      s->size = 5 * 4 + bed->s->arch_size / 8;
6521 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6522 	      if (contents == NULL)
6523 		return FALSE;
6524 	      s->contents = contents;
6525 	      /* 1 empty bucket.  */
6526 	      bfd_put_32 (output_bfd, 1, contents);
6527 	      /* SYMIDX above the special symbol 0.  */
6528 	      bfd_put_32 (output_bfd, 1, contents + 4);
6529 	      /* Just one word for bitmask.  */
6530 	      bfd_put_32 (output_bfd, 1, contents + 8);
6531 	      /* Only hash fn bloom filter.  */
6532 	      bfd_put_32 (output_bfd, 0, contents + 12);
6533 	      /* No hashes are valid - empty bitmask.  */
6534 	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6535 	      /* No hashes in the only bucket.  */
6536 	      bfd_put_32 (output_bfd, 0,
6537 			  contents + 16 + bed->s->arch_size / 8);
6538 	    }
6539 	  else
6540 	    {
6541 	      unsigned long int maskwords, maskbitslog2, x;
6542 	      BFD_ASSERT (cinfo.min_dynindx != -1);
6543 
6544 	      x = cinfo.nsyms;
6545 	      maskbitslog2 = 1;
6546 	      while ((x >>= 1) != 0)
6547 		++maskbitslog2;
6548 	      if (maskbitslog2 < 3)
6549 		maskbitslog2 = 5;
6550 	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6551 		maskbitslog2 = maskbitslog2 + 3;
6552 	      else
6553 		maskbitslog2 = maskbitslog2 + 2;
6554 	      if (bed->s->arch_size == 64)
6555 		{
6556 		  if (maskbitslog2 == 5)
6557 		    maskbitslog2 = 6;
6558 		  cinfo.shift1 = 6;
6559 		}
6560 	      else
6561 		cinfo.shift1 = 5;
6562 	      cinfo.mask = (1 << cinfo.shift1) - 1;
6563 	      cinfo.shift2 = maskbitslog2;
6564 	      cinfo.maskbits = 1 << maskbitslog2;
6565 	      maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6566 	      amt = bucketcount * sizeof (unsigned long int) * 2;
6567 	      amt += maskwords * sizeof (bfd_vma);
6568 	      cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6569 	      if (cinfo.bitmask == NULL)
6570 		{
6571 		  free (cinfo.hashcodes);
6572 		  return FALSE;
6573 		}
6574 
6575 	      cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6576 	      cinfo.indx = cinfo.counts + bucketcount;
6577 	      cinfo.symindx = dynsymcount - cinfo.nsyms;
6578 	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6579 
6580 	      /* Determine how often each hash bucket is used.  */
6581 	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6582 	      for (i = 0; i < cinfo.nsyms; ++i)
6583 		++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6584 
6585 	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6586 		if (cinfo.counts[i] != 0)
6587 		  {
6588 		    cinfo.indx[i] = cnt;
6589 		    cnt += cinfo.counts[i];
6590 		  }
6591 	      BFD_ASSERT (cnt == dynsymcount);
6592 	      cinfo.bucketcount = bucketcount;
6593 	      cinfo.local_indx = cinfo.min_dynindx;
6594 
6595 	      s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6596 	      s->size += cinfo.maskbits / 8;
6597 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6598 	      if (contents == NULL)
6599 		{
6600 		  free (cinfo.bitmask);
6601 		  free (cinfo.hashcodes);
6602 		  return FALSE;
6603 		}
6604 
6605 	      s->contents = contents;
6606 	      bfd_put_32 (output_bfd, bucketcount, contents);
6607 	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6608 	      bfd_put_32 (output_bfd, maskwords, contents + 8);
6609 	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6610 	      contents += 16 + cinfo.maskbits / 8;
6611 
6612 	      for (i = 0; i < bucketcount; ++i)
6613 		{
6614 		  if (cinfo.counts[i] == 0)
6615 		    bfd_put_32 (output_bfd, 0, contents);
6616 		  else
6617 		    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6618 		  contents += 4;
6619 		}
6620 
6621 	      cinfo.contents = contents;
6622 
6623 	      /* Renumber dynamic symbols, populate .gnu.hash section.  */
6624 	      elf_link_hash_traverse (elf_hash_table (info),
6625 				      elf_renumber_gnu_hash_syms, &cinfo);
6626 
6627 	      contents = s->contents + 16;
6628 	      for (i = 0; i < maskwords; ++i)
6629 		{
6630 		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6631 			   contents);
6632 		  contents += bed->s->arch_size / 8;
6633 		}
6634 
6635 	      free (cinfo.bitmask);
6636 	      free (cinfo.hashcodes);
6637 	    }
6638 	}
6639 
6640       s = bfd_get_linker_section (dynobj, ".dynstr");
6641       BFD_ASSERT (s != NULL);
6642 
6643       elf_finalize_dynstr (output_bfd, info);
6644 
6645       s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6646 
6647       for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6648 	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6649 	  return FALSE;
6650     }
6651 
6652   return TRUE;
6653 }
6654 
6655 /* Make sure sec_info_type is cleared if sec_info is cleared too.  */
6656 
6657 static void
merge_sections_remove_hook(bfd * abfd ATTRIBUTE_UNUSED,asection * sec)6658 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6659 			    asection *sec)
6660 {
6661   BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6662   sec->sec_info_type = SEC_INFO_TYPE_NONE;
6663 }
6664 
6665 /* Finish SHF_MERGE section merging.  */
6666 
6667 bfd_boolean
_bfd_elf_merge_sections(bfd * abfd,struct bfd_link_info * info)6668 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6669 {
6670   bfd *ibfd;
6671   asection *sec;
6672 
6673   if (!is_elf_hash_table (info->hash))
6674     return FALSE;
6675 
6676   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6677     if ((ibfd->flags & DYNAMIC) == 0)
6678       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6679 	if ((sec->flags & SEC_MERGE) != 0
6680 	    && !bfd_is_abs_section (sec->output_section))
6681 	  {
6682 	    struct bfd_elf_section_data *secdata;
6683 
6684 	    secdata = elf_section_data (sec);
6685 	    if (! _bfd_add_merge_section (abfd,
6686 					  &elf_hash_table (info)->merge_info,
6687 					  sec, &secdata->sec_info))
6688 	      return FALSE;
6689 	    else if (secdata->sec_info)
6690 	      sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6691 	  }
6692 
6693   if (elf_hash_table (info)->merge_info != NULL)
6694     _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6695 			 merge_sections_remove_hook);
6696   return TRUE;
6697 }
6698 
6699 /* Create an entry in an ELF linker hash table.  */
6700 
6701 struct bfd_hash_entry *
_bfd_elf_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)6702 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6703 			    struct bfd_hash_table *table,
6704 			    const char *string)
6705 {
6706   /* Allocate the structure if it has not already been allocated by a
6707      subclass.  */
6708   if (entry == NULL)
6709     {
6710       entry = (struct bfd_hash_entry *)
6711           bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6712       if (entry == NULL)
6713 	return entry;
6714     }
6715 
6716   /* Call the allocation method of the superclass.  */
6717   entry = _bfd_link_hash_newfunc (entry, table, string);
6718   if (entry != NULL)
6719     {
6720       struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6721       struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6722 
6723       /* Set local fields.  */
6724       ret->indx = -1;
6725       ret->dynindx = -1;
6726       ret->got = htab->init_got_refcount;
6727       ret->plt = htab->init_plt_refcount;
6728       memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6729 			      - offsetof (struct elf_link_hash_entry, size)));
6730       /* Assume that we have been called by a non-ELF symbol reader.
6731 	 This flag is then reset by the code which reads an ELF input
6732 	 file.  This ensures that a symbol created by a non-ELF symbol
6733 	 reader will have the flag set correctly.  */
6734       ret->non_elf = 1;
6735     }
6736 
6737   return entry;
6738 }
6739 
6740 /* Copy data from an indirect symbol to its direct symbol, hiding the
6741    old indirect symbol.  Also used for copying flags to a weakdef.  */
6742 
6743 void
_bfd_elf_link_hash_copy_indirect(struct bfd_link_info * info,struct elf_link_hash_entry * dir,struct elf_link_hash_entry * ind)6744 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6745 				  struct elf_link_hash_entry *dir,
6746 				  struct elf_link_hash_entry *ind)
6747 {
6748   struct elf_link_hash_table *htab;
6749 
6750   /* Copy down any references that we may have already seen to the
6751      symbol which just became indirect.  */
6752 
6753   dir->ref_dynamic |= ind->ref_dynamic;
6754   dir->ref_regular |= ind->ref_regular;
6755   dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6756   dir->non_got_ref |= ind->non_got_ref;
6757   dir->needs_plt |= ind->needs_plt;
6758   dir->pointer_equality_needed |= ind->pointer_equality_needed;
6759 
6760   if (ind->root.type != bfd_link_hash_indirect)
6761     return;
6762 
6763   /* Copy over the global and procedure linkage table refcount entries.
6764      These may have been already set up by a check_relocs routine.  */
6765   htab = elf_hash_table (info);
6766   if (ind->got.refcount > htab->init_got_refcount.refcount)
6767     {
6768       if (dir->got.refcount < 0)
6769 	dir->got.refcount = 0;
6770       dir->got.refcount += ind->got.refcount;
6771       ind->got.refcount = htab->init_got_refcount.refcount;
6772     }
6773 
6774   if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6775     {
6776       if (dir->plt.refcount < 0)
6777 	dir->plt.refcount = 0;
6778       dir->plt.refcount += ind->plt.refcount;
6779       ind->plt.refcount = htab->init_plt_refcount.refcount;
6780     }
6781 
6782   if (ind->dynindx != -1)
6783     {
6784       if (dir->dynindx != -1)
6785 	_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6786       dir->dynindx = ind->dynindx;
6787       dir->dynstr_index = ind->dynstr_index;
6788       ind->dynindx = -1;
6789       ind->dynstr_index = 0;
6790     }
6791 }
6792 
6793 void
_bfd_elf_link_hash_hide_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h,bfd_boolean force_local)6794 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6795 				struct elf_link_hash_entry *h,
6796 				bfd_boolean force_local)
6797 {
6798   /* STT_GNU_IFUNC symbol must go through PLT.  */
6799   if (h->type != STT_GNU_IFUNC)
6800     {
6801       h->plt = elf_hash_table (info)->init_plt_offset;
6802       h->needs_plt = 0;
6803     }
6804   if (force_local)
6805     {
6806       h->forced_local = 1;
6807       if (h->dynindx != -1)
6808 	{
6809 	  h->dynindx = -1;
6810 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6811 				  h->dynstr_index);
6812 	}
6813     }
6814 }
6815 
6816 /* Initialize an ELF linker hash table.  *TABLE has been zeroed by our
6817    caller.  */
6818 
6819 bfd_boolean
_bfd_elf_link_hash_table_init(struct elf_link_hash_table * table,bfd * abfd,struct bfd_hash_entry * (* newfunc)(struct bfd_hash_entry *,struct bfd_hash_table *,const char *),unsigned int entsize,enum elf_target_id target_id)6820 _bfd_elf_link_hash_table_init
6821   (struct elf_link_hash_table *table,
6822    bfd *abfd,
6823    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6824 				      struct bfd_hash_table *,
6825 				      const char *),
6826    unsigned int entsize,
6827    enum elf_target_id target_id)
6828 {
6829   bfd_boolean ret;
6830   int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6831 
6832   table->init_got_refcount.refcount = can_refcount - 1;
6833   table->init_plt_refcount.refcount = can_refcount - 1;
6834   table->init_got_offset.offset = -(bfd_vma) 1;
6835   table->init_plt_offset.offset = -(bfd_vma) 1;
6836   /* The first dynamic symbol is a dummy.  */
6837   table->dynsymcount = 1;
6838 
6839   ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6840 
6841   table->root.type = bfd_link_elf_hash_table;
6842   table->hash_table_id = target_id;
6843 
6844   return ret;
6845 }
6846 
6847 /* Create an ELF linker hash table.  */
6848 
6849 struct bfd_link_hash_table *
_bfd_elf_link_hash_table_create(bfd * abfd)6850 _bfd_elf_link_hash_table_create (bfd *abfd)
6851 {
6852   struct elf_link_hash_table *ret;
6853   bfd_size_type amt = sizeof (struct elf_link_hash_table);
6854 
6855   ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6856   if (ret == NULL)
6857     return NULL;
6858 
6859   if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6860 				       sizeof (struct elf_link_hash_entry),
6861 				       GENERIC_ELF_DATA))
6862     {
6863       free (ret);
6864       return NULL;
6865     }
6866   ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6867 
6868   return &ret->root;
6869 }
6870 
6871 /* Destroy an ELF linker hash table.  */
6872 
6873 void
_bfd_elf_link_hash_table_free(bfd * obfd)6874 _bfd_elf_link_hash_table_free (bfd *obfd)
6875 {
6876   struct elf_link_hash_table *htab;
6877 
6878   htab = (struct elf_link_hash_table *) obfd->link.hash;
6879   if (htab->dynstr != NULL)
6880     _bfd_elf_strtab_free (htab->dynstr);
6881   _bfd_merge_sections_free (htab->merge_info);
6882   _bfd_generic_link_hash_table_free (obfd);
6883 }
6884 
6885 /* This is a hook for the ELF emulation code in the generic linker to
6886    tell the backend linker what file name to use for the DT_NEEDED
6887    entry for a dynamic object.  */
6888 
6889 void
bfd_elf_set_dt_needed_name(bfd * abfd,const char * name)6890 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6891 {
6892   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6893       && bfd_get_format (abfd) == bfd_object)
6894     elf_dt_name (abfd) = name;
6895 }
6896 
6897 int
bfd_elf_get_dyn_lib_class(bfd * abfd)6898 bfd_elf_get_dyn_lib_class (bfd *abfd)
6899 {
6900   int lib_class;
6901   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6902       && bfd_get_format (abfd) == bfd_object)
6903     lib_class = elf_dyn_lib_class (abfd);
6904   else
6905     lib_class = 0;
6906   return lib_class;
6907 }
6908 
6909 void
bfd_elf_set_dyn_lib_class(bfd * abfd,enum dynamic_lib_link_class lib_class)6910 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6911 {
6912   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6913       && bfd_get_format (abfd) == bfd_object)
6914     elf_dyn_lib_class (abfd) = lib_class;
6915 }
6916 
6917 /* Get the list of DT_NEEDED entries for a link.  This is a hook for
6918    the linker ELF emulation code.  */
6919 
6920 struct bfd_link_needed_list *
bfd_elf_get_needed_list(bfd * abfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)6921 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6922 			 struct bfd_link_info *info)
6923 {
6924   if (! is_elf_hash_table (info->hash))
6925     return NULL;
6926   return elf_hash_table (info)->needed;
6927 }
6928 
6929 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
6930    hook for the linker ELF emulation code.  */
6931 
6932 struct bfd_link_needed_list *
bfd_elf_get_runpath_list(bfd * abfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)6933 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6934 			  struct bfd_link_info *info)
6935 {
6936   if (! is_elf_hash_table (info->hash))
6937     return NULL;
6938   return elf_hash_table (info)->runpath;
6939 }
6940 
6941 /* Get the name actually used for a dynamic object for a link.  This
6942    is the SONAME entry if there is one.  Otherwise, it is the string
6943    passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
6944 
6945 const char *
bfd_elf_get_dt_soname(bfd * abfd)6946 bfd_elf_get_dt_soname (bfd *abfd)
6947 {
6948   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6949       && bfd_get_format (abfd) == bfd_object)
6950     return elf_dt_name (abfd);
6951   return NULL;
6952 }
6953 
6954 /* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
6955    the ELF linker emulation code.  */
6956 
6957 bfd_boolean
bfd_elf_get_bfd_needed_list(bfd * abfd,struct bfd_link_needed_list ** pneeded)6958 bfd_elf_get_bfd_needed_list (bfd *abfd,
6959 			     struct bfd_link_needed_list **pneeded)
6960 {
6961   asection *s;
6962   bfd_byte *dynbuf = NULL;
6963   unsigned int elfsec;
6964   unsigned long shlink;
6965   bfd_byte *extdyn, *extdynend;
6966   size_t extdynsize;
6967   void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6968 
6969   *pneeded = NULL;
6970 
6971   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6972       || bfd_get_format (abfd) != bfd_object)
6973     return TRUE;
6974 
6975   s = bfd_get_section_by_name (abfd, ".dynamic");
6976   if (s == NULL || s->size == 0)
6977     return TRUE;
6978 
6979   if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6980     goto error_return;
6981 
6982   elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6983   if (elfsec == SHN_BAD)
6984     goto error_return;
6985 
6986   shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6987 
6988   extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6989   swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6990 
6991   extdyn = dynbuf;
6992   extdynend = extdyn + s->size;
6993   for (; extdyn < extdynend; extdyn += extdynsize)
6994     {
6995       Elf_Internal_Dyn dyn;
6996 
6997       (*swap_dyn_in) (abfd, extdyn, &dyn);
6998 
6999       if (dyn.d_tag == DT_NULL)
7000 	break;
7001 
7002       if (dyn.d_tag == DT_NEEDED)
7003 	{
7004 	  const char *string;
7005 	  struct bfd_link_needed_list *l;
7006 	  unsigned int tagv = dyn.d_un.d_val;
7007 	  bfd_size_type amt;
7008 
7009 	  string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7010 	  if (string == NULL)
7011 	    goto error_return;
7012 
7013 	  amt = sizeof *l;
7014 	  l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7015 	  if (l == NULL)
7016 	    goto error_return;
7017 
7018 	  l->by = abfd;
7019 	  l->name = string;
7020 	  l->next = *pneeded;
7021 	  *pneeded = l;
7022 	}
7023     }
7024 
7025   free (dynbuf);
7026 
7027   return TRUE;
7028 
7029  error_return:
7030   if (dynbuf != NULL)
7031     free (dynbuf);
7032   return FALSE;
7033 }
7034 
7035 struct elf_symbuf_symbol
7036 {
7037   unsigned long st_name;	/* Symbol name, index in string tbl */
7038   unsigned char st_info;	/* Type and binding attributes */
7039   unsigned char st_other;	/* Visibilty, and target specific */
7040 };
7041 
7042 struct elf_symbuf_head
7043 {
7044   struct elf_symbuf_symbol *ssym;
7045   bfd_size_type count;
7046   unsigned int st_shndx;
7047 };
7048 
7049 struct elf_symbol
7050 {
7051   union
7052     {
7053       Elf_Internal_Sym *isym;
7054       struct elf_symbuf_symbol *ssym;
7055     } u;
7056   const char *name;
7057 };
7058 
7059 /* Sort references to symbols by ascending section number.  */
7060 
7061 static int
elf_sort_elf_symbol(const void * arg1,const void * arg2)7062 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7063 {
7064   const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7065   const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7066 
7067   return s1->st_shndx - s2->st_shndx;
7068 }
7069 
7070 static int
elf_sym_name_compare(const void * arg1,const void * arg2)7071 elf_sym_name_compare (const void *arg1, const void *arg2)
7072 {
7073   const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7074   const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7075   return strcmp (s1->name, s2->name);
7076 }
7077 
7078 static struct elf_symbuf_head *
elf_create_symbuf(bfd_size_type symcount,Elf_Internal_Sym * isymbuf)7079 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7080 {
7081   Elf_Internal_Sym **ind, **indbufend, **indbuf;
7082   struct elf_symbuf_symbol *ssym;
7083   struct elf_symbuf_head *ssymbuf, *ssymhead;
7084   bfd_size_type i, shndx_count, total_size;
7085 
7086   indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7087   if (indbuf == NULL)
7088     return NULL;
7089 
7090   for (ind = indbuf, i = 0; i < symcount; i++)
7091     if (isymbuf[i].st_shndx != SHN_UNDEF)
7092       *ind++ = &isymbuf[i];
7093   indbufend = ind;
7094 
7095   qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7096 	 elf_sort_elf_symbol);
7097 
7098   shndx_count = 0;
7099   if (indbufend > indbuf)
7100     for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7101       if (ind[0]->st_shndx != ind[1]->st_shndx)
7102 	shndx_count++;
7103 
7104   total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7105 		+ (indbufend - indbuf) * sizeof (*ssym));
7106   ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7107   if (ssymbuf == NULL)
7108     {
7109       free (indbuf);
7110       return NULL;
7111     }
7112 
7113   ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7114   ssymbuf->ssym = NULL;
7115   ssymbuf->count = shndx_count;
7116   ssymbuf->st_shndx = 0;
7117   for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7118     {
7119       if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7120 	{
7121 	  ssymhead++;
7122 	  ssymhead->ssym = ssym;
7123 	  ssymhead->count = 0;
7124 	  ssymhead->st_shndx = (*ind)->st_shndx;
7125 	}
7126       ssym->st_name = (*ind)->st_name;
7127       ssym->st_info = (*ind)->st_info;
7128       ssym->st_other = (*ind)->st_other;
7129       ssymhead->count++;
7130     }
7131   BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7132 	      && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7133 		  == total_size));
7134 
7135   free (indbuf);
7136   return ssymbuf;
7137 }
7138 
7139 /* Check if 2 sections define the same set of local and global
7140    symbols.  */
7141 
7142 static bfd_boolean
bfd_elf_match_symbols_in_sections(asection * sec1,asection * sec2,struct bfd_link_info * info)7143 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7144 				   struct bfd_link_info *info)
7145 {
7146   bfd *bfd1, *bfd2;
7147   const struct elf_backend_data *bed1, *bed2;
7148   Elf_Internal_Shdr *hdr1, *hdr2;
7149   bfd_size_type symcount1, symcount2;
7150   Elf_Internal_Sym *isymbuf1, *isymbuf2;
7151   struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7152   Elf_Internal_Sym *isym, *isymend;
7153   struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7154   bfd_size_type count1, count2, i;
7155   unsigned int shndx1, shndx2;
7156   bfd_boolean result;
7157 
7158   bfd1 = sec1->owner;
7159   bfd2 = sec2->owner;
7160 
7161   /* Both sections have to be in ELF.  */
7162   if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7163       || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7164     return FALSE;
7165 
7166   if (elf_section_type (sec1) != elf_section_type (sec2))
7167     return FALSE;
7168 
7169   shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7170   shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7171   if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7172     return FALSE;
7173 
7174   bed1 = get_elf_backend_data (bfd1);
7175   bed2 = get_elf_backend_data (bfd2);
7176   hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7177   symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7178   hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7179   symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7180 
7181   if (symcount1 == 0 || symcount2 == 0)
7182     return FALSE;
7183 
7184   result = FALSE;
7185   isymbuf1 = NULL;
7186   isymbuf2 = NULL;
7187   ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7188   ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7189 
7190   if (ssymbuf1 == NULL)
7191     {
7192       isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7193 				       NULL, NULL, NULL);
7194       if (isymbuf1 == NULL)
7195 	goto done;
7196 
7197       if (!info->reduce_memory_overheads)
7198 	elf_tdata (bfd1)->symbuf = ssymbuf1
7199 	  = elf_create_symbuf (symcount1, isymbuf1);
7200     }
7201 
7202   if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7203     {
7204       isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7205 				       NULL, NULL, NULL);
7206       if (isymbuf2 == NULL)
7207 	goto done;
7208 
7209       if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7210 	elf_tdata (bfd2)->symbuf = ssymbuf2
7211 	  = elf_create_symbuf (symcount2, isymbuf2);
7212     }
7213 
7214   if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7215     {
7216       /* Optimized faster version.  */
7217       bfd_size_type lo, hi, mid;
7218       struct elf_symbol *symp;
7219       struct elf_symbuf_symbol *ssym, *ssymend;
7220 
7221       lo = 0;
7222       hi = ssymbuf1->count;
7223       ssymbuf1++;
7224       count1 = 0;
7225       while (lo < hi)
7226 	{
7227 	  mid = (lo + hi) / 2;
7228 	  if (shndx1 < ssymbuf1[mid].st_shndx)
7229 	    hi = mid;
7230 	  else if (shndx1 > ssymbuf1[mid].st_shndx)
7231 	    lo = mid + 1;
7232 	  else
7233 	    {
7234 	      count1 = ssymbuf1[mid].count;
7235 	      ssymbuf1 += mid;
7236 	      break;
7237 	    }
7238 	}
7239 
7240       lo = 0;
7241       hi = ssymbuf2->count;
7242       ssymbuf2++;
7243       count2 = 0;
7244       while (lo < hi)
7245 	{
7246 	  mid = (lo + hi) / 2;
7247 	  if (shndx2 < ssymbuf2[mid].st_shndx)
7248 	    hi = mid;
7249 	  else if (shndx2 > ssymbuf2[mid].st_shndx)
7250 	    lo = mid + 1;
7251 	  else
7252 	    {
7253 	      count2 = ssymbuf2[mid].count;
7254 	      ssymbuf2 += mid;
7255 	      break;
7256 	    }
7257 	}
7258 
7259       if (count1 == 0 || count2 == 0 || count1 != count2)
7260 	goto done;
7261 
7262       symtable1 = (struct elf_symbol *)
7263           bfd_malloc (count1 * sizeof (struct elf_symbol));
7264       symtable2 = (struct elf_symbol *)
7265           bfd_malloc (count2 * sizeof (struct elf_symbol));
7266       if (symtable1 == NULL || symtable2 == NULL)
7267 	goto done;
7268 
7269       symp = symtable1;
7270       for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7271 	   ssym < ssymend; ssym++, symp++)
7272 	{
7273 	  symp->u.ssym = ssym;
7274 	  symp->name = bfd_elf_string_from_elf_section (bfd1,
7275 							hdr1->sh_link,
7276 							ssym->st_name);
7277 	}
7278 
7279       symp = symtable2;
7280       for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7281 	   ssym < ssymend; ssym++, symp++)
7282 	{
7283 	  symp->u.ssym = ssym;
7284 	  symp->name = bfd_elf_string_from_elf_section (bfd2,
7285 							hdr2->sh_link,
7286 							ssym->st_name);
7287 	}
7288 
7289       /* Sort symbol by name.  */
7290       qsort (symtable1, count1, sizeof (struct elf_symbol),
7291 	     elf_sym_name_compare);
7292       qsort (symtable2, count1, sizeof (struct elf_symbol),
7293 	     elf_sym_name_compare);
7294 
7295       for (i = 0; i < count1; i++)
7296 	/* Two symbols must have the same binding, type and name.  */
7297 	if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7298 	    || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7299 	    || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7300 	  goto done;
7301 
7302       result = TRUE;
7303       goto done;
7304     }
7305 
7306   symtable1 = (struct elf_symbol *)
7307       bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7308   symtable2 = (struct elf_symbol *)
7309       bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7310   if (symtable1 == NULL || symtable2 == NULL)
7311     goto done;
7312 
7313   /* Count definitions in the section.  */
7314   count1 = 0;
7315   for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7316     if (isym->st_shndx == shndx1)
7317       symtable1[count1++].u.isym = isym;
7318 
7319   count2 = 0;
7320   for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7321     if (isym->st_shndx == shndx2)
7322       symtable2[count2++].u.isym = isym;
7323 
7324   if (count1 == 0 || count2 == 0 || count1 != count2)
7325     goto done;
7326 
7327   for (i = 0; i < count1; i++)
7328     symtable1[i].name
7329       = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7330 					 symtable1[i].u.isym->st_name);
7331 
7332   for (i = 0; i < count2; i++)
7333     symtable2[i].name
7334       = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7335 					 symtable2[i].u.isym->st_name);
7336 
7337   /* Sort symbol by name.  */
7338   qsort (symtable1, count1, sizeof (struct elf_symbol),
7339 	 elf_sym_name_compare);
7340   qsort (symtable2, count1, sizeof (struct elf_symbol),
7341 	 elf_sym_name_compare);
7342 
7343   for (i = 0; i < count1; i++)
7344     /* Two symbols must have the same binding, type and name.  */
7345     if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7346 	|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7347 	|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7348       goto done;
7349 
7350   result = TRUE;
7351 
7352 done:
7353   if (symtable1)
7354     free (symtable1);
7355   if (symtable2)
7356     free (symtable2);
7357   if (isymbuf1)
7358     free (isymbuf1);
7359   if (isymbuf2)
7360     free (isymbuf2);
7361 
7362   return result;
7363 }
7364 
7365 /* Return TRUE if 2 section types are compatible.  */
7366 
7367 bfd_boolean
_bfd_elf_match_sections_by_type(bfd * abfd,const asection * asec,bfd * bbfd,const asection * bsec)7368 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7369 				 bfd *bbfd, const asection *bsec)
7370 {
7371   if (asec == NULL
7372       || bsec == NULL
7373       || abfd->xvec->flavour != bfd_target_elf_flavour
7374       || bbfd->xvec->flavour != bfd_target_elf_flavour)
7375     return TRUE;
7376 
7377   return elf_section_type (asec) == elf_section_type (bsec);
7378 }
7379 
7380 /* Final phase of ELF linker.  */
7381 
7382 /* A structure we use to avoid passing large numbers of arguments.  */
7383 
7384 struct elf_final_link_info
7385 {
7386   /* General link information.  */
7387   struct bfd_link_info *info;
7388   /* Output BFD.  */
7389   bfd *output_bfd;
7390   /* Symbol string table.  */
7391   struct bfd_strtab_hash *symstrtab;
7392   /* .dynsym section.  */
7393   asection *dynsym_sec;
7394   /* .hash section.  */
7395   asection *hash_sec;
7396   /* symbol version section (.gnu.version).  */
7397   asection *symver_sec;
7398   /* Buffer large enough to hold contents of any section.  */
7399   bfd_byte *contents;
7400   /* Buffer large enough to hold external relocs of any section.  */
7401   void *external_relocs;
7402   /* Buffer large enough to hold internal relocs of any section.  */
7403   Elf_Internal_Rela *internal_relocs;
7404   /* Buffer large enough to hold external local symbols of any input
7405      BFD.  */
7406   bfd_byte *external_syms;
7407   /* And a buffer for symbol section indices.  */
7408   Elf_External_Sym_Shndx *locsym_shndx;
7409   /* Buffer large enough to hold internal local symbols of any input
7410      BFD.  */
7411   Elf_Internal_Sym *internal_syms;
7412   /* Array large enough to hold a symbol index for each local symbol
7413      of any input BFD.  */
7414   long *indices;
7415   /* Array large enough to hold a section pointer for each local
7416      symbol of any input BFD.  */
7417   asection **sections;
7418   /* Buffer to hold swapped out symbols.  */
7419   bfd_byte *symbuf;
7420   /* And one for symbol section indices.  */
7421   Elf_External_Sym_Shndx *symshndxbuf;
7422   /* Number of swapped out symbols in buffer.  */
7423   size_t symbuf_count;
7424   /* Number of symbols which fit in symbuf.  */
7425   size_t symbuf_size;
7426   /* And same for symshndxbuf.  */
7427   size_t shndxbuf_size;
7428   /* Number of STT_FILE syms seen.  */
7429   size_t filesym_count;
7430 };
7431 
7432 /* This struct is used to pass information to elf_link_output_extsym.  */
7433 
7434 struct elf_outext_info
7435 {
7436   bfd_boolean failed;
7437   bfd_boolean localsyms;
7438   bfd_boolean need_second_pass;
7439   bfd_boolean second_pass;
7440   bfd_boolean file_sym_done;
7441   struct elf_final_link_info *flinfo;
7442 };
7443 
7444 
7445 /* Support for evaluating a complex relocation.
7446 
7447    Complex relocations are generalized, self-describing relocations.  The
7448    implementation of them consists of two parts: complex symbols, and the
7449    relocations themselves.
7450 
7451    The relocations are use a reserved elf-wide relocation type code (R_RELC
7452    external / BFD_RELOC_RELC internal) and an encoding of relocation field
7453    information (start bit, end bit, word width, etc) into the addend.  This
7454    information is extracted from CGEN-generated operand tables within gas.
7455 
7456    Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7457    internal) representing prefix-notation expressions, including but not
7458    limited to those sorts of expressions normally encoded as addends in the
7459    addend field.  The symbol mangling format is:
7460 
7461    <node> := <literal>
7462           |  <unary-operator> ':' <node>
7463           |  <binary-operator> ':' <node> ':' <node>
7464 	  ;
7465 
7466    <literal> := 's' <digits=N> ':' <N character symbol name>
7467              |  'S' <digits=N> ':' <N character section name>
7468 	     |  '#' <hexdigits>
7469 	     ;
7470 
7471    <binary-operator> := as in C
7472    <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
7473 
7474 static void
set_symbol_value(bfd * bfd_with_globals,Elf_Internal_Sym * isymbuf,size_t locsymcount,size_t symidx,bfd_vma val)7475 set_symbol_value (bfd *bfd_with_globals,
7476 		  Elf_Internal_Sym *isymbuf,
7477 		  size_t locsymcount,
7478 		  size_t symidx,
7479 		  bfd_vma val)
7480 {
7481   struct elf_link_hash_entry **sym_hashes;
7482   struct elf_link_hash_entry *h;
7483   size_t extsymoff = locsymcount;
7484 
7485   if (symidx < locsymcount)
7486     {
7487       Elf_Internal_Sym *sym;
7488 
7489       sym = isymbuf + symidx;
7490       if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7491 	{
7492 	  /* It is a local symbol: move it to the
7493 	     "absolute" section and give it a value.  */
7494 	  sym->st_shndx = SHN_ABS;
7495 	  sym->st_value = val;
7496 	  return;
7497 	}
7498       BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7499       extsymoff = 0;
7500     }
7501 
7502   /* It is a global symbol: set its link type
7503      to "defined" and give it a value.  */
7504 
7505   sym_hashes = elf_sym_hashes (bfd_with_globals);
7506   h = sym_hashes [symidx - extsymoff];
7507   while (h->root.type == bfd_link_hash_indirect
7508 	 || h->root.type == bfd_link_hash_warning)
7509     h = (struct elf_link_hash_entry *) h->root.u.i.link;
7510   h->root.type = bfd_link_hash_defined;
7511   h->root.u.def.value = val;
7512   h->root.u.def.section = bfd_abs_section_ptr;
7513 }
7514 
7515 static bfd_boolean
resolve_symbol(const char * name,bfd * input_bfd,struct elf_final_link_info * flinfo,bfd_vma * result,Elf_Internal_Sym * isymbuf,size_t locsymcount)7516 resolve_symbol (const char *name,
7517 		bfd *input_bfd,
7518 		struct elf_final_link_info *flinfo,
7519 		bfd_vma *result,
7520 		Elf_Internal_Sym *isymbuf,
7521 		size_t locsymcount)
7522 {
7523   Elf_Internal_Sym *sym;
7524   struct bfd_link_hash_entry *global_entry;
7525   const char *candidate = NULL;
7526   Elf_Internal_Shdr *symtab_hdr;
7527   size_t i;
7528 
7529   symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7530 
7531   for (i = 0; i < locsymcount; ++ i)
7532     {
7533       sym = isymbuf + i;
7534 
7535       if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7536 	continue;
7537 
7538       candidate = bfd_elf_string_from_elf_section (input_bfd,
7539 						   symtab_hdr->sh_link,
7540 						   sym->st_name);
7541 #ifdef DEBUG
7542       printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7543 	      name, candidate, (unsigned long) sym->st_value);
7544 #endif
7545       if (candidate && strcmp (candidate, name) == 0)
7546 	{
7547 	  asection *sec = flinfo->sections [i];
7548 
7549 	  *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7550 	  *result += sec->output_offset + sec->output_section->vma;
7551 #ifdef DEBUG
7552 	  printf ("Found symbol with value %8.8lx\n",
7553 		  (unsigned long) *result);
7554 #endif
7555 	  return TRUE;
7556 	}
7557     }
7558 
7559   /* Hmm, haven't found it yet. perhaps it is a global.  */
7560   global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7561 				       FALSE, FALSE, TRUE);
7562   if (!global_entry)
7563     return FALSE;
7564 
7565   if (global_entry->type == bfd_link_hash_defined
7566       || global_entry->type == bfd_link_hash_defweak)
7567     {
7568       *result = (global_entry->u.def.value
7569 		 + global_entry->u.def.section->output_section->vma
7570 		 + global_entry->u.def.section->output_offset);
7571 #ifdef DEBUG
7572       printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7573 	      global_entry->root.string, (unsigned long) *result);
7574 #endif
7575       return TRUE;
7576     }
7577 
7578   return FALSE;
7579 }
7580 
7581 static bfd_boolean
resolve_section(const char * name,asection * sections,bfd_vma * result)7582 resolve_section (const char *name,
7583 		 asection *sections,
7584 		 bfd_vma *result)
7585 {
7586   asection *curr;
7587   unsigned int len;
7588 
7589   for (curr = sections; curr; curr = curr->next)
7590     if (strcmp (curr->name, name) == 0)
7591       {
7592 	*result = curr->vma;
7593 	return TRUE;
7594       }
7595 
7596   /* Hmm. still haven't found it. try pseudo-section names.  */
7597   for (curr = sections; curr; curr = curr->next)
7598     {
7599       len = strlen (curr->name);
7600       if (len > strlen (name))
7601 	continue;
7602 
7603       if (strncmp (curr->name, name, len) == 0)
7604 	{
7605 	  if (strncmp (".end", name + len, 4) == 0)
7606 	    {
7607 	      *result = curr->vma + curr->size;
7608 	      return TRUE;
7609 	    }
7610 
7611 	  /* Insert more pseudo-section names here, if you like.  */
7612 	}
7613     }
7614 
7615   return FALSE;
7616 }
7617 
7618 static void
undefined_reference(const char * reftype,const char * name)7619 undefined_reference (const char *reftype, const char *name)
7620 {
7621   _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7622 		      reftype, name);
7623 }
7624 
7625 static bfd_boolean
eval_symbol(bfd_vma * result,const char ** symp,bfd * input_bfd,struct elf_final_link_info * flinfo,bfd_vma dot,Elf_Internal_Sym * isymbuf,size_t locsymcount,int signed_p)7626 eval_symbol (bfd_vma *result,
7627 	     const char **symp,
7628 	     bfd *input_bfd,
7629 	     struct elf_final_link_info *flinfo,
7630 	     bfd_vma dot,
7631 	     Elf_Internal_Sym *isymbuf,
7632 	     size_t locsymcount,
7633 	     int signed_p)
7634 {
7635   size_t len;
7636   size_t symlen;
7637   bfd_vma a;
7638   bfd_vma b;
7639   char symbuf[4096];
7640   const char *sym = *symp;
7641   const char *symend;
7642   bfd_boolean symbol_is_section = FALSE;
7643 
7644   len = strlen (sym);
7645   symend = sym + len;
7646 
7647   if (len < 1 || len > sizeof (symbuf))
7648     {
7649       bfd_set_error (bfd_error_invalid_operation);
7650       return FALSE;
7651     }
7652 
7653   switch (* sym)
7654     {
7655     case '.':
7656       *result = dot;
7657       *symp = sym + 1;
7658       return TRUE;
7659 
7660     case '#':
7661       ++sym;
7662       *result = strtoul (sym, (char **) symp, 16);
7663       return TRUE;
7664 
7665     case 'S':
7666       symbol_is_section = TRUE;
7667     case 's':
7668       ++sym;
7669       symlen = strtol (sym, (char **) symp, 10);
7670       sym = *symp + 1; /* Skip the trailing ':'.  */
7671 
7672       if (symend < sym || symlen + 1 > sizeof (symbuf))
7673 	{
7674 	  bfd_set_error (bfd_error_invalid_operation);
7675 	  return FALSE;
7676 	}
7677 
7678       memcpy (symbuf, sym, symlen);
7679       symbuf[symlen] = '\0';
7680       *symp = sym + symlen;
7681 
7682       /* Is it always possible, with complex symbols, that gas "mis-guessed"
7683 	 the symbol as a section, or vice-versa. so we're pretty liberal in our
7684 	 interpretation here; section means "try section first", not "must be a
7685 	 section", and likewise with symbol.  */
7686 
7687       if (symbol_is_section)
7688 	{
7689 	  if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7690 	      && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7691 				  isymbuf, locsymcount))
7692 	    {
7693 	      undefined_reference ("section", symbuf);
7694 	      return FALSE;
7695 	    }
7696 	}
7697       else
7698 	{
7699 	  if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7700 			       isymbuf, locsymcount)
7701 	      && !resolve_section (symbuf, flinfo->output_bfd->sections,
7702 				   result))
7703 	    {
7704 	      undefined_reference ("symbol", symbuf);
7705 	      return FALSE;
7706 	    }
7707 	}
7708 
7709       return TRUE;
7710 
7711       /* All that remains are operators.  */
7712 
7713 #define UNARY_OP(op)						\
7714   if (strncmp (sym, #op, strlen (#op)) == 0)			\
7715     {								\
7716       sym += strlen (#op);					\
7717       if (*sym == ':')						\
7718 	++sym;							\
7719       *symp = sym;						\
7720       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
7721 			isymbuf, locsymcount, signed_p))	\
7722 	return FALSE;						\
7723       if (signed_p)						\
7724 	*result = op ((bfd_signed_vma) a);			\
7725       else							\
7726 	*result = op a;						\
7727       return TRUE;						\
7728     }
7729 
7730 #define BINARY_OP(op)						\
7731   if (strncmp (sym, #op, strlen (#op)) == 0)			\
7732     {								\
7733       sym += strlen (#op);					\
7734       if (*sym == ':')						\
7735 	++sym;							\
7736       *symp = sym;						\
7737       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
7738 			isymbuf, locsymcount, signed_p))	\
7739 	return FALSE;						\
7740       ++*symp;							\
7741       if (!eval_symbol (&b, symp, input_bfd, flinfo, dot,	\
7742 			isymbuf, locsymcount, signed_p))	\
7743 	return FALSE;						\
7744       if (signed_p)						\
7745 	*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b);	\
7746       else							\
7747 	*result = a op b;					\
7748       return TRUE;						\
7749     }
7750 
7751     default:
7752       UNARY_OP  (0-);
7753       BINARY_OP (<<);
7754       BINARY_OP (>>);
7755       BINARY_OP (==);
7756       BINARY_OP (!=);
7757       BINARY_OP (<=);
7758       BINARY_OP (>=);
7759       BINARY_OP (&&);
7760       BINARY_OP (||);
7761       UNARY_OP  (~);
7762       UNARY_OP  (!);
7763       BINARY_OP (*);
7764       BINARY_OP (/);
7765       BINARY_OP (%);
7766       BINARY_OP (^);
7767       BINARY_OP (|);
7768       BINARY_OP (&);
7769       BINARY_OP (+);
7770       BINARY_OP (-);
7771       BINARY_OP (<);
7772       BINARY_OP (>);
7773 #undef UNARY_OP
7774 #undef BINARY_OP
7775       _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7776       bfd_set_error (bfd_error_invalid_operation);
7777       return FALSE;
7778     }
7779 }
7780 
7781 static void
put_value(bfd_vma size,unsigned long chunksz,bfd * input_bfd,bfd_vma x,bfd_byte * location)7782 put_value (bfd_vma size,
7783 	   unsigned long chunksz,
7784 	   bfd *input_bfd,
7785 	   bfd_vma x,
7786 	   bfd_byte *location)
7787 {
7788   location += (size - chunksz);
7789 
7790   for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7791     {
7792       switch (chunksz)
7793 	{
7794 	default:
7795 	case 0:
7796 	  abort ();
7797 	case 1:
7798 	  bfd_put_8 (input_bfd, x, location);
7799 	  break;
7800 	case 2:
7801 	  bfd_put_16 (input_bfd, x, location);
7802 	  break;
7803 	case 4:
7804 	  bfd_put_32 (input_bfd, x, location);
7805 	  break;
7806 	case 8:
7807 #ifdef BFD64
7808 	  bfd_put_64 (input_bfd, x, location);
7809 #else
7810 	  abort ();
7811 #endif
7812 	  break;
7813 	}
7814     }
7815 }
7816 
7817 static bfd_vma
get_value(bfd_vma size,unsigned long chunksz,bfd * input_bfd,bfd_byte * location)7818 get_value (bfd_vma size,
7819 	   unsigned long chunksz,
7820 	   bfd *input_bfd,
7821 	   bfd_byte *location)
7822 {
7823   int shift;
7824   bfd_vma x = 0;
7825 
7826   /* Sanity checks.  */
7827   BFD_ASSERT (chunksz <= sizeof (x)
7828 	      && size >= chunksz
7829 	      && chunksz != 0
7830 	      && (size % chunksz) == 0
7831 	      && input_bfd != NULL
7832 	      && location != NULL);
7833 
7834   if (chunksz == sizeof (x))
7835     {
7836       BFD_ASSERT (size == chunksz);
7837 
7838       /* Make sure that we do not perform an undefined shift operation.
7839 	 We know that size == chunksz so there will only be one iteration
7840 	 of the loop below.  */
7841       shift = 0;
7842     }
7843   else
7844     shift = 8 * chunksz;
7845 
7846   for (; size; size -= chunksz, location += chunksz)
7847     {
7848       switch (chunksz)
7849 	{
7850 	case 1:
7851 	  x = (x << shift) | bfd_get_8 (input_bfd, location);
7852 	  break;
7853 	case 2:
7854 	  x = (x << shift) | bfd_get_16 (input_bfd, location);
7855 	  break;
7856 	case 4:
7857 	  x = (x << shift) | bfd_get_32 (input_bfd, location);
7858 	  break;
7859 #ifdef BFD64
7860 	case 8:
7861 	  x = (x << shift) | bfd_get_64 (input_bfd, location);
7862 	  break;
7863 #endif
7864 	default:
7865 	  abort ();
7866 	}
7867     }
7868   return x;
7869 }
7870 
7871 static void
decode_complex_addend(unsigned long * start,unsigned long * oplen,unsigned long * len,unsigned long * wordsz,unsigned long * chunksz,unsigned long * lsb0_p,unsigned long * signed_p,unsigned long * trunc_p,unsigned long encoded)7872 decode_complex_addend (unsigned long *start,   /* in bits */
7873 		       unsigned long *oplen,   /* in bits */
7874 		       unsigned long *len,     /* in bits */
7875 		       unsigned long *wordsz,  /* in bytes */
7876 		       unsigned long *chunksz, /* in bytes */
7877 		       unsigned long *lsb0_p,
7878 		       unsigned long *signed_p,
7879 		       unsigned long *trunc_p,
7880 		       unsigned long encoded)
7881 {
7882   * start     =  encoded        & 0x3F;
7883   * len       = (encoded >>  6) & 0x3F;
7884   * oplen     = (encoded >> 12) & 0x3F;
7885   * wordsz    = (encoded >> 18) & 0xF;
7886   * chunksz   = (encoded >> 22) & 0xF;
7887   * lsb0_p    = (encoded >> 27) & 1;
7888   * signed_p  = (encoded >> 28) & 1;
7889   * trunc_p   = (encoded >> 29) & 1;
7890 }
7891 
7892 bfd_reloc_status_type
bfd_elf_perform_complex_relocation(bfd * input_bfd,asection * input_section ATTRIBUTE_UNUSED,bfd_byte * contents,Elf_Internal_Rela * rel,bfd_vma relocation)7893 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7894 				    asection *input_section ATTRIBUTE_UNUSED,
7895 				    bfd_byte *contents,
7896 				    Elf_Internal_Rela *rel,
7897 				    bfd_vma relocation)
7898 {
7899   bfd_vma shift, x, mask;
7900   unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7901   bfd_reloc_status_type r;
7902 
7903   /*  Perform this reloc, since it is complex.
7904       (this is not to say that it necessarily refers to a complex
7905       symbol; merely that it is a self-describing CGEN based reloc.
7906       i.e. the addend has the complete reloc information (bit start, end,
7907       word size, etc) encoded within it.).  */
7908 
7909   decode_complex_addend (&start, &oplen, &len, &wordsz,
7910 			 &chunksz, &lsb0_p, &signed_p,
7911 			 &trunc_p, rel->r_addend);
7912 
7913   mask = (((1L << (len - 1)) - 1) << 1) | 1;
7914 
7915   if (lsb0_p)
7916     shift = (start + 1) - len;
7917   else
7918     shift = (8 * wordsz) - (start + len);
7919 
7920   /* FIXME: octets_per_byte.  */
7921   x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7922 
7923 #ifdef DEBUG
7924   printf ("Doing complex reloc: "
7925 	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7926 	  "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7927 	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7928 	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7929 	  oplen, (unsigned long) x, (unsigned long) mask,
7930 	  (unsigned long) relocation);
7931 #endif
7932 
7933   r = bfd_reloc_ok;
7934   if (! trunc_p)
7935     /* Now do an overflow check.  */
7936     r = bfd_check_overflow ((signed_p
7937 			     ? complain_overflow_signed
7938 			     : complain_overflow_unsigned),
7939 			    len, 0, (8 * wordsz),
7940 			    relocation);
7941 
7942   /* Do the deed.  */
7943   x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7944 
7945 #ifdef DEBUG
7946   printf ("           relocation: %8.8lx\n"
7947 	  "         shifted mask: %8.8lx\n"
7948 	  " shifted/masked reloc: %8.8lx\n"
7949 	  "               result: %8.8lx\n",
7950 	  (unsigned long) relocation, (unsigned long) (mask << shift),
7951 	  (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7952 #endif
7953   /* FIXME: octets_per_byte.  */
7954   put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7955   return r;
7956 }
7957 
7958 /* When performing a relocatable link, the input relocations are
7959    preserved.  But, if they reference global symbols, the indices
7960    referenced must be updated.  Update all the relocations found in
7961    RELDATA.  */
7962 
7963 static void
elf_link_adjust_relocs(bfd * abfd,struct bfd_elf_section_reloc_data * reldata)7964 elf_link_adjust_relocs (bfd *abfd,
7965 			struct bfd_elf_section_reloc_data *reldata)
7966 {
7967   unsigned int i;
7968   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7969   bfd_byte *erela;
7970   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7971   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7972   bfd_vma r_type_mask;
7973   int r_sym_shift;
7974   unsigned int count = reldata->count;
7975   struct elf_link_hash_entry **rel_hash = reldata->hashes;
7976 
7977   if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7978     {
7979       swap_in = bed->s->swap_reloc_in;
7980       swap_out = bed->s->swap_reloc_out;
7981     }
7982   else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7983     {
7984       swap_in = bed->s->swap_reloca_in;
7985       swap_out = bed->s->swap_reloca_out;
7986     }
7987   else
7988     abort ();
7989 
7990   if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7991     abort ();
7992 
7993   if (bed->s->arch_size == 32)
7994     {
7995       r_type_mask = 0xff;
7996       r_sym_shift = 8;
7997     }
7998   else
7999     {
8000       r_type_mask = 0xffffffff;
8001       r_sym_shift = 32;
8002     }
8003 
8004   erela = reldata->hdr->contents;
8005   for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8006     {
8007       Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8008       unsigned int j;
8009 
8010       if (*rel_hash == NULL)
8011 	continue;
8012 
8013       BFD_ASSERT ((*rel_hash)->indx >= 0);
8014 
8015       (*swap_in) (abfd, erela, irela);
8016       for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8017 	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8018 			   | (irela[j].r_info & r_type_mask));
8019       (*swap_out) (abfd, irela, erela);
8020     }
8021 }
8022 
8023 struct elf_link_sort_rela
8024 {
8025   union {
8026     bfd_vma offset;
8027     bfd_vma sym_mask;
8028   } u;
8029   enum elf_reloc_type_class type;
8030   /* We use this as an array of size int_rels_per_ext_rel.  */
8031   Elf_Internal_Rela rela[1];
8032 };
8033 
8034 static int
elf_link_sort_cmp1(const void * A,const void * B)8035 elf_link_sort_cmp1 (const void *A, const void *B)
8036 {
8037   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8038   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8039   int relativea, relativeb;
8040 
8041   relativea = a->type == reloc_class_relative;
8042   relativeb = b->type == reloc_class_relative;
8043 
8044   if (relativea < relativeb)
8045     return 1;
8046   if (relativea > relativeb)
8047     return -1;
8048   if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8049     return -1;
8050   if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8051     return 1;
8052   if (a->rela->r_offset < b->rela->r_offset)
8053     return -1;
8054   if (a->rela->r_offset > b->rela->r_offset)
8055     return 1;
8056   return 0;
8057 }
8058 
8059 static int
elf_link_sort_cmp2(const void * A,const void * B)8060 elf_link_sort_cmp2 (const void *A, const void *B)
8061 {
8062   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8063   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8064 
8065   if (a->type < b->type)
8066     return -1;
8067   if (a->type > b->type)
8068     return 1;
8069   if (a->u.offset < b->u.offset)
8070     return -1;
8071   if (a->u.offset > b->u.offset)
8072     return 1;
8073   if (a->rela->r_offset < b->rela->r_offset)
8074     return -1;
8075   if (a->rela->r_offset > b->rela->r_offset)
8076     return 1;
8077   return 0;
8078 }
8079 
8080 static size_t
elf_link_sort_relocs(bfd * abfd,struct bfd_link_info * info,asection ** psec)8081 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8082 {
8083   asection *dynamic_relocs;
8084   asection *rela_dyn;
8085   asection *rel_dyn;
8086   bfd_size_type count, size;
8087   size_t i, ret, sort_elt, ext_size;
8088   bfd_byte *sort, *s_non_relative, *p;
8089   struct elf_link_sort_rela *sq;
8090   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8091   int i2e = bed->s->int_rels_per_ext_rel;
8092   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8093   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8094   struct bfd_link_order *lo;
8095   bfd_vma r_sym_mask;
8096   bfd_boolean use_rela;
8097 
8098   /* Find a dynamic reloc section.  */
8099   rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8100   rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
8101   if (rela_dyn != NULL && rela_dyn->size > 0
8102       && rel_dyn != NULL && rel_dyn->size > 0)
8103     {
8104       bfd_boolean use_rela_initialised = FALSE;
8105 
8106       /* This is just here to stop gcc from complaining.
8107 	 It's initialization checking code is not perfect.  */
8108       use_rela = TRUE;
8109 
8110       /* Both sections are present.  Examine the sizes
8111 	 of the indirect sections to help us choose.  */
8112       for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8113 	if (lo->type == bfd_indirect_link_order)
8114 	  {
8115 	    asection *o = lo->u.indirect.section;
8116 
8117 	    if ((o->size % bed->s->sizeof_rela) == 0)
8118 	      {
8119 		if ((o->size % bed->s->sizeof_rel) == 0)
8120 		  /* Section size is divisible by both rel and rela sizes.
8121 		     It is of no help to us.  */
8122 		  ;
8123 		else
8124 		  {
8125 		    /* Section size is only divisible by rela.  */
8126 		    if (use_rela_initialised && (use_rela == FALSE))
8127 		      {
8128 			_bfd_error_handler
8129 			  (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8130 			bfd_set_error (bfd_error_invalid_operation);
8131 			return 0;
8132 		      }
8133 		    else
8134 		      {
8135 			use_rela = TRUE;
8136 			use_rela_initialised = TRUE;
8137 		      }
8138 		  }
8139 	      }
8140 	    else if ((o->size % bed->s->sizeof_rel) == 0)
8141 	      {
8142 		/* Section size is only divisible by rel.  */
8143 		if (use_rela_initialised && (use_rela == TRUE))
8144 		  {
8145 		    _bfd_error_handler
8146 		      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8147 		    bfd_set_error (bfd_error_invalid_operation);
8148 		    return 0;
8149 		  }
8150 		else
8151 		  {
8152 		    use_rela = FALSE;
8153 		    use_rela_initialised = TRUE;
8154 		  }
8155 	      }
8156 	    else
8157 	      {
8158 		/* The section size is not divisible by either - something is wrong.  */
8159 		_bfd_error_handler
8160 		  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8161 		bfd_set_error (bfd_error_invalid_operation);
8162 		return 0;
8163 	      }
8164 	  }
8165 
8166       for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8167 	if (lo->type == bfd_indirect_link_order)
8168 	  {
8169 	    asection *o = lo->u.indirect.section;
8170 
8171 	    if ((o->size % bed->s->sizeof_rela) == 0)
8172 	      {
8173 		if ((o->size % bed->s->sizeof_rel) == 0)
8174 		  /* Section size is divisible by both rel and rela sizes.
8175 		     It is of no help to us.  */
8176 		  ;
8177 		else
8178 		  {
8179 		    /* Section size is only divisible by rela.  */
8180 		    if (use_rela_initialised && (use_rela == FALSE))
8181 		      {
8182 			_bfd_error_handler
8183 			  (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8184 			bfd_set_error (bfd_error_invalid_operation);
8185 			return 0;
8186 		      }
8187 		    else
8188 		      {
8189 			use_rela = TRUE;
8190 			use_rela_initialised = TRUE;
8191 		      }
8192 		  }
8193 	      }
8194 	    else if ((o->size % bed->s->sizeof_rel) == 0)
8195 	      {
8196 		/* Section size is only divisible by rel.  */
8197 		if (use_rela_initialised && (use_rela == TRUE))
8198 		  {
8199 		    _bfd_error_handler
8200 		      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8201 		    bfd_set_error (bfd_error_invalid_operation);
8202 		    return 0;
8203 		  }
8204 		else
8205 		  {
8206 		    use_rela = FALSE;
8207 		    use_rela_initialised = TRUE;
8208 		  }
8209 	      }
8210 	    else
8211 	      {
8212 		/* The section size is not divisible by either - something is wrong.  */
8213 		_bfd_error_handler
8214 		  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8215 		bfd_set_error (bfd_error_invalid_operation);
8216 		return 0;
8217 	      }
8218 	  }
8219 
8220       if (! use_rela_initialised)
8221 	/* Make a guess.  */
8222 	use_rela = TRUE;
8223     }
8224   else if (rela_dyn != NULL && rela_dyn->size > 0)
8225     use_rela = TRUE;
8226   else if (rel_dyn != NULL && rel_dyn->size > 0)
8227     use_rela = FALSE;
8228   else
8229     return 0;
8230 
8231   if (use_rela)
8232     {
8233       dynamic_relocs = rela_dyn;
8234       ext_size = bed->s->sizeof_rela;
8235       swap_in = bed->s->swap_reloca_in;
8236       swap_out = bed->s->swap_reloca_out;
8237     }
8238   else
8239     {
8240       dynamic_relocs = rel_dyn;
8241       ext_size = bed->s->sizeof_rel;
8242       swap_in = bed->s->swap_reloc_in;
8243       swap_out = bed->s->swap_reloc_out;
8244     }
8245 
8246   size = 0;
8247   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8248     if (lo->type == bfd_indirect_link_order)
8249       size += lo->u.indirect.section->size;
8250 
8251   if (size != dynamic_relocs->size)
8252     return 0;
8253 
8254   sort_elt = (sizeof (struct elf_link_sort_rela)
8255 	      + (i2e - 1) * sizeof (Elf_Internal_Rela));
8256 
8257   count = dynamic_relocs->size / ext_size;
8258   if (count == 0)
8259     return 0;
8260   sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8261 
8262   if (sort == NULL)
8263     {
8264       (*info->callbacks->warning)
8265 	(info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8266       return 0;
8267     }
8268 
8269   if (bed->s->arch_size == 32)
8270     r_sym_mask = ~(bfd_vma) 0xff;
8271   else
8272     r_sym_mask = ~(bfd_vma) 0xffffffff;
8273 
8274   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8275     if (lo->type == bfd_indirect_link_order)
8276       {
8277 	bfd_byte *erel, *erelend;
8278 	asection *o = lo->u.indirect.section;
8279 
8280 	if (o->contents == NULL && o->size != 0)
8281 	  {
8282 	    /* This is a reloc section that is being handled as a normal
8283 	       section.  See bfd_section_from_shdr.  We can't combine
8284 	       relocs in this case.  */
8285 	    free (sort);
8286 	    return 0;
8287 	  }
8288 	erel = o->contents;
8289 	erelend = o->contents + o->size;
8290 	/* FIXME: octets_per_byte.  */
8291 	p = sort + o->output_offset / ext_size * sort_elt;
8292 
8293 	while (erel < erelend)
8294 	  {
8295 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8296 
8297 	    (*swap_in) (abfd, erel, s->rela);
8298 	    s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8299 	    s->u.sym_mask = r_sym_mask;
8300 	    p += sort_elt;
8301 	    erel += ext_size;
8302 	  }
8303       }
8304 
8305   qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8306 
8307   for (i = 0, p = sort; i < count; i++, p += sort_elt)
8308     {
8309       struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8310       if (s->type != reloc_class_relative)
8311 	break;
8312     }
8313   ret = i;
8314   s_non_relative = p;
8315 
8316   sq = (struct elf_link_sort_rela *) s_non_relative;
8317   for (; i < count; i++, p += sort_elt)
8318     {
8319       struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8320       if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8321 	sq = sp;
8322       sp->u.offset = sq->rela->r_offset;
8323     }
8324 
8325   qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8326 
8327   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8328     if (lo->type == bfd_indirect_link_order)
8329       {
8330 	bfd_byte *erel, *erelend;
8331 	asection *o = lo->u.indirect.section;
8332 
8333 	erel = o->contents;
8334 	erelend = o->contents + o->size;
8335 	/* FIXME: octets_per_byte.  */
8336 	p = sort + o->output_offset / ext_size * sort_elt;
8337 	while (erel < erelend)
8338 	  {
8339 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8340 	    (*swap_out) (abfd, s->rela, erel);
8341 	    p += sort_elt;
8342 	    erel += ext_size;
8343 	  }
8344       }
8345 
8346   free (sort);
8347   *psec = dynamic_relocs;
8348   return ret;
8349 }
8350 
8351 /* Flush the output symbols to the file.  */
8352 
8353 static bfd_boolean
elf_link_flush_output_syms(struct elf_final_link_info * flinfo,const struct elf_backend_data * bed)8354 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8355 			    const struct elf_backend_data *bed)
8356 {
8357   if (flinfo->symbuf_count > 0)
8358     {
8359       Elf_Internal_Shdr *hdr;
8360       file_ptr pos;
8361       bfd_size_type amt;
8362 
8363       hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8364       pos = hdr->sh_offset + hdr->sh_size;
8365       amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8366       if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8367 	  || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8368 	return FALSE;
8369 
8370       hdr->sh_size += amt;
8371       flinfo->symbuf_count = 0;
8372     }
8373 
8374   return TRUE;
8375 }
8376 
8377 /* Add a symbol to the output symbol table.  */
8378 
8379 static int
elf_link_output_sym(struct elf_final_link_info * flinfo,const char * name,Elf_Internal_Sym * elfsym,asection * input_sec,struct elf_link_hash_entry * h)8380 elf_link_output_sym (struct elf_final_link_info *flinfo,
8381 		     const char *name,
8382 		     Elf_Internal_Sym *elfsym,
8383 		     asection *input_sec,
8384 		     struct elf_link_hash_entry *h)
8385 {
8386   bfd_byte *dest;
8387   Elf_External_Sym_Shndx *destshndx;
8388   int (*output_symbol_hook)
8389     (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8390      struct elf_link_hash_entry *);
8391   const struct elf_backend_data *bed;
8392 
8393   bed = get_elf_backend_data (flinfo->output_bfd);
8394   output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8395   if (output_symbol_hook != NULL)
8396     {
8397       int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8398       if (ret != 1)
8399 	return ret;
8400     }
8401 
8402   if (name == NULL || *name == '\0')
8403     elfsym->st_name = 0;
8404   else if (input_sec->flags & SEC_EXCLUDE)
8405     elfsym->st_name = 0;
8406   else
8407     {
8408       elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8409 							    name, TRUE, FALSE);
8410       if (elfsym->st_name == (unsigned long) -1)
8411 	return 0;
8412     }
8413 
8414   if (flinfo->symbuf_count >= flinfo->symbuf_size)
8415     {
8416       if (! elf_link_flush_output_syms (flinfo, bed))
8417 	return 0;
8418     }
8419 
8420   dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8421   destshndx = flinfo->symshndxbuf;
8422   if (destshndx != NULL)
8423     {
8424       if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8425 	{
8426 	  bfd_size_type amt;
8427 
8428 	  amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8429 	  destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8430                                                               amt * 2);
8431 	  if (destshndx == NULL)
8432 	    return 0;
8433 	  flinfo->symshndxbuf = destshndx;
8434 	  memset ((char *) destshndx + amt, 0, amt);
8435 	  flinfo->shndxbuf_size *= 2;
8436 	}
8437       destshndx += bfd_get_symcount (flinfo->output_bfd);
8438     }
8439 
8440   bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8441   flinfo->symbuf_count += 1;
8442   bfd_get_symcount (flinfo->output_bfd) += 1;
8443 
8444   return 1;
8445 }
8446 
8447 /* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
8448 
8449 static bfd_boolean
check_dynsym(bfd * abfd,Elf_Internal_Sym * sym)8450 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8451 {
8452   if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8453       && sym->st_shndx < SHN_LORESERVE)
8454     {
8455       /* The gABI doesn't support dynamic symbols in output sections
8456 	 beyond 64k.  */
8457       (*_bfd_error_handler)
8458 	(_("%B: Too many sections: %d (>= %d)"),
8459 	 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8460       bfd_set_error (bfd_error_nonrepresentable_section);
8461       return FALSE;
8462     }
8463   return TRUE;
8464 }
8465 
8466 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8467    allowing an unsatisfied unversioned symbol in the DSO to match a
8468    versioned symbol that would normally require an explicit version.
8469    We also handle the case that a DSO references a hidden symbol
8470    which may be satisfied by a versioned symbol in another DSO.  */
8471 
8472 static bfd_boolean
elf_link_check_versioned_symbol(struct bfd_link_info * info,const struct elf_backend_data * bed,struct elf_link_hash_entry * h)8473 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8474 				 const struct elf_backend_data *bed,
8475 				 struct elf_link_hash_entry *h)
8476 {
8477   bfd *abfd;
8478   struct elf_link_loaded_list *loaded;
8479 
8480   if (!is_elf_hash_table (info->hash))
8481     return FALSE;
8482 
8483   /* Check indirect symbol.  */
8484   while (h->root.type == bfd_link_hash_indirect)
8485     h = (struct elf_link_hash_entry *) h->root.u.i.link;
8486 
8487   switch (h->root.type)
8488     {
8489     default:
8490       abfd = NULL;
8491       break;
8492 
8493     case bfd_link_hash_undefined:
8494     case bfd_link_hash_undefweak:
8495       abfd = h->root.u.undef.abfd;
8496       if ((abfd->flags & DYNAMIC) == 0
8497 	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8498 	return FALSE;
8499       break;
8500 
8501     case bfd_link_hash_defined:
8502     case bfd_link_hash_defweak:
8503       abfd = h->root.u.def.section->owner;
8504       break;
8505 
8506     case bfd_link_hash_common:
8507       abfd = h->root.u.c.p->section->owner;
8508       break;
8509     }
8510   BFD_ASSERT (abfd != NULL);
8511 
8512   for (loaded = elf_hash_table (info)->loaded;
8513        loaded != NULL;
8514        loaded = loaded->next)
8515     {
8516       bfd *input;
8517       Elf_Internal_Shdr *hdr;
8518       bfd_size_type symcount;
8519       bfd_size_type extsymcount;
8520       bfd_size_type extsymoff;
8521       Elf_Internal_Shdr *versymhdr;
8522       Elf_Internal_Sym *isym;
8523       Elf_Internal_Sym *isymend;
8524       Elf_Internal_Sym *isymbuf;
8525       Elf_External_Versym *ever;
8526       Elf_External_Versym *extversym;
8527 
8528       input = loaded->abfd;
8529 
8530       /* We check each DSO for a possible hidden versioned definition.  */
8531       if (input == abfd
8532 	  || (input->flags & DYNAMIC) == 0
8533 	  || elf_dynversym (input) == 0)
8534 	continue;
8535 
8536       hdr = &elf_tdata (input)->dynsymtab_hdr;
8537 
8538       symcount = hdr->sh_size / bed->s->sizeof_sym;
8539       if (elf_bad_symtab (input))
8540 	{
8541 	  extsymcount = symcount;
8542 	  extsymoff = 0;
8543 	}
8544       else
8545 	{
8546 	  extsymcount = symcount - hdr->sh_info;
8547 	  extsymoff = hdr->sh_info;
8548 	}
8549 
8550       if (extsymcount == 0)
8551 	continue;
8552 
8553       isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8554 				      NULL, NULL, NULL);
8555       if (isymbuf == NULL)
8556 	return FALSE;
8557 
8558       /* Read in any version definitions.  */
8559       versymhdr = &elf_tdata (input)->dynversym_hdr;
8560       extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8561       if (extversym == NULL)
8562 	goto error_ret;
8563 
8564       if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8565 	  || (bfd_bread (extversym, versymhdr->sh_size, input)
8566 	      != versymhdr->sh_size))
8567 	{
8568 	  free (extversym);
8569 	error_ret:
8570 	  free (isymbuf);
8571 	  return FALSE;
8572 	}
8573 
8574       ever = extversym + extsymoff;
8575       isymend = isymbuf + extsymcount;
8576       for (isym = isymbuf; isym < isymend; isym++, ever++)
8577 	{
8578 	  const char *name;
8579 	  Elf_Internal_Versym iver;
8580 	  unsigned short version_index;
8581 
8582 	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8583 	      || isym->st_shndx == SHN_UNDEF)
8584 	    continue;
8585 
8586 	  name = bfd_elf_string_from_elf_section (input,
8587 						  hdr->sh_link,
8588 						  isym->st_name);
8589 	  if (strcmp (name, h->root.root.string) != 0)
8590 	    continue;
8591 
8592 	  _bfd_elf_swap_versym_in (input, ever, &iver);
8593 
8594 	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8595 	      && !(h->def_regular
8596 		   && h->forced_local))
8597 	    {
8598 	      /* If we have a non-hidden versioned sym, then it should
8599 		 have provided a definition for the undefined sym unless
8600 		 it is defined in a non-shared object and forced local.
8601 	       */
8602 	      abort ();
8603 	    }
8604 
8605 	  version_index = iver.vs_vers & VERSYM_VERSION;
8606 	  if (version_index == 1 || version_index == 2)
8607 	    {
8608 	      /* This is the base or first version.  We can use it.  */
8609 	      free (extversym);
8610 	      free (isymbuf);
8611 	      return TRUE;
8612 	    }
8613 	}
8614 
8615       free (extversym);
8616       free (isymbuf);
8617     }
8618 
8619   return FALSE;
8620 }
8621 
8622 /* Add an external symbol to the symbol table.  This is called from
8623    the hash table traversal routine.  When generating a shared object,
8624    we go through the symbol table twice.  The first time we output
8625    anything that might have been forced to local scope in a version
8626    script.  The second time we output the symbols that are still
8627    global symbols.  */
8628 
8629 static bfd_boolean
elf_link_output_extsym(struct bfd_hash_entry * bh,void * data)8630 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8631 {
8632   struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8633   struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8634   struct elf_final_link_info *flinfo = eoinfo->flinfo;
8635   bfd_boolean strip;
8636   Elf_Internal_Sym sym;
8637   asection *input_sec;
8638   const struct elf_backend_data *bed;
8639   long indx;
8640   int ret;
8641 
8642   if (h->root.type == bfd_link_hash_warning)
8643     {
8644       h = (struct elf_link_hash_entry *) h->root.u.i.link;
8645       if (h->root.type == bfd_link_hash_new)
8646 	return TRUE;
8647     }
8648 
8649   /* Decide whether to output this symbol in this pass.  */
8650   if (eoinfo->localsyms)
8651     {
8652       if (!h->forced_local)
8653 	return TRUE;
8654       if (eoinfo->second_pass
8655 	  && !((h->root.type == bfd_link_hash_defined
8656 		|| h->root.type == bfd_link_hash_defweak)
8657 	       && h->root.u.def.section->output_section != NULL))
8658 	return TRUE;
8659 
8660       if (!eoinfo->file_sym_done
8661 	  && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8662 				  : eoinfo->flinfo->filesym_count > 1))
8663 	{
8664 	  /* Output a FILE symbol so that following locals are not associated
8665 	     with the wrong input file.  */
8666 	  memset (&sym, 0, sizeof (sym));
8667 	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8668 	  sym.st_shndx = SHN_ABS;
8669 	  if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8670 				    bfd_und_section_ptr, NULL))
8671 	    return FALSE;
8672 
8673 	  eoinfo->file_sym_done = TRUE;
8674 	}
8675     }
8676   else
8677     {
8678       if (h->forced_local)
8679 	return TRUE;
8680     }
8681 
8682   bed = get_elf_backend_data (flinfo->output_bfd);
8683 
8684   if (h->root.type == bfd_link_hash_undefined)
8685     {
8686       /* If we have an undefined symbol reference here then it must have
8687 	 come from a shared library that is being linked in.  (Undefined
8688 	 references in regular files have already been handled unless
8689 	 they are in unreferenced sections which are removed by garbage
8690 	 collection).  */
8691       bfd_boolean ignore_undef = FALSE;
8692 
8693       /* Some symbols may be special in that the fact that they're
8694 	 undefined can be safely ignored - let backend determine that.  */
8695       if (bed->elf_backend_ignore_undef_symbol)
8696 	ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8697 
8698       /* If we are reporting errors for this situation then do so now.  */
8699       if (!ignore_undef
8700 	  && h->ref_dynamic
8701 	  && (!h->ref_regular || flinfo->info->gc_sections)
8702 	  && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8703 	  && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8704 	{
8705 	  if (!(flinfo->info->callbacks->undefined_symbol
8706 		(flinfo->info, h->root.root.string,
8707 		 h->ref_regular ? NULL : h->root.u.undef.abfd,
8708 		 NULL, 0,
8709 		 (flinfo->info->unresolved_syms_in_shared_libs
8710 		  == RM_GENERATE_ERROR))))
8711 	    {
8712 	      bfd_set_error (bfd_error_bad_value);
8713 	      eoinfo->failed = TRUE;
8714 	      return FALSE;
8715 	    }
8716 	}
8717     }
8718 
8719   /* We should also warn if a forced local symbol is referenced from
8720      shared libraries.  */
8721   if (!flinfo->info->relocatable
8722       && flinfo->info->executable
8723       && h->forced_local
8724       && h->ref_dynamic
8725       && h->def_regular
8726       && !h->dynamic_def
8727       && h->ref_dynamic_nonweak
8728       && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8729     {
8730       bfd *def_bfd;
8731       const char *msg;
8732       struct elf_link_hash_entry *hi = h;
8733 
8734       /* Check indirect symbol.  */
8735       while (hi->root.type == bfd_link_hash_indirect)
8736 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8737 
8738       if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8739 	msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8740       else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8741 	msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8742       else
8743 	msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8744       def_bfd = flinfo->output_bfd;
8745       if (hi->root.u.def.section != bfd_abs_section_ptr)
8746 	def_bfd = hi->root.u.def.section->owner;
8747       (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8748 			     h->root.root.string);
8749       bfd_set_error (bfd_error_bad_value);
8750       eoinfo->failed = TRUE;
8751       return FALSE;
8752     }
8753 
8754   /* We don't want to output symbols that have never been mentioned by
8755      a regular file, or that we have been told to strip.  However, if
8756      h->indx is set to -2, the symbol is used by a reloc and we must
8757      output it.  */
8758   if (h->indx == -2)
8759     strip = FALSE;
8760   else if ((h->def_dynamic
8761 	    || h->ref_dynamic
8762 	    || h->root.type == bfd_link_hash_new)
8763 	   && !h->def_regular
8764 	   && !h->ref_regular)
8765     strip = TRUE;
8766   else if (flinfo->info->strip == strip_all)
8767     strip = TRUE;
8768   else if (flinfo->info->strip == strip_some
8769 	   && bfd_hash_lookup (flinfo->info->keep_hash,
8770 			       h->root.root.string, FALSE, FALSE) == NULL)
8771     strip = TRUE;
8772   else if ((h->root.type == bfd_link_hash_defined
8773 	    || h->root.type == bfd_link_hash_defweak)
8774 	   && ((flinfo->info->strip_discarded
8775 		&& discarded_section (h->root.u.def.section))
8776 	       || (h->root.u.def.section->owner != NULL
8777 		   && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8778     strip = TRUE;
8779   else if ((h->root.type == bfd_link_hash_undefined
8780 	    || h->root.type == bfd_link_hash_undefweak)
8781 	   && h->root.u.undef.abfd != NULL
8782 	   && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8783     strip = TRUE;
8784   else
8785     strip = FALSE;
8786 
8787   /* If we're stripping it, and it's not a dynamic symbol, there's
8788      nothing else to do unless it is a forced local symbol or a
8789      STT_GNU_IFUNC symbol.  */
8790   if (strip
8791       && h->dynindx == -1
8792       && h->type != STT_GNU_IFUNC
8793       && !h->forced_local)
8794     return TRUE;
8795 
8796   sym.st_value = 0;
8797   sym.st_size = h->size;
8798   sym.st_other = h->other;
8799   if (h->forced_local)
8800     {
8801       sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8802       /* Turn off visibility on local symbol.  */
8803       sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8804     }
8805   /* Set STB_GNU_UNIQUE only if symbol is defined in regular object.  */
8806   else if (h->unique_global && h->def_regular)
8807     sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8808   else if (h->root.type == bfd_link_hash_undefweak
8809 	   || h->root.type == bfd_link_hash_defweak)
8810     sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8811   else
8812     sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8813   sym.st_target_internal = h->target_internal;
8814 
8815   switch (h->root.type)
8816     {
8817     default:
8818     case bfd_link_hash_new:
8819     case bfd_link_hash_warning:
8820       abort ();
8821       return FALSE;
8822 
8823     case bfd_link_hash_undefined:
8824     case bfd_link_hash_undefweak:
8825       input_sec = bfd_und_section_ptr;
8826       sym.st_shndx = SHN_UNDEF;
8827       break;
8828 
8829     case bfd_link_hash_defined:
8830     case bfd_link_hash_defweak:
8831       {
8832 	input_sec = h->root.u.def.section;
8833 	if (input_sec->output_section != NULL)
8834 	  {
8835 	    if (eoinfo->localsyms && flinfo->filesym_count == 1)
8836 	      {
8837 		bfd_boolean second_pass_sym
8838 		  = (input_sec->owner == flinfo->output_bfd
8839 		     || input_sec->owner == NULL
8840 		     || (input_sec->flags & SEC_LINKER_CREATED) != 0
8841 		     || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8842 
8843 		eoinfo->need_second_pass |= second_pass_sym;
8844 		if (eoinfo->second_pass != second_pass_sym)
8845 		  return TRUE;
8846 	      }
8847 
8848 	    sym.st_shndx =
8849 	      _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8850 						 input_sec->output_section);
8851 	    if (sym.st_shndx == SHN_BAD)
8852 	      {
8853 		(*_bfd_error_handler)
8854 		  (_("%B: could not find output section %A for input section %A"),
8855 		   flinfo->output_bfd, input_sec->output_section, input_sec);
8856 		bfd_set_error (bfd_error_nonrepresentable_section);
8857 		eoinfo->failed = TRUE;
8858 		return FALSE;
8859 	      }
8860 
8861 	    /* ELF symbols in relocatable files are section relative,
8862 	       but in nonrelocatable files they are virtual
8863 	       addresses.  */
8864 	    sym.st_value = h->root.u.def.value + input_sec->output_offset;
8865 	    if (!flinfo->info->relocatable)
8866 	      {
8867 		sym.st_value += input_sec->output_section->vma;
8868 		if (h->type == STT_TLS)
8869 		  {
8870 		    asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8871 		    if (tls_sec != NULL)
8872 		      sym.st_value -= tls_sec->vma;
8873 		    else
8874 		      {
8875 			/* The TLS section may have been garbage collected.  */
8876 			BFD_ASSERT (flinfo->info->gc_sections
8877 				    && !input_sec->gc_mark);
8878 		      }
8879 		  }
8880 	      }
8881 	  }
8882 	else
8883 	  {
8884 	    BFD_ASSERT (input_sec->owner == NULL
8885 			|| (input_sec->owner->flags & DYNAMIC) != 0);
8886 	    sym.st_shndx = SHN_UNDEF;
8887 	    input_sec = bfd_und_section_ptr;
8888 	  }
8889       }
8890       break;
8891 
8892     case bfd_link_hash_common:
8893       input_sec = h->root.u.c.p->section;
8894       sym.st_shndx = bed->common_section_index (input_sec);
8895       sym.st_value = 1 << h->root.u.c.p->alignment_power;
8896       break;
8897 
8898     case bfd_link_hash_indirect:
8899       /* These symbols are created by symbol versioning.  They point
8900 	 to the decorated version of the name.  For example, if the
8901 	 symbol foo@@GNU_1.2 is the default, which should be used when
8902 	 foo is used with no version, then we add an indirect symbol
8903 	 foo which points to foo@@GNU_1.2.  We ignore these symbols,
8904 	 since the indirected symbol is already in the hash table.  */
8905       return TRUE;
8906     }
8907 
8908   /* Give the processor backend a chance to tweak the symbol value,
8909      and also to finish up anything that needs to be done for this
8910      symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
8911      forced local syms when non-shared is due to a historical quirk.
8912      STT_GNU_IFUNC symbol must go through PLT.  */
8913   if ((h->type == STT_GNU_IFUNC
8914        && h->def_regular
8915        && !flinfo->info->relocatable)
8916       || ((h->dynindx != -1
8917 	   || h->forced_local)
8918 	  && ((flinfo->info->shared
8919 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8920 		   || h->root.type != bfd_link_hash_undefweak))
8921 	      || !h->forced_local)
8922 	  && elf_hash_table (flinfo->info)->dynamic_sections_created))
8923     {
8924       if (! ((*bed->elf_backend_finish_dynamic_symbol)
8925 	     (flinfo->output_bfd, flinfo->info, h, &sym)))
8926 	{
8927 	  eoinfo->failed = TRUE;
8928 	  return FALSE;
8929 	}
8930     }
8931 
8932   /* If we are marking the symbol as undefined, and there are no
8933      non-weak references to this symbol from a regular object, then
8934      mark the symbol as weak undefined; if there are non-weak
8935      references, mark the symbol as strong.  We can't do this earlier,
8936      because it might not be marked as undefined until the
8937      finish_dynamic_symbol routine gets through with it.  */
8938   if (sym.st_shndx == SHN_UNDEF
8939       && h->ref_regular
8940       && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8941 	  || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8942     {
8943       int bindtype;
8944       unsigned int type = ELF_ST_TYPE (sym.st_info);
8945 
8946       /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8947       if (type == STT_GNU_IFUNC)
8948 	type = STT_FUNC;
8949 
8950       if (h->ref_regular_nonweak)
8951 	bindtype = STB_GLOBAL;
8952       else
8953 	bindtype = STB_WEAK;
8954       sym.st_info = ELF_ST_INFO (bindtype, type);
8955     }
8956 
8957   /* If this is a symbol defined in a dynamic library, don't use the
8958      symbol size from the dynamic library.  Relinking an executable
8959      against a new library may introduce gratuitous changes in the
8960      executable's symbols if we keep the size.  */
8961   if (sym.st_shndx == SHN_UNDEF
8962       && !h->def_regular
8963       && h->def_dynamic)
8964     sym.st_size = 0;
8965 
8966   /* If a non-weak symbol with non-default visibility is not defined
8967      locally, it is a fatal error.  */
8968   if (!flinfo->info->relocatable
8969       && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8970       && ELF_ST_BIND (sym.st_info) != STB_WEAK
8971       && h->root.type == bfd_link_hash_undefined
8972       && !h->def_regular)
8973     {
8974       const char *msg;
8975 
8976       if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8977 	msg = _("%B: protected symbol `%s' isn't defined");
8978       else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8979 	msg = _("%B: internal symbol `%s' isn't defined");
8980       else
8981 	msg = _("%B: hidden symbol `%s' isn't defined");
8982       (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
8983       bfd_set_error (bfd_error_bad_value);
8984       eoinfo->failed = TRUE;
8985       return FALSE;
8986     }
8987 
8988   /* If this symbol should be put in the .dynsym section, then put it
8989      there now.  We already know the symbol index.  We also fill in
8990      the entry in the .hash section.  */
8991   if (flinfo->dynsym_sec != NULL
8992       && h->dynindx != -1
8993       && elf_hash_table (flinfo->info)->dynamic_sections_created)
8994     {
8995       bfd_byte *esym;
8996 
8997       /* Since there is no version information in the dynamic string,
8998 	 if there is no version info in symbol version section, we will
8999 	 have a run-time problem.  */
9000       if (h->verinfo.verdef == NULL)
9001 	{
9002 	  char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9003 
9004 	  if (p && p [1] != '\0')
9005 	    {
9006 	      (*_bfd_error_handler)
9007 		(_("%B: No symbol version section for versioned symbol `%s'"),
9008 		 flinfo->output_bfd, h->root.root.string);
9009 	      eoinfo->failed = TRUE;
9010 	      return FALSE;
9011 	    }
9012 	}
9013 
9014       sym.st_name = h->dynstr_index;
9015       esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9016       if (!check_dynsym (flinfo->output_bfd, &sym))
9017 	{
9018 	  eoinfo->failed = TRUE;
9019 	  return FALSE;
9020 	}
9021       bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9022 
9023       if (flinfo->hash_sec != NULL)
9024 	{
9025 	  size_t hash_entry_size;
9026 	  bfd_byte *bucketpos;
9027 	  bfd_vma chain;
9028 	  size_t bucketcount;
9029 	  size_t bucket;
9030 
9031 	  bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9032 	  bucket = h->u.elf_hash_value % bucketcount;
9033 
9034 	  hash_entry_size
9035 	    = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9036 	  bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9037 		       + (bucket + 2) * hash_entry_size);
9038 	  chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9039 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9040 		   bucketpos);
9041 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9042 		   ((bfd_byte *) flinfo->hash_sec->contents
9043 		    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9044 	}
9045 
9046       if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9047 	{
9048 	  Elf_Internal_Versym iversym;
9049 	  Elf_External_Versym *eversym;
9050 
9051 	  if (!h->def_regular)
9052 	    {
9053 	      if (h->verinfo.verdef == NULL)
9054 		iversym.vs_vers = 0;
9055 	      else
9056 		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9057 	    }
9058 	  else
9059 	    {
9060 	      if (h->verinfo.vertree == NULL)
9061 		iversym.vs_vers = 1;
9062 	      else
9063 		iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9064 	      if (flinfo->info->create_default_symver)
9065 		iversym.vs_vers++;
9066 	    }
9067 
9068 	  if (h->hidden)
9069 	    iversym.vs_vers |= VERSYM_HIDDEN;
9070 
9071 	  eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9072 	  eversym += h->dynindx;
9073 	  _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9074 	}
9075     }
9076 
9077   /* If we're stripping it, then it was just a dynamic symbol, and
9078      there's nothing else to do.  */
9079   if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9080     return TRUE;
9081 
9082   indx = bfd_get_symcount (flinfo->output_bfd);
9083   ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9084   if (ret == 0)
9085     {
9086       eoinfo->failed = TRUE;
9087       return FALSE;
9088     }
9089   else if (ret == 1)
9090     h->indx = indx;
9091   else if (h->indx == -2)
9092     abort();
9093 
9094   return TRUE;
9095 }
9096 
9097 /* Return TRUE if special handling is done for relocs in SEC against
9098    symbols defined in discarded sections.  */
9099 
9100 static bfd_boolean
elf_section_ignore_discarded_relocs(asection * sec)9101 elf_section_ignore_discarded_relocs (asection *sec)
9102 {
9103   const struct elf_backend_data *bed;
9104 
9105   switch (sec->sec_info_type)
9106     {
9107     case SEC_INFO_TYPE_STABS:
9108     case SEC_INFO_TYPE_EH_FRAME:
9109       return TRUE;
9110     default:
9111       break;
9112     }
9113 
9114   bed = get_elf_backend_data (sec->owner);
9115   if (bed->elf_backend_ignore_discarded_relocs != NULL
9116       && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9117     return TRUE;
9118 
9119   return FALSE;
9120 }
9121 
9122 /* Return a mask saying how ld should treat relocations in SEC against
9123    symbols defined in discarded sections.  If this function returns
9124    COMPLAIN set, ld will issue a warning message.  If this function
9125    returns PRETEND set, and the discarded section was link-once and the
9126    same size as the kept link-once section, ld will pretend that the
9127    symbol was actually defined in the kept section.  Otherwise ld will
9128    zero the reloc (at least that is the intent, but some cooperation by
9129    the target dependent code is needed, particularly for REL targets).  */
9130 
9131 unsigned int
_bfd_elf_default_action_discarded(asection * sec)9132 _bfd_elf_default_action_discarded (asection *sec)
9133 {
9134   if (sec->flags & SEC_DEBUGGING)
9135     return PRETEND;
9136 
9137   if (strcmp (".eh_frame", sec->name) == 0)
9138     return 0;
9139 
9140   if (strcmp (".gcc_except_table", sec->name) == 0)
9141     return 0;
9142 
9143   return COMPLAIN | PRETEND;
9144 }
9145 
9146 /* Find a match between a section and a member of a section group.  */
9147 
9148 static asection *
match_group_member(asection * sec,asection * group,struct bfd_link_info * info)9149 match_group_member (asection *sec, asection *group,
9150 		    struct bfd_link_info *info)
9151 {
9152   asection *first = elf_next_in_group (group);
9153   asection *s = first;
9154 
9155   while (s != NULL)
9156     {
9157       if (bfd_elf_match_symbols_in_sections (s, sec, info))
9158 	return s;
9159 
9160       s = elf_next_in_group (s);
9161       if (s == first)
9162 	break;
9163     }
9164 
9165   return NULL;
9166 }
9167 
9168 /* Check if the kept section of a discarded section SEC can be used
9169    to replace it.  Return the replacement if it is OK.  Otherwise return
9170    NULL.  */
9171 
9172 asection *
_bfd_elf_check_kept_section(asection * sec,struct bfd_link_info * info)9173 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9174 {
9175   asection *kept;
9176 
9177   kept = sec->kept_section;
9178   if (kept != NULL)
9179     {
9180       if ((kept->flags & SEC_GROUP) != 0)
9181 	kept = match_group_member (sec, kept, info);
9182       if (kept != NULL
9183 	  && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9184 	      != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9185 	kept = NULL;
9186       sec->kept_section = kept;
9187     }
9188   return kept;
9189 }
9190 
9191 /* Link an input file into the linker output file.  This function
9192    handles all the sections and relocations of the input file at once.
9193    This is so that we only have to read the local symbols once, and
9194    don't have to keep them in memory.  */
9195 
9196 static bfd_boolean
elf_link_input_bfd(struct elf_final_link_info * flinfo,bfd * input_bfd)9197 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9198 {
9199   int (*relocate_section)
9200     (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9201      Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9202   bfd *output_bfd;
9203   Elf_Internal_Shdr *symtab_hdr;
9204   size_t locsymcount;
9205   size_t extsymoff;
9206   Elf_Internal_Sym *isymbuf;
9207   Elf_Internal_Sym *isym;
9208   Elf_Internal_Sym *isymend;
9209   long *pindex;
9210   asection **ppsection;
9211   asection *o;
9212   const struct elf_backend_data *bed;
9213   struct elf_link_hash_entry **sym_hashes;
9214   bfd_size_type address_size;
9215   bfd_vma r_type_mask;
9216   int r_sym_shift;
9217   bfd_boolean have_file_sym = FALSE;
9218 
9219   output_bfd = flinfo->output_bfd;
9220   bed = get_elf_backend_data (output_bfd);
9221   relocate_section = bed->elf_backend_relocate_section;
9222 
9223   /* If this is a dynamic object, we don't want to do anything here:
9224      we don't want the local symbols, and we don't want the section
9225      contents.  */
9226   if ((input_bfd->flags & DYNAMIC) != 0)
9227     return TRUE;
9228 
9229   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9230   if (elf_bad_symtab (input_bfd))
9231     {
9232       locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9233       extsymoff = 0;
9234     }
9235   else
9236     {
9237       locsymcount = symtab_hdr->sh_info;
9238       extsymoff = symtab_hdr->sh_info;
9239     }
9240 
9241   /* Read the local symbols.  */
9242   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9243   if (isymbuf == NULL && locsymcount != 0)
9244     {
9245       isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9246 				      flinfo->internal_syms,
9247 				      flinfo->external_syms,
9248 				      flinfo->locsym_shndx);
9249       if (isymbuf == NULL)
9250 	return FALSE;
9251     }
9252 
9253   /* Find local symbol sections and adjust values of symbols in
9254      SEC_MERGE sections.  Write out those local symbols we know are
9255      going into the output file.  */
9256   isymend = isymbuf + locsymcount;
9257   for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9258        isym < isymend;
9259        isym++, pindex++, ppsection++)
9260     {
9261       asection *isec;
9262       const char *name;
9263       Elf_Internal_Sym osym;
9264       long indx;
9265       int ret;
9266 
9267       *pindex = -1;
9268 
9269       if (elf_bad_symtab (input_bfd))
9270 	{
9271 	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9272 	    {
9273 	      *ppsection = NULL;
9274 	      continue;
9275 	    }
9276 	}
9277 
9278       if (isym->st_shndx == SHN_UNDEF)
9279 	isec = bfd_und_section_ptr;
9280       else if (isym->st_shndx == SHN_ABS)
9281 	isec = bfd_abs_section_ptr;
9282       else if (isym->st_shndx == SHN_COMMON)
9283 	isec = bfd_com_section_ptr;
9284       else
9285 	{
9286 	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9287 	  if (isec == NULL)
9288 	    {
9289 	      /* Don't attempt to output symbols with st_shnx in the
9290 		 reserved range other than SHN_ABS and SHN_COMMON.  */
9291 	      *ppsection = NULL;
9292 	      continue;
9293 	    }
9294 	  else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9295 		   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9296 	    isym->st_value =
9297 	      _bfd_merged_section_offset (output_bfd, &isec,
9298 					  elf_section_data (isec)->sec_info,
9299 					  isym->st_value);
9300 	}
9301 
9302       *ppsection = isec;
9303 
9304       /* Don't output the first, undefined, symbol.  */
9305       if (ppsection == flinfo->sections)
9306 	continue;
9307 
9308       if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9309 	{
9310 	  /* We never output section symbols.  Instead, we use the
9311 	     section symbol of the corresponding section in the output
9312 	     file.  */
9313 	  continue;
9314 	}
9315 
9316       /* If we are stripping all symbols, we don't want to output this
9317 	 one.  */
9318       if (flinfo->info->strip == strip_all)
9319 	continue;
9320 
9321       /* If we are discarding all local symbols, we don't want to
9322 	 output this one.  If we are generating a relocatable output
9323 	 file, then some of the local symbols may be required by
9324 	 relocs; we output them below as we discover that they are
9325 	 needed.  */
9326       if (flinfo->info->discard == discard_all)
9327 	continue;
9328 
9329       /* If this symbol is defined in a section which we are
9330 	 discarding, we don't need to keep it.  */
9331       if (isym->st_shndx != SHN_UNDEF
9332 	  && isym->st_shndx < SHN_LORESERVE
9333 	  && bfd_section_removed_from_list (output_bfd,
9334 					    isec->output_section))
9335 	continue;
9336 
9337       /* Get the name of the symbol.  */
9338       name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9339 					      isym->st_name);
9340       if (name == NULL)
9341 	return FALSE;
9342 
9343       /* See if we are discarding symbols with this name.  */
9344       if ((flinfo->info->strip == strip_some
9345 	   && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9346 	       == NULL))
9347 	  || (((flinfo->info->discard == discard_sec_merge
9348 		&& (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9349 	       || flinfo->info->discard == discard_l)
9350 	      && bfd_is_local_label_name (input_bfd, name)))
9351 	continue;
9352 
9353       if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9354 	{
9355 	  have_file_sym = TRUE;
9356 	  flinfo->filesym_count += 1;
9357 	}
9358       if (!have_file_sym)
9359 	{
9360 	  /* In the absence of debug info, bfd_find_nearest_line uses
9361 	     FILE symbols to determine the source file for local
9362 	     function symbols.  Provide a FILE symbol here if input
9363 	     files lack such, so that their symbols won't be
9364 	     associated with a previous input file.  It's not the
9365 	     source file, but the best we can do.  */
9366 	  have_file_sym = TRUE;
9367 	  flinfo->filesym_count += 1;
9368 	  memset (&osym, 0, sizeof (osym));
9369 	  osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9370 	  osym.st_shndx = SHN_ABS;
9371 	  if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9372 				    bfd_abs_section_ptr, NULL))
9373 	    return FALSE;
9374 	}
9375 
9376       osym = *isym;
9377 
9378       /* Adjust the section index for the output file.  */
9379       osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9380 							 isec->output_section);
9381       if (osym.st_shndx == SHN_BAD)
9382 	return FALSE;
9383 
9384       /* ELF symbols in relocatable files are section relative, but
9385 	 in executable files they are virtual addresses.  Note that
9386 	 this code assumes that all ELF sections have an associated
9387 	 BFD section with a reasonable value for output_offset; below
9388 	 we assume that they also have a reasonable value for
9389 	 output_section.  Any special sections must be set up to meet
9390 	 these requirements.  */
9391       osym.st_value += isec->output_offset;
9392       if (!flinfo->info->relocatable)
9393 	{
9394 	  osym.st_value += isec->output_section->vma;
9395 	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9396 	    {
9397 	      /* STT_TLS symbols are relative to PT_TLS segment base.  */
9398 	      BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9399 	      osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9400 	    }
9401 	}
9402 
9403       indx = bfd_get_symcount (output_bfd);
9404       ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9405       if (ret == 0)
9406 	return FALSE;
9407       else if (ret == 1)
9408 	*pindex = indx;
9409     }
9410 
9411   if (bed->s->arch_size == 32)
9412     {
9413       r_type_mask = 0xff;
9414       r_sym_shift = 8;
9415       address_size = 4;
9416     }
9417   else
9418     {
9419       r_type_mask = 0xffffffff;
9420       r_sym_shift = 32;
9421       address_size = 8;
9422     }
9423 
9424   /* Relocate the contents of each section.  */
9425   sym_hashes = elf_sym_hashes (input_bfd);
9426   for (o = input_bfd->sections; o != NULL; o = o->next)
9427     {
9428       bfd_byte *contents;
9429 
9430       if (! o->linker_mark)
9431 	{
9432 	  /* This section was omitted from the link.  */
9433 	  continue;
9434 	}
9435 
9436       if (flinfo->info->relocatable
9437 	  && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9438 	{
9439 	  /* Deal with the group signature symbol.  */
9440 	  struct bfd_elf_section_data *sec_data = elf_section_data (o);
9441 	  unsigned long symndx = sec_data->this_hdr.sh_info;
9442 	  asection *osec = o->output_section;
9443 
9444 	  if (symndx >= locsymcount
9445 	      || (elf_bad_symtab (input_bfd)
9446 		  && flinfo->sections[symndx] == NULL))
9447 	    {
9448 	      struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9449 	      while (h->root.type == bfd_link_hash_indirect
9450 		     || h->root.type == bfd_link_hash_warning)
9451 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
9452 	      /* Arrange for symbol to be output.  */
9453 	      h->indx = -2;
9454 	      elf_section_data (osec)->this_hdr.sh_info = -2;
9455 	    }
9456 	  else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9457 	    {
9458 	      /* We'll use the output section target_index.  */
9459 	      asection *sec = flinfo->sections[symndx]->output_section;
9460 	      elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9461 	    }
9462 	  else
9463 	    {
9464 	      if (flinfo->indices[symndx] == -1)
9465 		{
9466 		  /* Otherwise output the local symbol now.  */
9467 		  Elf_Internal_Sym sym = isymbuf[symndx];
9468 		  asection *sec = flinfo->sections[symndx]->output_section;
9469 		  const char *name;
9470 		  long indx;
9471 		  int ret;
9472 
9473 		  name = bfd_elf_string_from_elf_section (input_bfd,
9474 							  symtab_hdr->sh_link,
9475 							  sym.st_name);
9476 		  if (name == NULL)
9477 		    return FALSE;
9478 
9479 		  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9480 								    sec);
9481 		  if (sym.st_shndx == SHN_BAD)
9482 		    return FALSE;
9483 
9484 		  sym.st_value += o->output_offset;
9485 
9486 		  indx = bfd_get_symcount (output_bfd);
9487 		  ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9488 		  if (ret == 0)
9489 		    return FALSE;
9490 		  else if (ret == 1)
9491 		    flinfo->indices[symndx] = indx;
9492 		  else
9493 		    abort ();
9494 		}
9495 	      elf_section_data (osec)->this_hdr.sh_info
9496 		= flinfo->indices[symndx];
9497 	    }
9498 	}
9499 
9500       if ((o->flags & SEC_HAS_CONTENTS) == 0
9501 	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9502 	continue;
9503 
9504       if ((o->flags & SEC_LINKER_CREATED) != 0)
9505 	{
9506 	  /* Section was created by _bfd_elf_link_create_dynamic_sections
9507 	     or somesuch.  */
9508 	  continue;
9509 	}
9510 
9511       /* Get the contents of the section.  They have been cached by a
9512 	 relaxation routine.  Note that o is a section in an input
9513 	 file, so the contents field will not have been set by any of
9514 	 the routines which work on output files.  */
9515       if (elf_section_data (o)->this_hdr.contents != NULL)
9516 	{
9517 	  contents = elf_section_data (o)->this_hdr.contents;
9518 	  if (bed->caches_rawsize
9519 	      && o->rawsize != 0
9520 	      && o->rawsize < o->size)
9521 	    {
9522 	      memcpy (flinfo->contents, contents, o->rawsize);
9523 	      contents = flinfo->contents;
9524 	    }
9525 	}
9526       else
9527 	{
9528 	  contents = flinfo->contents;
9529 	  if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9530 	    return FALSE;
9531 	}
9532 
9533       if ((o->flags & SEC_RELOC) != 0)
9534 	{
9535 	  Elf_Internal_Rela *internal_relocs;
9536 	  Elf_Internal_Rela *rel, *relend;
9537 	  int action_discarded;
9538 	  int ret;
9539 
9540 	  /* Get the swapped relocs.  */
9541 	  internal_relocs
9542 	    = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9543 					 flinfo->internal_relocs, FALSE);
9544 	  if (internal_relocs == NULL
9545 	      && o->reloc_count > 0)
9546 	    return FALSE;
9547 
9548 	  /* We need to reverse-copy input .ctors/.dtors sections if
9549 	     they are placed in .init_array/.finit_array for output.  */
9550 	  if (o->size > address_size
9551 	      && ((strncmp (o->name, ".ctors", 6) == 0
9552 		   && strcmp (o->output_section->name,
9553 			      ".init_array") == 0)
9554 		  || (strncmp (o->name, ".dtors", 6) == 0
9555 		      && strcmp (o->output_section->name,
9556 				 ".fini_array") == 0))
9557 	      && (o->name[6] == 0 || o->name[6] == '.'))
9558 	    {
9559 	      if (o->size != o->reloc_count * address_size)
9560 		{
9561 		  (*_bfd_error_handler)
9562 		    (_("error: %B: size of section %A is not "
9563 		       "multiple of address size"),
9564 		     input_bfd, o);
9565 		  bfd_set_error (bfd_error_on_input);
9566 		  return FALSE;
9567 		}
9568 	      o->flags |= SEC_ELF_REVERSE_COPY;
9569 	    }
9570 
9571 	  action_discarded = -1;
9572 	  if (!elf_section_ignore_discarded_relocs (o))
9573 	    action_discarded = (*bed->action_discarded) (o);
9574 
9575 	  /* Run through the relocs evaluating complex reloc symbols and
9576 	     looking for relocs against symbols from discarded sections
9577 	     or section symbols from removed link-once sections.
9578 	     Complain about relocs against discarded sections.  Zero
9579 	     relocs against removed link-once sections.  */
9580 
9581 	  rel = internal_relocs;
9582 	  relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9583 	  for ( ; rel < relend; rel++)
9584 	    {
9585 	      unsigned long r_symndx = rel->r_info >> r_sym_shift;
9586 	      unsigned int s_type;
9587 	      asection **ps, *sec;
9588 	      struct elf_link_hash_entry *h = NULL;
9589 	      const char *sym_name;
9590 
9591 	      if (r_symndx == STN_UNDEF)
9592 		continue;
9593 
9594 	      if (r_symndx >= locsymcount
9595 		  || (elf_bad_symtab (input_bfd)
9596 		      && flinfo->sections[r_symndx] == NULL))
9597 		{
9598 		  h = sym_hashes[r_symndx - extsymoff];
9599 
9600 		  /* Badly formatted input files can contain relocs that
9601 		     reference non-existant symbols.  Check here so that
9602 		     we do not seg fault.  */
9603 		  if (h == NULL)
9604 		    {
9605 		      char buffer [32];
9606 
9607 		      sprintf_vma (buffer, rel->r_info);
9608 		      (*_bfd_error_handler)
9609 			(_("error: %B contains a reloc (0x%s) for section %A "
9610 			   "that references a non-existent global symbol"),
9611 			 input_bfd, o, buffer);
9612 		      bfd_set_error (bfd_error_bad_value);
9613 		      return FALSE;
9614 		    }
9615 
9616 		  while (h->root.type == bfd_link_hash_indirect
9617 			 || h->root.type == bfd_link_hash_warning)
9618 		    h = (struct elf_link_hash_entry *) h->root.u.i.link;
9619 
9620 		  s_type = h->type;
9621 
9622 		  ps = NULL;
9623 		  if (h->root.type == bfd_link_hash_defined
9624 		      || h->root.type == bfd_link_hash_defweak)
9625 		    ps = &h->root.u.def.section;
9626 
9627 		  sym_name = h->root.root.string;
9628 		}
9629 	      else
9630 		{
9631 		  Elf_Internal_Sym *sym = isymbuf + r_symndx;
9632 
9633 		  s_type = ELF_ST_TYPE (sym->st_info);
9634 		  ps = &flinfo->sections[r_symndx];
9635 		  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9636 					       sym, *ps);
9637 		}
9638 
9639 	      if ((s_type == STT_RELC || s_type == STT_SRELC)
9640 		  && !flinfo->info->relocatable)
9641 		{
9642 		  bfd_vma val;
9643 		  bfd_vma dot = (rel->r_offset
9644 				 + o->output_offset + o->output_section->vma);
9645 #ifdef DEBUG
9646 		  printf ("Encountered a complex symbol!");
9647 		  printf (" (input_bfd %s, section %s, reloc %ld\n",
9648 			  input_bfd->filename, o->name,
9649 			  (long) (rel - internal_relocs));
9650 		  printf (" symbol: idx  %8.8lx, name %s\n",
9651 			  r_symndx, sym_name);
9652 		  printf (" reloc : info %8.8lx, addr %8.8lx\n",
9653 			  (unsigned long) rel->r_info,
9654 			  (unsigned long) rel->r_offset);
9655 #endif
9656 		  if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9657 				    isymbuf, locsymcount, s_type == STT_SRELC))
9658 		    return FALSE;
9659 
9660 		  /* Symbol evaluated OK.  Update to absolute value.  */
9661 		  set_symbol_value (input_bfd, isymbuf, locsymcount,
9662 				    r_symndx, val);
9663 		  continue;
9664 		}
9665 
9666 	      if (action_discarded != -1 && ps != NULL)
9667 		{
9668 		  /* Complain if the definition comes from a
9669 		     discarded section.  */
9670 		  if ((sec = *ps) != NULL && discarded_section (sec))
9671 		    {
9672 		      BFD_ASSERT (r_symndx != STN_UNDEF);
9673 		      if (action_discarded & COMPLAIN)
9674 			(*flinfo->info->callbacks->einfo)
9675 			  (_("%X`%s' referenced in section `%A' of %B: "
9676 			     "defined in discarded section `%A' of %B\n"),
9677 			   sym_name, o, input_bfd, sec, sec->owner);
9678 
9679 		      /* Try to do the best we can to support buggy old
9680 			 versions of gcc.  Pretend that the symbol is
9681 			 really defined in the kept linkonce section.
9682 			 FIXME: This is quite broken.  Modifying the
9683 			 symbol here means we will be changing all later
9684 			 uses of the symbol, not just in this section.  */
9685 		      if (action_discarded & PRETEND)
9686 			{
9687 			  asection *kept;
9688 
9689 			  kept = _bfd_elf_check_kept_section (sec,
9690 							      flinfo->info);
9691 			  if (kept != NULL)
9692 			    {
9693 			      *ps = kept;
9694 			      continue;
9695 			    }
9696 			}
9697 		    }
9698 		}
9699 	    }
9700 
9701 	  /* Relocate the section by invoking a back end routine.
9702 
9703 	     The back end routine is responsible for adjusting the
9704 	     section contents as necessary, and (if using Rela relocs
9705 	     and generating a relocatable output file) adjusting the
9706 	     reloc addend as necessary.
9707 
9708 	     The back end routine does not have to worry about setting
9709 	     the reloc address or the reloc symbol index.
9710 
9711 	     The back end routine is given a pointer to the swapped in
9712 	     internal symbols, and can access the hash table entries
9713 	     for the external symbols via elf_sym_hashes (input_bfd).
9714 
9715 	     When generating relocatable output, the back end routine
9716 	     must handle STB_LOCAL/STT_SECTION symbols specially.  The
9717 	     output symbol is going to be a section symbol
9718 	     corresponding to the output section, which will require
9719 	     the addend to be adjusted.  */
9720 
9721 	  ret = (*relocate_section) (output_bfd, flinfo->info,
9722 				     input_bfd, o, contents,
9723 				     internal_relocs,
9724 				     isymbuf,
9725 				     flinfo->sections);
9726 	  if (!ret)
9727 	    return FALSE;
9728 
9729 	  if (ret == 2
9730 	      || flinfo->info->relocatable
9731 	      || flinfo->info->emitrelocations)
9732 	    {
9733 	      Elf_Internal_Rela *irela;
9734 	      Elf_Internal_Rela *irelaend, *irelamid;
9735 	      bfd_vma last_offset;
9736 	      struct elf_link_hash_entry **rel_hash;
9737 	      struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9738 	      Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9739 	      unsigned int next_erel;
9740 	      bfd_boolean rela_normal;
9741 	      struct bfd_elf_section_data *esdi, *esdo;
9742 
9743 	      esdi = elf_section_data (o);
9744 	      esdo = elf_section_data (o->output_section);
9745 	      rela_normal = FALSE;
9746 
9747 	      /* Adjust the reloc addresses and symbol indices.  */
9748 
9749 	      irela = internal_relocs;
9750 	      irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9751 	      rel_hash = esdo->rel.hashes + esdo->rel.count;
9752 	      /* We start processing the REL relocs, if any.  When we reach
9753 		 IRELAMID in the loop, we switch to the RELA relocs.  */
9754 	      irelamid = irela;
9755 	      if (esdi->rel.hdr != NULL)
9756 		irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9757 			     * bed->s->int_rels_per_ext_rel);
9758 	      rel_hash_list = rel_hash;
9759 	      rela_hash_list = NULL;
9760 	      last_offset = o->output_offset;
9761 	      if (!flinfo->info->relocatable)
9762 		last_offset += o->output_section->vma;
9763 	      for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9764 		{
9765 		  unsigned long r_symndx;
9766 		  asection *sec;
9767 		  Elf_Internal_Sym sym;
9768 
9769 		  if (next_erel == bed->s->int_rels_per_ext_rel)
9770 		    {
9771 		      rel_hash++;
9772 		      next_erel = 0;
9773 		    }
9774 
9775 		  if (irela == irelamid)
9776 		    {
9777 		      rel_hash = esdo->rela.hashes + esdo->rela.count;
9778 		      rela_hash_list = rel_hash;
9779 		      rela_normal = bed->rela_normal;
9780 		    }
9781 
9782 		  irela->r_offset = _bfd_elf_section_offset (output_bfd,
9783 							     flinfo->info, o,
9784 							     irela->r_offset);
9785 		  if (irela->r_offset >= (bfd_vma) -2)
9786 		    {
9787 		      /* This is a reloc for a deleted entry or somesuch.
9788 			 Turn it into an R_*_NONE reloc, at the same
9789 			 offset as the last reloc.  elf_eh_frame.c and
9790 			 bfd_elf_discard_info rely on reloc offsets
9791 			 being ordered.  */
9792 		      irela->r_offset = last_offset;
9793 		      irela->r_info = 0;
9794 		      irela->r_addend = 0;
9795 		      continue;
9796 		    }
9797 
9798 		  irela->r_offset += o->output_offset;
9799 
9800 		  /* Relocs in an executable have to be virtual addresses.  */
9801 		  if (!flinfo->info->relocatable)
9802 		    irela->r_offset += o->output_section->vma;
9803 
9804 		  last_offset = irela->r_offset;
9805 
9806 		  r_symndx = irela->r_info >> r_sym_shift;
9807 		  if (r_symndx == STN_UNDEF)
9808 		    continue;
9809 
9810 		  if (r_symndx >= locsymcount
9811 		      || (elf_bad_symtab (input_bfd)
9812 			  && flinfo->sections[r_symndx] == NULL))
9813 		    {
9814 		      struct elf_link_hash_entry *rh;
9815 		      unsigned long indx;
9816 
9817 		      /* This is a reloc against a global symbol.  We
9818 			 have not yet output all the local symbols, so
9819 			 we do not know the symbol index of any global
9820 			 symbol.  We set the rel_hash entry for this
9821 			 reloc to point to the global hash table entry
9822 			 for this symbol.  The symbol index is then
9823 			 set at the end of bfd_elf_final_link.  */
9824 		      indx = r_symndx - extsymoff;
9825 		      rh = elf_sym_hashes (input_bfd)[indx];
9826 		      while (rh->root.type == bfd_link_hash_indirect
9827 			     || rh->root.type == bfd_link_hash_warning)
9828 			rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9829 
9830 		      /* Setting the index to -2 tells
9831 			 elf_link_output_extsym that this symbol is
9832 			 used by a reloc.  */
9833 		      BFD_ASSERT (rh->indx < 0);
9834 		      rh->indx = -2;
9835 
9836 		      *rel_hash = rh;
9837 
9838 		      continue;
9839 		    }
9840 
9841 		  /* This is a reloc against a local symbol.  */
9842 
9843 		  *rel_hash = NULL;
9844 		  sym = isymbuf[r_symndx];
9845 		  sec = flinfo->sections[r_symndx];
9846 		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9847 		    {
9848 		      /* I suppose the backend ought to fill in the
9849 			 section of any STT_SECTION symbol against a
9850 			 processor specific section.  */
9851 		      r_symndx = STN_UNDEF;
9852 		      if (bfd_is_abs_section (sec))
9853 			;
9854 		      else if (sec == NULL || sec->owner == NULL)
9855 			{
9856 			  bfd_set_error (bfd_error_bad_value);
9857 			  return FALSE;
9858 			}
9859 		      else
9860 			{
9861 			  asection *osec = sec->output_section;
9862 
9863 			  /* If we have discarded a section, the output
9864 			     section will be the absolute section.  In
9865 			     case of discarded SEC_MERGE sections, use
9866 			     the kept section.  relocate_section should
9867 			     have already handled discarded linkonce
9868 			     sections.  */
9869 			  if (bfd_is_abs_section (osec)
9870 			      && sec->kept_section != NULL
9871 			      && sec->kept_section->output_section != NULL)
9872 			    {
9873 			      osec = sec->kept_section->output_section;
9874 			      irela->r_addend -= osec->vma;
9875 			    }
9876 
9877 			  if (!bfd_is_abs_section (osec))
9878 			    {
9879 			      r_symndx = osec->target_index;
9880 			      if (r_symndx == STN_UNDEF)
9881 				{
9882 				  irela->r_addend += osec->vma;
9883 				  osec = _bfd_nearby_section (output_bfd, osec,
9884 							      osec->vma);
9885 				  irela->r_addend -= osec->vma;
9886 				  r_symndx = osec->target_index;
9887 				}
9888 			    }
9889 			}
9890 
9891 		      /* Adjust the addend according to where the
9892 			 section winds up in the output section.  */
9893 		      if (rela_normal)
9894 			irela->r_addend += sec->output_offset;
9895 		    }
9896 		  else
9897 		    {
9898 		      if (flinfo->indices[r_symndx] == -1)
9899 			{
9900 			  unsigned long shlink;
9901 			  const char *name;
9902 			  asection *osec;
9903 			  long indx;
9904 
9905 			  if (flinfo->info->strip == strip_all)
9906 			    {
9907 			      /* You can't do ld -r -s.  */
9908 			      bfd_set_error (bfd_error_invalid_operation);
9909 			      return FALSE;
9910 			    }
9911 
9912 			  /* This symbol was skipped earlier, but
9913 			     since it is needed by a reloc, we
9914 			     must output it now.  */
9915 			  shlink = symtab_hdr->sh_link;
9916 			  name = (bfd_elf_string_from_elf_section
9917 				  (input_bfd, shlink, sym.st_name));
9918 			  if (name == NULL)
9919 			    return FALSE;
9920 
9921 			  osec = sec->output_section;
9922 			  sym.st_shndx =
9923 			    _bfd_elf_section_from_bfd_section (output_bfd,
9924 							       osec);
9925 			  if (sym.st_shndx == SHN_BAD)
9926 			    return FALSE;
9927 
9928 			  sym.st_value += sec->output_offset;
9929 			  if (!flinfo->info->relocatable)
9930 			    {
9931 			      sym.st_value += osec->vma;
9932 			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9933 				{
9934 				  /* STT_TLS symbols are relative to PT_TLS
9935 				     segment base.  */
9936 				  BFD_ASSERT (elf_hash_table (flinfo->info)
9937 					      ->tls_sec != NULL);
9938 				  sym.st_value -= (elf_hash_table (flinfo->info)
9939 						   ->tls_sec->vma);
9940 				}
9941 			    }
9942 
9943 			  indx = bfd_get_symcount (output_bfd);
9944 			  ret = elf_link_output_sym (flinfo, name, &sym, sec,
9945 						     NULL);
9946 			  if (ret == 0)
9947 			    return FALSE;
9948 			  else if (ret == 1)
9949 			    flinfo->indices[r_symndx] = indx;
9950 			  else
9951 			    abort ();
9952 			}
9953 
9954 		      r_symndx = flinfo->indices[r_symndx];
9955 		    }
9956 
9957 		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9958 				   | (irela->r_info & r_type_mask));
9959 		}
9960 
9961 	      /* Swap out the relocs.  */
9962 	      input_rel_hdr = esdi->rel.hdr;
9963 	      if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9964 		{
9965 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
9966 						     input_rel_hdr,
9967 						     internal_relocs,
9968 						     rel_hash_list))
9969 		    return FALSE;
9970 		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9971 				      * bed->s->int_rels_per_ext_rel);
9972 		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9973 		}
9974 
9975 	      input_rela_hdr = esdi->rela.hdr;
9976 	      if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9977 		{
9978 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
9979 						     input_rela_hdr,
9980 						     internal_relocs,
9981 						     rela_hash_list))
9982 		    return FALSE;
9983 		}
9984 	    }
9985 	}
9986 
9987       /* Write out the modified section contents.  */
9988       if (bed->elf_backend_write_section
9989 	  && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
9990 						contents))
9991 	{
9992 	  /* Section written out.  */
9993 	}
9994       else switch (o->sec_info_type)
9995 	{
9996 	case SEC_INFO_TYPE_STABS:
9997 	  if (! (_bfd_write_section_stabs
9998 		 (output_bfd,
9999 		  &elf_hash_table (flinfo->info)->stab_info,
10000 		  o, &elf_section_data (o)->sec_info, contents)))
10001 	    return FALSE;
10002 	  break;
10003 	case SEC_INFO_TYPE_MERGE:
10004 	  if (! _bfd_write_merged_section (output_bfd, o,
10005 					   elf_section_data (o)->sec_info))
10006 	    return FALSE;
10007 	  break;
10008 	case SEC_INFO_TYPE_EH_FRAME:
10009 	  {
10010 	    if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10011 						   o, contents))
10012 	      return FALSE;
10013 	  }
10014 	  break;
10015 	default:
10016 	  {
10017 	    /* FIXME: octets_per_byte.  */
10018 	    if (! (o->flags & SEC_EXCLUDE))
10019 	      {
10020 		file_ptr offset = (file_ptr) o->output_offset;
10021 		bfd_size_type todo = o->size;
10022 		if ((o->flags & SEC_ELF_REVERSE_COPY))
10023 		  {
10024 		    /* Reverse-copy input section to output.  */
10025 		    do
10026 		      {
10027 			todo -= address_size;
10028 			if (! bfd_set_section_contents (output_bfd,
10029 							o->output_section,
10030 							contents + todo,
10031 							offset,
10032 							address_size))
10033 			  return FALSE;
10034 			if (todo == 0)
10035 			  break;
10036 			offset += address_size;
10037 		      }
10038 		    while (1);
10039 		  }
10040 		else if (! bfd_set_section_contents (output_bfd,
10041 						     o->output_section,
10042 						     contents,
10043 						     offset, todo))
10044 		  return FALSE;
10045 	      }
10046 	  }
10047 	  break;
10048 	}
10049     }
10050 
10051   return TRUE;
10052 }
10053 
10054 /* Generate a reloc when linking an ELF file.  This is a reloc
10055    requested by the linker, and does not come from any input file.  This
10056    is used to build constructor and destructor tables when linking
10057    with -Ur.  */
10058 
10059 static bfd_boolean
elf_reloc_link_order(bfd * output_bfd,struct bfd_link_info * info,asection * output_section,struct bfd_link_order * link_order)10060 elf_reloc_link_order (bfd *output_bfd,
10061 		      struct bfd_link_info *info,
10062 		      asection *output_section,
10063 		      struct bfd_link_order *link_order)
10064 {
10065   reloc_howto_type *howto;
10066   long indx;
10067   bfd_vma offset;
10068   bfd_vma addend;
10069   struct bfd_elf_section_reloc_data *reldata;
10070   struct elf_link_hash_entry **rel_hash_ptr;
10071   Elf_Internal_Shdr *rel_hdr;
10072   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10073   Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10074   bfd_byte *erel;
10075   unsigned int i;
10076   struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10077 
10078   howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10079   if (howto == NULL)
10080     {
10081       bfd_set_error (bfd_error_bad_value);
10082       return FALSE;
10083     }
10084 
10085   addend = link_order->u.reloc.p->addend;
10086 
10087   if (esdo->rel.hdr)
10088     reldata = &esdo->rel;
10089   else if (esdo->rela.hdr)
10090     reldata = &esdo->rela;
10091   else
10092     {
10093       reldata = NULL;
10094       BFD_ASSERT (0);
10095     }
10096 
10097   /* Figure out the symbol index.  */
10098   rel_hash_ptr = reldata->hashes + reldata->count;
10099   if (link_order->type == bfd_section_reloc_link_order)
10100     {
10101       indx = link_order->u.reloc.p->u.section->target_index;
10102       BFD_ASSERT (indx != 0);
10103       *rel_hash_ptr = NULL;
10104     }
10105   else
10106     {
10107       struct elf_link_hash_entry *h;
10108 
10109       /* Treat a reloc against a defined symbol as though it were
10110 	 actually against the section.  */
10111       h = ((struct elf_link_hash_entry *)
10112 	   bfd_wrapped_link_hash_lookup (output_bfd, info,
10113 					 link_order->u.reloc.p->u.name,
10114 					 FALSE, FALSE, TRUE));
10115       if (h != NULL
10116 	  && (h->root.type == bfd_link_hash_defined
10117 	      || h->root.type == bfd_link_hash_defweak))
10118 	{
10119 	  asection *section;
10120 
10121 	  section = h->root.u.def.section;
10122 	  indx = section->output_section->target_index;
10123 	  *rel_hash_ptr = NULL;
10124 	  /* It seems that we ought to add the symbol value to the
10125 	     addend here, but in practice it has already been added
10126 	     because it was passed to constructor_callback.  */
10127 	  addend += section->output_section->vma + section->output_offset;
10128 	}
10129       else if (h != NULL)
10130 	{
10131 	  /* Setting the index to -2 tells elf_link_output_extsym that
10132 	     this symbol is used by a reloc.  */
10133 	  h->indx = -2;
10134 	  *rel_hash_ptr = h;
10135 	  indx = 0;
10136 	}
10137       else
10138 	{
10139 	  if (! ((*info->callbacks->unattached_reloc)
10140 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10141 	    return FALSE;
10142 	  indx = 0;
10143 	}
10144     }
10145 
10146   /* If this is an inplace reloc, we must write the addend into the
10147      object file.  */
10148   if (howto->partial_inplace && addend != 0)
10149     {
10150       bfd_size_type size;
10151       bfd_reloc_status_type rstat;
10152       bfd_byte *buf;
10153       bfd_boolean ok;
10154       const char *sym_name;
10155 
10156       size = (bfd_size_type) bfd_get_reloc_size (howto);
10157       buf = (bfd_byte *) bfd_zmalloc (size);
10158       if (buf == NULL)
10159 	return FALSE;
10160       rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10161       switch (rstat)
10162 	{
10163 	case bfd_reloc_ok:
10164 	  break;
10165 
10166 	default:
10167 	case bfd_reloc_outofrange:
10168 	  abort ();
10169 
10170 	case bfd_reloc_overflow:
10171 	  if (link_order->type == bfd_section_reloc_link_order)
10172 	    sym_name = bfd_section_name (output_bfd,
10173 					 link_order->u.reloc.p->u.section);
10174 	  else
10175 	    sym_name = link_order->u.reloc.p->u.name;
10176 	  if (! ((*info->callbacks->reloc_overflow)
10177 		 (info, NULL, sym_name, howto->name, addend, NULL,
10178 		  NULL, (bfd_vma) 0)))
10179 	    {
10180 	      free (buf);
10181 	      return FALSE;
10182 	    }
10183 	  break;
10184 	}
10185       ok = bfd_set_section_contents (output_bfd, output_section, buf,
10186 				     link_order->offset, size);
10187       free (buf);
10188       if (! ok)
10189 	return FALSE;
10190     }
10191 
10192   /* The address of a reloc is relative to the section in a
10193      relocatable file, and is a virtual address in an executable
10194      file.  */
10195   offset = link_order->offset;
10196   if (! info->relocatable)
10197     offset += output_section->vma;
10198 
10199   for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10200     {
10201       irel[i].r_offset = offset;
10202       irel[i].r_info = 0;
10203       irel[i].r_addend = 0;
10204     }
10205   if (bed->s->arch_size == 32)
10206     irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10207   else
10208     irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10209 
10210   rel_hdr = reldata->hdr;
10211   erel = rel_hdr->contents;
10212   if (rel_hdr->sh_type == SHT_REL)
10213     {
10214       erel += reldata->count * bed->s->sizeof_rel;
10215       (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10216     }
10217   else
10218     {
10219       irel[0].r_addend = addend;
10220       erel += reldata->count * bed->s->sizeof_rela;
10221       (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10222     }
10223 
10224   ++reldata->count;
10225 
10226   return TRUE;
10227 }
10228 
10229 
10230 /* Get the output vma of the section pointed to by the sh_link field.  */
10231 
10232 static bfd_vma
elf_get_linked_section_vma(struct bfd_link_order * p)10233 elf_get_linked_section_vma (struct bfd_link_order *p)
10234 {
10235   Elf_Internal_Shdr **elf_shdrp;
10236   asection *s;
10237   int elfsec;
10238 
10239   s = p->u.indirect.section;
10240   elf_shdrp = elf_elfsections (s->owner);
10241   elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10242   elfsec = elf_shdrp[elfsec]->sh_link;
10243   /* PR 290:
10244      The Intel C compiler generates SHT_IA_64_UNWIND with
10245      SHF_LINK_ORDER.  But it doesn't set the sh_link or
10246      sh_info fields.  Hence we could get the situation
10247      where elfsec is 0.  */
10248   if (elfsec == 0)
10249     {
10250       const struct elf_backend_data *bed
10251 	= get_elf_backend_data (s->owner);
10252       if (bed->link_order_error_handler)
10253 	bed->link_order_error_handler
10254 	  (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10255       return 0;
10256     }
10257   else
10258     {
10259       s = elf_shdrp[elfsec]->bfd_section;
10260       return s->output_section->vma + s->output_offset;
10261     }
10262 }
10263 
10264 
10265 /* Compare two sections based on the locations of the sections they are
10266    linked to.  Used by elf_fixup_link_order.  */
10267 
10268 static int
compare_link_order(const void * a,const void * b)10269 compare_link_order (const void * a, const void * b)
10270 {
10271   bfd_vma apos;
10272   bfd_vma bpos;
10273 
10274   apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10275   bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10276   if (apos < bpos)
10277     return -1;
10278   return apos > bpos;
10279 }
10280 
10281 
10282 /* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
10283    order as their linked sections.  Returns false if this could not be done
10284    because an output section includes both ordered and unordered
10285    sections.  Ideally we'd do this in the linker proper.  */
10286 
10287 static bfd_boolean
elf_fixup_link_order(bfd * abfd,asection * o)10288 elf_fixup_link_order (bfd *abfd, asection *o)
10289 {
10290   int seen_linkorder;
10291   int seen_other;
10292   int n;
10293   struct bfd_link_order *p;
10294   bfd *sub;
10295   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10296   unsigned elfsec;
10297   struct bfd_link_order **sections;
10298   asection *s, *other_sec, *linkorder_sec;
10299   bfd_vma offset;
10300 
10301   other_sec = NULL;
10302   linkorder_sec = NULL;
10303   seen_other = 0;
10304   seen_linkorder = 0;
10305   for (p = o->map_head.link_order; p != NULL; p = p->next)
10306     {
10307       if (p->type == bfd_indirect_link_order)
10308 	{
10309 	  s = p->u.indirect.section;
10310 	  sub = s->owner;
10311 	  if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10312 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10313 	      && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10314 	      && elfsec < elf_numsections (sub)
10315 	      && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10316 	      && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10317 	    {
10318 	      seen_linkorder++;
10319 	      linkorder_sec = s;
10320 	    }
10321 	  else
10322 	    {
10323 	      seen_other++;
10324 	      other_sec = s;
10325 	    }
10326 	}
10327       else
10328 	seen_other++;
10329 
10330       if (seen_other && seen_linkorder)
10331 	{
10332 	  if (other_sec && linkorder_sec)
10333 	    (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10334 				   o, linkorder_sec,
10335 				   linkorder_sec->owner, other_sec,
10336 				   other_sec->owner);
10337 	  else
10338 	    (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10339 				   o);
10340 	  bfd_set_error (bfd_error_bad_value);
10341 	  return FALSE;
10342 	}
10343     }
10344 
10345   if (!seen_linkorder)
10346     return TRUE;
10347 
10348   sections = (struct bfd_link_order **)
10349     bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10350   if (sections == NULL)
10351     return FALSE;
10352   seen_linkorder = 0;
10353 
10354   for (p = o->map_head.link_order; p != NULL; p = p->next)
10355     {
10356       sections[seen_linkorder++] = p;
10357     }
10358   /* Sort the input sections in the order of their linked section.  */
10359   qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10360 	 compare_link_order);
10361 
10362   /* Change the offsets of the sections.  */
10363   offset = 0;
10364   for (n = 0; n < seen_linkorder; n++)
10365     {
10366       s = sections[n]->u.indirect.section;
10367       offset &= ~(bfd_vma) 0 << s->alignment_power;
10368       s->output_offset = offset;
10369       sections[n]->offset = offset;
10370       /* FIXME: octets_per_byte.  */
10371       offset += sections[n]->size;
10372     }
10373 
10374   free (sections);
10375   return TRUE;
10376 }
10377 
10378 static void
elf_final_link_free(bfd * obfd,struct elf_final_link_info * flinfo)10379 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10380 {
10381   asection *o;
10382 
10383   if (flinfo->symstrtab != NULL)
10384     _bfd_stringtab_free (flinfo->symstrtab);
10385   if (flinfo->contents != NULL)
10386     free (flinfo->contents);
10387   if (flinfo->external_relocs != NULL)
10388     free (flinfo->external_relocs);
10389   if (flinfo->internal_relocs != NULL)
10390     free (flinfo->internal_relocs);
10391   if (flinfo->external_syms != NULL)
10392     free (flinfo->external_syms);
10393   if (flinfo->locsym_shndx != NULL)
10394     free (flinfo->locsym_shndx);
10395   if (flinfo->internal_syms != NULL)
10396     free (flinfo->internal_syms);
10397   if (flinfo->indices != NULL)
10398     free (flinfo->indices);
10399   if (flinfo->sections != NULL)
10400     free (flinfo->sections);
10401   if (flinfo->symbuf != NULL)
10402     free (flinfo->symbuf);
10403   if (flinfo->symshndxbuf != NULL)
10404     free (flinfo->symshndxbuf);
10405   for (o = obfd->sections; o != NULL; o = o->next)
10406     {
10407       struct bfd_elf_section_data *esdo = elf_section_data (o);
10408       if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10409 	free (esdo->rel.hashes);
10410       if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10411 	free (esdo->rela.hashes);
10412     }
10413 }
10414 
10415 /* Do the final step of an ELF link.  */
10416 
10417 bfd_boolean
bfd_elf_final_link(bfd * abfd,struct bfd_link_info * info)10418 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10419 {
10420   bfd_boolean dynamic;
10421   bfd_boolean emit_relocs;
10422   bfd *dynobj;
10423   struct elf_final_link_info flinfo;
10424   asection *o;
10425   struct bfd_link_order *p;
10426   bfd *sub;
10427   bfd_size_type max_contents_size;
10428   bfd_size_type max_external_reloc_size;
10429   bfd_size_type max_internal_reloc_count;
10430   bfd_size_type max_sym_count;
10431   bfd_size_type max_sym_shndx_count;
10432   file_ptr off;
10433   Elf_Internal_Sym elfsym;
10434   unsigned int i;
10435   Elf_Internal_Shdr *symtab_hdr;
10436   Elf_Internal_Shdr *symtab_shndx_hdr;
10437   Elf_Internal_Shdr *symstrtab_hdr;
10438   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10439   struct elf_outext_info eoinfo;
10440   bfd_boolean merged;
10441   size_t relativecount = 0;
10442   asection *reldyn = 0;
10443   bfd_size_type amt;
10444   asection *attr_section = NULL;
10445   bfd_vma attr_size = 0;
10446   const char *std_attrs_section;
10447 
10448   if (! is_elf_hash_table (info->hash))
10449     return FALSE;
10450 
10451   if (info->shared)
10452     abfd->flags |= DYNAMIC;
10453 
10454   dynamic = elf_hash_table (info)->dynamic_sections_created;
10455   dynobj = elf_hash_table (info)->dynobj;
10456 
10457   emit_relocs = (info->relocatable
10458 		 || info->emitrelocations);
10459 
10460   flinfo.info = info;
10461   flinfo.output_bfd = abfd;
10462   flinfo.symstrtab = _bfd_elf_stringtab_init ();
10463   if (flinfo.symstrtab == NULL)
10464     return FALSE;
10465 
10466   if (! dynamic)
10467     {
10468       flinfo.dynsym_sec = NULL;
10469       flinfo.hash_sec = NULL;
10470       flinfo.symver_sec = NULL;
10471     }
10472   else
10473     {
10474       flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10475       flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10476       /* Note that dynsym_sec can be NULL (on VMS).  */
10477       flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10478       /* Note that it is OK if symver_sec is NULL.  */
10479     }
10480 
10481   flinfo.contents = NULL;
10482   flinfo.external_relocs = NULL;
10483   flinfo.internal_relocs = NULL;
10484   flinfo.external_syms = NULL;
10485   flinfo.locsym_shndx = NULL;
10486   flinfo.internal_syms = NULL;
10487   flinfo.indices = NULL;
10488   flinfo.sections = NULL;
10489   flinfo.symbuf = NULL;
10490   flinfo.symshndxbuf = NULL;
10491   flinfo.symbuf_count = 0;
10492   flinfo.shndxbuf_size = 0;
10493   flinfo.filesym_count = 0;
10494 
10495   /* The object attributes have been merged.  Remove the input
10496      sections from the link, and set the contents of the output
10497      secton.  */
10498   std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10499   for (o = abfd->sections; o != NULL; o = o->next)
10500     {
10501       if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10502 	  || strcmp (o->name, ".gnu.attributes") == 0)
10503 	{
10504 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
10505 	    {
10506 	      asection *input_section;
10507 
10508 	      if (p->type != bfd_indirect_link_order)
10509 		continue;
10510 	      input_section = p->u.indirect.section;
10511 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
10512 		 elf_link_input_bfd ignores this section.  */
10513 	      input_section->flags &= ~SEC_HAS_CONTENTS;
10514 	    }
10515 
10516 	  attr_size = bfd_elf_obj_attr_size (abfd);
10517 	  if (attr_size)
10518 	    {
10519 	      bfd_set_section_size (abfd, o, attr_size);
10520 	      attr_section = o;
10521 	      /* Skip this section later on.  */
10522 	      o->map_head.link_order = NULL;
10523 	    }
10524 	  else
10525 	    o->flags |= SEC_EXCLUDE;
10526 	}
10527     }
10528 
10529   /* Count up the number of relocations we will output for each output
10530      section, so that we know the sizes of the reloc sections.  We
10531      also figure out some maximum sizes.  */
10532   max_contents_size = 0;
10533   max_external_reloc_size = 0;
10534   max_internal_reloc_count = 0;
10535   max_sym_count = 0;
10536   max_sym_shndx_count = 0;
10537   merged = FALSE;
10538   for (o = abfd->sections; o != NULL; o = o->next)
10539     {
10540       struct bfd_elf_section_data *esdo = elf_section_data (o);
10541       o->reloc_count = 0;
10542 
10543       for (p = o->map_head.link_order; p != NULL; p = p->next)
10544 	{
10545 	  unsigned int reloc_count = 0;
10546 	  struct bfd_elf_section_data *esdi = NULL;
10547 
10548 	  if (p->type == bfd_section_reloc_link_order
10549 	      || p->type == bfd_symbol_reloc_link_order)
10550 	    reloc_count = 1;
10551 	  else if (p->type == bfd_indirect_link_order)
10552 	    {
10553 	      asection *sec;
10554 
10555 	      sec = p->u.indirect.section;
10556 	      esdi = elf_section_data (sec);
10557 
10558 	      /* Mark all sections which are to be included in the
10559 		 link.  This will normally be every section.  We need
10560 		 to do this so that we can identify any sections which
10561 		 the linker has decided to not include.  */
10562 	      sec->linker_mark = TRUE;
10563 
10564 	      if (sec->flags & SEC_MERGE)
10565 		merged = TRUE;
10566 
10567 	      if (esdo->this_hdr.sh_type == SHT_REL
10568 		  || esdo->this_hdr.sh_type == SHT_RELA)
10569 		/* Some backends use reloc_count in relocation sections
10570 		   to count particular types of relocs.  Of course,
10571 		   reloc sections themselves can't have relocations.  */
10572 		reloc_count = 0;
10573 	      else if (info->relocatable || info->emitrelocations)
10574 		reloc_count = sec->reloc_count;
10575 	      else if (bed->elf_backend_count_relocs)
10576 		reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10577 
10578 	      if (sec->rawsize > max_contents_size)
10579 		max_contents_size = sec->rawsize;
10580 	      if (sec->size > max_contents_size)
10581 		max_contents_size = sec->size;
10582 
10583 	      /* We are interested in just local symbols, not all
10584 		 symbols.  */
10585 	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10586 		  && (sec->owner->flags & DYNAMIC) == 0)
10587 		{
10588 		  size_t sym_count;
10589 
10590 		  if (elf_bad_symtab (sec->owner))
10591 		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10592 				 / bed->s->sizeof_sym);
10593 		  else
10594 		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10595 
10596 		  if (sym_count > max_sym_count)
10597 		    max_sym_count = sym_count;
10598 
10599 		  if (sym_count > max_sym_shndx_count
10600 		      && elf_symtab_shndx (sec->owner) != 0)
10601 		    max_sym_shndx_count = sym_count;
10602 
10603 		  if ((sec->flags & SEC_RELOC) != 0)
10604 		    {
10605 		      size_t ext_size = 0;
10606 
10607 		      if (esdi->rel.hdr != NULL)
10608 			ext_size = esdi->rel.hdr->sh_size;
10609 		      if (esdi->rela.hdr != NULL)
10610 			ext_size += esdi->rela.hdr->sh_size;
10611 
10612 		      if (ext_size > max_external_reloc_size)
10613 			max_external_reloc_size = ext_size;
10614 		      if (sec->reloc_count > max_internal_reloc_count)
10615 			max_internal_reloc_count = sec->reloc_count;
10616 		    }
10617 		}
10618 	    }
10619 
10620 	  if (reloc_count == 0)
10621 	    continue;
10622 
10623 	  o->reloc_count += reloc_count;
10624 
10625 	  if (p->type == bfd_indirect_link_order
10626 	      && (info->relocatable || info->emitrelocations))
10627 	    {
10628 	      if (esdi->rel.hdr)
10629 		esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10630 	      if (esdi->rela.hdr)
10631 		esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10632 	    }
10633 	  else
10634 	    {
10635 	      if (o->use_rela_p)
10636 		esdo->rela.count += reloc_count;
10637 	      else
10638 		esdo->rel.count += reloc_count;
10639 	    }
10640 	}
10641 
10642       if (o->reloc_count > 0)
10643 	o->flags |= SEC_RELOC;
10644       else
10645 	{
10646 	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to
10647 	     set it (this is probably a bug) and if it is set
10648 	     assign_section_numbers will create a reloc section.  */
10649 	  o->flags &=~ SEC_RELOC;
10650 	}
10651 
10652       /* If the SEC_ALLOC flag is not set, force the section VMA to
10653 	 zero.  This is done in elf_fake_sections as well, but forcing
10654 	 the VMA to 0 here will ensure that relocs against these
10655 	 sections are handled correctly.  */
10656       if ((o->flags & SEC_ALLOC) == 0
10657 	  && ! o->user_set_vma)
10658 	o->vma = 0;
10659     }
10660 
10661   if (! info->relocatable && merged)
10662     elf_link_hash_traverse (elf_hash_table (info),
10663 			    _bfd_elf_link_sec_merge_syms, abfd);
10664 
10665   /* Figure out the file positions for everything but the symbol table
10666      and the relocs.  We set symcount to force assign_section_numbers
10667      to create a symbol table.  */
10668   bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10669   BFD_ASSERT (! abfd->output_has_begun);
10670   if (! _bfd_elf_compute_section_file_positions (abfd, info))
10671     goto error_return;
10672 
10673   /* Set sizes, and assign file positions for reloc sections.  */
10674   for (o = abfd->sections; o != NULL; o = o->next)
10675     {
10676       struct bfd_elf_section_data *esdo = elf_section_data (o);
10677       if ((o->flags & SEC_RELOC) != 0)
10678 	{
10679 	  if (esdo->rel.hdr
10680 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10681 	    goto error_return;
10682 
10683 	  if (esdo->rela.hdr
10684 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10685 	    goto error_return;
10686 	}
10687 
10688       /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10689 	 to count upwards while actually outputting the relocations.  */
10690       esdo->rel.count = 0;
10691       esdo->rela.count = 0;
10692     }
10693 
10694   /* We have now assigned file positions for all the sections except
10695      .symtab, .strtab, and non-loaded reloc sections.  We start the
10696      .symtab section at the current file position, and write directly
10697      to it.  We build the .strtab section in memory.  */
10698   bfd_get_symcount (abfd) = 0;
10699   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10700   /* sh_name is set in prep_headers.  */
10701   symtab_hdr->sh_type = SHT_SYMTAB;
10702   /* sh_flags, sh_addr and sh_size all start off zero.  */
10703   symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10704   /* sh_link is set in assign_section_numbers.  */
10705   /* sh_info is set below.  */
10706   /* sh_offset is set just below.  */
10707   symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10708 
10709   off = elf_next_file_pos (abfd);
10710   off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10711 
10712   /* Note that at this point elf_next_file_pos (abfd) is
10713      incorrect.  We do not yet know the size of the .symtab section.
10714      We correct next_file_pos below, after we do know the size.  */
10715 
10716   /* Allocate a buffer to hold swapped out symbols.  This is to avoid
10717      continuously seeking to the right position in the file.  */
10718   if (! info->keep_memory || max_sym_count < 20)
10719     flinfo.symbuf_size = 20;
10720   else
10721     flinfo.symbuf_size = max_sym_count;
10722   amt = flinfo.symbuf_size;
10723   amt *= bed->s->sizeof_sym;
10724   flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10725   if (flinfo.symbuf == NULL)
10726     goto error_return;
10727   if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10728     {
10729       /* Wild guess at number of output symbols.  realloc'd as needed.  */
10730       amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10731       flinfo.shndxbuf_size = amt;
10732       amt *= sizeof (Elf_External_Sym_Shndx);
10733       flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10734       if (flinfo.symshndxbuf == NULL)
10735 	goto error_return;
10736     }
10737 
10738   /* Start writing out the symbol table.  The first symbol is always a
10739      dummy symbol.  */
10740   if (info->strip != strip_all
10741       || emit_relocs)
10742     {
10743       elfsym.st_value = 0;
10744       elfsym.st_size = 0;
10745       elfsym.st_info = 0;
10746       elfsym.st_other = 0;
10747       elfsym.st_shndx = SHN_UNDEF;
10748       elfsym.st_target_internal = 0;
10749       if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10750 			       NULL) != 1)
10751 	goto error_return;
10752     }
10753 
10754   /* Output a symbol for each section.  We output these even if we are
10755      discarding local symbols, since they are used for relocs.  These
10756      symbols have no names.  We store the index of each one in the
10757      index field of the section, so that we can find it again when
10758      outputting relocs.  */
10759   if (info->strip != strip_all
10760       || emit_relocs)
10761     {
10762       elfsym.st_size = 0;
10763       elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10764       elfsym.st_other = 0;
10765       elfsym.st_value = 0;
10766       elfsym.st_target_internal = 0;
10767       for (i = 1; i < elf_numsections (abfd); i++)
10768 	{
10769 	  o = bfd_section_from_elf_index (abfd, i);
10770 	  if (o != NULL)
10771 	    {
10772 	      o->target_index = bfd_get_symcount (abfd);
10773 	      elfsym.st_shndx = i;
10774 	      if (!info->relocatable)
10775 		elfsym.st_value = o->vma;
10776 	      if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10777 		goto error_return;
10778 	    }
10779 	}
10780     }
10781 
10782   /* Allocate some memory to hold information read in from the input
10783      files.  */
10784   if (max_contents_size != 0)
10785     {
10786       flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10787       if (flinfo.contents == NULL)
10788 	goto error_return;
10789     }
10790 
10791   if (max_external_reloc_size != 0)
10792     {
10793       flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10794       if (flinfo.external_relocs == NULL)
10795 	goto error_return;
10796     }
10797 
10798   if (max_internal_reloc_count != 0)
10799     {
10800       amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10801       amt *= sizeof (Elf_Internal_Rela);
10802       flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10803       if (flinfo.internal_relocs == NULL)
10804 	goto error_return;
10805     }
10806 
10807   if (max_sym_count != 0)
10808     {
10809       amt = max_sym_count * bed->s->sizeof_sym;
10810       flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10811       if (flinfo.external_syms == NULL)
10812 	goto error_return;
10813 
10814       amt = max_sym_count * sizeof (Elf_Internal_Sym);
10815       flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10816       if (flinfo.internal_syms == NULL)
10817 	goto error_return;
10818 
10819       amt = max_sym_count * sizeof (long);
10820       flinfo.indices = (long int *) bfd_malloc (amt);
10821       if (flinfo.indices == NULL)
10822 	goto error_return;
10823 
10824       amt = max_sym_count * sizeof (asection *);
10825       flinfo.sections = (asection **) bfd_malloc (amt);
10826       if (flinfo.sections == NULL)
10827 	goto error_return;
10828     }
10829 
10830   if (max_sym_shndx_count != 0)
10831     {
10832       amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10833       flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10834       if (flinfo.locsym_shndx == NULL)
10835 	goto error_return;
10836     }
10837 
10838   if (elf_hash_table (info)->tls_sec)
10839     {
10840       bfd_vma base, end = 0;
10841       asection *sec;
10842 
10843       for (sec = elf_hash_table (info)->tls_sec;
10844 	   sec && (sec->flags & SEC_THREAD_LOCAL);
10845 	   sec = sec->next)
10846 	{
10847 	  bfd_size_type size = sec->size;
10848 
10849 	  if (size == 0
10850 	      && (sec->flags & SEC_HAS_CONTENTS) == 0)
10851 	    {
10852 	      struct bfd_link_order *ord = sec->map_tail.link_order;
10853 
10854 	      if (ord != NULL)
10855 		size = ord->offset + ord->size;
10856 	    }
10857 	  end = sec->vma + size;
10858 	}
10859       base = elf_hash_table (info)->tls_sec->vma;
10860       /* Only align end of TLS section if static TLS doesn't have special
10861 	 alignment requirements.  */
10862       if (bed->static_tls_alignment == 1)
10863 	end = align_power (end,
10864 			   elf_hash_table (info)->tls_sec->alignment_power);
10865       elf_hash_table (info)->tls_size = end - base;
10866     }
10867 
10868   /* Reorder SHF_LINK_ORDER sections.  */
10869   for (o = abfd->sections; o != NULL; o = o->next)
10870     {
10871       if (!elf_fixup_link_order (abfd, o))
10872 	return FALSE;
10873     }
10874 
10875   /* Since ELF permits relocations to be against local symbols, we
10876      must have the local symbols available when we do the relocations.
10877      Since we would rather only read the local symbols once, and we
10878      would rather not keep them in memory, we handle all the
10879      relocations for a single input file at the same time.
10880 
10881      Unfortunately, there is no way to know the total number of local
10882      symbols until we have seen all of them, and the local symbol
10883      indices precede the global symbol indices.  This means that when
10884      we are generating relocatable output, and we see a reloc against
10885      a global symbol, we can not know the symbol index until we have
10886      finished examining all the local symbols to see which ones we are
10887      going to output.  To deal with this, we keep the relocations in
10888      memory, and don't output them until the end of the link.  This is
10889      an unfortunate waste of memory, but I don't see a good way around
10890      it.  Fortunately, it only happens when performing a relocatable
10891      link, which is not the common case.  FIXME: If keep_memory is set
10892      we could write the relocs out and then read them again; I don't
10893      know how bad the memory loss will be.  */
10894 
10895   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
10896     sub->output_has_begun = FALSE;
10897   for (o = abfd->sections; o != NULL; o = o->next)
10898     {
10899       for (p = o->map_head.link_order; p != NULL; p = p->next)
10900 	{
10901 	  if (p->type == bfd_indirect_link_order
10902 	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10903 		  == bfd_target_elf_flavour)
10904 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10905 	    {
10906 	      if (! sub->output_has_begun)
10907 		{
10908 		  if (! elf_link_input_bfd (&flinfo, sub))
10909 		    goto error_return;
10910 		  sub->output_has_begun = TRUE;
10911 		}
10912 	    }
10913 	  else if (p->type == bfd_section_reloc_link_order
10914 		   || p->type == bfd_symbol_reloc_link_order)
10915 	    {
10916 	      if (! elf_reloc_link_order (abfd, info, o, p))
10917 		goto error_return;
10918 	    }
10919 	  else
10920 	    {
10921 	      if (! _bfd_default_link_order (abfd, info, o, p))
10922 		{
10923 		  if (p->type == bfd_indirect_link_order
10924 		      && (bfd_get_flavour (sub)
10925 			  == bfd_target_elf_flavour)
10926 		      && (elf_elfheader (sub)->e_ident[EI_CLASS]
10927 			  != bed->s->elfclass))
10928 		    {
10929 		      const char *iclass, *oclass;
10930 
10931 		      if (bed->s->elfclass == ELFCLASS64)
10932 			{
10933 			  iclass = "ELFCLASS32";
10934 			  oclass = "ELFCLASS64";
10935 			}
10936 		      else
10937 			{
10938 			  iclass = "ELFCLASS64";
10939 			  oclass = "ELFCLASS32";
10940 			}
10941 
10942 		      bfd_set_error (bfd_error_wrong_format);
10943 		      (*_bfd_error_handler)
10944 			(_("%B: file class %s incompatible with %s"),
10945 			 sub, iclass, oclass);
10946 		    }
10947 
10948 		  goto error_return;
10949 		}
10950 	    }
10951 	}
10952     }
10953 
10954   /* Free symbol buffer if needed.  */
10955   if (!info->reduce_memory_overheads)
10956     {
10957       for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
10958 	if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10959 	    && elf_tdata (sub)->symbuf)
10960 	  {
10961 	    free (elf_tdata (sub)->symbuf);
10962 	    elf_tdata (sub)->symbuf = NULL;
10963 	  }
10964     }
10965 
10966   /* Output any global symbols that got converted to local in a
10967      version script or due to symbol visibility.  We do this in a
10968      separate step since ELF requires all local symbols to appear
10969      prior to any global symbols.  FIXME: We should only do this if
10970      some global symbols were, in fact, converted to become local.
10971      FIXME: Will this work correctly with the Irix 5 linker?  */
10972   eoinfo.failed = FALSE;
10973   eoinfo.flinfo = &flinfo;
10974   eoinfo.localsyms = TRUE;
10975   eoinfo.need_second_pass = FALSE;
10976   eoinfo.second_pass = FALSE;
10977   eoinfo.file_sym_done = FALSE;
10978   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10979   if (eoinfo.failed)
10980     return FALSE;
10981 
10982   if (eoinfo.need_second_pass)
10983     {
10984       eoinfo.second_pass = TRUE;
10985       bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10986       if (eoinfo.failed)
10987 	return FALSE;
10988     }
10989 
10990   /* If backend needs to output some local symbols not present in the hash
10991      table, do it now.  */
10992   if (bed->elf_backend_output_arch_local_syms)
10993     {
10994       typedef int (*out_sym_func)
10995 	(void *, const char *, Elf_Internal_Sym *, asection *,
10996 	 struct elf_link_hash_entry *);
10997 
10998       if (! ((*bed->elf_backend_output_arch_local_syms)
10999 	     (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11000 	return FALSE;
11001     }
11002 
11003   /* That wrote out all the local symbols.  Finish up the symbol table
11004      with the global symbols. Even if we want to strip everything we
11005      can, we still need to deal with those global symbols that got
11006      converted to local in a version script.  */
11007 
11008   /* The sh_info field records the index of the first non local symbol.  */
11009   symtab_hdr->sh_info = bfd_get_symcount (abfd);
11010 
11011   if (dynamic
11012       && flinfo.dynsym_sec != NULL
11013       && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11014     {
11015       Elf_Internal_Sym sym;
11016       bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11017       long last_local = 0;
11018 
11019       /* Write out the section symbols for the output sections.  */
11020       if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11021 	{
11022 	  asection *s;
11023 
11024 	  sym.st_size = 0;
11025 	  sym.st_name = 0;
11026 	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11027 	  sym.st_other = 0;
11028 	  sym.st_target_internal = 0;
11029 
11030 	  for (s = abfd->sections; s != NULL; s = s->next)
11031 	    {
11032 	      int indx;
11033 	      bfd_byte *dest;
11034 	      long dynindx;
11035 
11036 	      dynindx = elf_section_data (s)->dynindx;
11037 	      if (dynindx <= 0)
11038 		continue;
11039 	      indx = elf_section_data (s)->this_idx;
11040 	      BFD_ASSERT (indx > 0);
11041 	      sym.st_shndx = indx;
11042 	      if (! check_dynsym (abfd, &sym))
11043 		return FALSE;
11044 	      sym.st_value = s->vma;
11045 	      dest = dynsym + dynindx * bed->s->sizeof_sym;
11046 	      if (last_local < dynindx)
11047 		last_local = dynindx;
11048 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11049 	    }
11050 	}
11051 
11052       /* Write out the local dynsyms.  */
11053       if (elf_hash_table (info)->dynlocal)
11054 	{
11055 	  struct elf_link_local_dynamic_entry *e;
11056 	  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11057 	    {
11058 	      asection *s;
11059 	      bfd_byte *dest;
11060 
11061 	      /* Copy the internal symbol and turn off visibility.
11062 		 Note that we saved a word of storage and overwrote
11063 		 the original st_name with the dynstr_index.  */
11064 	      sym = e->isym;
11065 	      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11066 
11067 	      s = bfd_section_from_elf_index (e->input_bfd,
11068 					      e->isym.st_shndx);
11069 	      if (s != NULL)
11070 		{
11071 		  sym.st_shndx =
11072 		    elf_section_data (s->output_section)->this_idx;
11073 		  if (! check_dynsym (abfd, &sym))
11074 		    return FALSE;
11075 		  sym.st_value = (s->output_section->vma
11076 				  + s->output_offset
11077 				  + e->isym.st_value);
11078 		}
11079 
11080 	      if (last_local < e->dynindx)
11081 		last_local = e->dynindx;
11082 
11083 	      dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11084 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11085 	    }
11086 	}
11087 
11088       elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11089 	last_local + 1;
11090     }
11091 
11092   /* We get the global symbols from the hash table.  */
11093   eoinfo.failed = FALSE;
11094   eoinfo.localsyms = FALSE;
11095   eoinfo.flinfo = &flinfo;
11096   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11097   if (eoinfo.failed)
11098     return FALSE;
11099 
11100   /* If backend needs to output some symbols not present in the hash
11101      table, do it now.  */
11102   if (bed->elf_backend_output_arch_syms)
11103     {
11104       typedef int (*out_sym_func)
11105 	(void *, const char *, Elf_Internal_Sym *, asection *,
11106 	 struct elf_link_hash_entry *);
11107 
11108       if (! ((*bed->elf_backend_output_arch_syms)
11109 	     (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11110 	return FALSE;
11111     }
11112 
11113   /* Flush all symbols to the file.  */
11114   if (! elf_link_flush_output_syms (&flinfo, bed))
11115     return FALSE;
11116 
11117   /* Now we know the size of the symtab section.  */
11118   off += symtab_hdr->sh_size;
11119 
11120   symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11121   if (symtab_shndx_hdr->sh_name != 0)
11122     {
11123       symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11124       symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11125       symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11126       amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11127       symtab_shndx_hdr->sh_size = amt;
11128 
11129       off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11130 						       off, TRUE);
11131 
11132       if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11133 	  || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11134 	return FALSE;
11135     }
11136 
11137 
11138   /* Finish up and write out the symbol string table (.strtab)
11139      section.  */
11140   symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11141   /* sh_name was set in prep_headers.  */
11142   symstrtab_hdr->sh_type = SHT_STRTAB;
11143   symstrtab_hdr->sh_flags = 0;
11144   symstrtab_hdr->sh_addr = 0;
11145   symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11146   symstrtab_hdr->sh_entsize = 0;
11147   symstrtab_hdr->sh_link = 0;
11148   symstrtab_hdr->sh_info = 0;
11149   /* sh_offset is set just below.  */
11150   symstrtab_hdr->sh_addralign = 1;
11151 
11152   off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11153   elf_next_file_pos (abfd) = off;
11154 
11155   if (bfd_get_symcount (abfd) > 0)
11156     {
11157       if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11158 	  || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11159 	return FALSE;
11160     }
11161 
11162   /* Adjust the relocs to have the correct symbol indices.  */
11163   for (o = abfd->sections; o != NULL; o = o->next)
11164     {
11165       struct bfd_elf_section_data *esdo = elf_section_data (o);
11166       if ((o->flags & SEC_RELOC) == 0)
11167 	continue;
11168 
11169       if (esdo->rel.hdr != NULL)
11170 	elf_link_adjust_relocs (abfd, &esdo->rel);
11171       if (esdo->rela.hdr != NULL)
11172 	elf_link_adjust_relocs (abfd, &esdo->rela);
11173 
11174       /* Set the reloc_count field to 0 to prevent write_relocs from
11175 	 trying to swap the relocs out itself.  */
11176       o->reloc_count = 0;
11177     }
11178 
11179   if (dynamic && info->combreloc && dynobj != NULL)
11180     relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11181 
11182   /* If we are linking against a dynamic object, or generating a
11183      shared library, finish up the dynamic linking information.  */
11184   if (dynamic)
11185     {
11186       bfd_byte *dyncon, *dynconend;
11187 
11188       /* Fix up .dynamic entries.  */
11189       o = bfd_get_linker_section (dynobj, ".dynamic");
11190       BFD_ASSERT (o != NULL);
11191 
11192       dyncon = o->contents;
11193       dynconend = o->contents + o->size;
11194       for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11195 	{
11196 	  Elf_Internal_Dyn dyn;
11197 	  const char *name;
11198 	  unsigned int type;
11199 
11200 	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11201 
11202 	  switch (dyn.d_tag)
11203 	    {
11204 	    default:
11205 	      continue;
11206 	    case DT_NULL:
11207 	      if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11208 		{
11209 		  switch (elf_section_data (reldyn)->this_hdr.sh_type)
11210 		    {
11211 		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11212 		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11213 		    default: continue;
11214 		    }
11215 		  dyn.d_un.d_val = relativecount;
11216 		  relativecount = 0;
11217 		  break;
11218 		}
11219 	      continue;
11220 
11221 	    case DT_INIT:
11222 	      name = info->init_function;
11223 	      goto get_sym;
11224 	    case DT_FINI:
11225 	      name = info->fini_function;
11226 	    get_sym:
11227 	      {
11228 		struct elf_link_hash_entry *h;
11229 
11230 		h = elf_link_hash_lookup (elf_hash_table (info), name,
11231 					  FALSE, FALSE, TRUE);
11232 		if (h != NULL
11233 		    && (h->root.type == bfd_link_hash_defined
11234 			|| h->root.type == bfd_link_hash_defweak))
11235 		  {
11236 		    dyn.d_un.d_ptr = h->root.u.def.value;
11237 		    o = h->root.u.def.section;
11238 		    if (o->output_section != NULL)
11239 		      dyn.d_un.d_ptr += (o->output_section->vma
11240 					 + o->output_offset);
11241 		    else
11242 		      {
11243 			/* The symbol is imported from another shared
11244 			   library and does not apply to this one.  */
11245 			dyn.d_un.d_ptr = 0;
11246 		      }
11247 		    break;
11248 		  }
11249 	      }
11250 	      continue;
11251 
11252 	    case DT_PREINIT_ARRAYSZ:
11253 	      name = ".preinit_array";
11254 	      goto get_size;
11255 	    case DT_INIT_ARRAYSZ:
11256 	      name = ".init_array";
11257 	      goto get_size;
11258 	    case DT_FINI_ARRAYSZ:
11259 	      name = ".fini_array";
11260 	    get_size:
11261 	      o = bfd_get_section_by_name (abfd, name);
11262 	      if (o == NULL)
11263 		{
11264 		  (*_bfd_error_handler)
11265 		    (_("%B: could not find output section %s"), abfd, name);
11266 		  goto error_return;
11267 		}
11268 	      if (o->size == 0)
11269 		(*_bfd_error_handler)
11270 		  (_("warning: %s section has zero size"), name);
11271 	      dyn.d_un.d_val = o->size;
11272 	      break;
11273 
11274 	    case DT_PREINIT_ARRAY:
11275 	      name = ".preinit_array";
11276 	      goto get_vma;
11277 	    case DT_INIT_ARRAY:
11278 	      name = ".init_array";
11279 	      goto get_vma;
11280 	    case DT_FINI_ARRAY:
11281 	      name = ".fini_array";
11282 	      goto get_vma;
11283 
11284 	    case DT_HASH:
11285 	      name = ".hash";
11286 	      goto get_vma;
11287 	    case DT_GNU_HASH:
11288 	      name = ".gnu.hash";
11289 	      goto get_vma;
11290 	    case DT_STRTAB:
11291 	      name = ".dynstr";
11292 	      goto get_vma;
11293 	    case DT_SYMTAB:
11294 	      name = ".dynsym";
11295 	      goto get_vma;
11296 	    case DT_VERDEF:
11297 	      name = ".gnu.version_d";
11298 	      goto get_vma;
11299 	    case DT_VERNEED:
11300 	      name = ".gnu.version_r";
11301 	      goto get_vma;
11302 	    case DT_VERSYM:
11303 	      name = ".gnu.version";
11304 	    get_vma:
11305 	      o = bfd_get_section_by_name (abfd, name);
11306 	      if (o == NULL)
11307 		{
11308 		  (*_bfd_error_handler)
11309 		    (_("%B: could not find output section %s"), abfd, name);
11310 		  goto error_return;
11311 		}
11312 	      if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11313 		{
11314 		  (*_bfd_error_handler)
11315 		    (_("warning: section '%s' is being made into a note"), name);
11316 		  bfd_set_error (bfd_error_nonrepresentable_section);
11317 		  goto error_return;
11318 		}
11319 	      dyn.d_un.d_ptr = o->vma;
11320 	      break;
11321 
11322 	    case DT_REL:
11323 	    case DT_RELA:
11324 	    case DT_RELSZ:
11325 	    case DT_RELASZ:
11326 	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11327 		type = SHT_REL;
11328 	      else
11329 		type = SHT_RELA;
11330 	      dyn.d_un.d_val = 0;
11331 	      dyn.d_un.d_ptr = 0;
11332 	      for (i = 1; i < elf_numsections (abfd); i++)
11333 		{
11334 		  Elf_Internal_Shdr *hdr;
11335 
11336 		  hdr = elf_elfsections (abfd)[i];
11337 		  if (hdr->sh_type == type
11338 		      && (hdr->sh_flags & SHF_ALLOC) != 0)
11339 		    {
11340 		      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11341 			dyn.d_un.d_val += hdr->sh_size;
11342 		      else
11343 			{
11344 			  if (dyn.d_un.d_ptr == 0
11345 			      || hdr->sh_addr < dyn.d_un.d_ptr)
11346 			    dyn.d_un.d_ptr = hdr->sh_addr;
11347 			}
11348 		    }
11349 		}
11350 	      break;
11351 	    }
11352 	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11353 	}
11354     }
11355 
11356   /* If we have created any dynamic sections, then output them.  */
11357   if (dynobj != NULL)
11358     {
11359       if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11360 	goto error_return;
11361 
11362       /* Check for DT_TEXTREL (late, in case the backend removes it).  */
11363       if (((info->warn_shared_textrel && info->shared)
11364 	   || info->error_textrel)
11365 	  && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11366 	{
11367 	  bfd_byte *dyncon, *dynconend;
11368 
11369 	  dyncon = o->contents;
11370 	  dynconend = o->contents + o->size;
11371 	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11372 	    {
11373 	      Elf_Internal_Dyn dyn;
11374 
11375 	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11376 
11377 	      if (dyn.d_tag == DT_TEXTREL)
11378 		{
11379 		  if (info->error_textrel)
11380 		    info->callbacks->einfo
11381 		      (_("%P%X: read-only segment has dynamic relocations.\n"));
11382 		  else
11383 		    info->callbacks->einfo
11384 		      (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11385 		  break;
11386 		}
11387 	    }
11388 	}
11389 
11390       for (o = dynobj->sections; o != NULL; o = o->next)
11391 	{
11392 	  if ((o->flags & SEC_HAS_CONTENTS) == 0
11393 	      || o->size == 0
11394 	      || o->output_section == bfd_abs_section_ptr)
11395 	    continue;
11396 	  if ((o->flags & SEC_LINKER_CREATED) == 0)
11397 	    {
11398 	      /* At this point, we are only interested in sections
11399 		 created by _bfd_elf_link_create_dynamic_sections.  */
11400 	      continue;
11401 	    }
11402 	  if (elf_hash_table (info)->stab_info.stabstr == o)
11403 	    continue;
11404 	  if (elf_hash_table (info)->eh_info.hdr_sec == o)
11405 	    continue;
11406 	  if (strcmp (o->name, ".dynstr") != 0)
11407 	    {
11408 	      /* FIXME: octets_per_byte.  */
11409 	      if (! bfd_set_section_contents (abfd, o->output_section,
11410 					      o->contents,
11411 					      (file_ptr) o->output_offset,
11412 					      o->size))
11413 		goto error_return;
11414 	    }
11415 	  else
11416 	    {
11417 	      /* The contents of the .dynstr section are actually in a
11418 		 stringtab.  */
11419 	      off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11420 	      if (bfd_seek (abfd, off, SEEK_SET) != 0
11421 		  || ! _bfd_elf_strtab_emit (abfd,
11422 					     elf_hash_table (info)->dynstr))
11423 		goto error_return;
11424 	    }
11425 	}
11426     }
11427 
11428   if (info->relocatable)
11429     {
11430       bfd_boolean failed = FALSE;
11431 
11432       bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11433       if (failed)
11434 	goto error_return;
11435     }
11436 
11437   /* If we have optimized stabs strings, output them.  */
11438   if (elf_hash_table (info)->stab_info.stabstr != NULL)
11439     {
11440       if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11441 	goto error_return;
11442     }
11443 
11444   if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11445     goto error_return;
11446 
11447   elf_final_link_free (abfd, &flinfo);
11448 
11449   elf_linker (abfd) = TRUE;
11450 
11451   if (attr_section)
11452     {
11453       bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11454       if (contents == NULL)
11455 	return FALSE;	/* Bail out and fail.  */
11456       bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11457       bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11458       free (contents);
11459     }
11460 
11461   return TRUE;
11462 
11463  error_return:
11464   elf_final_link_free (abfd, &flinfo);
11465   return FALSE;
11466 }
11467 
11468 /* Initialize COOKIE for input bfd ABFD.  */
11469 
11470 static bfd_boolean
init_reloc_cookie(struct elf_reloc_cookie * cookie,struct bfd_link_info * info,bfd * abfd)11471 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11472 		   struct bfd_link_info *info, bfd *abfd)
11473 {
11474   Elf_Internal_Shdr *symtab_hdr;
11475   const struct elf_backend_data *bed;
11476 
11477   bed = get_elf_backend_data (abfd);
11478   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11479 
11480   cookie->abfd = abfd;
11481   cookie->sym_hashes = elf_sym_hashes (abfd);
11482   cookie->bad_symtab = elf_bad_symtab (abfd);
11483   if (cookie->bad_symtab)
11484     {
11485       cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11486       cookie->extsymoff = 0;
11487     }
11488   else
11489     {
11490       cookie->locsymcount = symtab_hdr->sh_info;
11491       cookie->extsymoff = symtab_hdr->sh_info;
11492     }
11493 
11494   if (bed->s->arch_size == 32)
11495     cookie->r_sym_shift = 8;
11496   else
11497     cookie->r_sym_shift = 32;
11498 
11499   cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11500   if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11501     {
11502       cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11503 					      cookie->locsymcount, 0,
11504 					      NULL, NULL, NULL);
11505       if (cookie->locsyms == NULL)
11506 	{
11507 	  info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11508 	  return FALSE;
11509 	}
11510       if (info->keep_memory)
11511 	symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11512     }
11513   return TRUE;
11514 }
11515 
11516 /* Free the memory allocated by init_reloc_cookie, if appropriate.  */
11517 
11518 static void
fini_reloc_cookie(struct elf_reloc_cookie * cookie,bfd * abfd)11519 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11520 {
11521   Elf_Internal_Shdr *symtab_hdr;
11522 
11523   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11524   if (cookie->locsyms != NULL
11525       && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11526     free (cookie->locsyms);
11527 }
11528 
11529 /* Initialize the relocation information in COOKIE for input section SEC
11530    of input bfd ABFD.  */
11531 
11532 static bfd_boolean
init_reloc_cookie_rels(struct elf_reloc_cookie * cookie,struct bfd_link_info * info,bfd * abfd,asection * sec)11533 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11534 			struct bfd_link_info *info, bfd *abfd,
11535 			asection *sec)
11536 {
11537   const struct elf_backend_data *bed;
11538 
11539   if (sec->reloc_count == 0)
11540     {
11541       cookie->rels = NULL;
11542       cookie->relend = NULL;
11543     }
11544   else
11545     {
11546       bed = get_elf_backend_data (abfd);
11547 
11548       cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11549 						info->keep_memory);
11550       if (cookie->rels == NULL)
11551 	return FALSE;
11552       cookie->rel = cookie->rels;
11553       cookie->relend = (cookie->rels
11554 			+ sec->reloc_count * bed->s->int_rels_per_ext_rel);
11555     }
11556   cookie->rel = cookie->rels;
11557   return TRUE;
11558 }
11559 
11560 /* Free the memory allocated by init_reloc_cookie_rels,
11561    if appropriate.  */
11562 
11563 static void
fini_reloc_cookie_rels(struct elf_reloc_cookie * cookie,asection * sec)11564 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11565 			asection *sec)
11566 {
11567   if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11568     free (cookie->rels);
11569 }
11570 
11571 /* Initialize the whole of COOKIE for input section SEC.  */
11572 
11573 static bfd_boolean
init_reloc_cookie_for_section(struct elf_reloc_cookie * cookie,struct bfd_link_info * info,asection * sec)11574 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11575 			       struct bfd_link_info *info,
11576 			       asection *sec)
11577 {
11578   if (!init_reloc_cookie (cookie, info, sec->owner))
11579     goto error1;
11580   if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11581     goto error2;
11582   return TRUE;
11583 
11584  error2:
11585   fini_reloc_cookie (cookie, sec->owner);
11586  error1:
11587   return FALSE;
11588 }
11589 
11590 /* Free the memory allocated by init_reloc_cookie_for_section,
11591    if appropriate.  */
11592 
11593 static void
fini_reloc_cookie_for_section(struct elf_reloc_cookie * cookie,asection * sec)11594 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11595 			       asection *sec)
11596 {
11597   fini_reloc_cookie_rels (cookie, sec);
11598   fini_reloc_cookie (cookie, sec->owner);
11599 }
11600 
11601 /* Garbage collect unused sections.  */
11602 
11603 /* Default gc_mark_hook.  */
11604 
11605 asection *
_bfd_elf_gc_mark_hook(asection * sec,struct bfd_link_info * info ATTRIBUTE_UNUSED,Elf_Internal_Rela * rel ATTRIBUTE_UNUSED,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)11606 _bfd_elf_gc_mark_hook (asection *sec,
11607 		       struct bfd_link_info *info ATTRIBUTE_UNUSED,
11608 		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11609 		       struct elf_link_hash_entry *h,
11610 		       Elf_Internal_Sym *sym)
11611 {
11612   const char *sec_name;
11613 
11614   if (h != NULL)
11615     {
11616       switch (h->root.type)
11617 	{
11618 	case bfd_link_hash_defined:
11619 	case bfd_link_hash_defweak:
11620 	  return h->root.u.def.section;
11621 
11622 	case bfd_link_hash_common:
11623 	  return h->root.u.c.p->section;
11624 
11625 	case bfd_link_hash_undefined:
11626 	case bfd_link_hash_undefweak:
11627 	  /* To work around a glibc bug, keep all XXX input sections
11628 	     when there is an as yet undefined reference to __start_XXX
11629 	     or __stop_XXX symbols.  The linker will later define such
11630 	     symbols for orphan input sections that have a name
11631 	     representable as a C identifier.  */
11632 	  if (strncmp (h->root.root.string, "__start_", 8) == 0)
11633 	    sec_name = h->root.root.string + 8;
11634 	  else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11635 	    sec_name = h->root.root.string + 7;
11636 	  else
11637 	    sec_name = NULL;
11638 
11639 	  if (sec_name && *sec_name != '\0')
11640 	    {
11641 	      bfd *i;
11642 
11643 	      for (i = info->input_bfds; i; i = i->link.next)
11644 		{
11645 		  sec = bfd_get_section_by_name (i, sec_name);
11646 		  if (sec)
11647 		    sec->flags |= SEC_KEEP;
11648 		}
11649 	    }
11650 	  break;
11651 
11652 	default:
11653 	  break;
11654 	}
11655     }
11656   else
11657     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11658 
11659   return NULL;
11660 }
11661 
11662 /* COOKIE->rel describes a relocation against section SEC, which is
11663    a section we've decided to keep.  Return the section that contains
11664    the relocation symbol, or NULL if no section contains it.  */
11665 
11666 asection *
_bfd_elf_gc_mark_rsec(struct bfd_link_info * info,asection * sec,elf_gc_mark_hook_fn gc_mark_hook,struct elf_reloc_cookie * cookie)11667 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11668 		       elf_gc_mark_hook_fn gc_mark_hook,
11669 		       struct elf_reloc_cookie *cookie)
11670 {
11671   unsigned long r_symndx;
11672   struct elf_link_hash_entry *h;
11673 
11674   r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11675   if (r_symndx == STN_UNDEF)
11676     return NULL;
11677 
11678   if (r_symndx >= cookie->locsymcount
11679       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11680     {
11681       h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11682       while (h->root.type == bfd_link_hash_indirect
11683 	     || h->root.type == bfd_link_hash_warning)
11684 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
11685       h->mark = 1;
11686       /* If this symbol is weak and there is a non-weak definition, we
11687 	 keep the non-weak definition because many backends put
11688 	 dynamic reloc info on the non-weak definition for code
11689 	 handling copy relocs.  */
11690       if (h->u.weakdef != NULL)
11691 	h->u.weakdef->mark = 1;
11692       return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11693     }
11694 
11695   return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11696 			  &cookie->locsyms[r_symndx]);
11697 }
11698 
11699 /* COOKIE->rel describes a relocation against section SEC, which is
11700    a section we've decided to keep.  Mark the section that contains
11701    the relocation symbol.  */
11702 
11703 bfd_boolean
_bfd_elf_gc_mark_reloc(struct bfd_link_info * info,asection * sec,elf_gc_mark_hook_fn gc_mark_hook,struct elf_reloc_cookie * cookie)11704 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11705 			asection *sec,
11706 			elf_gc_mark_hook_fn gc_mark_hook,
11707 			struct elf_reloc_cookie *cookie)
11708 {
11709   asection *rsec;
11710 
11711   rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11712   if (rsec && !rsec->gc_mark)
11713     {
11714       if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11715 	  || (rsec->owner->flags & DYNAMIC) != 0)
11716 	rsec->gc_mark = 1;
11717       else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11718 	return FALSE;
11719     }
11720   return TRUE;
11721 }
11722 
11723 /* The mark phase of garbage collection.  For a given section, mark
11724    it and any sections in this section's group, and all the sections
11725    which define symbols to which it refers.  */
11726 
11727 bfd_boolean
_bfd_elf_gc_mark(struct bfd_link_info * info,asection * sec,elf_gc_mark_hook_fn gc_mark_hook)11728 _bfd_elf_gc_mark (struct bfd_link_info *info,
11729 		  asection *sec,
11730 		  elf_gc_mark_hook_fn gc_mark_hook)
11731 {
11732   bfd_boolean ret;
11733   asection *group_sec, *eh_frame;
11734 
11735   sec->gc_mark = 1;
11736 
11737   /* Mark all the sections in the group.  */
11738   group_sec = elf_section_data (sec)->next_in_group;
11739   if (group_sec && !group_sec->gc_mark)
11740     if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11741       return FALSE;
11742 
11743   /* Look through the section relocs.  */
11744   ret = TRUE;
11745   eh_frame = elf_eh_frame_section (sec->owner);
11746   if ((sec->flags & SEC_RELOC) != 0
11747       && sec->reloc_count > 0
11748       && sec != eh_frame)
11749     {
11750       struct elf_reloc_cookie cookie;
11751 
11752       if (!init_reloc_cookie_for_section (&cookie, info, sec))
11753 	ret = FALSE;
11754       else
11755 	{
11756 	  for (; cookie.rel < cookie.relend; cookie.rel++)
11757 	    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11758 	      {
11759 		ret = FALSE;
11760 		break;
11761 	      }
11762 	  fini_reloc_cookie_for_section (&cookie, sec);
11763 	}
11764     }
11765 
11766   if (ret && eh_frame && elf_fde_list (sec))
11767     {
11768       struct elf_reloc_cookie cookie;
11769 
11770       if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11771 	ret = FALSE;
11772       else
11773 	{
11774 	  if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11775 				      gc_mark_hook, &cookie))
11776 	    ret = FALSE;
11777 	  fini_reloc_cookie_for_section (&cookie, eh_frame);
11778 	}
11779     }
11780 
11781   return ret;
11782 }
11783 
11784 /* Keep debug and special sections.  */
11785 
11786 bfd_boolean
_bfd_elf_gc_mark_extra_sections(struct bfd_link_info * info,elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)11787 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11788 				 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11789 {
11790   bfd *ibfd;
11791 
11792   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11793     {
11794       asection *isec;
11795       bfd_boolean some_kept;
11796       bfd_boolean debug_frag_seen;
11797 
11798       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11799 	continue;
11800 
11801       /* Ensure all linker created sections are kept,
11802 	 see if any other section is already marked,
11803 	 and note if we have any fragmented debug sections.  */
11804       debug_frag_seen = some_kept = FALSE;
11805       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11806 	{
11807 	  if ((isec->flags & SEC_LINKER_CREATED) != 0)
11808 	    isec->gc_mark = 1;
11809 	  else if (isec->gc_mark)
11810 	    some_kept = TRUE;
11811 
11812 	  if (debug_frag_seen == FALSE
11813 	      && (isec->flags & SEC_DEBUGGING)
11814 	      && CONST_STRNEQ (isec->name, ".debug_line."))
11815 	    debug_frag_seen = TRUE;
11816 	}
11817 
11818       /* If no section in this file will be kept, then we can
11819 	 toss out the debug and special sections.  */
11820       if (!some_kept)
11821 	continue;
11822 
11823       /* Keep debug and special sections like .comment when they are
11824 	 not part of a group, or when we have single-member groups.  */
11825       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11826 	if ((elf_next_in_group (isec) == NULL
11827 	     || elf_next_in_group (isec) == isec)
11828 	    && ((isec->flags & SEC_DEBUGGING) != 0
11829 		|| (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11830 	  isec->gc_mark = 1;
11831 
11832       if (! debug_frag_seen)
11833 	continue;
11834 
11835       /* Look for CODE sections which are going to be discarded,
11836 	 and find and discard any fragmented debug sections which
11837 	 are associated with that code section.  */
11838       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11839 	if ((isec->flags & SEC_CODE) != 0
11840 	    && isec->gc_mark == 0)
11841 	  {
11842 	    unsigned int ilen;
11843 	    asection *dsec;
11844 
11845 	    ilen = strlen (isec->name);
11846 
11847 	    /* Association is determined by the name of the debug section
11848 	       containing the name of the code section as a suffix.  For
11849 	       example .debug_line.text.foo is a debug section associated
11850 	       with .text.foo.  */
11851 	    for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11852 	      {
11853 		unsigned int dlen;
11854 
11855 		if (dsec->gc_mark == 0
11856 		    || (dsec->flags & SEC_DEBUGGING) == 0)
11857 		  continue;
11858 
11859 		dlen = strlen (dsec->name);
11860 
11861 		if (dlen > ilen
11862 		    && strncmp (dsec->name + (dlen - ilen),
11863 				isec->name, ilen) == 0)
11864 		  {
11865 		    dsec->gc_mark = 0;
11866 		    break;
11867 		  }
11868 	      }
11869 	  }
11870     }
11871   return TRUE;
11872 }
11873 
11874 /* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
11875 
11876 struct elf_gc_sweep_symbol_info
11877 {
11878   struct bfd_link_info *info;
11879   void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11880 		       bfd_boolean);
11881 };
11882 
11883 static bfd_boolean
elf_gc_sweep_symbol(struct elf_link_hash_entry * h,void * data)11884 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11885 {
11886   if (!h->mark
11887       && (((h->root.type == bfd_link_hash_defined
11888 	    || h->root.type == bfd_link_hash_defweak)
11889 	   && !(h->def_regular
11890 		&& h->root.u.def.section->gc_mark))
11891 	  || h->root.type == bfd_link_hash_undefined
11892 	  || h->root.type == bfd_link_hash_undefweak))
11893     {
11894       struct elf_gc_sweep_symbol_info *inf;
11895 
11896       inf = (struct elf_gc_sweep_symbol_info *) data;
11897       (*inf->hide_symbol) (inf->info, h, TRUE);
11898       h->def_regular = 0;
11899       h->ref_regular = 0;
11900       h->ref_regular_nonweak = 0;
11901     }
11902 
11903   return TRUE;
11904 }
11905 
11906 /* The sweep phase of garbage collection.  Remove all garbage sections.  */
11907 
11908 typedef bfd_boolean (*gc_sweep_hook_fn)
11909   (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11910 
11911 static bfd_boolean
elf_gc_sweep(bfd * abfd,struct bfd_link_info * info)11912 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11913 {
11914   bfd *sub;
11915   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11916   gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11917   unsigned long section_sym_count;
11918   struct elf_gc_sweep_symbol_info sweep_info;
11919 
11920   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11921     {
11922       asection *o;
11923 
11924       if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11925 	continue;
11926 
11927       for (o = sub->sections; o != NULL; o = o->next)
11928 	{
11929 	  /* When any section in a section group is kept, we keep all
11930 	     sections in the section group.  If the first member of
11931 	     the section group is excluded, we will also exclude the
11932 	     group section.  */
11933 	  if (o->flags & SEC_GROUP)
11934 	    {
11935 	      asection *first = elf_next_in_group (o);
11936 	      o->gc_mark = first->gc_mark;
11937 	    }
11938 
11939 	  if (o->gc_mark)
11940 	    continue;
11941 
11942 	  /* Skip sweeping sections already excluded.  */
11943 	  if (o->flags & SEC_EXCLUDE)
11944 	    continue;
11945 
11946 	  /* Since this is early in the link process, it is simple
11947 	     to remove a section from the output.  */
11948 	  o->flags |= SEC_EXCLUDE;
11949 
11950 	  if (info->print_gc_sections && o->size != 0)
11951 	    _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11952 
11953 	  /* But we also have to update some of the relocation
11954 	     info we collected before.  */
11955 	  if (gc_sweep_hook
11956 	      && (o->flags & SEC_RELOC) != 0
11957 	      && o->reloc_count != 0
11958 	      && !((info->strip == strip_all || info->strip == strip_debugger)
11959 		   && (o->flags & SEC_DEBUGGING) != 0)
11960 	      && !bfd_is_abs_section (o->output_section))
11961 	    {
11962 	      Elf_Internal_Rela *internal_relocs;
11963 	      bfd_boolean r;
11964 
11965 	      internal_relocs
11966 		= _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11967 					     info->keep_memory);
11968 	      if (internal_relocs == NULL)
11969 		return FALSE;
11970 
11971 	      r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11972 
11973 	      if (elf_section_data (o)->relocs != internal_relocs)
11974 		free (internal_relocs);
11975 
11976 	      if (!r)
11977 		return FALSE;
11978 	    }
11979 	}
11980     }
11981 
11982   /* Remove the symbols that were in the swept sections from the dynamic
11983      symbol table.  GCFIXME: Anyone know how to get them out of the
11984      static symbol table as well?  */
11985   sweep_info.info = info;
11986   sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11987   elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11988 			  &sweep_info);
11989 
11990   _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11991   return TRUE;
11992 }
11993 
11994 /* Propagate collected vtable information.  This is called through
11995    elf_link_hash_traverse.  */
11996 
11997 static bfd_boolean
elf_gc_propagate_vtable_entries_used(struct elf_link_hash_entry * h,void * okp)11998 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11999 {
12000   /* Those that are not vtables.  */
12001   if (h->vtable == NULL || h->vtable->parent == NULL)
12002     return TRUE;
12003 
12004   /* Those vtables that do not have parents, we cannot merge.  */
12005   if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12006     return TRUE;
12007 
12008   /* If we've already been done, exit.  */
12009   if (h->vtable->used && h->vtable->used[-1])
12010     return TRUE;
12011 
12012   /* Make sure the parent's table is up to date.  */
12013   elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12014 
12015   if (h->vtable->used == NULL)
12016     {
12017       /* None of this table's entries were referenced.  Re-use the
12018 	 parent's table.  */
12019       h->vtable->used = h->vtable->parent->vtable->used;
12020       h->vtable->size = h->vtable->parent->vtable->size;
12021     }
12022   else
12023     {
12024       size_t n;
12025       bfd_boolean *cu, *pu;
12026 
12027       /* Or the parent's entries into ours.  */
12028       cu = h->vtable->used;
12029       cu[-1] = TRUE;
12030       pu = h->vtable->parent->vtable->used;
12031       if (pu != NULL)
12032 	{
12033 	  const struct elf_backend_data *bed;
12034 	  unsigned int log_file_align;
12035 
12036 	  bed = get_elf_backend_data (h->root.u.def.section->owner);
12037 	  log_file_align = bed->s->log_file_align;
12038 	  n = h->vtable->parent->vtable->size >> log_file_align;
12039 	  while (n--)
12040 	    {
12041 	      if (*pu)
12042 		*cu = TRUE;
12043 	      pu++;
12044 	      cu++;
12045 	    }
12046 	}
12047     }
12048 
12049   return TRUE;
12050 }
12051 
12052 static bfd_boolean
elf_gc_smash_unused_vtentry_relocs(struct elf_link_hash_entry * h,void * okp)12053 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12054 {
12055   asection *sec;
12056   bfd_vma hstart, hend;
12057   Elf_Internal_Rela *relstart, *relend, *rel;
12058   const struct elf_backend_data *bed;
12059   unsigned int log_file_align;
12060 
12061   /* Take care of both those symbols that do not describe vtables as
12062      well as those that are not loaded.  */
12063   if (h->vtable == NULL || h->vtable->parent == NULL)
12064     return TRUE;
12065 
12066   BFD_ASSERT (h->root.type == bfd_link_hash_defined
12067 	      || h->root.type == bfd_link_hash_defweak);
12068 
12069   sec = h->root.u.def.section;
12070   hstart = h->root.u.def.value;
12071   hend = hstart + h->size;
12072 
12073   relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12074   if (!relstart)
12075     return *(bfd_boolean *) okp = FALSE;
12076   bed = get_elf_backend_data (sec->owner);
12077   log_file_align = bed->s->log_file_align;
12078 
12079   relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12080 
12081   for (rel = relstart; rel < relend; ++rel)
12082     if (rel->r_offset >= hstart && rel->r_offset < hend)
12083       {
12084 	/* If the entry is in use, do nothing.  */
12085 	if (h->vtable->used
12086 	    && (rel->r_offset - hstart) < h->vtable->size)
12087 	  {
12088 	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12089 	    if (h->vtable->used[entry])
12090 	      continue;
12091 	  }
12092 	/* Otherwise, kill it.  */
12093 	rel->r_offset = rel->r_info = rel->r_addend = 0;
12094       }
12095 
12096   return TRUE;
12097 }
12098 
12099 /* Mark sections containing dynamically referenced symbols.  When
12100    building shared libraries, we must assume that any visible symbol is
12101    referenced.  */
12102 
12103 bfd_boolean
bfd_elf_gc_mark_dynamic_ref_symbol(struct elf_link_hash_entry * h,void * inf)12104 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12105 {
12106   struct bfd_link_info *info = (struct bfd_link_info *) inf;
12107   struct bfd_elf_dynamic_list *d = info->dynamic_list;
12108 
12109   if ((h->root.type == bfd_link_hash_defined
12110        || h->root.type == bfd_link_hash_defweak)
12111       && (h->ref_dynamic
12112 	  || (h->def_regular
12113 	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12114 	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12115 	      && (!info->executable
12116 		  || info->export_dynamic
12117 		  || (h->dynamic
12118 		      && d != NULL
12119 		      && (*d->match) (&d->head, NULL, h->root.root.string)))
12120 	      && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12121 		  || !bfd_hide_sym_by_version (info->version_info,
12122 					       h->root.root.string)))))
12123     h->root.u.def.section->flags |= SEC_KEEP;
12124 
12125   return TRUE;
12126 }
12127 
12128 /* Keep all sections containing symbols undefined on the command-line,
12129    and the section containing the entry symbol.  */
12130 
12131 void
_bfd_elf_gc_keep(struct bfd_link_info * info)12132 _bfd_elf_gc_keep (struct bfd_link_info *info)
12133 {
12134   struct bfd_sym_chain *sym;
12135 
12136   for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12137     {
12138       struct elf_link_hash_entry *h;
12139 
12140       h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12141 				FALSE, FALSE, FALSE);
12142 
12143       if (h != NULL
12144 	  && (h->root.type == bfd_link_hash_defined
12145 	      || h->root.type == bfd_link_hash_defweak)
12146 	  && !bfd_is_abs_section (h->root.u.def.section))
12147 	h->root.u.def.section->flags |= SEC_KEEP;
12148     }
12149 }
12150 
12151 /* Do mark and sweep of unused sections.  */
12152 
12153 bfd_boolean
bfd_elf_gc_sections(bfd * abfd,struct bfd_link_info * info)12154 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12155 {
12156   bfd_boolean ok = TRUE;
12157   bfd *sub;
12158   elf_gc_mark_hook_fn gc_mark_hook;
12159   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12160   struct elf_link_hash_table *htab;
12161 
12162   if (!bed->can_gc_sections
12163       || !is_elf_hash_table (info->hash))
12164     {
12165       (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12166       return TRUE;
12167     }
12168 
12169   bed->gc_keep (info);
12170   htab = elf_hash_table (info);
12171 
12172   /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
12173      at the .eh_frame section if we can mark the FDEs individually.  */
12174   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12175     {
12176       asection *sec;
12177       struct elf_reloc_cookie cookie;
12178 
12179       sec = bfd_get_section_by_name (sub, ".eh_frame");
12180       while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12181 	{
12182 	  _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12183 	  if (elf_section_data (sec)->sec_info
12184 	      && (sec->flags & SEC_LINKER_CREATED) == 0)
12185 	    elf_eh_frame_section (sub) = sec;
12186 	  fini_reloc_cookie_for_section (&cookie, sec);
12187 	  sec = bfd_get_next_section_by_name (sec);
12188 	}
12189     }
12190 
12191   /* Apply transitive closure to the vtable entry usage info.  */
12192   elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12193   if (!ok)
12194     return FALSE;
12195 
12196   /* Kill the vtable relocations that were not used.  */
12197   elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12198   if (!ok)
12199     return FALSE;
12200 
12201   /* Mark dynamically referenced symbols.  */
12202   if (htab->dynamic_sections_created)
12203     elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12204 
12205   /* Grovel through relocs to find out who stays ...  */
12206   gc_mark_hook = bed->gc_mark_hook;
12207   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12208     {
12209       asection *o;
12210 
12211       if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12212 	continue;
12213 
12214       /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12215 	 Also treat note sections as a root, if the section is not part
12216 	 of a group.  */
12217       for (o = sub->sections; o != NULL; o = o->next)
12218 	if (!o->gc_mark
12219 	    && (o->flags & SEC_EXCLUDE) == 0
12220 	    && ((o->flags & SEC_KEEP) != 0
12221 		|| (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12222 		    && elf_next_in_group (o) == NULL )))
12223 	  {
12224 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12225 	      return FALSE;
12226 	  }
12227     }
12228 
12229   /* Allow the backend to mark additional target specific sections.  */
12230   bed->gc_mark_extra_sections (info, gc_mark_hook);
12231 
12232   /* ... and mark SEC_EXCLUDE for those that go.  */
12233   return elf_gc_sweep (abfd, info);
12234 }
12235 
12236 /* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
12237 
12238 bfd_boolean
bfd_elf_gc_record_vtinherit(bfd * abfd,asection * sec,struct elf_link_hash_entry * h,bfd_vma offset)12239 bfd_elf_gc_record_vtinherit (bfd *abfd,
12240 			     asection *sec,
12241 			     struct elf_link_hash_entry *h,
12242 			     bfd_vma offset)
12243 {
12244   struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12245   struct elf_link_hash_entry **search, *child;
12246   bfd_size_type extsymcount;
12247   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12248 
12249   /* The sh_info field of the symtab header tells us where the
12250      external symbols start.  We don't care about the local symbols at
12251      this point.  */
12252   extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12253   if (!elf_bad_symtab (abfd))
12254     extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12255 
12256   sym_hashes = elf_sym_hashes (abfd);
12257   sym_hashes_end = sym_hashes + extsymcount;
12258 
12259   /* Hunt down the child symbol, which is in this section at the same
12260      offset as the relocation.  */
12261   for (search = sym_hashes; search != sym_hashes_end; ++search)
12262     {
12263       if ((child = *search) != NULL
12264 	  && (child->root.type == bfd_link_hash_defined
12265 	      || child->root.type == bfd_link_hash_defweak)
12266 	  && child->root.u.def.section == sec
12267 	  && child->root.u.def.value == offset)
12268 	goto win;
12269     }
12270 
12271   (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12272 			 abfd, sec, (unsigned long) offset);
12273   bfd_set_error (bfd_error_invalid_operation);
12274   return FALSE;
12275 
12276  win:
12277   if (!child->vtable)
12278     {
12279       child->vtable = (struct elf_link_virtual_table_entry *)
12280           bfd_zalloc (abfd, sizeof (*child->vtable));
12281       if (!child->vtable)
12282 	return FALSE;
12283     }
12284   if (!h)
12285     {
12286       /* This *should* only be the absolute section.  It could potentially
12287 	 be that someone has defined a non-global vtable though, which
12288 	 would be bad.  It isn't worth paging in the local symbols to be
12289 	 sure though; that case should simply be handled by the assembler.  */
12290 
12291       child->vtable->parent = (struct elf_link_hash_entry *) -1;
12292     }
12293   else
12294     child->vtable->parent = h;
12295 
12296   return TRUE;
12297 }
12298 
12299 /* Called from check_relocs to record the existence of a VTENTRY reloc.  */
12300 
12301 bfd_boolean
bfd_elf_gc_record_vtentry(bfd * abfd ATTRIBUTE_UNUSED,asection * sec ATTRIBUTE_UNUSED,struct elf_link_hash_entry * h,bfd_vma addend)12302 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12303 			   asection *sec ATTRIBUTE_UNUSED,
12304 			   struct elf_link_hash_entry *h,
12305 			   bfd_vma addend)
12306 {
12307   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12308   unsigned int log_file_align = bed->s->log_file_align;
12309 
12310   if (!h->vtable)
12311     {
12312       h->vtable = (struct elf_link_virtual_table_entry *)
12313           bfd_zalloc (abfd, sizeof (*h->vtable));
12314       if (!h->vtable)
12315 	return FALSE;
12316     }
12317 
12318   if (addend >= h->vtable->size)
12319     {
12320       size_t size, bytes, file_align;
12321       bfd_boolean *ptr = h->vtable->used;
12322 
12323       /* While the symbol is undefined, we have to be prepared to handle
12324 	 a zero size.  */
12325       file_align = 1 << log_file_align;
12326       if (h->root.type == bfd_link_hash_undefined)
12327 	size = addend + file_align;
12328       else
12329 	{
12330 	  size = h->size;
12331 	  if (addend >= size)
12332 	    {
12333 	      /* Oops!  We've got a reference past the defined end of
12334 		 the table.  This is probably a bug -- shall we warn?  */
12335 	      size = addend + file_align;
12336 	    }
12337 	}
12338       size = (size + file_align - 1) & -file_align;
12339 
12340       /* Allocate one extra entry for use as a "done" flag for the
12341 	 consolidation pass.  */
12342       bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12343 
12344       if (ptr)
12345 	{
12346 	  ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12347 
12348 	  if (ptr != NULL)
12349 	    {
12350 	      size_t oldbytes;
12351 
12352 	      oldbytes = (((h->vtable->size >> log_file_align) + 1)
12353 			  * sizeof (bfd_boolean));
12354 	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12355 	    }
12356 	}
12357       else
12358 	ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12359 
12360       if (ptr == NULL)
12361 	return FALSE;
12362 
12363       /* And arrange for that done flag to be at index -1.  */
12364       h->vtable->used = ptr + 1;
12365       h->vtable->size = size;
12366     }
12367 
12368   h->vtable->used[addend >> log_file_align] = TRUE;
12369 
12370   return TRUE;
12371 }
12372 
12373 /* Map an ELF section header flag to its corresponding string.  */
12374 typedef struct
12375 {
12376   char *flag_name;
12377   flagword flag_value;
12378 } elf_flags_to_name_table;
12379 
12380 static elf_flags_to_name_table elf_flags_to_names [] =
12381 {
12382   { "SHF_WRITE", SHF_WRITE },
12383   { "SHF_ALLOC", SHF_ALLOC },
12384   { "SHF_EXECINSTR", SHF_EXECINSTR },
12385   { "SHF_MERGE", SHF_MERGE },
12386   { "SHF_STRINGS", SHF_STRINGS },
12387   { "SHF_INFO_LINK", SHF_INFO_LINK},
12388   { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12389   { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12390   { "SHF_GROUP", SHF_GROUP },
12391   { "SHF_TLS", SHF_TLS },
12392   { "SHF_MASKOS", SHF_MASKOS },
12393   { "SHF_EXCLUDE", SHF_EXCLUDE },
12394 };
12395 
12396 /* Returns TRUE if the section is to be included, otherwise FALSE.  */
12397 bfd_boolean
bfd_elf_lookup_section_flags(struct bfd_link_info * info,struct flag_info * flaginfo,asection * section)12398 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12399 			      struct flag_info *flaginfo,
12400 			      asection *section)
12401 {
12402   const bfd_vma sh_flags = elf_section_flags (section);
12403 
12404   if (!flaginfo->flags_initialized)
12405     {
12406       bfd *obfd = info->output_bfd;
12407       const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12408       struct flag_info_list *tf = flaginfo->flag_list;
12409       int with_hex = 0;
12410       int without_hex = 0;
12411 
12412       for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12413 	{
12414 	  unsigned i;
12415 	  flagword (*lookup) (char *);
12416 
12417 	  lookup = bed->elf_backend_lookup_section_flags_hook;
12418 	  if (lookup != NULL)
12419 	    {
12420 	      flagword hexval = (*lookup) ((char *) tf->name);
12421 
12422 	      if (hexval != 0)
12423 		{
12424 		  if (tf->with == with_flags)
12425 		    with_hex |= hexval;
12426 		  else if (tf->with == without_flags)
12427 		    without_hex |= hexval;
12428 		  tf->valid = TRUE;
12429 		  continue;
12430 		}
12431 	    }
12432 	  for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12433 	    {
12434 	      if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12435 		{
12436 		  if (tf->with == with_flags)
12437 		    with_hex |= elf_flags_to_names[i].flag_value;
12438 		  else if (tf->with == without_flags)
12439 		    without_hex |= elf_flags_to_names[i].flag_value;
12440 		  tf->valid = TRUE;
12441 		  break;
12442 		}
12443 	    }
12444 	  if (!tf->valid)
12445 	    {
12446 	      info->callbacks->einfo
12447 		(_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12448 	      return FALSE;
12449 	    }
12450 	}
12451       flaginfo->flags_initialized = TRUE;
12452       flaginfo->only_with_flags |= with_hex;
12453       flaginfo->not_with_flags |= without_hex;
12454     }
12455 
12456   if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12457     return FALSE;
12458 
12459   if ((flaginfo->not_with_flags & sh_flags) != 0)
12460     return FALSE;
12461 
12462   return TRUE;
12463 }
12464 
12465 struct alloc_got_off_arg {
12466   bfd_vma gotoff;
12467   struct bfd_link_info *info;
12468 };
12469 
12470 /* We need a special top-level link routine to convert got reference counts
12471    to real got offsets.  */
12472 
12473 static bfd_boolean
elf_gc_allocate_got_offsets(struct elf_link_hash_entry * h,void * arg)12474 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12475 {
12476   struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12477   bfd *obfd = gofarg->info->output_bfd;
12478   const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12479 
12480   if (h->got.refcount > 0)
12481     {
12482       h->got.offset = gofarg->gotoff;
12483       gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12484     }
12485   else
12486     h->got.offset = (bfd_vma) -1;
12487 
12488   return TRUE;
12489 }
12490 
12491 /* And an accompanying bit to work out final got entry offsets once
12492    we're done.  Should be called from final_link.  */
12493 
12494 bfd_boolean
bfd_elf_gc_common_finalize_got_offsets(bfd * abfd,struct bfd_link_info * info)12495 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12496 					struct bfd_link_info *info)
12497 {
12498   bfd *i;
12499   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12500   bfd_vma gotoff;
12501   struct alloc_got_off_arg gofarg;
12502 
12503   BFD_ASSERT (abfd == info->output_bfd);
12504 
12505   if (! is_elf_hash_table (info->hash))
12506     return FALSE;
12507 
12508   /* The GOT offset is relative to the .got section, but the GOT header is
12509      put into the .got.plt section, if the backend uses it.  */
12510   if (bed->want_got_plt)
12511     gotoff = 0;
12512   else
12513     gotoff = bed->got_header_size;
12514 
12515   /* Do the local .got entries first.  */
12516   for (i = info->input_bfds; i; i = i->link.next)
12517     {
12518       bfd_signed_vma *local_got;
12519       bfd_size_type j, locsymcount;
12520       Elf_Internal_Shdr *symtab_hdr;
12521 
12522       if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12523 	continue;
12524 
12525       local_got = elf_local_got_refcounts (i);
12526       if (!local_got)
12527 	continue;
12528 
12529       symtab_hdr = &elf_tdata (i)->symtab_hdr;
12530       if (elf_bad_symtab (i))
12531 	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12532       else
12533 	locsymcount = symtab_hdr->sh_info;
12534 
12535       for (j = 0; j < locsymcount; ++j)
12536 	{
12537 	  if (local_got[j] > 0)
12538 	    {
12539 	      local_got[j] = gotoff;
12540 	      gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12541 	    }
12542 	  else
12543 	    local_got[j] = (bfd_vma) -1;
12544 	}
12545     }
12546 
12547   /* Then the global .got entries.  .plt refcounts are handled by
12548      adjust_dynamic_symbol  */
12549   gofarg.gotoff = gotoff;
12550   gofarg.info = info;
12551   elf_link_hash_traverse (elf_hash_table (info),
12552 			  elf_gc_allocate_got_offsets,
12553 			  &gofarg);
12554   return TRUE;
12555 }
12556 
12557 /* Many folk need no more in the way of final link than this, once
12558    got entry reference counting is enabled.  */
12559 
12560 bfd_boolean
bfd_elf_gc_common_final_link(bfd * abfd,struct bfd_link_info * info)12561 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12562 {
12563   if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12564     return FALSE;
12565 
12566   /* Invoke the regular ELF backend linker to do all the work.  */
12567   return bfd_elf_final_link (abfd, info);
12568 }
12569 
12570 bfd_boolean
bfd_elf_reloc_symbol_deleted_p(bfd_vma offset,void * cookie)12571 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12572 {
12573   struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12574 
12575   if (rcookie->bad_symtab)
12576     rcookie->rel = rcookie->rels;
12577 
12578   for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12579     {
12580       unsigned long r_symndx;
12581 
12582       if (! rcookie->bad_symtab)
12583 	if (rcookie->rel->r_offset > offset)
12584 	  return FALSE;
12585       if (rcookie->rel->r_offset != offset)
12586 	continue;
12587 
12588       r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12589       if (r_symndx == STN_UNDEF)
12590 	return TRUE;
12591 
12592       if (r_symndx >= rcookie->locsymcount
12593 	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12594 	{
12595 	  struct elf_link_hash_entry *h;
12596 
12597 	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12598 
12599 	  while (h->root.type == bfd_link_hash_indirect
12600 		 || h->root.type == bfd_link_hash_warning)
12601 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12602 
12603 	  if ((h->root.type == bfd_link_hash_defined
12604 	       || h->root.type == bfd_link_hash_defweak)
12605 	      && (h->root.u.def.section->owner != rcookie->abfd
12606 		  || h->root.u.def.section->kept_section != NULL
12607 		  || discarded_section (h->root.u.def.section)))
12608 	    return TRUE;
12609 	}
12610       else
12611 	{
12612 	  /* It's not a relocation against a global symbol,
12613 	     but it could be a relocation against a local
12614 	     symbol for a discarded section.  */
12615 	  asection *isec;
12616 	  Elf_Internal_Sym *isym;
12617 
12618 	  /* Need to: get the symbol; get the section.  */
12619 	  isym = &rcookie->locsyms[r_symndx];
12620 	  isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12621 	  if (isec != NULL
12622 	      && (isec->kept_section != NULL
12623 		  || discarded_section (isec)))
12624 	    return TRUE;
12625 	}
12626       return FALSE;
12627     }
12628   return FALSE;
12629 }
12630 
12631 /* Discard unneeded references to discarded sections.
12632    Returns -1 on error, 1 if any section's size was changed, 0 if
12633    nothing changed.  This function assumes that the relocations are in
12634    sorted order, which is true for all known assemblers.  */
12635 
12636 int
bfd_elf_discard_info(bfd * output_bfd,struct bfd_link_info * info)12637 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12638 {
12639   struct elf_reloc_cookie cookie;
12640   asection *o;
12641   bfd *abfd;
12642   int changed = 0;
12643 
12644   if (info->traditional_format
12645       || !is_elf_hash_table (info->hash))
12646     return 0;
12647 
12648   o = bfd_get_section_by_name (output_bfd, ".stab");
12649   if (o != NULL)
12650     {
12651       asection *i;
12652 
12653       for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12654 	{
12655 	  if (i->size == 0
12656 	      || i->reloc_count == 0
12657 	      || i->sec_info_type != SEC_INFO_TYPE_STABS)
12658 	    continue;
12659 
12660 	  abfd = i->owner;
12661 	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12662 	    continue;
12663 
12664 	  if (!init_reloc_cookie_for_section (&cookie, info, i))
12665 	    return -1;
12666 
12667 	  if (_bfd_discard_section_stabs (abfd, i,
12668 					  elf_section_data (i)->sec_info,
12669 					  bfd_elf_reloc_symbol_deleted_p,
12670 					  &cookie))
12671 	    changed = 1;
12672 
12673 	  fini_reloc_cookie_for_section (&cookie, i);
12674 	}
12675     }
12676 
12677   o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12678   if (o != NULL)
12679     {
12680       asection *i;
12681 
12682       for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12683 	{
12684 	  if (i->size == 0)
12685 	    continue;
12686 
12687 	  abfd = i->owner;
12688 	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12689 	    continue;
12690 
12691 	  if (!init_reloc_cookie_for_section (&cookie, info, i))
12692 	    return -1;
12693 
12694 	  _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12695 	  if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12696 						 bfd_elf_reloc_symbol_deleted_p,
12697 						 &cookie))
12698 	    changed = 1;
12699 
12700 	  fini_reloc_cookie_for_section (&cookie, i);
12701 	}
12702     }
12703 
12704   for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12705     {
12706       const struct elf_backend_data *bed;
12707 
12708       if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12709 	continue;
12710 
12711       bed = get_elf_backend_data (abfd);
12712 
12713       if (bed->elf_backend_discard_info != NULL)
12714 	{
12715 	  if (!init_reloc_cookie (&cookie, info, abfd))
12716 	    return -1;
12717 
12718 	  if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12719 	    changed = 1;
12720 
12721 	  fini_reloc_cookie (&cookie, abfd);
12722 	}
12723     }
12724 
12725   if (info->eh_frame_hdr
12726       && !info->relocatable
12727       && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12728     changed = 1;
12729 
12730   return changed;
12731 }
12732 
12733 bfd_boolean
_bfd_elf_section_already_linked(bfd * abfd,asection * sec,struct bfd_link_info * info)12734 _bfd_elf_section_already_linked (bfd *abfd,
12735 				 asection *sec,
12736 				 struct bfd_link_info *info)
12737 {
12738   flagword flags;
12739   const char *name, *key;
12740   struct bfd_section_already_linked *l;
12741   struct bfd_section_already_linked_hash_entry *already_linked_list;
12742 
12743   if (sec->output_section == bfd_abs_section_ptr)
12744     return FALSE;
12745 
12746   flags = sec->flags;
12747 
12748   /* Return if it isn't a linkonce section.  A comdat group section
12749      also has SEC_LINK_ONCE set.  */
12750   if ((flags & SEC_LINK_ONCE) == 0)
12751     return FALSE;
12752 
12753   /* Don't put group member sections on our list of already linked
12754      sections.  They are handled as a group via their group section.  */
12755   if (elf_sec_group (sec) != NULL)
12756     return FALSE;
12757 
12758   /* For a SHT_GROUP section, use the group signature as the key.  */
12759   name = sec->name;
12760   if ((flags & SEC_GROUP) != 0
12761       && elf_next_in_group (sec) != NULL
12762       && elf_group_name (elf_next_in_group (sec)) != NULL)
12763     key = elf_group_name (elf_next_in_group (sec));
12764   else
12765     {
12766       /* Otherwise we should have a .gnu.linkonce.<type>.<key> section.  */
12767       if (CONST_STRNEQ (name, ".gnu.linkonce.")
12768 	  && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12769 	key++;
12770       else
12771 	/* Must be a user linkonce section that doesn't follow gcc's
12772 	   naming convention.  In this case we won't be matching
12773 	   single member groups.  */
12774 	key = name;
12775     }
12776 
12777   already_linked_list = bfd_section_already_linked_table_lookup (key);
12778 
12779   for (l = already_linked_list->entry; l != NULL; l = l->next)
12780     {
12781       /* We may have 2 different types of sections on the list: group
12782 	 sections with a signature of <key> (<key> is some string),
12783 	 and linkonce sections named .gnu.linkonce.<type>.<key>.
12784 	 Match like sections.  LTO plugin sections are an exception.
12785 	 They are always named .gnu.linkonce.t.<key> and match either
12786 	 type of section.  */
12787       if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12788 	   && ((flags & SEC_GROUP) != 0
12789 	       || strcmp (name, l->sec->name) == 0))
12790 	  || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12791 	{
12792 	  /* The section has already been linked.  See if we should
12793 	     issue a warning.  */
12794 	  if (!_bfd_handle_already_linked (sec, l, info))
12795 	    return FALSE;
12796 
12797 	  if (flags & SEC_GROUP)
12798 	    {
12799 	      asection *first = elf_next_in_group (sec);
12800 	      asection *s = first;
12801 
12802 	      while (s != NULL)
12803 		{
12804 		  s->output_section = bfd_abs_section_ptr;
12805 		  /* Record which group discards it.  */
12806 		  s->kept_section = l->sec;
12807 		  s = elf_next_in_group (s);
12808 		  /* These lists are circular.  */
12809 		  if (s == first)
12810 		    break;
12811 		}
12812 	    }
12813 
12814 	  return TRUE;
12815 	}
12816     }
12817 
12818   /* A single member comdat group section may be discarded by a
12819      linkonce section and vice versa.  */
12820   if ((flags & SEC_GROUP) != 0)
12821     {
12822       asection *first = elf_next_in_group (sec);
12823 
12824       if (first != NULL && elf_next_in_group (first) == first)
12825 	/* Check this single member group against linkonce sections.  */
12826 	for (l = already_linked_list->entry; l != NULL; l = l->next)
12827 	  if ((l->sec->flags & SEC_GROUP) == 0
12828 	      && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12829 	    {
12830 	      first->output_section = bfd_abs_section_ptr;
12831 	      first->kept_section = l->sec;
12832 	      sec->output_section = bfd_abs_section_ptr;
12833 	      break;
12834 	    }
12835     }
12836   else
12837     /* Check this linkonce section against single member groups.  */
12838     for (l = already_linked_list->entry; l != NULL; l = l->next)
12839       if (l->sec->flags & SEC_GROUP)
12840 	{
12841 	  asection *first = elf_next_in_group (l->sec);
12842 
12843 	  if (first != NULL
12844 	      && elf_next_in_group (first) == first
12845 	      && bfd_elf_match_symbols_in_sections (first, sec, info))
12846 	    {
12847 	      sec->output_section = bfd_abs_section_ptr;
12848 	      sec->kept_section = first;
12849 	      break;
12850 	    }
12851 	}
12852 
12853   /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12854      referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12855      specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12856      prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
12857      matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
12858      but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12859      `.gnu.linkonce.t.F' section from a different bfd not requiring any
12860      `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
12861      The reverse order cannot happen as there is never a bfd with only the
12862      `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
12863      matter as here were are looking only for cross-bfd sections.  */
12864 
12865   if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12866     for (l = already_linked_list->entry; l != NULL; l = l->next)
12867       if ((l->sec->flags & SEC_GROUP) == 0
12868 	  && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12869 	{
12870 	  if (abfd != l->sec->owner)
12871 	    sec->output_section = bfd_abs_section_ptr;
12872 	  break;
12873 	}
12874 
12875   /* This is the first section with this name.  Record it.  */
12876   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12877     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12878   return sec->output_section == bfd_abs_section_ptr;
12879 }
12880 
12881 bfd_boolean
_bfd_elf_common_definition(Elf_Internal_Sym * sym)12882 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12883 {
12884   return sym->st_shndx == SHN_COMMON;
12885 }
12886 
12887 unsigned int
_bfd_elf_common_section_index(asection * sec ATTRIBUTE_UNUSED)12888 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12889 {
12890   return SHN_COMMON;
12891 }
12892 
12893 asection *
_bfd_elf_common_section(asection * sec ATTRIBUTE_UNUSED)12894 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12895 {
12896   return bfd_com_section_ptr;
12897 }
12898 
12899 bfd_vma
_bfd_elf_default_got_elt_size(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf_link_hash_entry * h ATTRIBUTE_UNUSED,bfd * ibfd ATTRIBUTE_UNUSED,unsigned long symndx ATTRIBUTE_UNUSED)12900 _bfd_elf_default_got_elt_size (bfd *abfd,
12901 			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
12902 			       struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12903 			       bfd *ibfd ATTRIBUTE_UNUSED,
12904 			       unsigned long symndx ATTRIBUTE_UNUSED)
12905 {
12906   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12907   return bed->s->arch_size / 8;
12908 }
12909 
12910 /* Routines to support the creation of dynamic relocs.  */
12911 
12912 /* Returns the name of the dynamic reloc section associated with SEC.  */
12913 
12914 static const char *
get_dynamic_reloc_section_name(bfd * abfd,asection * sec,bfd_boolean is_rela)12915 get_dynamic_reloc_section_name (bfd *       abfd,
12916 				asection *  sec,
12917 				bfd_boolean is_rela)
12918 {
12919   char *name;
12920   const char *old_name = bfd_get_section_name (NULL, sec);
12921   const char *prefix = is_rela ? ".rela" : ".rel";
12922 
12923   if (old_name == NULL)
12924     return NULL;
12925 
12926   name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12927   sprintf (name, "%s%s", prefix, old_name);
12928 
12929   return name;
12930 }
12931 
12932 /* Returns the dynamic reloc section associated with SEC.
12933    If necessary compute the name of the dynamic reloc section based
12934    on SEC's name (looked up in ABFD's string table) and the setting
12935    of IS_RELA.  */
12936 
12937 asection *
_bfd_elf_get_dynamic_reloc_section(bfd * abfd,asection * sec,bfd_boolean is_rela)12938 _bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
12939 				    asection *  sec,
12940 				    bfd_boolean is_rela)
12941 {
12942   asection * reloc_sec = elf_section_data (sec)->sreloc;
12943 
12944   if (reloc_sec == NULL)
12945     {
12946       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12947 
12948       if (name != NULL)
12949 	{
12950 	  reloc_sec = bfd_get_linker_section (abfd, name);
12951 
12952 	  if (reloc_sec != NULL)
12953 	    elf_section_data (sec)->sreloc = reloc_sec;
12954 	}
12955     }
12956 
12957   return reloc_sec;
12958 }
12959 
12960 /* Returns the dynamic reloc section associated with SEC.  If the
12961    section does not exist it is created and attached to the DYNOBJ
12962    bfd and stored in the SRELOC field of SEC's elf_section_data
12963    structure.
12964 
12965    ALIGNMENT is the alignment for the newly created section and
12966    IS_RELA defines whether the name should be .rela.<SEC's name>
12967    or .rel.<SEC's name>.  The section name is looked up in the
12968    string table associated with ABFD.  */
12969 
12970 asection *
_bfd_elf_make_dynamic_reloc_section(asection * sec,bfd * dynobj,unsigned int alignment,bfd * abfd,bfd_boolean is_rela)12971 _bfd_elf_make_dynamic_reloc_section (asection *         sec,
12972 				     bfd *		dynobj,
12973 				     unsigned int	alignment,
12974 				     bfd *              abfd,
12975 				     bfd_boolean        is_rela)
12976 {
12977   asection * reloc_sec = elf_section_data (sec)->sreloc;
12978 
12979   if (reloc_sec == NULL)
12980     {
12981       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12982 
12983       if (name == NULL)
12984 	return NULL;
12985 
12986       reloc_sec = bfd_get_linker_section (dynobj, name);
12987 
12988       if (reloc_sec == NULL)
12989 	{
12990 	  flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12991 			    | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12992 	  if ((sec->flags & SEC_ALLOC) != 0)
12993 	    flags |= SEC_ALLOC | SEC_LOAD;
12994 
12995 	  reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12996 	  if (reloc_sec != NULL)
12997 	    {
12998 	      /* _bfd_elf_get_sec_type_attr chooses a section type by
12999 		 name.  Override as it may be wrong, eg. for a user
13000 		 section named "auto" we'll get ".relauto" which is
13001 		 seen to be a .rela section.  */
13002 	      elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13003 	      if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13004 		reloc_sec = NULL;
13005 	    }
13006 	}
13007 
13008       elf_section_data (sec)->sreloc = reloc_sec;
13009     }
13010 
13011   return reloc_sec;
13012 }
13013 
13014 /* Copy the ELF symbol type and other attributes for a linker script
13015    assignment from HSRC to HDEST.  Generally this should be treated as
13016    if we found a strong non-dynamic definition for HDEST (except that
13017    ld ignores multiple definition errors).  */
13018 void
_bfd_elf_copy_link_hash_symbol_type(bfd * abfd,struct bfd_link_hash_entry * hdest,struct bfd_link_hash_entry * hsrc)13019 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13020 				     struct bfd_link_hash_entry *hdest,
13021 				     struct bfd_link_hash_entry *hsrc)
13022 {
13023   struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13024   struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13025   Elf_Internal_Sym isym;
13026 
13027   ehdest->type = ehsrc->type;
13028   ehdest->target_internal = ehsrc->target_internal;
13029 
13030   isym.st_other = ehsrc->other;
13031   elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13032 }
13033 
13034 /* Append a RELA relocation REL to section S in BFD.  */
13035 
13036 void
elf_append_rela(bfd * abfd,asection * s,Elf_Internal_Rela * rel)13037 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13038 {
13039   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13040   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13041   BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13042   bed->s->swap_reloca_out (abfd, rel, loc);
13043 }
13044 
13045 /* Append a REL relocation REL to section S in BFD.  */
13046 
13047 void
elf_append_rel(bfd * abfd,asection * s,Elf_Internal_Rela * rel)13048 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13049 {
13050   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13051   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13052   BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13053   bed->s->swap_reloc_out (abfd, rel, loc);
13054 }
13055