1 /* MIPS-specific support for ELF
2    Copyright (C) 1993-2014 Free Software Foundation, Inc.
3 
4    Most of the information added by Ian Lance Taylor, Cygnus Support,
5    <ian@cygnus.com>.
6    N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7    <mark@codesourcery.com>
8    Traditional MIPS targets support added by Koundinya.K, Dansk Data
9    Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10 
11    This file is part of BFD, the Binary File Descriptor library.
12 
13    This program is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 3 of the License, or
16    (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26    MA 02110-1301, USA.  */
27 
28 
29 /* This file handles functionality common to the different MIPS ABI's.  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 
40 /* Get the ECOFF swapping routines.  */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
45 
46 #include "hashtab.h"
47 
48 /* Types of TLS GOT entry.  */
49 enum mips_got_tls_type {
50   GOT_TLS_NONE,
51   GOT_TLS_GD,
52   GOT_TLS_LDM,
53   GOT_TLS_IE
54 };
55 
56 /* This structure is used to hold information about one GOT entry.
57    There are four types of entry:
58 
59       (1) an absolute address
60 	    requires: abfd == NULL
61 	    fields: d.address
62 
63       (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 	    requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 	    fields: abfd, symndx, d.addend, tls_type
66 
67       (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 	    requires: abfd != NULL, symndx == -1
69 	    fields: d.h, tls_type
70 
71       (4) a TLS LDM slot
72 	    requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 	    fields: none; there's only one of these per GOT.  */
74 struct mips_got_entry
75 {
76   /* One input bfd that needs the GOT entry.  */
77   bfd *abfd;
78   /* The index of the symbol, as stored in the relocation r_info, if
79      we have a local symbol; -1 otherwise.  */
80   long symndx;
81   union
82   {
83     /* If abfd == NULL, an address that must be stored in the got.  */
84     bfd_vma address;
85     /* If abfd != NULL && symndx != -1, the addend of the relocation
86        that should be added to the symbol value.  */
87     bfd_vma addend;
88     /* If abfd != NULL && symndx == -1, the hash table entry
89        corresponding to a symbol in the GOT.  The symbol's entry
90        is in the local area if h->global_got_area is GGA_NONE,
91        otherwise it is in the global area.  */
92     struct mips_elf_link_hash_entry *h;
93   } d;
94 
95   /* The TLS type of this GOT entry.  An LDM GOT entry will be a local
96      symbol entry with r_symndx == 0.  */
97   unsigned char tls_type;
98 
99   /* True if we have filled in the GOT contents for a TLS entry,
100      and created the associated relocations.  */
101   unsigned char tls_initialized;
102 
103   /* The offset from the beginning of the .got section to the entry
104      corresponding to this symbol+addend.  If it's a global symbol
105      whose offset is yet to be decided, it's going to be -1.  */
106   long gotidx;
107 };
108 
109 /* This structure represents a GOT page reference from an input bfd.
110    Each instance represents a symbol + ADDEND, where the representation
111    of the symbol depends on whether it is local to the input bfd.
112    If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113    Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
114 
115    Page references with SYMNDX >= 0 always become page references
116    in the output.  Page references with SYMNDX < 0 only become page
117    references if the symbol binds locally; in other cases, the page
118    reference decays to a global GOT reference.  */
119 struct mips_got_page_ref
120 {
121   long symndx;
122   union
123   {
124     struct mips_elf_link_hash_entry *h;
125     bfd *abfd;
126   } u;
127   bfd_vma addend;
128 };
129 
130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131    The structures form a non-overlapping list that is sorted by increasing
132    MIN_ADDEND.  */
133 struct mips_got_page_range
134 {
135   struct mips_got_page_range *next;
136   bfd_signed_vma min_addend;
137   bfd_signed_vma max_addend;
138 };
139 
140 /* This structure describes the range of addends that are applied to page
141    relocations against a given section.  */
142 struct mips_got_page_entry
143 {
144   /* The section that these entries are based on.  */
145   asection *sec;
146   /* The ranges for this page entry.  */
147   struct mips_got_page_range *ranges;
148   /* The maximum number of page entries needed for RANGES.  */
149   bfd_vma num_pages;
150 };
151 
152 /* This structure is used to hold .got information when linking.  */
153 
154 struct mips_got_info
155 {
156   /* The number of global .got entries.  */
157   unsigned int global_gotno;
158   /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */
159   unsigned int reloc_only_gotno;
160   /* The number of .got slots used for TLS.  */
161   unsigned int tls_gotno;
162   /* The first unused TLS .got entry.  Used only during
163      mips_elf_initialize_tls_index.  */
164   unsigned int tls_assigned_gotno;
165   /* The number of local .got entries, eventually including page entries.  */
166   unsigned int local_gotno;
167   /* The maximum number of page entries needed.  */
168   unsigned int page_gotno;
169   /* The number of relocations needed for the GOT entries.  */
170   unsigned int relocs;
171   /* The first unused local .got entry.  */
172   unsigned int assigned_low_gotno;
173   /* The last unused local .got entry.  */
174   unsigned int assigned_high_gotno;
175   /* A hash table holding members of the got.  */
176   struct htab *got_entries;
177   /* A hash table holding mips_got_page_ref structures.  */
178   struct htab *got_page_refs;
179   /* A hash table of mips_got_page_entry structures.  */
180   struct htab *got_page_entries;
181   /* In multi-got links, a pointer to the next got (err, rather, most
182      of the time, it points to the previous got).  */
183   struct mips_got_info *next;
184 };
185 
186 /* Structure passed when merging bfds' gots.  */
187 
188 struct mips_elf_got_per_bfd_arg
189 {
190   /* The output bfd.  */
191   bfd *obfd;
192   /* The link information.  */
193   struct bfd_link_info *info;
194   /* A pointer to the primary got, i.e., the one that's going to get
195      the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196      DT_MIPS_GOTSYM.  */
197   struct mips_got_info *primary;
198   /* A non-primary got we're trying to merge with other input bfd's
199      gots.  */
200   struct mips_got_info *current;
201   /* The maximum number of got entries that can be addressed with a
202      16-bit offset.  */
203   unsigned int max_count;
204   /* The maximum number of page entries needed by each got.  */
205   unsigned int max_pages;
206   /* The total number of global entries which will live in the
207      primary got and be automatically relocated.  This includes
208      those not referenced by the primary GOT but included in
209      the "master" GOT.  */
210   unsigned int global_count;
211 };
212 
213 /* A structure used to pass information to htab_traverse callbacks
214    when laying out the GOT.  */
215 
216 struct mips_elf_traverse_got_arg
217 {
218   struct bfd_link_info *info;
219   struct mips_got_info *g;
220   int value;
221 };
222 
223 struct _mips_elf_section_data
224 {
225   struct bfd_elf_section_data elf;
226   union
227   {
228     bfd_byte *tdata;
229   } u;
230 };
231 
232 #define mips_elf_section_data(sec) \
233   ((struct _mips_elf_section_data *) elf_section_data (sec))
234 
235 #define is_mips_elf(bfd)				\
236   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
237    && elf_tdata (bfd) != NULL				\
238    && elf_object_id (bfd) == MIPS_ELF_DATA)
239 
240 /* The ABI says that every symbol used by dynamic relocations must have
241    a global GOT entry.  Among other things, this provides the dynamic
242    linker with a free, directly-indexed cache.  The GOT can therefore
243    contain symbols that are not referenced by GOT relocations themselves
244    (in other words, it may have symbols that are not referenced by things
245    like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246 
247    GOT relocations are less likely to overflow if we put the associated
248    GOT entries towards the beginning.  We therefore divide the global
249    GOT entries into two areas: "normal" and "reloc-only".  Entries in
250    the first area can be used for both dynamic relocations and GP-relative
251    accesses, while those in the "reloc-only" area are for dynamic
252    relocations only.
253 
254    These GGA_* ("Global GOT Area") values are organised so that lower
255    values are more general than higher values.  Also, non-GGA_NONE
256    values are ordered by the position of the area in the GOT.  */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260 
261 /* Information about a non-PIC interface to a PIC function.  There are
262    two ways of creating these interfaces.  The first is to add:
263 
264 	lui	$25,%hi(func)
265 	addiu	$25,$25,%lo(func)
266 
267    immediately before a PIC function "func".  The second is to add:
268 
269 	lui	$25,%hi(func)
270 	j	func
271 	addiu	$25,$25,%lo(func)
272 
273    to a separate trampoline section.
274 
275    Stubs of the first kind go in a new section immediately before the
276    target function.  Stubs of the second kind go in a single section
277    pointed to by the hash table's "strampoline" field.  */
278 struct mips_elf_la25_stub {
279   /* The generated section that contains this stub.  */
280   asection *stub_section;
281 
282   /* The offset of the stub from the start of STUB_SECTION.  */
283   bfd_vma offset;
284 
285   /* One symbol for the original function.  Its location is available
286      in H->root.root.u.def.  */
287   struct mips_elf_link_hash_entry *h;
288 };
289 
290 /* Macros for populating a mips_elf_la25_stub.  */
291 
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL))	/* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL))	/* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL)						\
296   (0x41b90000 | (VAL))				/* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL)						\
298   (0xd4000000 | (((VAL) >> 1) & 0x3ffffff))	/* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL)					\
300   (0x33390000 | (VAL))				/* addiu t9,t9,VAL */
301 
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303    the dynamic symbols.  */
304 
305 struct mips_elf_hash_sort_data
306 {
307   /* The symbol in the global GOT with the lowest dynamic symbol table
308      index.  */
309   struct elf_link_hash_entry *low;
310   /* The least dynamic symbol table index corresponding to a non-TLS
311      symbol with a GOT entry.  */
312   long min_got_dynindx;
313   /* The greatest dynamic symbol table index corresponding to a symbol
314      with a GOT entry that is not referenced (e.g., a dynamic symbol
315      with dynamic relocations pointing to it from non-primary GOTs).  */
316   long max_unref_got_dynindx;
317   /* The greatest dynamic symbol table index not corresponding to a
318      symbol without a GOT entry.  */
319   long max_non_got_dynindx;
320 };
321 
322 /* We make up to two PLT entries if needed, one for standard MIPS code
323    and one for compressed code, either a MIPS16 or microMIPS one.  We
324    keep a separate record of traditional lazy-binding stubs, for easier
325    processing.  */
326 
327 struct plt_entry
328 {
329   /* Traditional SVR4 stub offset, or -1 if none.  */
330   bfd_vma stub_offset;
331 
332   /* Standard PLT entry offset, or -1 if none.  */
333   bfd_vma mips_offset;
334 
335   /* Compressed PLT entry offset, or -1 if none.  */
336   bfd_vma comp_offset;
337 
338   /* The corresponding .got.plt index, or -1 if none.  */
339   bfd_vma gotplt_index;
340 
341   /* Whether we need a standard PLT entry.  */
342   unsigned int need_mips : 1;
343 
344   /* Whether we need a compressed PLT entry.  */
345   unsigned int need_comp : 1;
346 };
347 
348 /* The MIPS ELF linker needs additional information for each symbol in
349    the global hash table.  */
350 
351 struct mips_elf_link_hash_entry
352 {
353   struct elf_link_hash_entry root;
354 
355   /* External symbol information.  */
356   EXTR esym;
357 
358   /* The la25 stub we have created for ths symbol, if any.  */
359   struct mips_elf_la25_stub *la25_stub;
360 
361   /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
362      this symbol.  */
363   unsigned int possibly_dynamic_relocs;
364 
365   /* If there is a stub that 32 bit functions should use to call this
366      16 bit function, this points to the section containing the stub.  */
367   asection *fn_stub;
368 
369   /* If there is a stub that 16 bit functions should use to call this
370      32 bit function, this points to the section containing the stub.  */
371   asection *call_stub;
372 
373   /* This is like the call_stub field, but it is used if the function
374      being called returns a floating point value.  */
375   asection *call_fp_stub;
376 
377   /* The highest GGA_* value that satisfies all references to this symbol.  */
378   unsigned int global_got_area : 2;
379 
380   /* True if all GOT relocations against this symbol are for calls.  This is
381      a looser condition than no_fn_stub below, because there may be other
382      non-call non-GOT relocations against the symbol.  */
383   unsigned int got_only_for_calls : 1;
384 
385   /* True if one of the relocations described by possibly_dynamic_relocs
386      is against a readonly section.  */
387   unsigned int readonly_reloc : 1;
388 
389   /* True if there is a relocation against this symbol that must be
390      resolved by the static linker (in other words, if the relocation
391      cannot possibly be made dynamic).  */
392   unsigned int has_static_relocs : 1;
393 
394   /* True if we must not create a .MIPS.stubs entry for this symbol.
395      This is set, for example, if there are relocations related to
396      taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
397      See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */
398   unsigned int no_fn_stub : 1;
399 
400   /* Whether we need the fn_stub; this is true if this symbol appears
401      in any relocs other than a 16 bit call.  */
402   unsigned int need_fn_stub : 1;
403 
404   /* True if this symbol is referenced by branch relocations from
405      any non-PIC input file.  This is used to determine whether an
406      la25 stub is required.  */
407   unsigned int has_nonpic_branches : 1;
408 
409   /* Does this symbol need a traditional MIPS lazy-binding stub
410      (as opposed to a PLT entry)?  */
411   unsigned int needs_lazy_stub : 1;
412 
413   /* Does this symbol resolve to a PLT entry?  */
414   unsigned int use_plt_entry : 1;
415 };
416 
417 /* MIPS ELF linker hash table.  */
418 
419 struct mips_elf_link_hash_table
420 {
421   struct elf_link_hash_table root;
422 
423   /* The number of .rtproc entries.  */
424   bfd_size_type procedure_count;
425 
426   /* The size of the .compact_rel section (if SGI_COMPAT).  */
427   bfd_size_type compact_rel_size;
428 
429   /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
430      is set to the address of __rld_obj_head as in IRIX5 and IRIX6.  */
431   bfd_boolean use_rld_obj_head;
432 
433   /* The  __rld_map or __rld_obj_head symbol. */
434   struct elf_link_hash_entry *rld_symbol;
435 
436   /* This is set if we see any mips16 stub sections.  */
437   bfd_boolean mips16_stubs_seen;
438 
439   /* True if we can generate copy relocs and PLTs.  */
440   bfd_boolean use_plts_and_copy_relocs;
441 
442   /* True if we can only use 32-bit microMIPS instructions.  */
443   bfd_boolean insn32;
444 
445   /* True if we are targetting R6 compact branches.  */
446   bfd_boolean compact_branches;
447 
448   /* True if we're generating code for VxWorks.  */
449   bfd_boolean is_vxworks;
450 
451   /* True if we already reported the small-data section overflow.  */
452   bfd_boolean small_data_overflow_reported;
453 
454   /* Shortcuts to some dynamic sections, or NULL if they are not
455      being used.  */
456   asection *srelbss;
457   asection *sdynbss;
458   asection *srelplt;
459   asection *srelplt2;
460   asection *sgotplt;
461   asection *splt;
462   asection *sstubs;
463   asection *sgot;
464 
465   /* The master GOT information.  */
466   struct mips_got_info *got_info;
467 
468   /* The global symbol in the GOT with the lowest index in the dynamic
469      symbol table.  */
470   struct elf_link_hash_entry *global_gotsym;
471 
472   /* The size of the PLT header in bytes.  */
473   bfd_vma plt_header_size;
474 
475   /* The size of a standard PLT entry in bytes.  */
476   bfd_vma plt_mips_entry_size;
477 
478   /* The size of a compressed PLT entry in bytes.  */
479   bfd_vma plt_comp_entry_size;
480 
481   /* The offset of the next standard PLT entry to create.  */
482   bfd_vma plt_mips_offset;
483 
484   /* The offset of the next compressed PLT entry to create.  */
485   bfd_vma plt_comp_offset;
486 
487   /* The index of the next .got.plt entry to create.  */
488   bfd_vma plt_got_index;
489 
490   /* The number of functions that need a lazy-binding stub.  */
491   bfd_vma lazy_stub_count;
492 
493   /* The size of a function stub entry in bytes.  */
494   bfd_vma function_stub_size;
495 
496   /* The number of reserved entries at the beginning of the GOT.  */
497   unsigned int reserved_gotno;
498 
499   /* The section used for mips_elf_la25_stub trampolines.
500      See the comment above that structure for details.  */
501   asection *strampoline;
502 
503   /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
504      pairs.  */
505   htab_t la25_stubs;
506 
507   /* A function FN (NAME, IS, OS) that creates a new input section
508      called NAME and links it to output section OS.  If IS is nonnull,
509      the new section should go immediately before it, otherwise it
510      should go at the (current) beginning of OS.
511 
512      The function returns the new section on success, otherwise it
513      returns null.  */
514   asection *(*add_stub_section) (const char *, asection *, asection *);
515 
516   /* Small local sym cache.  */
517   struct sym_cache sym_cache;
518 
519   /* Is the PLT header compressed?  */
520   unsigned int plt_header_is_comp : 1;
521 };
522 
523 /* Get the MIPS ELF linker hash table from a link_info structure.  */
524 
525 #define mips_elf_hash_table(p) \
526   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
527   == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
528 
529 /* A structure used to communicate with htab_traverse callbacks.  */
530 struct mips_htab_traverse_info
531 {
532   /* The usual link-wide information.  */
533   struct bfd_link_info *info;
534   bfd *output_bfd;
535 
536   /* Starts off FALSE and is set to TRUE if the link should be aborted.  */
537   bfd_boolean error;
538 };
539 
540 /* MIPS ELF private object data.  */
541 
542 struct mips_elf_obj_tdata
543 {
544   /* Generic ELF private object data.  */
545   struct elf_obj_tdata root;
546 
547   /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output.  */
548   bfd *abi_fp_bfd;
549 
550   /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output.  */
551   bfd *abi_msa_bfd;
552 
553   /* The abiflags for this object.  */
554   Elf_Internal_ABIFlags_v0 abiflags;
555   bfd_boolean abiflags_valid;
556 
557   /* The GOT requirements of input bfds.  */
558   struct mips_got_info *got;
559 
560   /* Used by _bfd_mips_elf_find_nearest_line.  The structure could be
561      included directly in this one, but there's no point to wasting
562      the memory just for the infrequently called find_nearest_line.  */
563   struct mips_elf_find_line *find_line_info;
564 
565   /* An array of stub sections indexed by symbol number.  */
566   asection **local_stubs;
567   asection **local_call_stubs;
568 
569   /* The Irix 5 support uses two virtual sections, which represent
570      text/data symbols defined in dynamic objects.  */
571   asymbol *elf_data_symbol;
572   asymbol *elf_text_symbol;
573   asection *elf_data_section;
574   asection *elf_text_section;
575 };
576 
577 /* Get MIPS ELF private object data from BFD's tdata.  */
578 
579 #define mips_elf_tdata(bfd) \
580   ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
581 
582 #define TLS_RELOC_P(r_type) \
583   (r_type == R_MIPS_TLS_DTPMOD32		\
584    || r_type == R_MIPS_TLS_DTPMOD64		\
585    || r_type == R_MIPS_TLS_DTPREL32		\
586    || r_type == R_MIPS_TLS_DTPREL64		\
587    || r_type == R_MIPS_TLS_GD			\
588    || r_type == R_MIPS_TLS_LDM			\
589    || r_type == R_MIPS_TLS_DTPREL_HI16		\
590    || r_type == R_MIPS_TLS_DTPREL_LO16		\
591    || r_type == R_MIPS_TLS_GOTTPREL		\
592    || r_type == R_MIPS_TLS_TPREL32		\
593    || r_type == R_MIPS_TLS_TPREL64		\
594    || r_type == R_MIPS_TLS_TPREL_HI16		\
595    || r_type == R_MIPS_TLS_TPREL_LO16		\
596    || r_type == R_MIPS16_TLS_GD			\
597    || r_type == R_MIPS16_TLS_LDM		\
598    || r_type == R_MIPS16_TLS_DTPREL_HI16	\
599    || r_type == R_MIPS16_TLS_DTPREL_LO16	\
600    || r_type == R_MIPS16_TLS_GOTTPREL		\
601    || r_type == R_MIPS16_TLS_TPREL_HI16		\
602    || r_type == R_MIPS16_TLS_TPREL_LO16		\
603    || r_type == R_MICROMIPS_TLS_GD		\
604    || r_type == R_MICROMIPS_TLS_LDM		\
605    || r_type == R_MICROMIPS_TLS_DTPREL_HI16	\
606    || r_type == R_MICROMIPS_TLS_DTPREL_LO16	\
607    || r_type == R_MICROMIPS_TLS_GOTTPREL	\
608    || r_type == R_MICROMIPS_TLS_TPREL_HI16	\
609    || r_type == R_MICROMIPS_TLS_TPREL_LO16)
610 
611 /* Structure used to pass information to mips_elf_output_extsym.  */
612 
613 struct extsym_info
614 {
615   bfd *abfd;
616   struct bfd_link_info *info;
617   struct ecoff_debug_info *debug;
618   const struct ecoff_debug_swap *swap;
619   bfd_boolean failed;
620 };
621 
622 /* The names of the runtime procedure table symbols used on IRIX5.  */
623 
624 static const char * const mips_elf_dynsym_rtproc_names[] =
625 {
626   "_procedure_table",
627   "_procedure_string_table",
628   "_procedure_table_size",
629   NULL
630 };
631 
632 /* These structures are used to generate the .compact_rel section on
633    IRIX5.  */
634 
635 typedef struct
636 {
637   unsigned long id1;		/* Always one?  */
638   unsigned long num;		/* Number of compact relocation entries.  */
639   unsigned long id2;		/* Always two?  */
640   unsigned long offset;		/* The file offset of the first relocation.  */
641   unsigned long reserved0;	/* Zero?  */
642   unsigned long reserved1;	/* Zero?  */
643 } Elf32_compact_rel;
644 
645 typedef struct
646 {
647   bfd_byte id1[4];
648   bfd_byte num[4];
649   bfd_byte id2[4];
650   bfd_byte offset[4];
651   bfd_byte reserved0[4];
652   bfd_byte reserved1[4];
653 } Elf32_External_compact_rel;
654 
655 typedef struct
656 {
657   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
658   unsigned int rtype : 4;	/* Relocation types. See below.  */
659   unsigned int dist2to : 8;
660   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
661   unsigned long konst;		/* KONST field. See below.  */
662   unsigned long vaddr;		/* VADDR to be relocated.  */
663 } Elf32_crinfo;
664 
665 typedef struct
666 {
667   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
668   unsigned int rtype : 4;	/* Relocation types. See below.  */
669   unsigned int dist2to : 8;
670   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
671   unsigned long konst;		/* KONST field. See below.  */
672 } Elf32_crinfo2;
673 
674 typedef struct
675 {
676   bfd_byte info[4];
677   bfd_byte konst[4];
678   bfd_byte vaddr[4];
679 } Elf32_External_crinfo;
680 
681 typedef struct
682 {
683   bfd_byte info[4];
684   bfd_byte konst[4];
685 } Elf32_External_crinfo2;
686 
687 /* These are the constants used to swap the bitfields in a crinfo.  */
688 
689 #define CRINFO_CTYPE (0x1)
690 #define CRINFO_CTYPE_SH (31)
691 #define CRINFO_RTYPE (0xf)
692 #define CRINFO_RTYPE_SH (27)
693 #define CRINFO_DIST2TO (0xff)
694 #define CRINFO_DIST2TO_SH (19)
695 #define CRINFO_RELVADDR (0x7ffff)
696 #define CRINFO_RELVADDR_SH (0)
697 
698 /* A compact relocation info has long (3 words) or short (2 words)
699    formats.  A short format doesn't have VADDR field and relvaddr
700    fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
701 #define CRF_MIPS_LONG			1
702 #define CRF_MIPS_SHORT			0
703 
704 /* There are 4 types of compact relocation at least. The value KONST
705    has different meaning for each type:
706 
707    (type)		(konst)
708    CT_MIPS_REL32	Address in data
709    CT_MIPS_WORD		Address in word (XXX)
710    CT_MIPS_GPHI_LO	GP - vaddr
711    CT_MIPS_JMPAD	Address to jump
712    */
713 
714 #define CRT_MIPS_REL32			0xa
715 #define CRT_MIPS_WORD			0xb
716 #define CRT_MIPS_GPHI_LO		0xc
717 #define CRT_MIPS_JMPAD			0xd
718 
719 #define mips_elf_set_cr_format(x,format)	((x).ctype = (format))
720 #define mips_elf_set_cr_type(x,type)		((x).rtype = (type))
721 #define mips_elf_set_cr_dist2to(x,v)		((x).dist2to = (v))
722 #define mips_elf_set_cr_relvaddr(x,d)		((x).relvaddr = (d)<<2)
723 
724 /* The structure of the runtime procedure descriptor created by the
725    loader for use by the static exception system.  */
726 
727 typedef struct runtime_pdr {
728 	bfd_vma	adr;		/* Memory address of start of procedure.  */
729 	long	regmask;	/* Save register mask.  */
730 	long	regoffset;	/* Save register offset.  */
731 	long	fregmask;	/* Save floating point register mask.  */
732 	long	fregoffset;	/* Save floating point register offset.  */
733 	long	frameoffset;	/* Frame size.  */
734 	short	framereg;	/* Frame pointer register.  */
735 	short	pcreg;		/* Offset or reg of return pc.  */
736 	long	irpss;		/* Index into the runtime string table.  */
737 	long	reserved;
738 	struct exception_info *exception_info;/* Pointer to exception array.  */
739 } RPDR, *pRPDR;
740 #define cbRPDR sizeof (RPDR)
741 #define rpdNil ((pRPDR) 0)
742 
743 static struct mips_got_entry *mips_elf_create_local_got_entry
744   (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
745    struct mips_elf_link_hash_entry *, int);
746 static bfd_boolean mips_elf_sort_hash_table_f
747   (struct mips_elf_link_hash_entry *, void *);
748 static bfd_vma mips_elf_high
749   (bfd_vma);
750 static bfd_boolean mips_elf_create_dynamic_relocation
751   (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
752    struct mips_elf_link_hash_entry *, asection *, bfd_vma,
753    bfd_vma *, asection *);
754 static bfd_vma mips_elf_adjust_gp
755   (bfd *, struct mips_got_info *, bfd *);
756 
757 /* This will be used when we sort the dynamic relocation records.  */
758 static bfd *reldyn_sorting_bfd;
759 
760 /* True if ABFD is for CPUs with load interlocking that include
761    non-MIPS1 CPUs and R3900.  */
762 #define LOAD_INTERLOCKS_P(abfd) \
763   (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
764    || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
765 
766 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
767    This should be safe for all architectures.  We enable this predicate
768    for RM9000 for now.  */
769 #define JAL_TO_BAL_P(abfd) \
770   ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
771 
772 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
773    This should be safe for all architectures.  We enable this predicate for
774    all CPUs.  */
775 #define JALR_TO_BAL_P(abfd) 1
776 
777 /* True if ABFD is for CPUs that are faster if JR is converted to B.
778    This should be safe for all architectures.  We enable this predicate for
779    all CPUs.  */
780 #define JR_TO_B_P(abfd) 1
781 
782 /* True if ABFD is a PIC object.  */
783 #define PIC_OBJECT_P(abfd) \
784   ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
785 
786 /* Nonzero if ABFD is using the O32 ABI.  */
787 #define ABI_O32_P(abfd) \
788   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
789 
790 /* Nonzero if ABFD is using the N32 ABI.  */
791 #define ABI_N32_P(abfd) \
792   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
793 
794 /* Nonzero if ABFD is using the N64 ABI.  */
795 #define ABI_64_P(abfd) \
796   (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
797 
798 /* Nonzero if ABFD is using NewABI conventions.  */
799 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
800 
801 /* Nonzero if ABFD has microMIPS code.  */
802 #define MICROMIPS_P(abfd) \
803   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
804 
805 /* Nonzero if ABFD is MIPS R6.  */
806 #define MIPSR6_P(abfd) \
807   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
808     || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
809 
810 /* The IRIX compatibility level we are striving for.  */
811 #define IRIX_COMPAT(abfd) \
812   (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
813 
814 /* Whether we are trying to be compatible with IRIX at all.  */
815 #define SGI_COMPAT(abfd) \
816   (IRIX_COMPAT (abfd) != ict_none)
817 
818 /* The name of the options section.  */
819 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
820   (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
821 
822 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
823    Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
824 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
825   (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
826 
827 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section.  */
828 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
829   (strcmp (NAME, ".MIPS.abiflags") == 0)
830 
831 /* Whether the section is readonly.  */
832 #define MIPS_ELF_READONLY_SECTION(sec) \
833   ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))		\
834    == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
835 
836 /* The name of the stub section.  */
837 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
838 
839 /* The size of an external REL relocation.  */
840 #define MIPS_ELF_REL_SIZE(abfd) \
841   (get_elf_backend_data (abfd)->s->sizeof_rel)
842 
843 /* The size of an external RELA relocation.  */
844 #define MIPS_ELF_RELA_SIZE(abfd) \
845   (get_elf_backend_data (abfd)->s->sizeof_rela)
846 
847 /* The size of an external dynamic table entry.  */
848 #define MIPS_ELF_DYN_SIZE(abfd) \
849   (get_elf_backend_data (abfd)->s->sizeof_dyn)
850 
851 /* The size of a GOT entry.  */
852 #define MIPS_ELF_GOT_SIZE(abfd) \
853   (get_elf_backend_data (abfd)->s->arch_size / 8)
854 
855 /* The size of the .rld_map section. */
856 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
857   (get_elf_backend_data (abfd)->s->arch_size / 8)
858 
859 /* The size of a symbol-table entry.  */
860 #define MIPS_ELF_SYM_SIZE(abfd) \
861   (get_elf_backend_data (abfd)->s->sizeof_sym)
862 
863 /* The default alignment for sections, as a power of two.  */
864 #define MIPS_ELF_LOG_FILE_ALIGN(abfd)				\
865   (get_elf_backend_data (abfd)->s->log_file_align)
866 
867 /* Get word-sized data.  */
868 #define MIPS_ELF_GET_WORD(abfd, ptr) \
869   (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
870 
871 /* Put out word-sized data.  */
872 #define MIPS_ELF_PUT_WORD(abfd, val, ptr)	\
873   (ABI_64_P (abfd) 				\
874    ? bfd_put_64 (abfd, val, ptr) 		\
875    : bfd_put_32 (abfd, val, ptr))
876 
877 /* The opcode for word-sized loads (LW or LD).  */
878 #define MIPS_ELF_LOAD_WORD(abfd) \
879   (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
880 
881 /* Add a dynamic symbol table-entry.  */
882 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)	\
883   _bfd_elf_add_dynamic_entry (info, tag, val)
884 
885 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)			\
886   (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
887 
888 /* The name of the dynamic relocation section.  */
889 #define MIPS_ELF_REL_DYN_NAME(INFO) \
890   (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
891 
892 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
893    from smaller values.  Start with zero, widen, *then* decrement.  */
894 #define MINUS_ONE	(((bfd_vma)0) - 1)
895 #define MINUS_TWO	(((bfd_vma)0) - 2)
896 
897 /* The value to write into got[1] for SVR4 targets, to identify it is
898    a GNU object.  The dynamic linker can then use got[1] to store the
899    module pointer.  */
900 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
901   ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
902 
903 /* The offset of $gp from the beginning of the .got section.  */
904 #define ELF_MIPS_GP_OFFSET(INFO) \
905   (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
906 
907 /* The maximum size of the GOT for it to be addressable using 16-bit
908    offsets from $gp.  */
909 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
910 
911 /* Instructions which appear in a stub.  */
912 #define STUB_LW(abfd)							\
913   ((ABI_64_P (abfd)							\
914     ? 0xdf998010				/* ld t9,0x8010(gp) */	\
915     : 0x8f998010))              		/* lw t9,0x8010(gp) */
916 #define STUB_MOVE(abfd)							\
917    ((ABI_64_P (abfd)							\
918      ? 0x03e0782d				/* daddu t7,ra */	\
919      : 0x03e07821))				/* addu t7,ra */
920 #define STUB_LUI(VAL) (0x3c180000 + (VAL))	/* lui t8,VAL */
921 #define STUB_JALR 0x0320f809			/* jalr t9,ra */
922 #define STUB_ORI(VAL) (0x37180000 + (VAL))	/* ori t8,t8,VAL */
923 #define STUB_LI16U(VAL) (0x34180000 + (VAL))	/* ori t8,zero,VAL unsigned */
924 #define STUB_LI16S(abfd, VAL)						\
925    ((ABI_64_P (abfd)							\
926     ? (0x64180000 + (VAL))	/* daddiu t8,zero,VAL sign extended */	\
927     : (0x24180000 + (VAL))))	/* addiu t8,zero,VAL sign extended */
928 
929 /* Likewise for the microMIPS ASE.  */
930 #define STUB_LW_MICROMIPS(abfd)						\
931   (ABI_64_P (abfd)							\
932    ? 0xdf3c8010					/* ld t9,0x8010(gp) */	\
933    : 0xff3c8010)				/* lw t9,0x8010(gp) */
934 #define STUB_MOVE_MICROMIPS 0x0dff		/* move t7,ra */
935 #define STUB_MOVE32_MICROMIPS(abfd)					\
936    (ABI_64_P (abfd)							\
937     ? 0x581f7950				/* daddu t7,ra,zero */	\
938     : 0x001f7950)				/* addu t7,ra,zero */
939 #define STUB_LUI_MICROMIPS(VAL)						\
940    (0x41b80000 + (VAL))				/* lui t8,VAL */
941 #define STUB_JALR_MICROMIPS 0x45d9		/* jalr t9 */
942 #define STUB_JALR32_MICROMIPS 0x03f90f3c	/* jalr ra,t9 */
943 #define STUB_ORI_MICROMIPS(VAL)						\
944   (0x53180000 + (VAL))				/* ori t8,t8,VAL */
945 #define STUB_LI16U_MICROMIPS(VAL)					\
946   (0x53000000 + (VAL))				/* ori t8,zero,VAL unsigned */
947 #define STUB_LI16S_MICROMIPS(abfd, VAL)					\
948    (ABI_64_P (abfd)							\
949     ? 0x5f000000 + (VAL)	/* daddiu t8,zero,VAL sign extended */	\
950     : 0x33000000 + (VAL))	/* addiu t8,zero,VAL sign extended */
951 
952 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
953 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
954 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
955 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
956 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
957 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
958 
959 /* The name of the dynamic interpreter.  This is put in the .interp
960    section.  */
961 
962 #define ELF_DYNAMIC_INTERPRETER(abfd) 		\
963    (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" 	\
964     : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" 	\
965     : "/usr/lib/libc.so.1")
966 
967 #ifdef BFD64
968 #define MNAME(bfd,pre,pos) \
969   (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
970 #define ELF_R_SYM(bfd, i)					\
971   (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i)					\
973   (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t)					\
975   (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
976 #else
977 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
978 #define ELF_R_SYM(bfd, i)					\
979   (ELF32_R_SYM (i))
980 #define ELF_R_TYPE(bfd, i)					\
981   (ELF32_R_TYPE (i))
982 #define ELF_R_INFO(bfd, s, t)					\
983   (ELF32_R_INFO (s, t))
984 #endif
985 
986   /* The mips16 compiler uses a couple of special sections to handle
987      floating point arguments.
988 
989      Section names that look like .mips16.fn.FNNAME contain stubs that
990      copy floating point arguments from the fp regs to the gp regs and
991      then jump to FNNAME.  If any 32 bit function calls FNNAME, the
992      call should be redirected to the stub instead.  If no 32 bit
993      function calls FNNAME, the stub should be discarded.  We need to
994      consider any reference to the function, not just a call, because
995      if the address of the function is taken we will need the stub,
996      since the address might be passed to a 32 bit function.
997 
998      Section names that look like .mips16.call.FNNAME contain stubs
999      that copy floating point arguments from the gp regs to the fp
1000      regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1001      then any 16 bit function that calls FNNAME should be redirected
1002      to the stub instead.  If FNNAME is not a 32 bit function, the
1003      stub should be discarded.
1004 
1005      .mips16.call.fp.FNNAME sections are similar, but contain stubs
1006      which call FNNAME and then copy the return value from the fp regs
1007      to the gp regs.  These stubs store the return value in $18 while
1008      calling FNNAME; any function which might call one of these stubs
1009      must arrange to save $18 around the call.  (This case is not
1010      needed for 32 bit functions that call 16 bit functions, because
1011      16 bit functions always return floating point values in both
1012      $f0/$f1 and $2/$3.)
1013 
1014      Note that in all cases FNNAME might be defined statically.
1015      Therefore, FNNAME is not used literally.  Instead, the relocation
1016      information will indicate which symbol the section is for.
1017 
1018      We record any stubs that we find in the symbol table.  */
1019 
1020 #define FN_STUB ".mips16.fn."
1021 #define CALL_STUB ".mips16.call."
1022 #define CALL_FP_STUB ".mips16.call.fp."
1023 
1024 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1025 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1026 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1027 
1028 /* The format of the first PLT entry in an O32 executable.  */
1029 static const bfd_vma mips_o32_exec_plt0_entry[] =
1030 {
1031   0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/
1032   0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/
1033   0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/
1034   0x031cc023,	/* subu $24, $24, $28					*/
1035   0x03e07821,	/* move $15, $31	# 32-bit move (addu)		*/
1036   0x0018c082,	/* srl $24, $24, 2					*/
1037   0x0320f809,	/* jalr $25						*/
1038   0x2718fffe	/* subu $24, $24, 2					*/
1039 };
1040 
1041 /* The format of the first PLT entry in an N32 executable.  Different
1042    because gp ($28) is not available; we use t2 ($14) instead.  */
1043 static const bfd_vma mips_n32_exec_plt0_entry[] =
1044 {
1045   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1046   0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/
1047   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1048   0x030ec023,	/* subu $24, $24, $14					*/
1049   0x03e07821,	/* move $15, $31	# 32-bit move (addu)		*/
1050   0x0018c082,	/* srl $24, $24, 2					*/
1051   0x0320f809,	/* jalr $25						*/
1052   0x2718fffe	/* subu $24, $24, 2					*/
1053 };
1054 
1055 /* The format of the first PLT entry in an N64 executable.  Different
1056    from N32 because of the increased size of GOT entries.  */
1057 static const bfd_vma mips_n64_exec_plt0_entry[] =
1058 {
1059   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1060   0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/
1061   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1062   0x030ec023,	/* subu $24, $24, $14					*/
1063   0x03e0782d,	/* move $15, $31	# 64-bit move (daddu)		*/
1064   0x0018c0c2,	/* srl $24, $24, 3					*/
1065   0x0320f809,	/* jalr $25						*/
1066   0x2718fffe	/* subu $24, $24, 2					*/
1067 };
1068 
1069 /* The format of the microMIPS first PLT entry in an O32 executable.
1070    We rely on v0 ($2) rather than t8 ($24) to contain the address
1071    of the GOTPLT entry handled, so this stub may only be used when
1072    all the subsequent PLT entries are microMIPS code too.
1073 
1074    The trailing NOP is for alignment and correct disassembly only.  */
1075 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1076 {
1077   0x7980, 0x0000,	/* addiupc $3, (&GOTPLT[0]) - .			*/
1078   0xff23, 0x0000,	/* lw $25, 0($3)				*/
1079   0x0535,		/* subu $2, $2, $3				*/
1080   0x2525,		/* srl $2, $2, 2				*/
1081   0x3302, 0xfffe,	/* subu $24, $2, 2				*/
1082   0x0dff,		/* move $15, $31				*/
1083   0x45f9,		/* jalrs $25					*/
1084   0x0f83,		/* move $28, $3					*/
1085   0x0c00		/* nop						*/
1086 };
1087 
1088 /* The format of the microMIPS first PLT entry in an O32 executable
1089    in the insn32 mode.  */
1090 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1091 {
1092   0x41bc, 0x0000,	/* lui $28, %hi(&GOTPLT[0])			*/
1093   0xff3c, 0x0000,	/* lw $25, %lo(&GOTPLT[0])($28)			*/
1094   0x339c, 0x0000,	/* addiu $28, $28, %lo(&GOTPLT[0])		*/
1095   0x0398, 0xc1d0,	/* subu $24, $24, $28				*/
1096   0x001f, 0x7950,	/* move $15, $31				*/
1097   0x0318, 0x1040,	/* srl $24, $24, 2				*/
1098   0x03f9, 0x0f3c,	/* jalr $25					*/
1099   0x3318, 0xfffe	/* subu $24, $24, 2				*/
1100 };
1101 
1102 /* The format of subsequent standard PLT entries.  */
1103 static const bfd_vma mips_exec_plt_entry[] =
1104 {
1105   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1106   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1107   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1108   0x03200008	/* jr $25					*/
1109 };
1110 
1111 static const bfd_vma mipsr6_exec_plt_entry[] =
1112 {
1113   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1114   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1115   0x03200009,	/* jr $25					*/
1116   0x25f80000	/* addiu $24, $15, %lo(.got.plt entry)		*/
1117 };
1118 
1119 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1120 {
1121   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1122   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1123   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1124   0xd8190000	/* jic $25, 0					*/
1125 };
1126 
1127 /* The format of subsequent MIPS16 o32 PLT entries.  We use v0 ($2)
1128    and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1129    directly addressable.  */
1130 static const bfd_vma mips16_o32_exec_plt_entry[] =
1131 {
1132   0xb203,		/* lw $2, 12($pc)			*/
1133   0x9a60,		/* lw $3, 0($2)				*/
1134   0x651a,		/* move $24, $2				*/
1135   0xeb00,		/* jr $3				*/
1136   0x653b,		/* move $25, $3				*/
1137   0x6500,		/* nop					*/
1138   0x0000, 0x0000	/* .word (.got.plt entry)		*/
1139 };
1140 
1141 /* The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
1142    as a temporary because t8 ($24) is not addressable with ADDIUPC.  */
1143 static const bfd_vma micromips_o32_exec_plt_entry[] =
1144 {
1145   0x7900, 0x0000,	/* addiupc $2, (.got.plt entry) - .	*/
1146   0xff22, 0x0000,	/* lw $25, 0($2)			*/
1147   0x4599,		/* jr $25				*/
1148   0x0f02		/* move $24, $2				*/
1149 };
1150 
1151 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode.  */
1152 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1153 {
1154   0x41af, 0x0000,	/* lui $15, %hi(.got.plt entry)		*/
1155   0xff2f, 0x0000,	/* lw $25, %lo(.got.plt entry)($15)	*/
1156   0x0019, 0x0f3c,	/* jr $25				*/
1157   0x330f, 0x0000	/* addiu $24, $15, %lo(.got.plt entry)	*/
1158 };
1159 
1160 /* The format of the first PLT entry in a VxWorks executable.  */
1161 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1162 {
1163   0x3c190000,	/* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)		*/
1164   0x27390000,	/* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)	*/
1165   0x8f390008,	/* lw t9, 8(t9)					*/
1166   0x00000000,	/* nop						*/
1167   0x03200008,	/* jr t9					*/
1168   0x00000000	/* nop						*/
1169 };
1170 
1171 /* The format of subsequent PLT entries.  */
1172 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1173 {
1174   0x10000000,	/* b .PLT_resolver			*/
1175   0x24180000,	/* li t8, <pltindex>			*/
1176   0x3c190000,	/* lui t9, %hi(<.got.plt slot>)		*/
1177   0x27390000,	/* addiu t9, t9, %lo(<.got.plt slot>)	*/
1178   0x8f390000,	/* lw t9, 0(t9)				*/
1179   0x00000000,	/* nop					*/
1180   0x03200008,	/* jr t9				*/
1181   0x00000000	/* nop					*/
1182 };
1183 
1184 /* The format of the first PLT entry in a VxWorks shared object.  */
1185 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1186 {
1187   0x8f990008,	/* lw t9, 8(gp)		*/
1188   0x00000000,	/* nop			*/
1189   0x03200008,	/* jr t9		*/
1190   0x00000000,	/* nop			*/
1191   0x00000000,	/* nop			*/
1192   0x00000000	/* nop			*/
1193 };
1194 
1195 /* The format of subsequent PLT entries.  */
1196 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1197 {
1198   0x10000000,	/* b .PLT_resolver	*/
1199   0x24180000	/* li t8, <pltindex>	*/
1200 };
1201 
1202 /* microMIPS 32-bit opcode helper installer.  */
1203 
1204 static void
bfd_put_micromips_32(const bfd * abfd,bfd_vma opcode,bfd_byte * ptr)1205 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1206 {
1207   bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1208   bfd_put_16 (abfd,  opcode        & 0xffff, ptr + 2);
1209 }
1210 
1211 /* microMIPS 32-bit opcode helper retriever.  */
1212 
1213 static bfd_vma
bfd_get_micromips_32(const bfd * abfd,const bfd_byte * ptr)1214 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1215 {
1216   return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1217 }
1218 
1219 /* Look up an entry in a MIPS ELF linker hash table.  */
1220 
1221 #define mips_elf_link_hash_lookup(table, string, create, copy, follow)	\
1222   ((struct mips_elf_link_hash_entry *)					\
1223    elf_link_hash_lookup (&(table)->root, (string), (create),		\
1224 			 (copy), (follow)))
1225 
1226 /* Traverse a MIPS ELF linker hash table.  */
1227 
1228 #define mips_elf_link_hash_traverse(table, func, info)			\
1229   (elf_link_hash_traverse						\
1230    (&(table)->root,							\
1231     (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
1232     (info)))
1233 
1234 /* Find the base offsets for thread-local storage in this object,
1235    for GD/LD and IE/LE respectively.  */
1236 
1237 #define TP_OFFSET 0x7000
1238 #define DTP_OFFSET 0x8000
1239 
1240 static bfd_vma
dtprel_base(struct bfd_link_info * info)1241 dtprel_base (struct bfd_link_info *info)
1242 {
1243   /* If tls_sec is NULL, we should have signalled an error already.  */
1244   if (elf_hash_table (info)->tls_sec == NULL)
1245     return 0;
1246   return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1247 }
1248 
1249 static bfd_vma
tprel_base(struct bfd_link_info * info)1250 tprel_base (struct bfd_link_info *info)
1251 {
1252   /* If tls_sec is NULL, we should have signalled an error already.  */
1253   if (elf_hash_table (info)->tls_sec == NULL)
1254     return 0;
1255   return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1256 }
1257 
1258 /* Create an entry in a MIPS ELF linker hash table.  */
1259 
1260 static struct bfd_hash_entry *
mips_elf_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)1261 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1262 			    struct bfd_hash_table *table, const char *string)
1263 {
1264   struct mips_elf_link_hash_entry *ret =
1265     (struct mips_elf_link_hash_entry *) entry;
1266 
1267   /* Allocate the structure if it has not already been allocated by a
1268      subclass.  */
1269   if (ret == NULL)
1270     ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1271   if (ret == NULL)
1272     return (struct bfd_hash_entry *) ret;
1273 
1274   /* Call the allocation method of the superclass.  */
1275   ret = ((struct mips_elf_link_hash_entry *)
1276 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1277 				     table, string));
1278   if (ret != NULL)
1279     {
1280       /* Set local fields.  */
1281       memset (&ret->esym, 0, sizeof (EXTR));
1282       /* We use -2 as a marker to indicate that the information has
1283 	 not been set.  -1 means there is no associated ifd.  */
1284       ret->esym.ifd = -2;
1285       ret->la25_stub = 0;
1286       ret->possibly_dynamic_relocs = 0;
1287       ret->fn_stub = NULL;
1288       ret->call_stub = NULL;
1289       ret->call_fp_stub = NULL;
1290       ret->global_got_area = GGA_NONE;
1291       ret->got_only_for_calls = TRUE;
1292       ret->readonly_reloc = FALSE;
1293       ret->has_static_relocs = FALSE;
1294       ret->no_fn_stub = FALSE;
1295       ret->need_fn_stub = FALSE;
1296       ret->has_nonpic_branches = FALSE;
1297       ret->needs_lazy_stub = FALSE;
1298       ret->use_plt_entry = FALSE;
1299     }
1300 
1301   return (struct bfd_hash_entry *) ret;
1302 }
1303 
1304 /* Allocate MIPS ELF private object data.  */
1305 
1306 bfd_boolean
_bfd_mips_elf_mkobject(bfd * abfd)1307 _bfd_mips_elf_mkobject (bfd *abfd)
1308 {
1309   return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1310 				  MIPS_ELF_DATA);
1311 }
1312 
1313 bfd_boolean
_bfd_mips_elf_new_section_hook(bfd * abfd,asection * sec)1314 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1315 {
1316   if (!sec->used_by_bfd)
1317     {
1318       struct _mips_elf_section_data *sdata;
1319       bfd_size_type amt = sizeof (*sdata);
1320 
1321       sdata = bfd_zalloc (abfd, amt);
1322       if (sdata == NULL)
1323 	return FALSE;
1324       sec->used_by_bfd = sdata;
1325     }
1326 
1327   return _bfd_elf_new_section_hook (abfd, sec);
1328 }
1329 
1330 /* Read ECOFF debugging information from a .mdebug section into a
1331    ecoff_debug_info structure.  */
1332 
1333 bfd_boolean
_bfd_mips_elf_read_ecoff_info(bfd * abfd,asection * section,struct ecoff_debug_info * debug)1334 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1335 			       struct ecoff_debug_info *debug)
1336 {
1337   HDRR *symhdr;
1338   const struct ecoff_debug_swap *swap;
1339   char *ext_hdr;
1340 
1341   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1342   memset (debug, 0, sizeof (*debug));
1343 
1344   ext_hdr = bfd_malloc (swap->external_hdr_size);
1345   if (ext_hdr == NULL && swap->external_hdr_size != 0)
1346     goto error_return;
1347 
1348   if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1349 				  swap->external_hdr_size))
1350     goto error_return;
1351 
1352   symhdr = &debug->symbolic_header;
1353   (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1354 
1355   /* The symbolic header contains absolute file offsets and sizes to
1356      read.  */
1357 #define READ(ptr, offset, count, size, type)				\
1358   if (symhdr->count == 0)						\
1359     debug->ptr = NULL;							\
1360   else									\
1361     {									\
1362       bfd_size_type amt = (bfd_size_type) size * symhdr->count;		\
1363       debug->ptr = bfd_malloc (amt);					\
1364       if (debug->ptr == NULL)						\
1365 	goto error_return;						\
1366       if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0		\
1367 	  || bfd_bread (debug->ptr, amt, abfd) != amt)			\
1368 	goto error_return;						\
1369     }
1370 
1371   READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1372   READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1373   READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1374   READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1375   READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1376   READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1377 	union aux_ext *);
1378   READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1379   READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1380   READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1381   READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1382   READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1383 #undef READ
1384 
1385   debug->fdr = NULL;
1386 
1387   return TRUE;
1388 
1389  error_return:
1390   if (ext_hdr != NULL)
1391     free (ext_hdr);
1392   if (debug->line != NULL)
1393     free (debug->line);
1394   if (debug->external_dnr != NULL)
1395     free (debug->external_dnr);
1396   if (debug->external_pdr != NULL)
1397     free (debug->external_pdr);
1398   if (debug->external_sym != NULL)
1399     free (debug->external_sym);
1400   if (debug->external_opt != NULL)
1401     free (debug->external_opt);
1402   if (debug->external_aux != NULL)
1403     free (debug->external_aux);
1404   if (debug->ss != NULL)
1405     free (debug->ss);
1406   if (debug->ssext != NULL)
1407     free (debug->ssext);
1408   if (debug->external_fdr != NULL)
1409     free (debug->external_fdr);
1410   if (debug->external_rfd != NULL)
1411     free (debug->external_rfd);
1412   if (debug->external_ext != NULL)
1413     free (debug->external_ext);
1414   return FALSE;
1415 }
1416 
1417 /* Swap RPDR (runtime procedure table entry) for output.  */
1418 
1419 static void
ecoff_swap_rpdr_out(bfd * abfd,const RPDR * in,struct rpdr_ext * ex)1420 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1421 {
1422   H_PUT_S32 (abfd, in->adr, ex->p_adr);
1423   H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1424   H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1425   H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1426   H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1427   H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1428 
1429   H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1430   H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1431 
1432   H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1433 }
1434 
1435 /* Create a runtime procedure table from the .mdebug section.  */
1436 
1437 static bfd_boolean
mips_elf_create_procedure_table(void * handle,bfd * abfd,struct bfd_link_info * info,asection * s,struct ecoff_debug_info * debug)1438 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1439 				 struct bfd_link_info *info, asection *s,
1440 				 struct ecoff_debug_info *debug)
1441 {
1442   const struct ecoff_debug_swap *swap;
1443   HDRR *hdr = &debug->symbolic_header;
1444   RPDR *rpdr, *rp;
1445   struct rpdr_ext *erp;
1446   void *rtproc;
1447   struct pdr_ext *epdr;
1448   struct sym_ext *esym;
1449   char *ss, **sv;
1450   char *str;
1451   bfd_size_type size;
1452   bfd_size_type count;
1453   unsigned long sindex;
1454   unsigned long i;
1455   PDR pdr;
1456   SYMR sym;
1457   const char *no_name_func = _("static procedure (no name)");
1458 
1459   epdr = NULL;
1460   rpdr = NULL;
1461   esym = NULL;
1462   ss = NULL;
1463   sv = NULL;
1464 
1465   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1466 
1467   sindex = strlen (no_name_func) + 1;
1468   count = hdr->ipdMax;
1469   if (count > 0)
1470     {
1471       size = swap->external_pdr_size;
1472 
1473       epdr = bfd_malloc (size * count);
1474       if (epdr == NULL)
1475 	goto error_return;
1476 
1477       if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1478 	goto error_return;
1479 
1480       size = sizeof (RPDR);
1481       rp = rpdr = bfd_malloc (size * count);
1482       if (rpdr == NULL)
1483 	goto error_return;
1484 
1485       size = sizeof (char *);
1486       sv = bfd_malloc (size * count);
1487       if (sv == NULL)
1488 	goto error_return;
1489 
1490       count = hdr->isymMax;
1491       size = swap->external_sym_size;
1492       esym = bfd_malloc (size * count);
1493       if (esym == NULL)
1494 	goto error_return;
1495 
1496       if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1497 	goto error_return;
1498 
1499       count = hdr->issMax;
1500       ss = bfd_malloc (count);
1501       if (ss == NULL)
1502 	goto error_return;
1503       if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1504 	goto error_return;
1505 
1506       count = hdr->ipdMax;
1507       for (i = 0; i < (unsigned long) count; i++, rp++)
1508 	{
1509 	  (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1510 	  (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1511 	  rp->adr = sym.value;
1512 	  rp->regmask = pdr.regmask;
1513 	  rp->regoffset = pdr.regoffset;
1514 	  rp->fregmask = pdr.fregmask;
1515 	  rp->fregoffset = pdr.fregoffset;
1516 	  rp->frameoffset = pdr.frameoffset;
1517 	  rp->framereg = pdr.framereg;
1518 	  rp->pcreg = pdr.pcreg;
1519 	  rp->irpss = sindex;
1520 	  sv[i] = ss + sym.iss;
1521 	  sindex += strlen (sv[i]) + 1;
1522 	}
1523     }
1524 
1525   size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1526   size = BFD_ALIGN (size, 16);
1527   rtproc = bfd_alloc (abfd, size);
1528   if (rtproc == NULL)
1529     {
1530       mips_elf_hash_table (info)->procedure_count = 0;
1531       goto error_return;
1532     }
1533 
1534   mips_elf_hash_table (info)->procedure_count = count + 2;
1535 
1536   erp = rtproc;
1537   memset (erp, 0, sizeof (struct rpdr_ext));
1538   erp++;
1539   str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1540   strcpy (str, no_name_func);
1541   str += strlen (no_name_func) + 1;
1542   for (i = 0; i < count; i++)
1543     {
1544       ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1545       strcpy (str, sv[i]);
1546       str += strlen (sv[i]) + 1;
1547     }
1548   H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1549 
1550   /* Set the size and contents of .rtproc section.  */
1551   s->size = size;
1552   s->contents = rtproc;
1553 
1554   /* Skip this section later on (I don't think this currently
1555      matters, but someday it might).  */
1556   s->map_head.link_order = NULL;
1557 
1558   if (epdr != NULL)
1559     free (epdr);
1560   if (rpdr != NULL)
1561     free (rpdr);
1562   if (esym != NULL)
1563     free (esym);
1564   if (ss != NULL)
1565     free (ss);
1566   if (sv != NULL)
1567     free (sv);
1568 
1569   return TRUE;
1570 
1571  error_return:
1572   if (epdr != NULL)
1573     free (epdr);
1574   if (rpdr != NULL)
1575     free (rpdr);
1576   if (esym != NULL)
1577     free (esym);
1578   if (ss != NULL)
1579     free (ss);
1580   if (sv != NULL)
1581     free (sv);
1582   return FALSE;
1583 }
1584 
1585 /* We're going to create a stub for H.  Create a symbol for the stub's
1586    value and size, to help make the disassembly easier to read.  */
1587 
1588 static bfd_boolean
mips_elf_create_stub_symbol(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h,const char * prefix,asection * s,bfd_vma value,bfd_vma size)1589 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1590 			     struct mips_elf_link_hash_entry *h,
1591 			     const char *prefix, asection *s, bfd_vma value,
1592 			     bfd_vma size)
1593 {
1594   struct bfd_link_hash_entry *bh;
1595   struct elf_link_hash_entry *elfh;
1596   const char *name;
1597 
1598   if (ELF_ST_IS_MICROMIPS (h->root.other))
1599     value |= 1;
1600 
1601   /* Create a new symbol.  */
1602   name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1603   bh = NULL;
1604   if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1605 					 BSF_LOCAL, s, value, NULL,
1606 					 TRUE, FALSE, &bh))
1607     return FALSE;
1608 
1609   /* Make it a local function.  */
1610   elfh = (struct elf_link_hash_entry *) bh;
1611   elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1612   elfh->size = size;
1613   elfh->forced_local = 1;
1614   return TRUE;
1615 }
1616 
1617 /* We're about to redefine H.  Create a symbol to represent H's
1618    current value and size, to help make the disassembly easier
1619    to read.  */
1620 
1621 static bfd_boolean
mips_elf_create_shadow_symbol(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h,const char * prefix)1622 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1623 			       struct mips_elf_link_hash_entry *h,
1624 			       const char *prefix)
1625 {
1626   struct bfd_link_hash_entry *bh;
1627   struct elf_link_hash_entry *elfh;
1628   const char *name;
1629   asection *s;
1630   bfd_vma value;
1631 
1632   /* Read the symbol's value.  */
1633   BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1634 	      || h->root.root.type == bfd_link_hash_defweak);
1635   s = h->root.root.u.def.section;
1636   value = h->root.root.u.def.value;
1637 
1638   /* Create a new symbol.  */
1639   name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1640   bh = NULL;
1641   if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1642 					 BSF_LOCAL, s, value, NULL,
1643 					 TRUE, FALSE, &bh))
1644     return FALSE;
1645 
1646   /* Make it local and copy the other attributes from H.  */
1647   elfh = (struct elf_link_hash_entry *) bh;
1648   elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1649   elfh->other = h->root.other;
1650   elfh->size = h->root.size;
1651   elfh->forced_local = 1;
1652   return TRUE;
1653 }
1654 
1655 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1656    function rather than to a hard-float stub.  */
1657 
1658 static bfd_boolean
section_allows_mips16_refs_p(asection * section)1659 section_allows_mips16_refs_p (asection *section)
1660 {
1661   const char *name;
1662 
1663   name = bfd_get_section_name (section->owner, section);
1664   return (FN_STUB_P (name)
1665 	  || CALL_STUB_P (name)
1666 	  || CALL_FP_STUB_P (name)
1667 	  || strcmp (name, ".pdr") == 0);
1668 }
1669 
1670 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1671    stub section of some kind.  Return the R_SYMNDX of the target
1672    function, or 0 if we can't decide which function that is.  */
1673 
1674 static unsigned long
mips16_stub_symndx(const struct elf_backend_data * bed,asection * sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * relocs,const Elf_Internal_Rela * relend)1675 mips16_stub_symndx (const struct elf_backend_data *bed,
1676 		    asection *sec ATTRIBUTE_UNUSED,
1677 		    const Elf_Internal_Rela *relocs,
1678 		    const Elf_Internal_Rela *relend)
1679 {
1680   int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1681   const Elf_Internal_Rela *rel;
1682 
1683   /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1684      one in a compound relocation.  */
1685   for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1686     if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1687       return ELF_R_SYM (sec->owner, rel->r_info);
1688 
1689   /* Otherwise trust the first relocation, whatever its kind.  This is
1690      the traditional behavior.  */
1691   if (relocs < relend)
1692     return ELF_R_SYM (sec->owner, relocs->r_info);
1693 
1694   return 0;
1695 }
1696 
1697 /* Check the mips16 stubs for a particular symbol, and see if we can
1698    discard them.  */
1699 
1700 static void
mips_elf_check_mips16_stubs(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h)1701 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1702 			     struct mips_elf_link_hash_entry *h)
1703 {
1704   /* Dynamic symbols must use the standard call interface, in case other
1705      objects try to call them.  */
1706   if (h->fn_stub != NULL
1707       && h->root.dynindx != -1)
1708     {
1709       mips_elf_create_shadow_symbol (info, h, ".mips16.");
1710       h->need_fn_stub = TRUE;
1711     }
1712 
1713   if (h->fn_stub != NULL
1714       && ! h->need_fn_stub)
1715     {
1716       /* We don't need the fn_stub; the only references to this symbol
1717          are 16 bit calls.  Clobber the size to 0 to prevent it from
1718          being included in the link.  */
1719       h->fn_stub->size = 0;
1720       h->fn_stub->flags &= ~SEC_RELOC;
1721       h->fn_stub->reloc_count = 0;
1722       h->fn_stub->flags |= SEC_EXCLUDE;
1723     }
1724 
1725   if (h->call_stub != NULL
1726       && ELF_ST_IS_MIPS16 (h->root.other))
1727     {
1728       /* We don't need the call_stub; this is a 16 bit function, so
1729          calls from other 16 bit functions are OK.  Clobber the size
1730          to 0 to prevent it from being included in the link.  */
1731       h->call_stub->size = 0;
1732       h->call_stub->flags &= ~SEC_RELOC;
1733       h->call_stub->reloc_count = 0;
1734       h->call_stub->flags |= SEC_EXCLUDE;
1735     }
1736 
1737   if (h->call_fp_stub != NULL
1738       && ELF_ST_IS_MIPS16 (h->root.other))
1739     {
1740       /* We don't need the call_stub; this is a 16 bit function, so
1741          calls from other 16 bit functions are OK.  Clobber the size
1742          to 0 to prevent it from being included in the link.  */
1743       h->call_fp_stub->size = 0;
1744       h->call_fp_stub->flags &= ~SEC_RELOC;
1745       h->call_fp_stub->reloc_count = 0;
1746       h->call_fp_stub->flags |= SEC_EXCLUDE;
1747     }
1748 }
1749 
1750 /* Hashtable callbacks for mips_elf_la25_stubs.  */
1751 
1752 static hashval_t
mips_elf_la25_stub_hash(const void * entry_)1753 mips_elf_la25_stub_hash (const void *entry_)
1754 {
1755   const struct mips_elf_la25_stub *entry;
1756 
1757   entry = (struct mips_elf_la25_stub *) entry_;
1758   return entry->h->root.root.u.def.section->id
1759     + entry->h->root.root.u.def.value;
1760 }
1761 
1762 static int
mips_elf_la25_stub_eq(const void * entry1_,const void * entry2_)1763 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1764 {
1765   const struct mips_elf_la25_stub *entry1, *entry2;
1766 
1767   entry1 = (struct mips_elf_la25_stub *) entry1_;
1768   entry2 = (struct mips_elf_la25_stub *) entry2_;
1769   return ((entry1->h->root.root.u.def.section
1770 	   == entry2->h->root.root.u.def.section)
1771 	  && (entry1->h->root.root.u.def.value
1772 	      == entry2->h->root.root.u.def.value));
1773 }
1774 
1775 /* Called by the linker to set up the la25 stub-creation code.  FN is
1776    the linker's implementation of add_stub_function.  Return true on
1777    success.  */
1778 
1779 bfd_boolean
_bfd_mips_elf_init_stubs(struct bfd_link_info * info,asection * (* fn)(const char *,asection *,asection *))1780 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1781 			  asection *(*fn) (const char *, asection *,
1782 					   asection *))
1783 {
1784   struct mips_elf_link_hash_table *htab;
1785 
1786   htab = mips_elf_hash_table (info);
1787   if (htab == NULL)
1788     return FALSE;
1789 
1790   htab->add_stub_section = fn;
1791   htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1792 				      mips_elf_la25_stub_eq, NULL);
1793   if (htab->la25_stubs == NULL)
1794     return FALSE;
1795 
1796   return TRUE;
1797 }
1798 
1799 /* Return true if H is a locally-defined PIC function, in the sense
1800    that it or its fn_stub might need $25 to be valid on entry.
1801    Note that MIPS16 functions set up $gp using PC-relative instructions,
1802    so they themselves never need $25 to be valid.  Only non-MIPS16
1803    entry points are of interest here.  */
1804 
1805 static bfd_boolean
mips_elf_local_pic_function_p(struct mips_elf_link_hash_entry * h)1806 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1807 {
1808   return ((h->root.root.type == bfd_link_hash_defined
1809 	   || h->root.root.type == bfd_link_hash_defweak)
1810 	  && h->root.def_regular
1811 	  && !bfd_is_abs_section (h->root.root.u.def.section)
1812 	  && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 	      || (h->fn_stub && h->need_fn_stub))
1814 	  && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 	      || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817 
1818 /* Set *SEC to the input section that contains the target of STUB.
1819    Return the offset of the target from the start of that section.  */
1820 
1821 static bfd_vma
mips_elf_get_la25_target(struct mips_elf_la25_stub * stub,asection ** sec)1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 			  asection **sec)
1824 {
1825   if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826     {
1827       BFD_ASSERT (stub->h->need_fn_stub);
1828       *sec = stub->h->fn_stub;
1829       return 0;
1830     }
1831   else
1832     {
1833       *sec = stub->h->root.root.u.def.section;
1834       return stub->h->root.root.u.def.value;
1835     }
1836 }
1837 
1838 /* STUB describes an la25 stub that we have decided to implement
1839    by inserting an LUI/ADDIU pair before the target function.
1840    Create the section and redirect the function symbol to it.  */
1841 
1842 static bfd_boolean
mips_elf_add_la25_intro(struct mips_elf_la25_stub * stub,struct bfd_link_info * info)1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 			 struct bfd_link_info *info)
1845 {
1846   struct mips_elf_link_hash_table *htab;
1847   char *name;
1848   asection *s, *input_section;
1849   unsigned int align;
1850 
1851   htab = mips_elf_hash_table (info);
1852   if (htab == NULL)
1853     return FALSE;
1854 
1855   /* Create a unique name for the new section.  */
1856   name = bfd_malloc (11 + sizeof (".text.stub."));
1857   if (name == NULL)
1858     return FALSE;
1859   sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860 
1861   /* Create the section.  */
1862   mips_elf_get_la25_target (stub, &input_section);
1863   s = htab->add_stub_section (name, input_section,
1864 			      input_section->output_section);
1865   if (s == NULL)
1866     return FALSE;
1867 
1868   /* Make sure that any padding goes before the stub.  */
1869   align = input_section->alignment_power;
1870   if (!bfd_set_section_alignment (s->owner, s, align))
1871     return FALSE;
1872   if (align > 3)
1873     s->size = (1 << align) - 8;
1874 
1875   /* Create a symbol for the stub.  */
1876   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877   stub->stub_section = s;
1878   stub->offset = s->size;
1879 
1880   /* Allocate room for it.  */
1881   s->size += 8;
1882   return TRUE;
1883 }
1884 
1885 /* STUB describes an la25 stub that we have decided to implement
1886    with a separate trampoline.  Allocate room for it and redirect
1887    the function symbol to it.  */
1888 
1889 static bfd_boolean
mips_elf_add_la25_trampoline(struct mips_elf_la25_stub * stub,struct bfd_link_info * info)1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 			      struct bfd_link_info *info)
1892 {
1893   struct mips_elf_link_hash_table *htab;
1894   asection *s;
1895 
1896   htab = mips_elf_hash_table (info);
1897   if (htab == NULL)
1898     return FALSE;
1899 
1900   /* Create a trampoline section, if we haven't already.  */
1901   s = htab->strampoline;
1902   if (s == NULL)
1903     {
1904       asection *input_section = stub->h->root.root.u.def.section;
1905       s = htab->add_stub_section (".text", NULL,
1906 				  input_section->output_section);
1907       if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 	return FALSE;
1909       htab->strampoline = s;
1910     }
1911 
1912   /* Create a symbol for the stub.  */
1913   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914   stub->stub_section = s;
1915   stub->offset = s->size;
1916 
1917   /* Allocate room for it.  */
1918   s->size += 16;
1919   return TRUE;
1920 }
1921 
1922 /* H describes a symbol that needs an la25 stub.  Make sure that an
1923    appropriate stub exists and point H at it.  */
1924 
1925 static bfd_boolean
mips_elf_add_la25_stub(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h)1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 			struct mips_elf_link_hash_entry *h)
1928 {
1929   struct mips_elf_link_hash_table *htab;
1930   struct mips_elf_la25_stub search, *stub;
1931   bfd_boolean use_trampoline_p;
1932   asection *s;
1933   bfd_vma value;
1934   void **slot;
1935 
1936   /* Describe the stub we want.  */
1937   search.stub_section = NULL;
1938   search.offset = 0;
1939   search.h = h;
1940 
1941   /* See if we've already created an equivalent stub.  */
1942   htab = mips_elf_hash_table (info);
1943   if (htab == NULL)
1944     return FALSE;
1945 
1946   slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947   if (slot == NULL)
1948     return FALSE;
1949 
1950   stub = (struct mips_elf_la25_stub *) *slot;
1951   if (stub != NULL)
1952     {
1953       /* We can reuse the existing stub.  */
1954       h->la25_stub = stub;
1955       return TRUE;
1956     }
1957 
1958   /* Create a permanent copy of ENTRY and add it to the hash table.  */
1959   stub = bfd_malloc (sizeof (search));
1960   if (stub == NULL)
1961     return FALSE;
1962   *stub = search;
1963   *slot = stub;
1964 
1965   /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966      of the section and if we would need no more than 2 nops.  */
1967   value = mips_elf_get_la25_target (stub, &s);
1968   use_trampoline_p = (value != 0 || s->alignment_power > 4);
1969 
1970   h->la25_stub = stub;
1971   return (use_trampoline_p
1972 	  ? mips_elf_add_la25_trampoline (stub, info)
1973 	  : mips_elf_add_la25_intro (stub, info));
1974 }
1975 
1976 /* A mips_elf_link_hash_traverse callback that is called before sizing
1977    sections.  DATA points to a mips_htab_traverse_info structure.  */
1978 
1979 static bfd_boolean
mips_elf_check_symbols(struct mips_elf_link_hash_entry * h,void * data)1980 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1981 {
1982   struct mips_htab_traverse_info *hti;
1983 
1984   hti = (struct mips_htab_traverse_info *) data;
1985   if (!hti->info->relocatable)
1986     mips_elf_check_mips16_stubs (hti->info, h);
1987 
1988   if (mips_elf_local_pic_function_p (h))
1989     {
1990       /* PR 12845: If H is in a section that has been garbage
1991 	 collected it will have its output section set to *ABS*.  */
1992       if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1993 	return TRUE;
1994 
1995       /* H is a function that might need $25 to be valid on entry.
1996 	 If we're creating a non-PIC relocatable object, mark H as
1997 	 being PIC.  If we're creating a non-relocatable object with
1998 	 non-PIC branches and jumps to H, make sure that H has an la25
1999 	 stub.  */
2000       if (hti->info->relocatable)
2001 	{
2002 	  if (!PIC_OBJECT_P (hti->output_bfd))
2003 	    h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2004 	}
2005       else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2006 	{
2007 	  hti->error = TRUE;
2008 	  return FALSE;
2009 	}
2010     }
2011   return TRUE;
2012 }
2013 
2014 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2015    Most mips16 instructions are 16 bits, but these instructions
2016    are 32 bits.
2017 
2018    The format of these instructions is:
2019 
2020    +--------------+--------------------------------+
2021    |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
2022    +--------------+--------------------------------+
2023    |                Immediate  15:0                |
2024    +-----------------------------------------------+
2025 
2026    JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
2027    Note that the immediate value in the first word is swapped.
2028 
2029    When producing a relocatable object file, R_MIPS16_26 is
2030    handled mostly like R_MIPS_26.  In particular, the addend is
2031    stored as a straight 26-bit value in a 32-bit instruction.
2032    (gas makes life simpler for itself by never adjusting a
2033    R_MIPS16_26 reloc to be against a section, so the addend is
2034    always zero).  However, the 32 bit instruction is stored as 2
2035    16-bit values, rather than a single 32-bit value.  In a
2036    big-endian file, the result is the same; in a little-endian
2037    file, the two 16-bit halves of the 32 bit value are swapped.
2038    This is so that a disassembler can recognize the jal
2039    instruction.
2040 
2041    When doing a final link, R_MIPS16_26 is treated as a 32 bit
2042    instruction stored as two 16-bit values.  The addend A is the
2043    contents of the targ26 field.  The calculation is the same as
2044    R_MIPS_26.  When storing the calculated value, reorder the
2045    immediate value as shown above, and don't forget to store the
2046    value as two 16-bit values.
2047 
2048    To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2049    defined as
2050 
2051    big-endian:
2052    +--------+----------------------+
2053    |        |                      |
2054    |        |    targ26-16         |
2055    |31    26|25                   0|
2056    +--------+----------------------+
2057 
2058    little-endian:
2059    +----------+------+-------------+
2060    |          |      |             |
2061    |  sub1    |      |     sub2    |
2062    |0        9|10  15|16         31|
2063    +----------+--------------------+
2064    where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2065    ((sub1 << 16) | sub2)).
2066 
2067    When producing a relocatable object file, the calculation is
2068    (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2069    When producing a fully linked file, the calculation is
2070    let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071    ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2072 
2073    The table below lists the other MIPS16 instruction relocations.
2074    Each one is calculated in the same way as the non-MIPS16 relocation
2075    given on the right, but using the extended MIPS16 layout of 16-bit
2076    immediate fields:
2077 
2078 	R_MIPS16_GPREL		R_MIPS_GPREL16
2079 	R_MIPS16_GOT16		R_MIPS_GOT16
2080 	R_MIPS16_CALL16		R_MIPS_CALL16
2081 	R_MIPS16_HI16		R_MIPS_HI16
2082 	R_MIPS16_LO16		R_MIPS_LO16
2083 
2084    A typical instruction will have a format like this:
2085 
2086    +--------------+--------------------------------+
2087    |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
2088    +--------------+--------------------------------+
2089    |    Major     |   rx   |   ry   |   Imm  4:0   |
2090    +--------------+--------------------------------+
2091 
2092    EXTEND is the five bit value 11110.  Major is the instruction
2093    opcode.
2094 
2095    All we need to do here is shuffle the bits appropriately.
2096    As above, the two 16-bit halves must be swapped on a
2097    little-endian system.  */
2098 
2099 static inline bfd_boolean
mips16_reloc_p(int r_type)2100 mips16_reloc_p (int r_type)
2101 {
2102   switch (r_type)
2103     {
2104     case R_MIPS16_26:
2105     case R_MIPS16_GPREL:
2106     case R_MIPS16_GOT16:
2107     case R_MIPS16_CALL16:
2108     case R_MIPS16_HI16:
2109     case R_MIPS16_LO16:
2110     case R_MIPS16_TLS_GD:
2111     case R_MIPS16_TLS_LDM:
2112     case R_MIPS16_TLS_DTPREL_HI16:
2113     case R_MIPS16_TLS_DTPREL_LO16:
2114     case R_MIPS16_TLS_GOTTPREL:
2115     case R_MIPS16_TLS_TPREL_HI16:
2116     case R_MIPS16_TLS_TPREL_LO16:
2117       return TRUE;
2118 
2119     default:
2120       return FALSE;
2121     }
2122 }
2123 
2124 /* Check if a microMIPS reloc.  */
2125 
2126 static inline bfd_boolean
micromips_reloc_p(unsigned int r_type)2127 micromips_reloc_p (unsigned int r_type)
2128 {
2129   return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2130 }
2131 
2132 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2133    on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
2134    and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.  */
2135 
2136 static inline bfd_boolean
micromips_reloc_shuffle_p(unsigned int r_type)2137 micromips_reloc_shuffle_p (unsigned int r_type)
2138 {
2139   return (micromips_reloc_p (r_type)
2140 	  && r_type != R_MICROMIPS_PC7_S1
2141 	  && r_type != R_MICROMIPS_PC10_S1);
2142 }
2143 
2144 static inline bfd_boolean
got16_reloc_p(int r_type)2145 got16_reloc_p (int r_type)
2146 {
2147   return (r_type == R_MIPS_GOT16
2148 	  || r_type == R_MIPS16_GOT16
2149 	  || r_type == R_MICROMIPS_GOT16);
2150 }
2151 
2152 static inline bfd_boolean
call16_reloc_p(int r_type)2153 call16_reloc_p (int r_type)
2154 {
2155   return (r_type == R_MIPS_CALL16
2156 	  || r_type == R_MIPS16_CALL16
2157 	  || r_type == R_MICROMIPS_CALL16);
2158 }
2159 
2160 static inline bfd_boolean
got_disp_reloc_p(unsigned int r_type)2161 got_disp_reloc_p (unsigned int r_type)
2162 {
2163   return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2164 }
2165 
2166 static inline bfd_boolean
got_page_reloc_p(unsigned int r_type)2167 got_page_reloc_p (unsigned int r_type)
2168 {
2169   return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2170 }
2171 
2172 static inline bfd_boolean
got_ofst_reloc_p(unsigned int r_type)2173 got_ofst_reloc_p (unsigned int r_type)
2174 {
2175   return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2176 }
2177 
2178 static inline bfd_boolean
got_hi16_reloc_p(unsigned int r_type)2179 got_hi16_reloc_p (unsigned int r_type)
2180 {
2181   return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2182 }
2183 
2184 static inline bfd_boolean
got_lo16_reloc_p(unsigned int r_type)2185 got_lo16_reloc_p (unsigned int r_type)
2186 {
2187   return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2188 }
2189 
2190 static inline bfd_boolean
call_hi16_reloc_p(unsigned int r_type)2191 call_hi16_reloc_p (unsigned int r_type)
2192 {
2193   return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2194 }
2195 
2196 static inline bfd_boolean
call_lo16_reloc_p(unsigned int r_type)2197 call_lo16_reloc_p (unsigned int r_type)
2198 {
2199   return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2200 }
2201 
2202 static inline bfd_boolean
hi16_reloc_p(int r_type)2203 hi16_reloc_p (int r_type)
2204 {
2205   return (r_type == R_MIPS_HI16
2206 	  || r_type == R_MIPS16_HI16
2207 	  || r_type == R_MICROMIPS_HI16
2208 	  || r_type == R_MIPS_PCHI16);
2209 }
2210 
2211 static inline bfd_boolean
lo16_reloc_p(int r_type)2212 lo16_reloc_p (int r_type)
2213 {
2214   return (r_type == R_MIPS_LO16
2215 	  || r_type == R_MIPS16_LO16
2216 	  || r_type == R_MICROMIPS_LO16
2217 	  || r_type == R_MIPS_PCLO16);
2218 }
2219 
2220 static inline bfd_boolean
mips16_call_reloc_p(int r_type)2221 mips16_call_reloc_p (int r_type)
2222 {
2223   return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2224 }
2225 
2226 static inline bfd_boolean
jal_reloc_p(int r_type)2227 jal_reloc_p (int r_type)
2228 {
2229   return (r_type == R_MIPS_26
2230 	  || r_type == R_MIPS16_26
2231 	  || r_type == R_MICROMIPS_26_S1);
2232 }
2233 
2234 static inline bfd_boolean
aligned_pcrel_reloc_p(int r_type)2235 aligned_pcrel_reloc_p (int r_type)
2236 {
2237   return (r_type == R_MIPS_PC18_S3
2238 	  || r_type == R_MIPS_PC19_S2);
2239 }
2240 
2241 static inline bfd_boolean
micromips_branch_reloc_p(int r_type)2242 micromips_branch_reloc_p (int r_type)
2243 {
2244   return (r_type == R_MICROMIPS_26_S1
2245 	  || r_type == R_MICROMIPS_PC16_S1
2246 	  || r_type == R_MICROMIPS_PC10_S1
2247 	  || r_type == R_MICROMIPS_PC7_S1);
2248 }
2249 
2250 static inline bfd_boolean
tls_gd_reloc_p(unsigned int r_type)2251 tls_gd_reloc_p (unsigned int r_type)
2252 {
2253   return (r_type == R_MIPS_TLS_GD
2254 	  || r_type == R_MIPS16_TLS_GD
2255 	  || r_type == R_MICROMIPS_TLS_GD);
2256 }
2257 
2258 static inline bfd_boolean
tls_ldm_reloc_p(unsigned int r_type)2259 tls_ldm_reloc_p (unsigned int r_type)
2260 {
2261   return (r_type == R_MIPS_TLS_LDM
2262 	  || r_type == R_MIPS16_TLS_LDM
2263 	  || r_type == R_MICROMIPS_TLS_LDM);
2264 }
2265 
2266 static inline bfd_boolean
tls_gottprel_reloc_p(unsigned int r_type)2267 tls_gottprel_reloc_p (unsigned int r_type)
2268 {
2269   return (r_type == R_MIPS_TLS_GOTTPREL
2270 	  || r_type == R_MIPS16_TLS_GOTTPREL
2271 	  || r_type == R_MICROMIPS_TLS_GOTTPREL);
2272 }
2273 
2274 void
_bfd_mips_elf_reloc_unshuffle(bfd * abfd,int r_type,bfd_boolean jal_shuffle,bfd_byte * data)2275 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2276 			       bfd_boolean jal_shuffle, bfd_byte *data)
2277 {
2278   bfd_vma first, second, val;
2279 
2280   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2281     return;
2282 
2283   /* Pick up the first and second halfwords of the instruction.  */
2284   first = bfd_get_16 (abfd, data);
2285   second = bfd_get_16 (abfd, data + 2);
2286   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2287     val = first << 16 | second;
2288   else if (r_type != R_MIPS16_26)
2289     val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2290 	   | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2291   else
2292     val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2293 	   | ((first & 0x1f) << 21) | second);
2294   bfd_put_32 (abfd, val, data);
2295 }
2296 
2297 void
_bfd_mips_elf_reloc_shuffle(bfd * abfd,int r_type,bfd_boolean jal_shuffle,bfd_byte * data)2298 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2299 			     bfd_boolean jal_shuffle, bfd_byte *data)
2300 {
2301   bfd_vma first, second, val;
2302 
2303   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2304     return;
2305 
2306   val = bfd_get_32 (abfd, data);
2307   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2308     {
2309       second = val & 0xffff;
2310       first = val >> 16;
2311     }
2312   else if (r_type != R_MIPS16_26)
2313     {
2314       second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2315       first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2316     }
2317   else
2318     {
2319       second = val & 0xffff;
2320       first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2321 	       | ((val >> 21) & 0x1f);
2322     }
2323   bfd_put_16 (abfd, second, data + 2);
2324   bfd_put_16 (abfd, first, data);
2325 }
2326 
2327 bfd_reloc_status_type
_bfd_mips_elf_gprel16_with_gp(bfd * abfd,asymbol * symbol,arelent * reloc_entry,asection * input_section,bfd_boolean relocatable,void * data,bfd_vma gp)2328 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2329 			       arelent *reloc_entry, asection *input_section,
2330 			       bfd_boolean relocatable, void *data, bfd_vma gp)
2331 {
2332   bfd_vma relocation;
2333   bfd_signed_vma val;
2334   bfd_reloc_status_type status;
2335 
2336   if (bfd_is_com_section (symbol->section))
2337     relocation = 0;
2338   else
2339     relocation = symbol->value;
2340 
2341   relocation += symbol->section->output_section->vma;
2342   relocation += symbol->section->output_offset;
2343 
2344   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2345     return bfd_reloc_outofrange;
2346 
2347   /* Set val to the offset into the section or symbol.  */
2348   val = reloc_entry->addend;
2349 
2350   _bfd_mips_elf_sign_extend (val, 16);
2351 
2352   /* Adjust val for the final section location and GP value.  If we
2353      are producing relocatable output, we don't want to do this for
2354      an external symbol.  */
2355   if (! relocatable
2356       || (symbol->flags & BSF_SECTION_SYM) != 0)
2357     val += relocation - gp;
2358 
2359   if (reloc_entry->howto->partial_inplace)
2360     {
2361       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2362 				       (bfd_byte *) data
2363 				       + reloc_entry->address);
2364       if (status != bfd_reloc_ok)
2365 	return status;
2366     }
2367   else
2368     reloc_entry->addend = val;
2369 
2370   if (relocatable)
2371     reloc_entry->address += input_section->output_offset;
2372 
2373   return bfd_reloc_ok;
2374 }
2375 
2376 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2377    R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
2378    that contains the relocation field and DATA points to the start of
2379    INPUT_SECTION.  */
2380 
2381 struct mips_hi16
2382 {
2383   struct mips_hi16 *next;
2384   bfd_byte *data;
2385   asection *input_section;
2386   arelent rel;
2387 };
2388 
2389 /* FIXME: This should not be a static variable.  */
2390 
2391 static struct mips_hi16 *mips_hi16_list;
2392 
2393 /* A howto special_function for REL *HI16 relocations.  We can only
2394    calculate the correct value once we've seen the partnering
2395    *LO16 relocation, so just save the information for later.
2396 
2397    The ABI requires that the *LO16 immediately follow the *HI16.
2398    However, as a GNU extension, we permit an arbitrary number of
2399    *HI16s to be associated with a single *LO16.  This significantly
2400    simplies the relocation handling in gcc.  */
2401 
2402 bfd_reloc_status_type
_bfd_mips_elf_hi16_reloc(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc_entry,asymbol * symbol ATTRIBUTE_UNUSED,void * data,asection * input_section,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)2403 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2404 			  asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2405 			  asection *input_section, bfd *output_bfd,
2406 			  char **error_message ATTRIBUTE_UNUSED)
2407 {
2408   struct mips_hi16 *n;
2409 
2410   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2411     return bfd_reloc_outofrange;
2412 
2413   n = bfd_malloc (sizeof *n);
2414   if (n == NULL)
2415     return bfd_reloc_outofrange;
2416 
2417   n->next = mips_hi16_list;
2418   n->data = data;
2419   n->input_section = input_section;
2420   n->rel = *reloc_entry;
2421   mips_hi16_list = n;
2422 
2423   if (output_bfd != NULL)
2424     reloc_entry->address += input_section->output_offset;
2425 
2426   return bfd_reloc_ok;
2427 }
2428 
2429 /* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just
2430    like any other 16-bit relocation when applied to global symbols, but is
2431    treated in the same as R_MIPS_HI16 when applied to local symbols.  */
2432 
2433 bfd_reloc_status_type
_bfd_mips_elf_got16_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)2434 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2435 			   void *data, asection *input_section,
2436 			   bfd *output_bfd, char **error_message)
2437 {
2438   if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2439       || bfd_is_und_section (bfd_get_section (symbol))
2440       || bfd_is_com_section (bfd_get_section (symbol)))
2441     /* The relocation is against a global symbol.  */
2442     return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2443 					input_section, output_bfd,
2444 					error_message);
2445 
2446   return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2447 				   input_section, output_bfd, error_message);
2448 }
2449 
2450 /* A howto special_function for REL *LO16 relocations.  The *LO16 itself
2451    is a straightforward 16 bit inplace relocation, but we must deal with
2452    any partnering high-part relocations as well.  */
2453 
2454 bfd_reloc_status_type
_bfd_mips_elf_lo16_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)2455 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2456 			  void *data, asection *input_section,
2457 			  bfd *output_bfd, char **error_message)
2458 {
2459   bfd_vma vallo;
2460   bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2461 
2462   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2463     return bfd_reloc_outofrange;
2464 
2465   _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2466 				 location);
2467   vallo = bfd_get_32 (abfd, location);
2468   _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2469 			       location);
2470 
2471   while (mips_hi16_list != NULL)
2472     {
2473       bfd_reloc_status_type ret;
2474       struct mips_hi16 *hi;
2475 
2476       hi = mips_hi16_list;
2477 
2478       /* R_MIPS*_GOT16 relocations are something of a special case.  We
2479 	 want to install the addend in the same way as for a R_MIPS*_HI16
2480 	 relocation (with a rightshift of 16).  However, since GOT16
2481 	 relocations can also be used with global symbols, their howto
2482 	 has a rightshift of 0.  */
2483       if (hi->rel.howto->type == R_MIPS_GOT16)
2484 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2485       else if (hi->rel.howto->type == R_MIPS16_GOT16)
2486 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2487       else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2488 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2489 
2490       /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
2491 	 carry or borrow will induce a change of +1 or -1 in the high part.  */
2492       hi->rel.addend += (vallo + 0x8000) & 0xffff;
2493 
2494       ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2495 					 hi->input_section, output_bfd,
2496 					 error_message);
2497       if (ret != bfd_reloc_ok)
2498 	return ret;
2499 
2500       mips_hi16_list = hi->next;
2501       free (hi);
2502     }
2503 
2504   return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2505 				      input_section, output_bfd,
2506 				      error_message);
2507 }
2508 
2509 /* A generic howto special_function.  This calculates and installs the
2510    relocation itself, thus avoiding the oft-discussed problems in
2511    bfd_perform_relocation and bfd_install_relocation.  */
2512 
2513 bfd_reloc_status_type
_bfd_mips_elf_generic_reloc(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc_entry,asymbol * symbol,void * data ATTRIBUTE_UNUSED,asection * input_section,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)2514 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2515 			     asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2516 			     asection *input_section, bfd *output_bfd,
2517 			     char **error_message ATTRIBUTE_UNUSED)
2518 {
2519   bfd_signed_vma val;
2520   bfd_reloc_status_type status;
2521   bfd_boolean relocatable;
2522 
2523   relocatable = (output_bfd != NULL);
2524 
2525   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2526     return bfd_reloc_outofrange;
2527 
2528   /* Build up the field adjustment in VAL.  */
2529   val = 0;
2530   if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2531     {
2532       /* Either we're calculating the final field value or we have a
2533 	 relocation against a section symbol.  Add in the section's
2534 	 offset or address.  */
2535       val += symbol->section->output_section->vma;
2536       val += symbol->section->output_offset;
2537     }
2538 
2539   if (!relocatable)
2540     {
2541       /* We're calculating the final field value.  Add in the symbol's value
2542 	 and, if pc-relative, subtract the address of the field itself.  */
2543       val += symbol->value;
2544       if (reloc_entry->howto->pc_relative)
2545 	{
2546 	  val -= input_section->output_section->vma;
2547 	  val -= input_section->output_offset;
2548 	  val -= reloc_entry->address;
2549 	}
2550     }
2551 
2552   /* VAL is now the final adjustment.  If we're keeping this relocation
2553      in the output file, and if the relocation uses a separate addend,
2554      we just need to add VAL to that addend.  Otherwise we need to add
2555      VAL to the relocation field itself.  */
2556   if (relocatable && !reloc_entry->howto->partial_inplace)
2557     reloc_entry->addend += val;
2558   else
2559     {
2560       bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2561 
2562       /* Add in the separate addend, if any.  */
2563       val += reloc_entry->addend;
2564 
2565       /* Add VAL to the relocation field.  */
2566       _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2567 				     location);
2568       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2569 				       location);
2570       _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2571 				   location);
2572 
2573       if (status != bfd_reloc_ok)
2574 	return status;
2575     }
2576 
2577   if (relocatable)
2578     reloc_entry->address += input_section->output_offset;
2579 
2580   return bfd_reloc_ok;
2581 }
2582 
2583 /* Swap an entry in a .gptab section.  Note that these routines rely
2584    on the equivalence of the two elements of the union.  */
2585 
2586 static void
bfd_mips_elf32_swap_gptab_in(bfd * abfd,const Elf32_External_gptab * ex,Elf32_gptab * in)2587 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2588 			      Elf32_gptab *in)
2589 {
2590   in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2591   in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2592 }
2593 
2594 static void
bfd_mips_elf32_swap_gptab_out(bfd * abfd,const Elf32_gptab * in,Elf32_External_gptab * ex)2595 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2596 			       Elf32_External_gptab *ex)
2597 {
2598   H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2599   H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2600 }
2601 
2602 static void
bfd_elf32_swap_compact_rel_out(bfd * abfd,const Elf32_compact_rel * in,Elf32_External_compact_rel * ex)2603 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2604 				Elf32_External_compact_rel *ex)
2605 {
2606   H_PUT_32 (abfd, in->id1, ex->id1);
2607   H_PUT_32 (abfd, in->num, ex->num);
2608   H_PUT_32 (abfd, in->id2, ex->id2);
2609   H_PUT_32 (abfd, in->offset, ex->offset);
2610   H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2611   H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2612 }
2613 
2614 static void
bfd_elf32_swap_crinfo_out(bfd * abfd,const Elf32_crinfo * in,Elf32_External_crinfo * ex)2615 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2616 			   Elf32_External_crinfo *ex)
2617 {
2618   unsigned long l;
2619 
2620   l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2621        | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2622        | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2623        | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2624   H_PUT_32 (abfd, l, ex->info);
2625   H_PUT_32 (abfd, in->konst, ex->konst);
2626   H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2627 }
2628 
2629 /* A .reginfo section holds a single Elf32_RegInfo structure.  These
2630    routines swap this structure in and out.  They are used outside of
2631    BFD, so they are globally visible.  */
2632 
2633 void
bfd_mips_elf32_swap_reginfo_in(bfd * abfd,const Elf32_External_RegInfo * ex,Elf32_RegInfo * in)2634 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2635 				Elf32_RegInfo *in)
2636 {
2637   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2638   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2639   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2640   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2641   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2642   in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2643 }
2644 
2645 void
bfd_mips_elf32_swap_reginfo_out(bfd * abfd,const Elf32_RegInfo * in,Elf32_External_RegInfo * ex)2646 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2647 				 Elf32_External_RegInfo *ex)
2648 {
2649   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2650   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2651   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2652   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2653   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2654   H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2655 }
2656 
2657 /* In the 64 bit ABI, the .MIPS.options section holds register
2658    information in an Elf64_Reginfo structure.  These routines swap
2659    them in and out.  They are globally visible because they are used
2660    outside of BFD.  These routines are here so that gas can call them
2661    without worrying about whether the 64 bit ABI has been included.  */
2662 
2663 void
bfd_mips_elf64_swap_reginfo_in(bfd * abfd,const Elf64_External_RegInfo * ex,Elf64_Internal_RegInfo * in)2664 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2665 				Elf64_Internal_RegInfo *in)
2666 {
2667   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2668   in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2669   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2670   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2671   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2672   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2673   in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2674 }
2675 
2676 void
bfd_mips_elf64_swap_reginfo_out(bfd * abfd,const Elf64_Internal_RegInfo * in,Elf64_External_RegInfo * ex)2677 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2678 				 Elf64_External_RegInfo *ex)
2679 {
2680   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2681   H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2682   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2683   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2684   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2685   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2686   H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2687 }
2688 
2689 /* Swap in an options header.  */
2690 
2691 void
bfd_mips_elf_swap_options_in(bfd * abfd,const Elf_External_Options * ex,Elf_Internal_Options * in)2692 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2693 			      Elf_Internal_Options *in)
2694 {
2695   in->kind = H_GET_8 (abfd, ex->kind);
2696   in->size = H_GET_8 (abfd, ex->size);
2697   in->section = H_GET_16 (abfd, ex->section);
2698   in->info = H_GET_32 (abfd, ex->info);
2699 }
2700 
2701 /* Swap out an options header.  */
2702 
2703 void
bfd_mips_elf_swap_options_out(bfd * abfd,const Elf_Internal_Options * in,Elf_External_Options * ex)2704 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2705 			       Elf_External_Options *ex)
2706 {
2707   H_PUT_8 (abfd, in->kind, ex->kind);
2708   H_PUT_8 (abfd, in->size, ex->size);
2709   H_PUT_16 (abfd, in->section, ex->section);
2710   H_PUT_32 (abfd, in->info, ex->info);
2711 }
2712 
2713 /* Swap in an abiflags structure.  */
2714 
2715 void
bfd_mips_elf_swap_abiflags_v0_in(bfd * abfd,const Elf_External_ABIFlags_v0 * ex,Elf_Internal_ABIFlags_v0 * in)2716 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2717 				  const Elf_External_ABIFlags_v0 *ex,
2718 				  Elf_Internal_ABIFlags_v0 *in)
2719 {
2720   in->version = H_GET_16 (abfd, ex->version);
2721   in->isa_level = H_GET_8 (abfd, ex->isa_level);
2722   in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2723   in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2724   in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2725   in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2726   in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2727   in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2728   in->ases = H_GET_32 (abfd, ex->ases);
2729   in->flags1 = H_GET_32 (abfd, ex->flags1);
2730   in->flags2 = H_GET_32 (abfd, ex->flags2);
2731 }
2732 
2733 /* Swap out an abiflags structure.  */
2734 
2735 void
bfd_mips_elf_swap_abiflags_v0_out(bfd * abfd,const Elf_Internal_ABIFlags_v0 * in,Elf_External_ABIFlags_v0 * ex)2736 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2737 				   const Elf_Internal_ABIFlags_v0 *in,
2738 				   Elf_External_ABIFlags_v0 *ex)
2739 {
2740   H_PUT_16 (abfd, in->version, ex->version);
2741   H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2742   H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2743   H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2744   H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2745   H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2746   H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2747   H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2748   H_PUT_32 (abfd, in->ases, ex->ases);
2749   H_PUT_32 (abfd, in->flags1, ex->flags1);
2750   H_PUT_32 (abfd, in->flags2, ex->flags2);
2751 }
2752 
2753 /* This function is called via qsort() to sort the dynamic relocation
2754    entries by increasing r_symndx value.  */
2755 
2756 static int
sort_dynamic_relocs(const void * arg1,const void * arg2)2757 sort_dynamic_relocs (const void *arg1, const void *arg2)
2758 {
2759   Elf_Internal_Rela int_reloc1;
2760   Elf_Internal_Rela int_reloc2;
2761   int diff;
2762 
2763   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2764   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2765 
2766   diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2767   if (diff != 0)
2768     return diff;
2769 
2770   if (int_reloc1.r_offset < int_reloc2.r_offset)
2771     return -1;
2772   if (int_reloc1.r_offset > int_reloc2.r_offset)
2773     return 1;
2774   return 0;
2775 }
2776 
2777 /* Like sort_dynamic_relocs, but used for elf64 relocations.  */
2778 
2779 static int
sort_dynamic_relocs_64(const void * arg1 ATTRIBUTE_UNUSED,const void * arg2 ATTRIBUTE_UNUSED)2780 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2781 			const void *arg2 ATTRIBUTE_UNUSED)
2782 {
2783 #ifdef BFD64
2784   Elf_Internal_Rela int_reloc1[3];
2785   Elf_Internal_Rela int_reloc2[3];
2786 
2787   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2788     (reldyn_sorting_bfd, arg1, int_reloc1);
2789   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2790     (reldyn_sorting_bfd, arg2, int_reloc2);
2791 
2792   if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2793     return -1;
2794   if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2795     return 1;
2796 
2797   if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2798     return -1;
2799   if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2800     return 1;
2801   return 0;
2802 #else
2803   abort ();
2804 #endif
2805 }
2806 
2807 
2808 /* This routine is used to write out ECOFF debugging external symbol
2809    information.  It is called via mips_elf_link_hash_traverse.  The
2810    ECOFF external symbol information must match the ELF external
2811    symbol information.  Unfortunately, at this point we don't know
2812    whether a symbol is required by reloc information, so the two
2813    tables may wind up being different.  We must sort out the external
2814    symbol information before we can set the final size of the .mdebug
2815    section, and we must set the size of the .mdebug section before we
2816    can relocate any sections, and we can't know which symbols are
2817    required by relocation until we relocate the sections.
2818    Fortunately, it is relatively unlikely that any symbol will be
2819    stripped but required by a reloc.  In particular, it can not happen
2820    when generating a final executable.  */
2821 
2822 static bfd_boolean
mips_elf_output_extsym(struct mips_elf_link_hash_entry * h,void * data)2823 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2824 {
2825   struct extsym_info *einfo = data;
2826   bfd_boolean strip;
2827   asection *sec, *output_section;
2828 
2829   if (h->root.indx == -2)
2830     strip = FALSE;
2831   else if ((h->root.def_dynamic
2832 	    || h->root.ref_dynamic
2833 	    || h->root.type == bfd_link_hash_new)
2834 	   && !h->root.def_regular
2835 	   && !h->root.ref_regular)
2836     strip = TRUE;
2837   else if (einfo->info->strip == strip_all
2838 	   || (einfo->info->strip == strip_some
2839 	       && bfd_hash_lookup (einfo->info->keep_hash,
2840 				   h->root.root.root.string,
2841 				   FALSE, FALSE) == NULL))
2842     strip = TRUE;
2843   else
2844     strip = FALSE;
2845 
2846   if (strip)
2847     return TRUE;
2848 
2849   if (h->esym.ifd == -2)
2850     {
2851       h->esym.jmptbl = 0;
2852       h->esym.cobol_main = 0;
2853       h->esym.weakext = 0;
2854       h->esym.reserved = 0;
2855       h->esym.ifd = ifdNil;
2856       h->esym.asym.value = 0;
2857       h->esym.asym.st = stGlobal;
2858 
2859       if (h->root.root.type == bfd_link_hash_undefined
2860 	  || h->root.root.type == bfd_link_hash_undefweak)
2861 	{
2862 	  const char *name;
2863 
2864 	  /* Use undefined class.  Also, set class and type for some
2865              special symbols.  */
2866 	  name = h->root.root.root.string;
2867 	  if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2868 	      || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2869 	    {
2870 	      h->esym.asym.sc = scData;
2871 	      h->esym.asym.st = stLabel;
2872 	      h->esym.asym.value = 0;
2873 	    }
2874 	  else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2875 	    {
2876 	      h->esym.asym.sc = scAbs;
2877 	      h->esym.asym.st = stLabel;
2878 	      h->esym.asym.value =
2879 		mips_elf_hash_table (einfo->info)->procedure_count;
2880 	    }
2881 	  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2882 	    {
2883 	      h->esym.asym.sc = scAbs;
2884 	      h->esym.asym.st = stLabel;
2885 	      h->esym.asym.value = elf_gp (einfo->abfd);
2886 	    }
2887 	  else
2888 	    h->esym.asym.sc = scUndefined;
2889 	}
2890       else if (h->root.root.type != bfd_link_hash_defined
2891 	  && h->root.root.type != bfd_link_hash_defweak)
2892 	h->esym.asym.sc = scAbs;
2893       else
2894 	{
2895 	  const char *name;
2896 
2897 	  sec = h->root.root.u.def.section;
2898 	  output_section = sec->output_section;
2899 
2900 	  /* When making a shared library and symbol h is the one from
2901 	     the another shared library, OUTPUT_SECTION may be null.  */
2902 	  if (output_section == NULL)
2903 	    h->esym.asym.sc = scUndefined;
2904 	  else
2905 	    {
2906 	      name = bfd_section_name (output_section->owner, output_section);
2907 
2908 	      if (strcmp (name, ".text") == 0)
2909 		h->esym.asym.sc = scText;
2910 	      else if (strcmp (name, ".data") == 0)
2911 		h->esym.asym.sc = scData;
2912 	      else if (strcmp (name, ".sdata") == 0)
2913 		h->esym.asym.sc = scSData;
2914 	      else if (strcmp (name, ".rodata") == 0
2915 		       || strcmp (name, ".rdata") == 0)
2916 		h->esym.asym.sc = scRData;
2917 	      else if (strcmp (name, ".bss") == 0)
2918 		h->esym.asym.sc = scBss;
2919 	      else if (strcmp (name, ".sbss") == 0)
2920 		h->esym.asym.sc = scSBss;
2921 	      else if (strcmp (name, ".init") == 0)
2922 		h->esym.asym.sc = scInit;
2923 	      else if (strcmp (name, ".fini") == 0)
2924 		h->esym.asym.sc = scFini;
2925 	      else
2926 		h->esym.asym.sc = scAbs;
2927 	    }
2928 	}
2929 
2930       h->esym.asym.reserved = 0;
2931       h->esym.asym.index = indexNil;
2932     }
2933 
2934   if (h->root.root.type == bfd_link_hash_common)
2935     h->esym.asym.value = h->root.root.u.c.size;
2936   else if (h->root.root.type == bfd_link_hash_defined
2937 	   || h->root.root.type == bfd_link_hash_defweak)
2938     {
2939       if (h->esym.asym.sc == scCommon)
2940 	h->esym.asym.sc = scBss;
2941       else if (h->esym.asym.sc == scSCommon)
2942 	h->esym.asym.sc = scSBss;
2943 
2944       sec = h->root.root.u.def.section;
2945       output_section = sec->output_section;
2946       if (output_section != NULL)
2947 	h->esym.asym.value = (h->root.root.u.def.value
2948 			      + sec->output_offset
2949 			      + output_section->vma);
2950       else
2951 	h->esym.asym.value = 0;
2952     }
2953   else
2954     {
2955       struct mips_elf_link_hash_entry *hd = h;
2956 
2957       while (hd->root.root.type == bfd_link_hash_indirect)
2958 	hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2959 
2960       if (hd->needs_lazy_stub)
2961 	{
2962 	  BFD_ASSERT (hd->root.plt.plist != NULL);
2963 	  BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2964 	  /* Set type and value for a symbol with a function stub.  */
2965 	  h->esym.asym.st = stProc;
2966 	  sec = hd->root.root.u.def.section;
2967 	  if (sec == NULL)
2968 	    h->esym.asym.value = 0;
2969 	  else
2970 	    {
2971 	      output_section = sec->output_section;
2972 	      if (output_section != NULL)
2973 		h->esym.asym.value = (hd->root.plt.plist->stub_offset
2974 				      + sec->output_offset
2975 				      + output_section->vma);
2976 	      else
2977 		h->esym.asym.value = 0;
2978 	    }
2979 	}
2980     }
2981 
2982   if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2983 				      h->root.root.root.string,
2984 				      &h->esym))
2985     {
2986       einfo->failed = TRUE;
2987       return FALSE;
2988     }
2989 
2990   return TRUE;
2991 }
2992 
2993 /* A comparison routine used to sort .gptab entries.  */
2994 
2995 static int
gptab_compare(const void * p1,const void * p2)2996 gptab_compare (const void *p1, const void *p2)
2997 {
2998   const Elf32_gptab *a1 = p1;
2999   const Elf32_gptab *a2 = p2;
3000 
3001   return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3002 }
3003 
3004 /* Functions to manage the got entry hash table.  */
3005 
3006 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3007    hash number.  */
3008 
3009 static INLINE hashval_t
mips_elf_hash_bfd_vma(bfd_vma addr)3010 mips_elf_hash_bfd_vma (bfd_vma addr)
3011 {
3012 #ifdef BFD64
3013   return addr + (addr >> 32);
3014 #else
3015   return addr;
3016 #endif
3017 }
3018 
3019 static hashval_t
mips_elf_got_entry_hash(const void * entry_)3020 mips_elf_got_entry_hash (const void *entry_)
3021 {
3022   const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3023 
3024   return (entry->symndx
3025 	  + ((entry->tls_type == GOT_TLS_LDM) << 18)
3026 	  + (entry->tls_type == GOT_TLS_LDM ? 0
3027 	     : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3028 	     : entry->symndx >= 0 ? (entry->abfd->id
3029 				     + mips_elf_hash_bfd_vma (entry->d.addend))
3030 	     : entry->d.h->root.root.root.hash));
3031 }
3032 
3033 static int
mips_elf_got_entry_eq(const void * entry1,const void * entry2)3034 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3035 {
3036   const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3037   const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3038 
3039   return (e1->symndx == e2->symndx
3040 	  && e1->tls_type == e2->tls_type
3041 	  && (e1->tls_type == GOT_TLS_LDM ? TRUE
3042 	      : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3043 	      : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3044 				   && e1->d.addend == e2->d.addend)
3045 	      : e2->abfd && e1->d.h == e2->d.h));
3046 }
3047 
3048 static hashval_t
mips_got_page_ref_hash(const void * ref_)3049 mips_got_page_ref_hash (const void *ref_)
3050 {
3051   const struct mips_got_page_ref *ref;
3052 
3053   ref = (const struct mips_got_page_ref *) ref_;
3054   return ((ref->symndx >= 0
3055 	   ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3056 	   : ref->u.h->root.root.root.hash)
3057 	  + mips_elf_hash_bfd_vma (ref->addend));
3058 }
3059 
3060 static int
mips_got_page_ref_eq(const void * ref1_,const void * ref2_)3061 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3062 {
3063   const struct mips_got_page_ref *ref1, *ref2;
3064 
3065   ref1 = (const struct mips_got_page_ref *) ref1_;
3066   ref2 = (const struct mips_got_page_ref *) ref2_;
3067   return (ref1->symndx == ref2->symndx
3068 	  && (ref1->symndx < 0
3069 	      ? ref1->u.h == ref2->u.h
3070 	      : ref1->u.abfd == ref2->u.abfd)
3071 	  && ref1->addend == ref2->addend);
3072 }
3073 
3074 static hashval_t
mips_got_page_entry_hash(const void * entry_)3075 mips_got_page_entry_hash (const void *entry_)
3076 {
3077   const struct mips_got_page_entry *entry;
3078 
3079   entry = (const struct mips_got_page_entry *) entry_;
3080   return entry->sec->id;
3081 }
3082 
3083 static int
mips_got_page_entry_eq(const void * entry1_,const void * entry2_)3084 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3085 {
3086   const struct mips_got_page_entry *entry1, *entry2;
3087 
3088   entry1 = (const struct mips_got_page_entry *) entry1_;
3089   entry2 = (const struct mips_got_page_entry *) entry2_;
3090   return entry1->sec == entry2->sec;
3091 }
3092 
3093 /* Create and return a new mips_got_info structure.  */
3094 
3095 static struct mips_got_info *
mips_elf_create_got_info(bfd * abfd)3096 mips_elf_create_got_info (bfd *abfd)
3097 {
3098   struct mips_got_info *g;
3099 
3100   g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3101   if (g == NULL)
3102     return NULL;
3103 
3104   g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3105 				    mips_elf_got_entry_eq, NULL);
3106   if (g->got_entries == NULL)
3107     return NULL;
3108 
3109   g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3110 				      mips_got_page_ref_eq, NULL);
3111   if (g->got_page_refs == NULL)
3112     return NULL;
3113 
3114   return g;
3115 }
3116 
3117 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3118    CREATE_P and if ABFD doesn't already have a GOT.  */
3119 
3120 static struct mips_got_info *
mips_elf_bfd_got(bfd * abfd,bfd_boolean create_p)3121 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3122 {
3123   struct mips_elf_obj_tdata *tdata;
3124 
3125   if (!is_mips_elf (abfd))
3126     return NULL;
3127 
3128   tdata = mips_elf_tdata (abfd);
3129   if (!tdata->got && create_p)
3130     tdata->got = mips_elf_create_got_info (abfd);
3131   return tdata->got;
3132 }
3133 
3134 /* Record that ABFD should use output GOT G.  */
3135 
3136 static void
mips_elf_replace_bfd_got(bfd * abfd,struct mips_got_info * g)3137 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3138 {
3139   struct mips_elf_obj_tdata *tdata;
3140 
3141   BFD_ASSERT (is_mips_elf (abfd));
3142   tdata = mips_elf_tdata (abfd);
3143   if (tdata->got)
3144     {
3145       /* The GOT structure itself and the hash table entries are
3146 	 allocated to a bfd, but the hash tables aren't.  */
3147       htab_delete (tdata->got->got_entries);
3148       htab_delete (tdata->got->got_page_refs);
3149       if (tdata->got->got_page_entries)
3150 	htab_delete (tdata->got->got_page_entries);
3151     }
3152   tdata->got = g;
3153 }
3154 
3155 /* Return the dynamic relocation section.  If it doesn't exist, try to
3156    create a new it if CREATE_P, otherwise return NULL.  Also return NULL
3157    if creation fails.  */
3158 
3159 static asection *
mips_elf_rel_dyn_section(struct bfd_link_info * info,bfd_boolean create_p)3160 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3161 {
3162   const char *dname;
3163   asection *sreloc;
3164   bfd *dynobj;
3165 
3166   dname = MIPS_ELF_REL_DYN_NAME (info);
3167   dynobj = elf_hash_table (info)->dynobj;
3168   sreloc = bfd_get_linker_section (dynobj, dname);
3169   if (sreloc == NULL && create_p)
3170     {
3171       sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3172 						   (SEC_ALLOC
3173 						    | SEC_LOAD
3174 						    | SEC_HAS_CONTENTS
3175 						    | SEC_IN_MEMORY
3176 						    | SEC_LINKER_CREATED
3177 						    | SEC_READONLY));
3178       if (sreloc == NULL
3179 	  || ! bfd_set_section_alignment (dynobj, sreloc,
3180 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3181 	return NULL;
3182     }
3183   return sreloc;
3184 }
3185 
3186 /* Return the GOT_TLS_* type required by relocation type R_TYPE.  */
3187 
3188 static int
mips_elf_reloc_tls_type(unsigned int r_type)3189 mips_elf_reloc_tls_type (unsigned int r_type)
3190 {
3191   if (tls_gd_reloc_p (r_type))
3192     return GOT_TLS_GD;
3193 
3194   if (tls_ldm_reloc_p (r_type))
3195     return GOT_TLS_LDM;
3196 
3197   if (tls_gottprel_reloc_p (r_type))
3198     return GOT_TLS_IE;
3199 
3200   return GOT_TLS_NONE;
3201 }
3202 
3203 /* Return the number of GOT slots needed for GOT TLS type TYPE.  */
3204 
3205 static int
mips_tls_got_entries(unsigned int type)3206 mips_tls_got_entries (unsigned int type)
3207 {
3208   switch (type)
3209     {
3210     case GOT_TLS_GD:
3211     case GOT_TLS_LDM:
3212       return 2;
3213 
3214     case GOT_TLS_IE:
3215       return 1;
3216 
3217     case GOT_TLS_NONE:
3218       return 0;
3219     }
3220   abort ();
3221 }
3222 
3223 /* Count the number of relocations needed for a TLS GOT entry, with
3224    access types from TLS_TYPE, and symbol H (or a local symbol if H
3225    is NULL).  */
3226 
3227 static int
mips_tls_got_relocs(struct bfd_link_info * info,unsigned char tls_type,struct elf_link_hash_entry * h)3228 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3229 		     struct elf_link_hash_entry *h)
3230 {
3231   int indx = 0;
3232   bfd_boolean need_relocs = FALSE;
3233   bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3234 
3235   if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3236       && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3237     indx = h->dynindx;
3238 
3239   if ((info->shared || indx != 0)
3240       && (h == NULL
3241 	  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3242 	  || h->root.type != bfd_link_hash_undefweak))
3243     need_relocs = TRUE;
3244 
3245   if (!need_relocs)
3246     return 0;
3247 
3248   switch (tls_type)
3249     {
3250     case GOT_TLS_GD:
3251       return indx != 0 ? 2 : 1;
3252 
3253     case GOT_TLS_IE:
3254       return 1;
3255 
3256     case GOT_TLS_LDM:
3257       return info->shared ? 1 : 0;
3258 
3259     default:
3260       return 0;
3261     }
3262 }
3263 
3264 /* Add the number of GOT entries and TLS relocations required by ENTRY
3265    to G.  */
3266 
3267 static void
mips_elf_count_got_entry(struct bfd_link_info * info,struct mips_got_info * g,struct mips_got_entry * entry)3268 mips_elf_count_got_entry (struct bfd_link_info *info,
3269 			  struct mips_got_info *g,
3270 			  struct mips_got_entry *entry)
3271 {
3272   if (entry->tls_type)
3273     {
3274       g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3275       g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3276 					entry->symndx < 0
3277 					? &entry->d.h->root : NULL);
3278     }
3279   else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3280     g->local_gotno += 1;
3281   else
3282     g->global_gotno += 1;
3283 }
3284 
3285 /* Output a simple dynamic relocation into SRELOC.  */
3286 
3287 static void
mips_elf_output_dynamic_relocation(bfd * output_bfd,asection * sreloc,unsigned long reloc_index,unsigned long indx,int r_type,bfd_vma offset)3288 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3289 				    asection *sreloc,
3290 				    unsigned long reloc_index,
3291 				    unsigned long indx,
3292 				    int r_type,
3293 				    bfd_vma offset)
3294 {
3295   Elf_Internal_Rela rel[3];
3296 
3297   memset (rel, 0, sizeof (rel));
3298 
3299   rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3300   rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3301 
3302   if (ABI_64_P (output_bfd))
3303     {
3304       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3305 	(output_bfd, &rel[0],
3306 	 (sreloc->contents
3307 	  + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3308     }
3309   else
3310     bfd_elf32_swap_reloc_out
3311       (output_bfd, &rel[0],
3312        (sreloc->contents
3313 	+ reloc_index * sizeof (Elf32_External_Rel)));
3314 }
3315 
3316 /* Initialize a set of TLS GOT entries for one symbol.  */
3317 
3318 static void
mips_elf_initialize_tls_slots(bfd * abfd,struct bfd_link_info * info,struct mips_got_entry * entry,struct mips_elf_link_hash_entry * h,bfd_vma value)3319 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3320 			       struct mips_got_entry *entry,
3321 			       struct mips_elf_link_hash_entry *h,
3322 			       bfd_vma value)
3323 {
3324   struct mips_elf_link_hash_table *htab;
3325   int indx;
3326   asection *sreloc, *sgot;
3327   bfd_vma got_offset, got_offset2;
3328   bfd_boolean need_relocs = FALSE;
3329 
3330   htab = mips_elf_hash_table (info);
3331   if (htab == NULL)
3332     return;
3333 
3334   sgot = htab->sgot;
3335 
3336   indx = 0;
3337   if (h != NULL)
3338     {
3339       bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3340 
3341       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3342 	  && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3343 	indx = h->root.dynindx;
3344     }
3345 
3346   if (entry->tls_initialized)
3347     return;
3348 
3349   if ((info->shared || indx != 0)
3350       && (h == NULL
3351 	  || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3352 	  || h->root.type != bfd_link_hash_undefweak))
3353     need_relocs = TRUE;
3354 
3355   /* MINUS_ONE means the symbol is not defined in this object.  It may not
3356      be defined at all; assume that the value doesn't matter in that
3357      case.  Otherwise complain if we would use the value.  */
3358   BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3359 	      || h->root.root.type == bfd_link_hash_undefweak);
3360 
3361   /* Emit necessary relocations.  */
3362   sreloc = mips_elf_rel_dyn_section (info, FALSE);
3363   got_offset = entry->gotidx;
3364 
3365   switch (entry->tls_type)
3366     {
3367     case GOT_TLS_GD:
3368       /* General Dynamic.  */
3369       got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3370 
3371       if (need_relocs)
3372 	{
3373 	  mips_elf_output_dynamic_relocation
3374 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3375 	     ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3376 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3377 
3378 	  if (indx)
3379 	    mips_elf_output_dynamic_relocation
3380 	      (abfd, sreloc, sreloc->reloc_count++, indx,
3381 	       ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3382 	       sgot->output_offset + sgot->output_section->vma + got_offset2);
3383 	  else
3384 	    MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3385 			       sgot->contents + got_offset2);
3386 	}
3387       else
3388 	{
3389 	  MIPS_ELF_PUT_WORD (abfd, 1,
3390 			     sgot->contents + got_offset);
3391 	  MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3392 			     sgot->contents + got_offset2);
3393 	}
3394       break;
3395 
3396     case GOT_TLS_IE:
3397       /* Initial Exec model.  */
3398       if (need_relocs)
3399 	{
3400 	  if (indx == 0)
3401 	    MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3402 			       sgot->contents + got_offset);
3403 	  else
3404 	    MIPS_ELF_PUT_WORD (abfd, 0,
3405 			       sgot->contents + got_offset);
3406 
3407 	  mips_elf_output_dynamic_relocation
3408 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3409 	     ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3410 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3411 	}
3412       else
3413 	MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3414 			   sgot->contents + got_offset);
3415       break;
3416 
3417     case GOT_TLS_LDM:
3418       /* The initial offset is zero, and the LD offsets will include the
3419 	 bias by DTP_OFFSET.  */
3420       MIPS_ELF_PUT_WORD (abfd, 0,
3421 			 sgot->contents + got_offset
3422 			 + MIPS_ELF_GOT_SIZE (abfd));
3423 
3424       if (!info->shared)
3425 	MIPS_ELF_PUT_WORD (abfd, 1,
3426 			   sgot->contents + got_offset);
3427       else
3428 	mips_elf_output_dynamic_relocation
3429 	  (abfd, sreloc, sreloc->reloc_count++, indx,
3430 	   ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3431 	   sgot->output_offset + sgot->output_section->vma + got_offset);
3432       break;
3433 
3434     default:
3435       abort ();
3436     }
3437 
3438   entry->tls_initialized = TRUE;
3439 }
3440 
3441 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3442    for global symbol H.  .got.plt comes before the GOT, so the offset
3443    will be negative.  */
3444 
3445 static bfd_vma
mips_elf_gotplt_index(struct bfd_link_info * info,struct elf_link_hash_entry * h)3446 mips_elf_gotplt_index (struct bfd_link_info *info,
3447 		       struct elf_link_hash_entry *h)
3448 {
3449   bfd_vma got_address, got_value;
3450   struct mips_elf_link_hash_table *htab;
3451 
3452   htab = mips_elf_hash_table (info);
3453   BFD_ASSERT (htab != NULL);
3454 
3455   BFD_ASSERT (h->plt.plist != NULL);
3456   BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3457 
3458   /* Calculate the address of the associated .got.plt entry.  */
3459   got_address = (htab->sgotplt->output_section->vma
3460 		 + htab->sgotplt->output_offset
3461 		 + (h->plt.plist->gotplt_index
3462 		    * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3463 
3464   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
3465   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3466 	       + htab->root.hgot->root.u.def.section->output_offset
3467 	       + htab->root.hgot->root.u.def.value);
3468 
3469   return got_address - got_value;
3470 }
3471 
3472 /* Return the GOT offset for address VALUE.   If there is not yet a GOT
3473    entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
3474    create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
3475    offset can be found.  */
3476 
3477 static bfd_vma
mips_elf_local_got_index(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,bfd_vma value,unsigned long r_symndx,struct mips_elf_link_hash_entry * h,int r_type)3478 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3479 			  bfd_vma value, unsigned long r_symndx,
3480 			  struct mips_elf_link_hash_entry *h, int r_type)
3481 {
3482   struct mips_elf_link_hash_table *htab;
3483   struct mips_got_entry *entry;
3484 
3485   htab = mips_elf_hash_table (info);
3486   BFD_ASSERT (htab != NULL);
3487 
3488   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3489 					   r_symndx, h, r_type);
3490   if (!entry)
3491     return MINUS_ONE;
3492 
3493   if (entry->tls_type)
3494     mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3495   return entry->gotidx;
3496 }
3497 
3498 /* Return the GOT index of global symbol H in the primary GOT.  */
3499 
3500 static bfd_vma
mips_elf_primary_global_got_index(bfd * obfd,struct bfd_link_info * info,struct elf_link_hash_entry * h)3501 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3502 				   struct elf_link_hash_entry *h)
3503 {
3504   struct mips_elf_link_hash_table *htab;
3505   long global_got_dynindx;
3506   struct mips_got_info *g;
3507   bfd_vma got_index;
3508 
3509   htab = mips_elf_hash_table (info);
3510   BFD_ASSERT (htab != NULL);
3511 
3512   global_got_dynindx = 0;
3513   if (htab->global_gotsym != NULL)
3514     global_got_dynindx = htab->global_gotsym->dynindx;
3515 
3516   /* Once we determine the global GOT entry with the lowest dynamic
3517      symbol table index, we must put all dynamic symbols with greater
3518      indices into the primary GOT.  That makes it easy to calculate the
3519      GOT offset.  */
3520   BFD_ASSERT (h->dynindx >= global_got_dynindx);
3521   g = mips_elf_bfd_got (obfd, FALSE);
3522   got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3523 	       * MIPS_ELF_GOT_SIZE (obfd));
3524   BFD_ASSERT (got_index < htab->sgot->size);
3525 
3526   return got_index;
3527 }
3528 
3529 /* Return the GOT index for the global symbol indicated by H, which is
3530    referenced by a relocation of type R_TYPE in IBFD.  */
3531 
3532 static bfd_vma
mips_elf_global_got_index(bfd * obfd,struct bfd_link_info * info,bfd * ibfd,struct elf_link_hash_entry * h,int r_type)3533 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3534 			   struct elf_link_hash_entry *h, int r_type)
3535 {
3536   struct mips_elf_link_hash_table *htab;
3537   struct mips_got_info *g;
3538   struct mips_got_entry lookup, *entry;
3539   bfd_vma gotidx;
3540 
3541   htab = mips_elf_hash_table (info);
3542   BFD_ASSERT (htab != NULL);
3543 
3544   g = mips_elf_bfd_got (ibfd, FALSE);
3545   BFD_ASSERT (g);
3546 
3547   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3548   if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3549     return mips_elf_primary_global_got_index (obfd, info, h);
3550 
3551   lookup.abfd = ibfd;
3552   lookup.symndx = -1;
3553   lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3554   entry = htab_find (g->got_entries, &lookup);
3555   BFD_ASSERT (entry);
3556 
3557   gotidx = entry->gotidx;
3558   BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3559 
3560   if (lookup.tls_type)
3561     {
3562       bfd_vma value = MINUS_ONE;
3563 
3564       if ((h->root.type == bfd_link_hash_defined
3565 	   || h->root.type == bfd_link_hash_defweak)
3566 	  && h->root.u.def.section->output_section)
3567 	value = (h->root.u.def.value
3568 		 + h->root.u.def.section->output_offset
3569 		 + h->root.u.def.section->output_section->vma);
3570 
3571       mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3572     }
3573   return gotidx;
3574 }
3575 
3576 /* Find a GOT page entry that points to within 32KB of VALUE.  These
3577    entries are supposed to be placed at small offsets in the GOT, i.e.,
3578    within 32KB of GP.  Return the index of the GOT entry, or -1 if no
3579    entry could be created.  If OFFSETP is nonnull, use it to return the
3580    offset of the GOT entry from VALUE.  */
3581 
3582 static bfd_vma
mips_elf_got_page(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,bfd_vma value,bfd_vma * offsetp)3583 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3584 		   bfd_vma value, bfd_vma *offsetp)
3585 {
3586   bfd_vma page, got_index;
3587   struct mips_got_entry *entry;
3588 
3589   page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3590   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3591 					   NULL, R_MIPS_GOT_PAGE);
3592 
3593   if (!entry)
3594     return MINUS_ONE;
3595 
3596   got_index = entry->gotidx;
3597 
3598   if (offsetp)
3599     *offsetp = value - entry->d.address;
3600 
3601   return got_index;
3602 }
3603 
3604 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3605    EXTERNAL is true if the relocation was originally against a global
3606    symbol that binds locally.  */
3607 
3608 static bfd_vma
mips_elf_got16_entry(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,bfd_vma value,bfd_boolean external)3609 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3610 		      bfd_vma value, bfd_boolean external)
3611 {
3612   struct mips_got_entry *entry;
3613 
3614   /* GOT16 relocations against local symbols are followed by a LO16
3615      relocation; those against global symbols are not.  Thus if the
3616      symbol was originally local, the GOT16 relocation should load the
3617      equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
3618   if (! external)
3619     value = mips_elf_high (value) << 16;
3620 
3621   /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3622      R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the
3623      same in all cases.  */
3624   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3625 					   NULL, R_MIPS_GOT16);
3626   if (entry)
3627     return entry->gotidx;
3628   else
3629     return MINUS_ONE;
3630 }
3631 
3632 /* Returns the offset for the entry at the INDEXth position
3633    in the GOT.  */
3634 
3635 static bfd_vma
mips_elf_got_offset_from_index(struct bfd_link_info * info,bfd * output_bfd,bfd * input_bfd,bfd_vma got_index)3636 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3637 				bfd *input_bfd, bfd_vma got_index)
3638 {
3639   struct mips_elf_link_hash_table *htab;
3640   asection *sgot;
3641   bfd_vma gp;
3642 
3643   htab = mips_elf_hash_table (info);
3644   BFD_ASSERT (htab != NULL);
3645 
3646   sgot = htab->sgot;
3647   gp = _bfd_get_gp_value (output_bfd)
3648     + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3649 
3650   return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3651 }
3652 
3653 /* Create and return a local GOT entry for VALUE, which was calculated
3654    from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
3655    be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
3656    instead.  */
3657 
3658 static struct mips_got_entry *
mips_elf_create_local_got_entry(bfd * abfd,struct bfd_link_info * info,bfd * ibfd,bfd_vma value,unsigned long r_symndx,struct mips_elf_link_hash_entry * h,int r_type)3659 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3660 				 bfd *ibfd, bfd_vma value,
3661 				 unsigned long r_symndx,
3662 				 struct mips_elf_link_hash_entry *h,
3663 				 int r_type)
3664 {
3665   struct mips_got_entry lookup, *entry;
3666   void **loc;
3667   struct mips_got_info *g;
3668   struct mips_elf_link_hash_table *htab;
3669   bfd_vma gotidx;
3670 
3671   htab = mips_elf_hash_table (info);
3672   BFD_ASSERT (htab != NULL);
3673 
3674   g = mips_elf_bfd_got (ibfd, FALSE);
3675   if (g == NULL)
3676     {
3677       g = mips_elf_bfd_got (abfd, FALSE);
3678       BFD_ASSERT (g != NULL);
3679     }
3680 
3681   /* This function shouldn't be called for symbols that live in the global
3682      area of the GOT.  */
3683   BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3684 
3685   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3686   if (lookup.tls_type)
3687     {
3688       lookup.abfd = ibfd;
3689       if (tls_ldm_reloc_p (r_type))
3690 	{
3691 	  lookup.symndx = 0;
3692 	  lookup.d.addend = 0;
3693 	}
3694       else if (h == NULL)
3695 	{
3696 	  lookup.symndx = r_symndx;
3697 	  lookup.d.addend = 0;
3698 	}
3699       else
3700 	{
3701 	  lookup.symndx = -1;
3702 	  lookup.d.h = h;
3703 	}
3704 
3705       entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3706       BFD_ASSERT (entry);
3707 
3708       gotidx = entry->gotidx;
3709       BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3710 
3711       return entry;
3712     }
3713 
3714   lookup.abfd = NULL;
3715   lookup.symndx = -1;
3716   lookup.d.address = value;
3717   loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3718   if (!loc)
3719     return NULL;
3720 
3721   entry = (struct mips_got_entry *) *loc;
3722   if (entry)
3723     return entry;
3724 
3725   if (g->assigned_low_gotno > g->assigned_high_gotno)
3726     {
3727       /* We didn't allocate enough space in the GOT.  */
3728       (*_bfd_error_handler)
3729 	(_("not enough GOT space for local GOT entries"));
3730       bfd_set_error (bfd_error_bad_value);
3731       return NULL;
3732     }
3733 
3734   entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3735   if (!entry)
3736     return NULL;
3737 
3738   if (got16_reloc_p (r_type)
3739       || call16_reloc_p (r_type)
3740       || got_page_reloc_p (r_type)
3741       || got_disp_reloc_p (r_type))
3742     lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3743   else
3744     lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3745 
3746   *entry = lookup;
3747   *loc = entry;
3748 
3749   MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3750 
3751   /* These GOT entries need a dynamic relocation on VxWorks.  */
3752   if (htab->is_vxworks)
3753     {
3754       Elf_Internal_Rela outrel;
3755       asection *s;
3756       bfd_byte *rloc;
3757       bfd_vma got_address;
3758 
3759       s = mips_elf_rel_dyn_section (info, FALSE);
3760       got_address = (htab->sgot->output_section->vma
3761 		     + htab->sgot->output_offset
3762 		     + entry->gotidx);
3763 
3764       rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3765       outrel.r_offset = got_address;
3766       outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3767       outrel.r_addend = value;
3768       bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3769     }
3770 
3771   return entry;
3772 }
3773 
3774 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3775    The number might be exact or a worst-case estimate, depending on how
3776    much information is available to elf_backend_omit_section_dynsym at
3777    the current linking stage.  */
3778 
3779 static bfd_size_type
count_section_dynsyms(bfd * output_bfd,struct bfd_link_info * info)3780 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3781 {
3782   bfd_size_type count;
3783 
3784   count = 0;
3785   if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3786     {
3787       asection *p;
3788       const struct elf_backend_data *bed;
3789 
3790       bed = get_elf_backend_data (output_bfd);
3791       for (p = output_bfd->sections; p ; p = p->next)
3792 	if ((p->flags & SEC_EXCLUDE) == 0
3793 	    && (p->flags & SEC_ALLOC) != 0
3794 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3795 	  ++count;
3796     }
3797   return count;
3798 }
3799 
3800 /* Sort the dynamic symbol table so that symbols that need GOT entries
3801    appear towards the end.  */
3802 
3803 static bfd_boolean
mips_elf_sort_hash_table(bfd * abfd,struct bfd_link_info * info)3804 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3805 {
3806   struct mips_elf_link_hash_table *htab;
3807   struct mips_elf_hash_sort_data hsd;
3808   struct mips_got_info *g;
3809 
3810   if (elf_hash_table (info)->dynsymcount == 0)
3811     return TRUE;
3812 
3813   htab = mips_elf_hash_table (info);
3814   BFD_ASSERT (htab != NULL);
3815 
3816   g = htab->got_info;
3817   if (g == NULL)
3818     return TRUE;
3819 
3820   hsd.low = NULL;
3821   hsd.max_unref_got_dynindx
3822     = hsd.min_got_dynindx
3823     = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3824   hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3825   mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3826 				elf_hash_table (info)),
3827 			       mips_elf_sort_hash_table_f,
3828 			       &hsd);
3829 
3830   /* There should have been enough room in the symbol table to
3831      accommodate both the GOT and non-GOT symbols.  */
3832   BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3833   BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3834 	      == elf_hash_table (info)->dynsymcount);
3835   BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3836 	      == g->global_gotno);
3837 
3838   /* Now we know which dynamic symbol has the lowest dynamic symbol
3839      table index in the GOT.  */
3840   htab->global_gotsym = hsd.low;
3841 
3842   return TRUE;
3843 }
3844 
3845 /* If H needs a GOT entry, assign it the highest available dynamic
3846    index.  Otherwise, assign it the lowest available dynamic
3847    index.  */
3848 
3849 static bfd_boolean
mips_elf_sort_hash_table_f(struct mips_elf_link_hash_entry * h,void * data)3850 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3851 {
3852   struct mips_elf_hash_sort_data *hsd = data;
3853 
3854   /* Symbols without dynamic symbol table entries aren't interesting
3855      at all.  */
3856   if (h->root.dynindx == -1)
3857     return TRUE;
3858 
3859   switch (h->global_got_area)
3860     {
3861     case GGA_NONE:
3862       h->root.dynindx = hsd->max_non_got_dynindx++;
3863       break;
3864 
3865     case GGA_NORMAL:
3866       h->root.dynindx = --hsd->min_got_dynindx;
3867       hsd->low = (struct elf_link_hash_entry *) h;
3868       break;
3869 
3870     case GGA_RELOC_ONLY:
3871       if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3872 	hsd->low = (struct elf_link_hash_entry *) h;
3873       h->root.dynindx = hsd->max_unref_got_dynindx++;
3874       break;
3875     }
3876 
3877   return TRUE;
3878 }
3879 
3880 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3881    (which is owned by the caller and shouldn't be added to the
3882    hash table directly).  */
3883 
3884 static bfd_boolean
mips_elf_record_got_entry(struct bfd_link_info * info,bfd * abfd,struct mips_got_entry * lookup)3885 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3886 			   struct mips_got_entry *lookup)
3887 {
3888   struct mips_elf_link_hash_table *htab;
3889   struct mips_got_entry *entry;
3890   struct mips_got_info *g;
3891   void **loc, **bfd_loc;
3892 
3893   /* Make sure there's a slot for this entry in the master GOT.  */
3894   htab = mips_elf_hash_table (info);
3895   g = htab->got_info;
3896   loc = htab_find_slot (g->got_entries, lookup, INSERT);
3897   if (!loc)
3898     return FALSE;
3899 
3900   /* Populate the entry if it isn't already.  */
3901   entry = (struct mips_got_entry *) *loc;
3902   if (!entry)
3903     {
3904       entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3905       if (!entry)
3906 	return FALSE;
3907 
3908       lookup->tls_initialized = FALSE;
3909       lookup->gotidx = -1;
3910       *entry = *lookup;
3911       *loc = entry;
3912     }
3913 
3914   /* Reuse the same GOT entry for the BFD's GOT.  */
3915   g = mips_elf_bfd_got (abfd, TRUE);
3916   if (!g)
3917     return FALSE;
3918 
3919   bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3920   if (!bfd_loc)
3921     return FALSE;
3922 
3923   if (!*bfd_loc)
3924     *bfd_loc = entry;
3925   return TRUE;
3926 }
3927 
3928 /* ABFD has a GOT relocation of type R_TYPE against H.  Reserve a GOT
3929    entry for it.  FOR_CALL is true if the caller is only interested in
3930    using the GOT entry for calls.  */
3931 
3932 static bfd_boolean
mips_elf_record_global_got_symbol(struct elf_link_hash_entry * h,bfd * abfd,struct bfd_link_info * info,bfd_boolean for_call,int r_type)3933 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3934 				   bfd *abfd, struct bfd_link_info *info,
3935 				   bfd_boolean for_call, int r_type)
3936 {
3937   struct mips_elf_link_hash_table *htab;
3938   struct mips_elf_link_hash_entry *hmips;
3939   struct mips_got_entry entry;
3940   unsigned char tls_type;
3941 
3942   htab = mips_elf_hash_table (info);
3943   BFD_ASSERT (htab != NULL);
3944 
3945   hmips = (struct mips_elf_link_hash_entry *) h;
3946   if (!for_call)
3947     hmips->got_only_for_calls = FALSE;
3948 
3949   /* A global symbol in the GOT must also be in the dynamic symbol
3950      table.  */
3951   if (h->dynindx == -1)
3952     {
3953       switch (ELF_ST_VISIBILITY (h->other))
3954 	{
3955 	case STV_INTERNAL:
3956 	case STV_HIDDEN:
3957 	  _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3958 	  break;
3959 	}
3960       if (!bfd_elf_link_record_dynamic_symbol (info, h))
3961 	return FALSE;
3962     }
3963 
3964   tls_type = mips_elf_reloc_tls_type (r_type);
3965   if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3966     hmips->global_got_area = GGA_NORMAL;
3967 
3968   entry.abfd = abfd;
3969   entry.symndx = -1;
3970   entry.d.h = (struct mips_elf_link_hash_entry *) h;
3971   entry.tls_type = tls_type;
3972   return mips_elf_record_got_entry (info, abfd, &entry);
3973 }
3974 
3975 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3976    where SYMNDX is a local symbol.  Reserve a GOT entry for it.  */
3977 
3978 static bfd_boolean
mips_elf_record_local_got_symbol(bfd * abfd,long symndx,bfd_vma addend,struct bfd_link_info * info,int r_type)3979 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3980 				  struct bfd_link_info *info, int r_type)
3981 {
3982   struct mips_elf_link_hash_table *htab;
3983   struct mips_got_info *g;
3984   struct mips_got_entry entry;
3985 
3986   htab = mips_elf_hash_table (info);
3987   BFD_ASSERT (htab != NULL);
3988 
3989   g = htab->got_info;
3990   BFD_ASSERT (g != NULL);
3991 
3992   entry.abfd = abfd;
3993   entry.symndx = symndx;
3994   entry.d.addend = addend;
3995   entry.tls_type = mips_elf_reloc_tls_type (r_type);
3996   return mips_elf_record_got_entry (info, abfd, &entry);
3997 }
3998 
3999 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4000    H is the symbol's hash table entry, or null if SYMNDX is local
4001    to ABFD.  */
4002 
4003 static bfd_boolean
mips_elf_record_got_page_ref(struct bfd_link_info * info,bfd * abfd,long symndx,struct elf_link_hash_entry * h,bfd_signed_vma addend)4004 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4005 			      long symndx, struct elf_link_hash_entry *h,
4006 			      bfd_signed_vma addend)
4007 {
4008   struct mips_elf_link_hash_table *htab;
4009   struct mips_got_info *g1, *g2;
4010   struct mips_got_page_ref lookup, *entry;
4011   void **loc, **bfd_loc;
4012 
4013   htab = mips_elf_hash_table (info);
4014   BFD_ASSERT (htab != NULL);
4015 
4016   g1 = htab->got_info;
4017   BFD_ASSERT (g1 != NULL);
4018 
4019   if (h)
4020     {
4021       lookup.symndx = -1;
4022       lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4023     }
4024   else
4025     {
4026       lookup.symndx = symndx;
4027       lookup.u.abfd = abfd;
4028     }
4029   lookup.addend = addend;
4030   loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4031   if (loc == NULL)
4032     return FALSE;
4033 
4034   entry = (struct mips_got_page_ref *) *loc;
4035   if (!entry)
4036     {
4037       entry = bfd_alloc (abfd, sizeof (*entry));
4038       if (!entry)
4039 	return FALSE;
4040 
4041       *entry = lookup;
4042       *loc = entry;
4043     }
4044 
4045   /* Add the same entry to the BFD's GOT.  */
4046   g2 = mips_elf_bfd_got (abfd, TRUE);
4047   if (!g2)
4048     return FALSE;
4049 
4050   bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4051   if (!bfd_loc)
4052     return FALSE;
4053 
4054   if (!*bfd_loc)
4055     *bfd_loc = entry;
4056 
4057   return TRUE;
4058 }
4059 
4060 /* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
4061 
4062 static void
mips_elf_allocate_dynamic_relocations(bfd * abfd,struct bfd_link_info * info,unsigned int n)4063 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4064 				       unsigned int n)
4065 {
4066   asection *s;
4067   struct mips_elf_link_hash_table *htab;
4068 
4069   htab = mips_elf_hash_table (info);
4070   BFD_ASSERT (htab != NULL);
4071 
4072   s = mips_elf_rel_dyn_section (info, FALSE);
4073   BFD_ASSERT (s != NULL);
4074 
4075   if (htab->is_vxworks)
4076     s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4077   else
4078     {
4079       if (s->size == 0)
4080 	{
4081 	  /* Make room for a null element.  */
4082 	  s->size += MIPS_ELF_REL_SIZE (abfd);
4083 	  ++s->reloc_count;
4084 	}
4085       s->size += n * MIPS_ELF_REL_SIZE (abfd);
4086     }
4087 }
4088 
4089 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4090    mips_elf_traverse_got_arg structure.  Count the number of GOT
4091    entries and TLS relocs.  Set DATA->value to true if we need
4092    to resolve indirect or warning symbols and then recreate the GOT.  */
4093 
4094 static int
mips_elf_check_recreate_got(void ** entryp,void * data)4095 mips_elf_check_recreate_got (void **entryp, void *data)
4096 {
4097   struct mips_got_entry *entry;
4098   struct mips_elf_traverse_got_arg *arg;
4099 
4100   entry = (struct mips_got_entry *) *entryp;
4101   arg = (struct mips_elf_traverse_got_arg *) data;
4102   if (entry->abfd != NULL && entry->symndx == -1)
4103     {
4104       struct mips_elf_link_hash_entry *h;
4105 
4106       h = entry->d.h;
4107       if (h->root.root.type == bfd_link_hash_indirect
4108 	  || h->root.root.type == bfd_link_hash_warning)
4109 	{
4110 	  arg->value = TRUE;
4111 	  return 0;
4112 	}
4113     }
4114   mips_elf_count_got_entry (arg->info, arg->g, entry);
4115   return 1;
4116 }
4117 
4118 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4119    mips_elf_traverse_got_arg structure.  Add all entries to DATA->g,
4120    converting entries for indirect and warning symbols into entries
4121    for the target symbol.  Set DATA->g to null on error.  */
4122 
4123 static int
mips_elf_recreate_got(void ** entryp,void * data)4124 mips_elf_recreate_got (void **entryp, void *data)
4125 {
4126   struct mips_got_entry new_entry, *entry;
4127   struct mips_elf_traverse_got_arg *arg;
4128   void **slot;
4129 
4130   entry = (struct mips_got_entry *) *entryp;
4131   arg = (struct mips_elf_traverse_got_arg *) data;
4132   if (entry->abfd != NULL
4133       && entry->symndx == -1
4134       && (entry->d.h->root.root.type == bfd_link_hash_indirect
4135 	  || entry->d.h->root.root.type == bfd_link_hash_warning))
4136     {
4137       struct mips_elf_link_hash_entry *h;
4138 
4139       new_entry = *entry;
4140       entry = &new_entry;
4141       h = entry->d.h;
4142       do
4143 	{
4144 	  BFD_ASSERT (h->global_got_area == GGA_NONE);
4145 	  h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4146 	}
4147       while (h->root.root.type == bfd_link_hash_indirect
4148 	     || h->root.root.type == bfd_link_hash_warning);
4149       entry->d.h = h;
4150     }
4151   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4152   if (slot == NULL)
4153     {
4154       arg->g = NULL;
4155       return 0;
4156     }
4157   if (*slot == NULL)
4158     {
4159       if (entry == &new_entry)
4160 	{
4161 	  entry = bfd_alloc (entry->abfd, sizeof (*entry));
4162 	  if (!entry)
4163 	    {
4164 	      arg->g = NULL;
4165 	      return 0;
4166 	    }
4167 	  *entry = new_entry;
4168 	}
4169       *slot = entry;
4170       mips_elf_count_got_entry (arg->info, arg->g, entry);
4171     }
4172   return 1;
4173 }
4174 
4175 /* Return the maximum number of GOT page entries required for RANGE.  */
4176 
4177 static bfd_vma
mips_elf_pages_for_range(const struct mips_got_page_range * range)4178 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4179 {
4180   return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4181 }
4182 
4183 /* Record that G requires a page entry that can reach SEC + ADDEND.  */
4184 
4185 static bfd_boolean
mips_elf_record_got_page_entry(struct mips_elf_traverse_got_arg * arg,asection * sec,bfd_signed_vma addend)4186 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4187 				asection *sec, bfd_signed_vma addend)
4188 {
4189   struct mips_got_info *g = arg->g;
4190   struct mips_got_page_entry lookup, *entry;
4191   struct mips_got_page_range **range_ptr, *range;
4192   bfd_vma old_pages, new_pages;
4193   void **loc;
4194 
4195   /* Find the mips_got_page_entry hash table entry for this section.  */
4196   lookup.sec = sec;
4197   loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4198   if (loc == NULL)
4199     return FALSE;
4200 
4201   /* Create a mips_got_page_entry if this is the first time we've
4202      seen the section.  */
4203   entry = (struct mips_got_page_entry *) *loc;
4204   if (!entry)
4205     {
4206       entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4207       if (!entry)
4208 	return FALSE;
4209 
4210       entry->sec = sec;
4211       *loc = entry;
4212     }
4213 
4214   /* Skip over ranges whose maximum extent cannot share a page entry
4215      with ADDEND.  */
4216   range_ptr = &entry->ranges;
4217   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4218     range_ptr = &(*range_ptr)->next;
4219 
4220   /* If we scanned to the end of the list, or found a range whose
4221      minimum extent cannot share a page entry with ADDEND, create
4222      a new singleton range.  */
4223   range = *range_ptr;
4224   if (!range || addend < range->min_addend - 0xffff)
4225     {
4226       range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4227       if (!range)
4228 	return FALSE;
4229 
4230       range->next = *range_ptr;
4231       range->min_addend = addend;
4232       range->max_addend = addend;
4233 
4234       *range_ptr = range;
4235       entry->num_pages++;
4236       g->page_gotno++;
4237       return TRUE;
4238     }
4239 
4240   /* Remember how many pages the old range contributed.  */
4241   old_pages = mips_elf_pages_for_range (range);
4242 
4243   /* Update the ranges.  */
4244   if (addend < range->min_addend)
4245     range->min_addend = addend;
4246   else if (addend > range->max_addend)
4247     {
4248       if (range->next && addend >= range->next->min_addend - 0xffff)
4249 	{
4250 	  old_pages += mips_elf_pages_for_range (range->next);
4251 	  range->max_addend = range->next->max_addend;
4252 	  range->next = range->next->next;
4253 	}
4254       else
4255 	range->max_addend = addend;
4256     }
4257 
4258   /* Record any change in the total estimate.  */
4259   new_pages = mips_elf_pages_for_range (range);
4260   if (old_pages != new_pages)
4261     {
4262       entry->num_pages += new_pages - old_pages;
4263       g->page_gotno += new_pages - old_pages;
4264     }
4265 
4266   return TRUE;
4267 }
4268 
4269 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4270    and for which DATA points to a mips_elf_traverse_got_arg.  Work out
4271    whether the page reference described by *REFP needs a GOT page entry,
4272    and record that entry in DATA->g if so.  Set DATA->g to null on failure.  */
4273 
4274 static bfd_boolean
mips_elf_resolve_got_page_ref(void ** refp,void * data)4275 mips_elf_resolve_got_page_ref (void **refp, void *data)
4276 {
4277   struct mips_got_page_ref *ref;
4278   struct mips_elf_traverse_got_arg *arg;
4279   struct mips_elf_link_hash_table *htab;
4280   asection *sec;
4281   bfd_vma addend;
4282 
4283   ref = (struct mips_got_page_ref *) *refp;
4284   arg = (struct mips_elf_traverse_got_arg *) data;
4285   htab = mips_elf_hash_table (arg->info);
4286 
4287   if (ref->symndx < 0)
4288     {
4289       struct mips_elf_link_hash_entry *h;
4290 
4291       /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries.  */
4292       h = ref->u.h;
4293       if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4294 	return 1;
4295 
4296       /* Ignore undefined symbols; we'll issue an error later if
4297 	 appropriate.  */
4298       if (!((h->root.root.type == bfd_link_hash_defined
4299 	     || h->root.root.type == bfd_link_hash_defweak)
4300 	    && h->root.root.u.def.section))
4301 	return 1;
4302 
4303       sec = h->root.root.u.def.section;
4304       addend = h->root.root.u.def.value + ref->addend;
4305     }
4306   else
4307     {
4308       Elf_Internal_Sym *isym;
4309 
4310       /* Read in the symbol.  */
4311       isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4312 				    ref->symndx);
4313       if (isym == NULL)
4314 	{
4315 	  arg->g = NULL;
4316 	  return 0;
4317 	}
4318 
4319       /* Get the associated input section.  */
4320       sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4321       if (sec == NULL)
4322 	{
4323 	  arg->g = NULL;
4324 	  return 0;
4325 	}
4326 
4327       /* If this is a mergable section, work out the section and offset
4328 	 of the merged data.  For section symbols, the addend specifies
4329 	 of the offset _of_ the first byte in the data, otherwise it
4330 	 specifies the offset _from_ the first byte.  */
4331       if (sec->flags & SEC_MERGE)
4332 	{
4333 	  void *secinfo;
4334 
4335 	  secinfo = elf_section_data (sec)->sec_info;
4336 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4337 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4338 						 isym->st_value + ref->addend);
4339 	  else
4340 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4341 						 isym->st_value) + ref->addend;
4342 	}
4343       else
4344 	addend = isym->st_value + ref->addend;
4345     }
4346   if (!mips_elf_record_got_page_entry (arg, sec, addend))
4347     {
4348       arg->g = NULL;
4349       return 0;
4350     }
4351   return 1;
4352 }
4353 
4354 /* If any entries in G->got_entries are for indirect or warning symbols,
4355    replace them with entries for the target symbol.  Convert g->got_page_refs
4356    into got_page_entry structures and estimate the number of page entries
4357    that they require.  */
4358 
4359 static bfd_boolean
mips_elf_resolve_final_got_entries(struct bfd_link_info * info,struct mips_got_info * g)4360 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4361 				    struct mips_got_info *g)
4362 {
4363   struct mips_elf_traverse_got_arg tga;
4364   struct mips_got_info oldg;
4365 
4366   oldg = *g;
4367 
4368   tga.info = info;
4369   tga.g = g;
4370   tga.value = FALSE;
4371   htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4372   if (tga.value)
4373     {
4374       *g = oldg;
4375       g->got_entries = htab_create (htab_size (oldg.got_entries),
4376 				    mips_elf_got_entry_hash,
4377 				    mips_elf_got_entry_eq, NULL);
4378       if (!g->got_entries)
4379 	return FALSE;
4380 
4381       htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4382       if (!tga.g)
4383 	return FALSE;
4384 
4385       htab_delete (oldg.got_entries);
4386     }
4387 
4388   g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4389 					 mips_got_page_entry_eq, NULL);
4390   if (g->got_page_entries == NULL)
4391     return FALSE;
4392 
4393   tga.info = info;
4394   tga.g = g;
4395   htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4396 
4397   return TRUE;
4398 }
4399 
4400 /* Return true if a GOT entry for H should live in the local rather than
4401    global GOT area.  */
4402 
4403 static bfd_boolean
mips_use_local_got_p(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h)4404 mips_use_local_got_p (struct bfd_link_info *info,
4405 		      struct mips_elf_link_hash_entry *h)
4406 {
4407   /* Symbols that aren't in the dynamic symbol table must live in the
4408      local GOT.  This includes symbols that are completely undefined
4409      and which therefore don't bind locally.  We'll report undefined
4410      symbols later if appropriate.  */
4411   if (h->root.dynindx == -1)
4412     return TRUE;
4413 
4414   /* Symbols that bind locally can (and in the case of forced-local
4415      symbols, must) live in the local GOT.  */
4416   if (h->got_only_for_calls
4417       ? SYMBOL_CALLS_LOCAL (info, &h->root)
4418       : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4419     return TRUE;
4420 
4421   /* If this is an executable that must provide a definition of the symbol,
4422      either though PLTs or copy relocations, then that address should go in
4423      the local rather than global GOT.  */
4424   if (info->executable && h->has_static_relocs)
4425     return TRUE;
4426 
4427   return FALSE;
4428 }
4429 
4430 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4431    link_info structure.  Decide whether the hash entry needs an entry in
4432    the global part of the primary GOT, setting global_got_area accordingly.
4433    Count the number of global symbols that are in the primary GOT only
4434    because they have relocations against them (reloc_only_gotno).  */
4435 
4436 static int
mips_elf_count_got_symbols(struct mips_elf_link_hash_entry * h,void * data)4437 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4438 {
4439   struct bfd_link_info *info;
4440   struct mips_elf_link_hash_table *htab;
4441   struct mips_got_info *g;
4442 
4443   info = (struct bfd_link_info *) data;
4444   htab = mips_elf_hash_table (info);
4445   g = htab->got_info;
4446   if (h->global_got_area != GGA_NONE)
4447     {
4448       /* Make a final decision about whether the symbol belongs in the
4449 	 local or global GOT.  */
4450       if (mips_use_local_got_p (info, h))
4451 	/* The symbol belongs in the local GOT.  We no longer need this
4452 	   entry if it was only used for relocations; those relocations
4453 	   will be against the null or section symbol instead of H.  */
4454 	h->global_got_area = GGA_NONE;
4455       else if (htab->is_vxworks
4456 	       && h->got_only_for_calls
4457 	       && h->root.plt.plist->mips_offset != MINUS_ONE)
4458 	/* On VxWorks, calls can refer directly to the .got.plt entry;
4459 	   they don't need entries in the regular GOT.  .got.plt entries
4460 	   will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */
4461 	h->global_got_area = GGA_NONE;
4462       else if (h->global_got_area == GGA_RELOC_ONLY)
4463 	{
4464 	  g->reloc_only_gotno++;
4465 	  g->global_gotno++;
4466 	}
4467     }
4468   return 1;
4469 }
4470 
4471 /* A htab_traverse callback for GOT entries.  Add each one to the GOT
4472    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4473 
4474 static int
mips_elf_add_got_entry(void ** entryp,void * data)4475 mips_elf_add_got_entry (void **entryp, void *data)
4476 {
4477   struct mips_got_entry *entry;
4478   struct mips_elf_traverse_got_arg *arg;
4479   void **slot;
4480 
4481   entry = (struct mips_got_entry *) *entryp;
4482   arg = (struct mips_elf_traverse_got_arg *) data;
4483   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4484   if (!slot)
4485     {
4486       arg->g = NULL;
4487       return 0;
4488     }
4489   if (!*slot)
4490     {
4491       *slot = entry;
4492       mips_elf_count_got_entry (arg->info, arg->g, entry);
4493     }
4494   return 1;
4495 }
4496 
4497 /* A htab_traverse callback for GOT page entries.  Add each one to the GOT
4498    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4499 
4500 static int
mips_elf_add_got_page_entry(void ** entryp,void * data)4501 mips_elf_add_got_page_entry (void **entryp, void *data)
4502 {
4503   struct mips_got_page_entry *entry;
4504   struct mips_elf_traverse_got_arg *arg;
4505   void **slot;
4506 
4507   entry = (struct mips_got_page_entry *) *entryp;
4508   arg = (struct mips_elf_traverse_got_arg *) data;
4509   slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4510   if (!slot)
4511     {
4512       arg->g = NULL;
4513       return 0;
4514     }
4515   if (!*slot)
4516     {
4517       *slot = entry;
4518       arg->g->page_gotno += entry->num_pages;
4519     }
4520   return 1;
4521 }
4522 
4523 /* Consider merging FROM, which is ABFD's GOT, into TO.  Return -1 if
4524    this would lead to overflow, 1 if they were merged successfully,
4525    and 0 if a merge failed due to lack of memory.  (These values are chosen
4526    so that nonnegative return values can be returned by a htab_traverse
4527    callback.)  */
4528 
4529 static int
mips_elf_merge_got_with(bfd * abfd,struct mips_got_info * from,struct mips_got_info * to,struct mips_elf_got_per_bfd_arg * arg)4530 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4531 			 struct mips_got_info *to,
4532 			 struct mips_elf_got_per_bfd_arg *arg)
4533 {
4534   struct mips_elf_traverse_got_arg tga;
4535   unsigned int estimate;
4536 
4537   /* Work out how many page entries we would need for the combined GOT.  */
4538   estimate = arg->max_pages;
4539   if (estimate >= from->page_gotno + to->page_gotno)
4540     estimate = from->page_gotno + to->page_gotno;
4541 
4542   /* And conservatively estimate how many local and TLS entries
4543      would be needed.  */
4544   estimate += from->local_gotno + to->local_gotno;
4545   estimate += from->tls_gotno + to->tls_gotno;
4546 
4547   /* If we're merging with the primary got, any TLS relocations will
4548      come after the full set of global entries.  Otherwise estimate those
4549      conservatively as well.  */
4550   if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4551     estimate += arg->global_count;
4552   else
4553     estimate += from->global_gotno + to->global_gotno;
4554 
4555   /* Bail out if the combined GOT might be too big.  */
4556   if (estimate > arg->max_count)
4557     return -1;
4558 
4559   /* Transfer the bfd's got information from FROM to TO.  */
4560   tga.info = arg->info;
4561   tga.g = to;
4562   htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4563   if (!tga.g)
4564     return 0;
4565 
4566   htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4567   if (!tga.g)
4568     return 0;
4569 
4570   mips_elf_replace_bfd_got (abfd, to);
4571   return 1;
4572 }
4573 
4574 /* Attempt to merge GOT G, which belongs to ABFD.  Try to use as much
4575    as possible of the primary got, since it doesn't require explicit
4576    dynamic relocations, but don't use bfds that would reference global
4577    symbols out of the addressable range.  Failing the primary got,
4578    attempt to merge with the current got, or finish the current got
4579    and then make make the new got current.  */
4580 
4581 static bfd_boolean
mips_elf_merge_got(bfd * abfd,struct mips_got_info * g,struct mips_elf_got_per_bfd_arg * arg)4582 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4583 		    struct mips_elf_got_per_bfd_arg *arg)
4584 {
4585   unsigned int estimate;
4586   int result;
4587 
4588   if (!mips_elf_resolve_final_got_entries (arg->info, g))
4589     return FALSE;
4590 
4591   /* Work out the number of page, local and TLS entries.  */
4592   estimate = arg->max_pages;
4593   if (estimate > g->page_gotno)
4594     estimate = g->page_gotno;
4595   estimate += g->local_gotno + g->tls_gotno;
4596 
4597   /* We place TLS GOT entries after both locals and globals.  The globals
4598      for the primary GOT may overflow the normal GOT size limit, so be
4599      sure not to merge a GOT which requires TLS with the primary GOT in that
4600      case.  This doesn't affect non-primary GOTs.  */
4601   estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4602 
4603   if (estimate <= arg->max_count)
4604     {
4605       /* If we don't have a primary GOT, use it as
4606 	 a starting point for the primary GOT.  */
4607       if (!arg->primary)
4608 	{
4609 	  arg->primary = g;
4610 	  return TRUE;
4611 	}
4612 
4613       /* Try merging with the primary GOT.  */
4614       result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4615       if (result >= 0)
4616 	return result;
4617     }
4618 
4619   /* If we can merge with the last-created got, do it.  */
4620   if (arg->current)
4621     {
4622       result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4623       if (result >= 0)
4624 	return result;
4625     }
4626 
4627   /* Well, we couldn't merge, so create a new GOT.  Don't check if it
4628      fits; if it turns out that it doesn't, we'll get relocation
4629      overflows anyway.  */
4630   g->next = arg->current;
4631   arg->current = g;
4632 
4633   return TRUE;
4634 }
4635 
4636 /* ENTRYP is a hash table entry for a mips_got_entry.  Set its gotidx
4637    to GOTIDX, duplicating the entry if it has already been assigned
4638    an index in a different GOT.  */
4639 
4640 static bfd_boolean
mips_elf_set_gotidx(void ** entryp,long gotidx)4641 mips_elf_set_gotidx (void **entryp, long gotidx)
4642 {
4643   struct mips_got_entry *entry;
4644 
4645   entry = (struct mips_got_entry *) *entryp;
4646   if (entry->gotidx > 0)
4647     {
4648       struct mips_got_entry *new_entry;
4649 
4650       new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4651       if (!new_entry)
4652 	return FALSE;
4653 
4654       *new_entry = *entry;
4655       *entryp = new_entry;
4656       entry = new_entry;
4657     }
4658   entry->gotidx = gotidx;
4659   return TRUE;
4660 }
4661 
4662 /* Set the TLS GOT index for the GOT entry in ENTRYP.  DATA points to a
4663    mips_elf_traverse_got_arg in which DATA->value is the size of one
4664    GOT entry.  Set DATA->g to null on failure.  */
4665 
4666 static int
mips_elf_initialize_tls_index(void ** entryp,void * data)4667 mips_elf_initialize_tls_index (void **entryp, void *data)
4668 {
4669   struct mips_got_entry *entry;
4670   struct mips_elf_traverse_got_arg *arg;
4671 
4672   /* We're only interested in TLS symbols.  */
4673   entry = (struct mips_got_entry *) *entryp;
4674   if (entry->tls_type == GOT_TLS_NONE)
4675     return 1;
4676 
4677   arg = (struct mips_elf_traverse_got_arg *) data;
4678   if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4679     {
4680       arg->g = NULL;
4681       return 0;
4682     }
4683 
4684   /* Account for the entries we've just allocated.  */
4685   arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4686   return 1;
4687 }
4688 
4689 /* A htab_traverse callback for GOT entries, where DATA points to a
4690    mips_elf_traverse_got_arg.  Set the global_got_area of each global
4691    symbol to DATA->value.  */
4692 
4693 static int
mips_elf_set_global_got_area(void ** entryp,void * data)4694 mips_elf_set_global_got_area (void **entryp, void *data)
4695 {
4696   struct mips_got_entry *entry;
4697   struct mips_elf_traverse_got_arg *arg;
4698 
4699   entry = (struct mips_got_entry *) *entryp;
4700   arg = (struct mips_elf_traverse_got_arg *) data;
4701   if (entry->abfd != NULL
4702       && entry->symndx == -1
4703       && entry->d.h->global_got_area != GGA_NONE)
4704     entry->d.h->global_got_area = arg->value;
4705   return 1;
4706 }
4707 
4708 /* A htab_traverse callback for secondary GOT entries, where DATA points
4709    to a mips_elf_traverse_got_arg.  Assign GOT indices to global entries
4710    and record the number of relocations they require.  DATA->value is
4711    the size of one GOT entry.  Set DATA->g to null on failure.  */
4712 
4713 static int
mips_elf_set_global_gotidx(void ** entryp,void * data)4714 mips_elf_set_global_gotidx (void **entryp, void *data)
4715 {
4716   struct mips_got_entry *entry;
4717   struct mips_elf_traverse_got_arg *arg;
4718 
4719   entry = (struct mips_got_entry *) *entryp;
4720   arg = (struct mips_elf_traverse_got_arg *) data;
4721   if (entry->abfd != NULL
4722       && entry->symndx == -1
4723       && entry->d.h->global_got_area != GGA_NONE)
4724     {
4725       if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4726 	{
4727 	  arg->g = NULL;
4728 	  return 0;
4729 	}
4730       arg->g->assigned_low_gotno += 1;
4731 
4732       if (arg->info->shared
4733 	  || (elf_hash_table (arg->info)->dynamic_sections_created
4734 	      && entry->d.h->root.def_dynamic
4735 	      && !entry->d.h->root.def_regular))
4736 	arg->g->relocs += 1;
4737     }
4738 
4739   return 1;
4740 }
4741 
4742 /* A htab_traverse callback for GOT entries for which DATA is the
4743    bfd_link_info.  Forbid any global symbols from having traditional
4744    lazy-binding stubs.  */
4745 
4746 static int
mips_elf_forbid_lazy_stubs(void ** entryp,void * data)4747 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4748 {
4749   struct bfd_link_info *info;
4750   struct mips_elf_link_hash_table *htab;
4751   struct mips_got_entry *entry;
4752 
4753   entry = (struct mips_got_entry *) *entryp;
4754   info = (struct bfd_link_info *) data;
4755   htab = mips_elf_hash_table (info);
4756   BFD_ASSERT (htab != NULL);
4757 
4758   if (entry->abfd != NULL
4759       && entry->symndx == -1
4760       && entry->d.h->needs_lazy_stub)
4761     {
4762       entry->d.h->needs_lazy_stub = FALSE;
4763       htab->lazy_stub_count--;
4764     }
4765 
4766   return 1;
4767 }
4768 
4769 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4770    the primary GOT.  */
4771 static bfd_vma
mips_elf_adjust_gp(bfd * abfd,struct mips_got_info * g,bfd * ibfd)4772 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4773 {
4774   if (!g->next)
4775     return 0;
4776 
4777   g = mips_elf_bfd_got (ibfd, FALSE);
4778   if (! g)
4779     return 0;
4780 
4781   BFD_ASSERT (g->next);
4782 
4783   g = g->next;
4784 
4785   return (g->local_gotno + g->global_gotno + g->tls_gotno)
4786     * MIPS_ELF_GOT_SIZE (abfd);
4787 }
4788 
4789 /* Turn a single GOT that is too big for 16-bit addressing into
4790    a sequence of GOTs, each one 16-bit addressable.  */
4791 
4792 static bfd_boolean
mips_elf_multi_got(bfd * abfd,struct bfd_link_info * info,asection * got,bfd_size_type pages)4793 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4794 		    asection *got, bfd_size_type pages)
4795 {
4796   struct mips_elf_link_hash_table *htab;
4797   struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4798   struct mips_elf_traverse_got_arg tga;
4799   struct mips_got_info *g, *gg;
4800   unsigned int assign, needed_relocs;
4801   bfd *dynobj, *ibfd;
4802 
4803   dynobj = elf_hash_table (info)->dynobj;
4804   htab = mips_elf_hash_table (info);
4805   BFD_ASSERT (htab != NULL);
4806 
4807   g = htab->got_info;
4808 
4809   got_per_bfd_arg.obfd = abfd;
4810   got_per_bfd_arg.info = info;
4811   got_per_bfd_arg.current = NULL;
4812   got_per_bfd_arg.primary = NULL;
4813   got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4814 				/ MIPS_ELF_GOT_SIZE (abfd))
4815 			       - htab->reserved_gotno);
4816   got_per_bfd_arg.max_pages = pages;
4817   /* The number of globals that will be included in the primary GOT.
4818      See the calls to mips_elf_set_global_got_area below for more
4819      information.  */
4820   got_per_bfd_arg.global_count = g->global_gotno;
4821 
4822   /* Try to merge the GOTs of input bfds together, as long as they
4823      don't seem to exceed the maximum GOT size, choosing one of them
4824      to be the primary GOT.  */
4825   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4826     {
4827       gg = mips_elf_bfd_got (ibfd, FALSE);
4828       if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4829 	return FALSE;
4830     }
4831 
4832   /* If we do not find any suitable primary GOT, create an empty one.  */
4833   if (got_per_bfd_arg.primary == NULL)
4834     g->next = mips_elf_create_got_info (abfd);
4835   else
4836     g->next = got_per_bfd_arg.primary;
4837   g->next->next = got_per_bfd_arg.current;
4838 
4839   /* GG is now the master GOT, and G is the primary GOT.  */
4840   gg = g;
4841   g = g->next;
4842 
4843   /* Map the output bfd to the primary got.  That's what we're going
4844      to use for bfds that use GOT16 or GOT_PAGE relocations that we
4845      didn't mark in check_relocs, and we want a quick way to find it.
4846      We can't just use gg->next because we're going to reverse the
4847      list.  */
4848   mips_elf_replace_bfd_got (abfd, g);
4849 
4850   /* Every symbol that is referenced in a dynamic relocation must be
4851      present in the primary GOT, so arrange for them to appear after
4852      those that are actually referenced.  */
4853   gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4854   g->global_gotno = gg->global_gotno;
4855 
4856   tga.info = info;
4857   tga.value = GGA_RELOC_ONLY;
4858   htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4859   tga.value = GGA_NORMAL;
4860   htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4861 
4862   /* Now go through the GOTs assigning them offset ranges.
4863      [assigned_low_gotno, local_gotno[ will be set to the range of local
4864      entries in each GOT.  We can then compute the end of a GOT by
4865      adding local_gotno to global_gotno.  We reverse the list and make
4866      it circular since then we'll be able to quickly compute the
4867      beginning of a GOT, by computing the end of its predecessor.  To
4868      avoid special cases for the primary GOT, while still preserving
4869      assertions that are valid for both single- and multi-got links,
4870      we arrange for the main got struct to have the right number of
4871      global entries, but set its local_gotno such that the initial
4872      offset of the primary GOT is zero.  Remember that the primary GOT
4873      will become the last item in the circular linked list, so it
4874      points back to the master GOT.  */
4875   gg->local_gotno = -g->global_gotno;
4876   gg->global_gotno = g->global_gotno;
4877   gg->tls_gotno = 0;
4878   assign = 0;
4879   gg->next = gg;
4880 
4881   do
4882     {
4883       struct mips_got_info *gn;
4884 
4885       assign += htab->reserved_gotno;
4886       g->assigned_low_gotno = assign;
4887       g->local_gotno += assign;
4888       g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4889       g->assigned_high_gotno = g->local_gotno - 1;
4890       assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4891 
4892       /* Take g out of the direct list, and push it onto the reversed
4893 	 list that gg points to.  g->next is guaranteed to be nonnull after
4894 	 this operation, as required by mips_elf_initialize_tls_index. */
4895       gn = g->next;
4896       g->next = gg->next;
4897       gg->next = g;
4898 
4899       /* Set up any TLS entries.  We always place the TLS entries after
4900 	 all non-TLS entries.  */
4901       g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4902       tga.g = g;
4903       tga.value = MIPS_ELF_GOT_SIZE (abfd);
4904       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4905       if (!tga.g)
4906 	return FALSE;
4907       BFD_ASSERT (g->tls_assigned_gotno == assign);
4908 
4909       /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
4910       g = gn;
4911 
4912       /* Forbid global symbols in every non-primary GOT from having
4913 	 lazy-binding stubs.  */
4914       if (g)
4915 	htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4916     }
4917   while (g);
4918 
4919   got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4920 
4921   needed_relocs = 0;
4922   for (g = gg->next; g && g->next != gg; g = g->next)
4923     {
4924       unsigned int save_assign;
4925 
4926       /* Assign offsets to global GOT entries and count how many
4927 	 relocations they need.  */
4928       save_assign = g->assigned_low_gotno;
4929       g->assigned_low_gotno = g->local_gotno;
4930       tga.info = info;
4931       tga.value = MIPS_ELF_GOT_SIZE (abfd);
4932       tga.g = g;
4933       htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4934       if (!tga.g)
4935 	return FALSE;
4936       BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4937       g->assigned_low_gotno = save_assign;
4938 
4939       if (info->shared)
4940 	{
4941 	  g->relocs += g->local_gotno - g->assigned_low_gotno;
4942 	  BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4943 		      + g->next->global_gotno
4944 		      + g->next->tls_gotno
4945 		      + htab->reserved_gotno);
4946 	}
4947       needed_relocs += g->relocs;
4948     }
4949   needed_relocs += g->relocs;
4950 
4951   if (needed_relocs)
4952     mips_elf_allocate_dynamic_relocations (dynobj, info,
4953 					   needed_relocs);
4954 
4955   return TRUE;
4956 }
4957 
4958 
4959 /* Returns the first relocation of type r_type found, beginning with
4960    RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
4961 
4962 static const Elf_Internal_Rela *
mips_elf_next_relocation(bfd * abfd ATTRIBUTE_UNUSED,unsigned int r_type,const Elf_Internal_Rela * relocation,const Elf_Internal_Rela * relend)4963 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4964 			  const Elf_Internal_Rela *relocation,
4965 			  const Elf_Internal_Rela *relend)
4966 {
4967   unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4968 
4969   while (relocation < relend)
4970     {
4971       if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4972 	  && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4973 	return relocation;
4974 
4975       ++relocation;
4976     }
4977 
4978   /* We didn't find it.  */
4979   return NULL;
4980 }
4981 
4982 /* Return whether an input relocation is against a local symbol.  */
4983 
4984 static bfd_boolean
mips_elf_local_relocation_p(bfd * input_bfd,const Elf_Internal_Rela * relocation,asection ** local_sections)4985 mips_elf_local_relocation_p (bfd *input_bfd,
4986 			     const Elf_Internal_Rela *relocation,
4987 			     asection **local_sections)
4988 {
4989   unsigned long r_symndx;
4990   Elf_Internal_Shdr *symtab_hdr;
4991   size_t extsymoff;
4992 
4993   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4994   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4995   extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4996 
4997   if (r_symndx < extsymoff)
4998     return TRUE;
4999   if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5000     return TRUE;
5001 
5002   return FALSE;
5003 }
5004 
5005 /* Sign-extend VALUE, which has the indicated number of BITS.  */
5006 
5007 bfd_vma
_bfd_mips_elf_sign_extend(bfd_vma value,int bits)5008 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5009 {
5010   if (value & ((bfd_vma) 1 << (bits - 1)))
5011     /* VALUE is negative.  */
5012     value |= ((bfd_vma) - 1) << bits;
5013 
5014   return value;
5015 }
5016 
5017 /* Return non-zero if the indicated VALUE has overflowed the maximum
5018    range expressible by a signed number with the indicated number of
5019    BITS.  */
5020 
5021 static bfd_boolean
mips_elf_overflow_p(bfd_vma value,int bits)5022 mips_elf_overflow_p (bfd_vma value, int bits)
5023 {
5024   bfd_signed_vma svalue = (bfd_signed_vma) value;
5025 
5026   if (svalue > (1 << (bits - 1)) - 1)
5027     /* The value is too big.  */
5028     return TRUE;
5029   else if (svalue < -(1 << (bits - 1)))
5030     /* The value is too small.  */
5031     return TRUE;
5032 
5033   /* All is well.  */
5034   return FALSE;
5035 }
5036 
5037 /* Calculate the %high function.  */
5038 
5039 static bfd_vma
mips_elf_high(bfd_vma value)5040 mips_elf_high (bfd_vma value)
5041 {
5042   return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5043 }
5044 
5045 /* Calculate the %higher function.  */
5046 
5047 static bfd_vma
mips_elf_higher(bfd_vma value ATTRIBUTE_UNUSED)5048 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5049 {
5050 #ifdef BFD64
5051   return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5052 #else
5053   abort ();
5054   return MINUS_ONE;
5055 #endif
5056 }
5057 
5058 /* Calculate the %highest function.  */
5059 
5060 static bfd_vma
mips_elf_highest(bfd_vma value ATTRIBUTE_UNUSED)5061 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5062 {
5063 #ifdef BFD64
5064   return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5065 #else
5066   abort ();
5067   return MINUS_ONE;
5068 #endif
5069 }
5070 
5071 /* Create the .compact_rel section.  */
5072 
5073 static bfd_boolean
mips_elf_create_compact_rel_section(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)5074 mips_elf_create_compact_rel_section
5075   (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5076 {
5077   flagword flags;
5078   register asection *s;
5079 
5080   if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5081     {
5082       flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5083 	       | SEC_READONLY);
5084 
5085       s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5086       if (s == NULL
5087 	  || ! bfd_set_section_alignment (abfd, s,
5088 					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5089 	return FALSE;
5090 
5091       s->size = sizeof (Elf32_External_compact_rel);
5092     }
5093 
5094   return TRUE;
5095 }
5096 
5097 /* Create the .got section to hold the global offset table.  */
5098 
5099 static bfd_boolean
mips_elf_create_got_section(bfd * abfd,struct bfd_link_info * info)5100 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5101 {
5102   flagword flags;
5103   register asection *s;
5104   struct elf_link_hash_entry *h;
5105   struct bfd_link_hash_entry *bh;
5106   struct mips_elf_link_hash_table *htab;
5107 
5108   htab = mips_elf_hash_table (info);
5109   BFD_ASSERT (htab != NULL);
5110 
5111   /* This function may be called more than once.  */
5112   if (htab->sgot)
5113     return TRUE;
5114 
5115   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5116 	   | SEC_LINKER_CREATED);
5117 
5118   /* We have to use an alignment of 2**4 here because this is hardcoded
5119      in the function stub generation and in the linker script.  */
5120   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5121   if (s == NULL
5122       || ! bfd_set_section_alignment (abfd, s, 4))
5123     return FALSE;
5124   htab->sgot = s;
5125 
5126   /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
5127      linker script because we don't want to define the symbol if we
5128      are not creating a global offset table.  */
5129   bh = NULL;
5130   if (! (_bfd_generic_link_add_one_symbol
5131 	 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5132 	  0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5133     return FALSE;
5134 
5135   h = (struct elf_link_hash_entry *) bh;
5136   h->non_elf = 0;
5137   h->def_regular = 1;
5138   h->type = STT_OBJECT;
5139   h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5140   elf_hash_table (info)->hgot = h;
5141 
5142   if (info->shared
5143       && ! bfd_elf_link_record_dynamic_symbol (info, h))
5144     return FALSE;
5145 
5146   htab->got_info = mips_elf_create_got_info (abfd);
5147   mips_elf_section_data (s)->elf.this_hdr.sh_flags
5148     |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5149 
5150   /* We also need a .got.plt section when generating PLTs.  */
5151   s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5152 					  SEC_ALLOC | SEC_LOAD
5153 					  | SEC_HAS_CONTENTS
5154 					  | SEC_IN_MEMORY
5155 					  | SEC_LINKER_CREATED);
5156   if (s == NULL)
5157     return FALSE;
5158   htab->sgotplt = s;
5159 
5160   return TRUE;
5161 }
5162 
5163 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5164    __GOTT_INDEX__ symbols.  These symbols are only special for
5165    shared objects; they are not used in executables.  */
5166 
5167 static bfd_boolean
is_gott_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)5168 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5169 {
5170   return (mips_elf_hash_table (info)->is_vxworks
5171 	  && info->shared
5172 	  && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5173 	      || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5174 }
5175 
5176 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5177    require an la25 stub.  See also mips_elf_local_pic_function_p,
5178    which determines whether the destination function ever requires a
5179    stub.  */
5180 
5181 static bfd_boolean
mips_elf_relocation_needs_la25_stub(bfd * input_bfd,int r_type,bfd_boolean target_is_16_bit_code_p)5182 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5183 				     bfd_boolean target_is_16_bit_code_p)
5184 {
5185   /* We specifically ignore branches and jumps from EF_PIC objects,
5186      where the onus is on the compiler or programmer to perform any
5187      necessary initialization of $25.  Sometimes such initialization
5188      is unnecessary; for example, -mno-shared functions do not use
5189      the incoming value of $25, and may therefore be called directly.  */
5190   if (PIC_OBJECT_P (input_bfd))
5191     return FALSE;
5192 
5193   switch (r_type)
5194     {
5195     case R_MIPS_26:
5196     case R_MIPS_PC16:
5197     case R_MIPS_PC21_S2:
5198     case R_MIPS_PC26_S2:
5199     case R_MICROMIPS_26_S1:
5200     case R_MICROMIPS_PC7_S1:
5201     case R_MICROMIPS_PC10_S1:
5202     case R_MICROMIPS_PC16_S1:
5203     case R_MICROMIPS_PC23_S2:
5204       return TRUE;
5205 
5206     case R_MIPS16_26:
5207       return !target_is_16_bit_code_p;
5208 
5209     default:
5210       return FALSE;
5211     }
5212 }
5213 
5214 /* Calculate the value produced by the RELOCATION (which comes from
5215    the INPUT_BFD).  The ADDEND is the addend to use for this
5216    RELOCATION; RELOCATION->R_ADDEND is ignored.
5217 
5218    The result of the relocation calculation is stored in VALUEP.
5219    On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5220    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5221 
5222    This function returns bfd_reloc_continue if the caller need take no
5223    further action regarding this relocation, bfd_reloc_notsupported if
5224    something goes dramatically wrong, bfd_reloc_overflow if an
5225    overflow occurs, and bfd_reloc_ok to indicate success.  */
5226 
5227 static bfd_reloc_status_type
mips_elf_calculate_relocation(bfd * abfd,bfd * input_bfd,asection * input_section,struct bfd_link_info * info,const Elf_Internal_Rela * relocation,bfd_vma addend,reloc_howto_type * howto,Elf_Internal_Sym * local_syms,asection ** local_sections,bfd_vma * valuep,const char ** namep,bfd_boolean * cross_mode_jump_p,bfd_boolean save_addend)5228 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5229 			       asection *input_section,
5230 			       struct bfd_link_info *info,
5231 			       const Elf_Internal_Rela *relocation,
5232 			       bfd_vma addend, reloc_howto_type *howto,
5233 			       Elf_Internal_Sym *local_syms,
5234 			       asection **local_sections, bfd_vma *valuep,
5235 			       const char **namep,
5236 			       bfd_boolean *cross_mode_jump_p,
5237 			       bfd_boolean save_addend)
5238 {
5239   /* The eventual value we will return.  */
5240   bfd_vma value;
5241   /* The address of the symbol against which the relocation is
5242      occurring.  */
5243   bfd_vma symbol = 0;
5244   /* The final GP value to be used for the relocatable, executable, or
5245      shared object file being produced.  */
5246   bfd_vma gp;
5247   /* The place (section offset or address) of the storage unit being
5248      relocated.  */
5249   bfd_vma p;
5250   /* The value of GP used to create the relocatable object.  */
5251   bfd_vma gp0;
5252   /* The offset into the global offset table at which the address of
5253      the relocation entry symbol, adjusted by the addend, resides
5254      during execution.  */
5255   bfd_vma g = MINUS_ONE;
5256   /* The section in which the symbol referenced by the relocation is
5257      located.  */
5258   asection *sec = NULL;
5259   struct mips_elf_link_hash_entry *h = NULL;
5260   /* TRUE if the symbol referred to by this relocation is a local
5261      symbol.  */
5262   bfd_boolean local_p, was_local_p;
5263   /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
5264   bfd_boolean gp_disp_p = FALSE;
5265   /* TRUE if the symbol referred to by this relocation is
5266      "__gnu_local_gp".  */
5267   bfd_boolean gnu_local_gp_p = FALSE;
5268   Elf_Internal_Shdr *symtab_hdr;
5269   size_t extsymoff;
5270   unsigned long r_symndx;
5271   int r_type;
5272   /* TRUE if overflow occurred during the calculation of the
5273      relocation value.  */
5274   bfd_boolean overflowed_p;
5275   /* TRUE if this relocation refers to a MIPS16 function.  */
5276   bfd_boolean target_is_16_bit_code_p = FALSE;
5277   bfd_boolean target_is_micromips_code_p = FALSE;
5278   struct mips_elf_link_hash_table *htab;
5279   bfd *dynobj;
5280 
5281   dynobj = elf_hash_table (info)->dynobj;
5282   htab = mips_elf_hash_table (info);
5283   BFD_ASSERT (htab != NULL);
5284 
5285   /* Parse the relocation.  */
5286   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5287   r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5288   p = (input_section->output_section->vma
5289        + input_section->output_offset
5290        + relocation->r_offset);
5291 
5292   /* Assume that there will be no overflow.  */
5293   overflowed_p = FALSE;
5294 
5295   /* Figure out whether or not the symbol is local, and get the offset
5296      used in the array of hash table entries.  */
5297   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5298   local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5299 					 local_sections);
5300   was_local_p = local_p;
5301   if (! elf_bad_symtab (input_bfd))
5302     extsymoff = symtab_hdr->sh_info;
5303   else
5304     {
5305       /* The symbol table does not follow the rule that local symbols
5306 	 must come before globals.  */
5307       extsymoff = 0;
5308     }
5309 
5310   /* Figure out the value of the symbol.  */
5311   if (local_p)
5312     {
5313       Elf_Internal_Sym *sym;
5314 
5315       sym = local_syms + r_symndx;
5316       sec = local_sections[r_symndx];
5317 
5318       symbol = sec->output_section->vma + sec->output_offset;
5319       if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5320 	  || (sec->flags & SEC_MERGE))
5321 	symbol += sym->st_value;
5322       if ((sec->flags & SEC_MERGE)
5323 	  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5324 	{
5325 	  addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5326 	  addend -= symbol;
5327 	  addend += sec->output_section->vma + sec->output_offset;
5328 	}
5329 
5330       /* MIPS16/microMIPS text labels should be treated as odd.  */
5331       if (ELF_ST_IS_COMPRESSED (sym->st_other))
5332 	++symbol;
5333 
5334       /* Record the name of this symbol, for our caller.  */
5335       *namep = bfd_elf_string_from_elf_section (input_bfd,
5336 						symtab_hdr->sh_link,
5337 						sym->st_name);
5338       if (*namep == '\0')
5339 	*namep = bfd_section_name (input_bfd, sec);
5340 
5341       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5342       target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5343     }
5344   else
5345     {
5346       /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
5347 
5348       /* For global symbols we look up the symbol in the hash-table.  */
5349       h = ((struct mips_elf_link_hash_entry *)
5350 	   elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5351       /* Find the real hash-table entry for this symbol.  */
5352       while (h->root.root.type == bfd_link_hash_indirect
5353 	     || h->root.root.type == bfd_link_hash_warning)
5354 	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5355 
5356       /* Record the name of this symbol, for our caller.  */
5357       *namep = h->root.root.root.string;
5358 
5359       /* See if this is the special _gp_disp symbol.  Note that such a
5360 	 symbol must always be a global symbol.  */
5361       if (strcmp (*namep, "_gp_disp") == 0
5362 	  && ! NEWABI_P (input_bfd))
5363 	{
5364 	  /* Relocations against _gp_disp are permitted only with
5365 	     R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
5366 	  if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5367 	    return bfd_reloc_notsupported;
5368 
5369 	  gp_disp_p = TRUE;
5370 	}
5371       /* See if this is the special _gp symbol.  Note that such a
5372 	 symbol must always be a global symbol.  */
5373       else if (strcmp (*namep, "__gnu_local_gp") == 0)
5374 	gnu_local_gp_p = TRUE;
5375 
5376 
5377       /* If this symbol is defined, calculate its address.  Note that
5378 	 _gp_disp is a magic symbol, always implicitly defined by the
5379 	 linker, so it's inappropriate to check to see whether or not
5380 	 its defined.  */
5381       else if ((h->root.root.type == bfd_link_hash_defined
5382 		|| h->root.root.type == bfd_link_hash_defweak)
5383 	       && h->root.root.u.def.section)
5384 	{
5385 	  sec = h->root.root.u.def.section;
5386 	  if (sec->output_section)
5387 	    symbol = (h->root.root.u.def.value
5388 		      + sec->output_section->vma
5389 		      + sec->output_offset);
5390 	  else
5391 	    symbol = h->root.root.u.def.value;
5392 	}
5393       else if (h->root.root.type == bfd_link_hash_undefweak)
5394 	/* We allow relocations against undefined weak symbols, giving
5395 	   it the value zero, so that you can undefined weak functions
5396 	   and check to see if they exist by looking at their
5397 	   addresses.  */
5398 	symbol = 0;
5399       else if (info->unresolved_syms_in_objects == RM_IGNORE
5400 	       && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5401 	symbol = 0;
5402       else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5403 		       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5404 	{
5405 	  /* If this is a dynamic link, we should have created a
5406 	     _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5407 	     in in _bfd_mips_elf_create_dynamic_sections.
5408 	     Otherwise, we should define the symbol with a value of 0.
5409 	     FIXME: It should probably get into the symbol table
5410 	     somehow as well.  */
5411 	  BFD_ASSERT (! info->shared);
5412 	  BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5413 	  symbol = 0;
5414 	}
5415       else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5416 	{
5417 	  /* This is an optional symbol - an Irix specific extension to the
5418 	     ELF spec.  Ignore it for now.
5419 	     XXX - FIXME - there is more to the spec for OPTIONAL symbols
5420 	     than simply ignoring them, but we do not handle this for now.
5421 	     For information see the "64-bit ELF Object File Specification"
5422 	     which is available from here:
5423 	     http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
5424 	  symbol = 0;
5425 	}
5426       else if ((*info->callbacks->undefined_symbol)
5427 	       (info, h->root.root.root.string, input_bfd,
5428 		input_section, relocation->r_offset,
5429 		(info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5430 		 || ELF_ST_VISIBILITY (h->root.other)))
5431 	{
5432 	  return bfd_reloc_undefined;
5433 	}
5434       else
5435 	{
5436 	  return bfd_reloc_notsupported;
5437 	}
5438 
5439       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5440       target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5441     }
5442 
5443   /* If this is a reference to a 16-bit function with a stub, we need
5444      to redirect the relocation to the stub unless:
5445 
5446      (a) the relocation is for a MIPS16 JAL;
5447 
5448      (b) the relocation is for a MIPS16 PIC call, and there are no
5449 	 non-MIPS16 uses of the GOT slot; or
5450 
5451      (c) the section allows direct references to MIPS16 functions.  */
5452   if (r_type != R_MIPS16_26
5453       && !info->relocatable
5454       && ((h != NULL
5455 	   && h->fn_stub != NULL
5456 	   && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5457 	  || (local_p
5458 	      && mips_elf_tdata (input_bfd)->local_stubs != NULL
5459 	      && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5460       && !section_allows_mips16_refs_p (input_section))
5461     {
5462       /* This is a 32- or 64-bit call to a 16-bit function.  We should
5463 	 have already noticed that we were going to need the
5464 	 stub.  */
5465       if (local_p)
5466 	{
5467 	  sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5468 	  value = 0;
5469 	}
5470       else
5471 	{
5472 	  BFD_ASSERT (h->need_fn_stub);
5473 	  if (h->la25_stub)
5474 	    {
5475 	      /* If a LA25 header for the stub itself exists, point to the
5476 		 prepended LUI/ADDIU sequence.  */
5477 	      sec = h->la25_stub->stub_section;
5478 	      value = h->la25_stub->offset;
5479 	    }
5480 	  else
5481 	    {
5482 	      sec = h->fn_stub;
5483 	      value = 0;
5484 	    }
5485 	}
5486 
5487       symbol = sec->output_section->vma + sec->output_offset + value;
5488       /* The target is 16-bit, but the stub isn't.  */
5489       target_is_16_bit_code_p = FALSE;
5490     }
5491   /* If this is a MIPS16 call with a stub, that is made through the PLT or
5492      to a standard MIPS function, we need to redirect the call to the stub.
5493      Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5494      indirect calls should use an indirect stub instead.  */
5495   else if (r_type == R_MIPS16_26 && !info->relocatable
5496 	   && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5497 	       || (local_p
5498 		   && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5499 		   && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5500 	   && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5501     {
5502       if (local_p)
5503 	sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5504       else
5505 	{
5506 	  /* If both call_stub and call_fp_stub are defined, we can figure
5507 	     out which one to use by checking which one appears in the input
5508 	     file.  */
5509 	  if (h->call_stub != NULL && h->call_fp_stub != NULL)
5510 	    {
5511 	      asection *o;
5512 
5513 	      sec = NULL;
5514 	      for (o = input_bfd->sections; o != NULL; o = o->next)
5515 		{
5516 		  if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5517 		    {
5518 		      sec = h->call_fp_stub;
5519 		      break;
5520 		    }
5521 		}
5522 	      if (sec == NULL)
5523 		sec = h->call_stub;
5524 	    }
5525 	  else if (h->call_stub != NULL)
5526 	    sec = h->call_stub;
5527 	  else
5528 	    sec = h->call_fp_stub;
5529   	}
5530 
5531       BFD_ASSERT (sec->size > 0);
5532       symbol = sec->output_section->vma + sec->output_offset;
5533     }
5534   /* If this is a direct call to a PIC function, redirect to the
5535      non-PIC stub.  */
5536   else if (h != NULL && h->la25_stub
5537 	   && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5538 						   target_is_16_bit_code_p))
5539     symbol = (h->la25_stub->stub_section->output_section->vma
5540 	      + h->la25_stub->stub_section->output_offset
5541 	      + h->la25_stub->offset);
5542   /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5543      entry is used if a standard PLT entry has also been made.  In this
5544      case the symbol will have been set by mips_elf_set_plt_sym_value
5545      to point to the standard PLT entry, so redirect to the compressed
5546      one.  */
5547   else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5548 	   && !info->relocatable
5549 	   && h != NULL
5550 	   && h->use_plt_entry
5551 	   && h->root.plt.plist->comp_offset != MINUS_ONE
5552 	   && h->root.plt.plist->mips_offset != MINUS_ONE)
5553     {
5554       bfd_boolean micromips_p = MICROMIPS_P (abfd);
5555 
5556       sec = htab->splt;
5557       symbol = (sec->output_section->vma
5558 		+ sec->output_offset
5559 		+ htab->plt_header_size
5560 		+ htab->plt_mips_offset
5561 		+ h->root.plt.plist->comp_offset
5562 		+ 1);
5563 
5564       target_is_16_bit_code_p = !micromips_p;
5565       target_is_micromips_code_p = micromips_p;
5566     }
5567 
5568   /* Make sure MIPS16 and microMIPS are not used together.  */
5569   if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5570       || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5571    {
5572       (*_bfd_error_handler)
5573 	(_("MIPS16 and microMIPS functions cannot call each other"));
5574       return bfd_reloc_notsupported;
5575    }
5576 
5577   /* Calls from 16-bit code to 32-bit code and vice versa require the
5578      mode change.  However, we can ignore calls to undefined weak symbols,
5579      which should never be executed at runtime.  This exception is important
5580      because the assembly writer may have "known" that any definition of the
5581      symbol would be 16-bit code, and that direct jumps were therefore
5582      acceptable.  */
5583   *cross_mode_jump_p = (!info->relocatable
5584 			&& !(h && h->root.root.type == bfd_link_hash_undefweak)
5585 			&& ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5586 			    || (r_type == R_MICROMIPS_26_S1
5587 				&& !target_is_micromips_code_p)
5588 			    || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5589 				&& (target_is_16_bit_code_p
5590 				    || target_is_micromips_code_p))));
5591 
5592   local_p = (h == NULL || mips_use_local_got_p (info, h));
5593 
5594   gp0 = _bfd_get_gp_value (input_bfd);
5595   gp = _bfd_get_gp_value (abfd);
5596   if (htab->got_info)
5597     gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5598 
5599   if (gnu_local_gp_p)
5600     symbol = gp;
5601 
5602   /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5603      to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
5604      corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.  */
5605   if (got_page_reloc_p (r_type) && !local_p)
5606     {
5607       r_type = (micromips_reloc_p (r_type)
5608 		? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5609       addend = 0;
5610     }
5611 
5612   /* If we haven't already determined the GOT offset, and we're going
5613      to need it, get it now.  */
5614   switch (r_type)
5615     {
5616     case R_MIPS16_CALL16:
5617     case R_MIPS16_GOT16:
5618     case R_MIPS_CALL16:
5619     case R_MIPS_GOT16:
5620     case R_MIPS_GOT_DISP:
5621     case R_MIPS_GOT_HI16:
5622     case R_MIPS_CALL_HI16:
5623     case R_MIPS_GOT_LO16:
5624     case R_MIPS_CALL_LO16:
5625     case R_MICROMIPS_CALL16:
5626     case R_MICROMIPS_GOT16:
5627     case R_MICROMIPS_GOT_DISP:
5628     case R_MICROMIPS_GOT_HI16:
5629     case R_MICROMIPS_CALL_HI16:
5630     case R_MICROMIPS_GOT_LO16:
5631     case R_MICROMIPS_CALL_LO16:
5632     case R_MIPS_TLS_GD:
5633     case R_MIPS_TLS_GOTTPREL:
5634     case R_MIPS_TLS_LDM:
5635     case R_MIPS16_TLS_GD:
5636     case R_MIPS16_TLS_GOTTPREL:
5637     case R_MIPS16_TLS_LDM:
5638     case R_MICROMIPS_TLS_GD:
5639     case R_MICROMIPS_TLS_GOTTPREL:
5640     case R_MICROMIPS_TLS_LDM:
5641       /* Find the index into the GOT where this value is located.  */
5642       if (tls_ldm_reloc_p (r_type))
5643 	{
5644 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5645 					0, 0, NULL, r_type);
5646 	  if (g == MINUS_ONE)
5647 	    return bfd_reloc_outofrange;
5648 	}
5649       else if (!local_p)
5650 	{
5651 	  /* On VxWorks, CALL relocations should refer to the .got.plt
5652 	     entry, which is initialized to point at the PLT stub.  */
5653 	  if (htab->is_vxworks
5654 	      && (call_hi16_reloc_p (r_type)
5655 		  || call_lo16_reloc_p (r_type)
5656 		  || call16_reloc_p (r_type)))
5657 	    {
5658 	      BFD_ASSERT (addend == 0);
5659 	      BFD_ASSERT (h->root.needs_plt);
5660 	      g = mips_elf_gotplt_index (info, &h->root);
5661 	    }
5662 	  else
5663 	    {
5664 	      BFD_ASSERT (addend == 0);
5665 	      g = mips_elf_global_got_index (abfd, info, input_bfd,
5666 					     &h->root, r_type);
5667 	      if (!TLS_RELOC_P (r_type)
5668 		  && !elf_hash_table (info)->dynamic_sections_created)
5669 		/* This is a static link.  We must initialize the GOT entry.  */
5670 		MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5671 	    }
5672 	}
5673       else if (!htab->is_vxworks
5674 	       && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5675 	/* The calculation below does not involve "g".  */
5676 	break;
5677       else
5678 	{
5679 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5680 					symbol + addend, r_symndx, h, r_type);
5681 	  if (g == MINUS_ONE)
5682 	    return bfd_reloc_outofrange;
5683 	}
5684 
5685       /* Convert GOT indices to actual offsets.  */
5686       g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5687       break;
5688     }
5689 
5690   /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5691      symbols are resolved by the loader.  Add them to .rela.dyn.  */
5692   if (h != NULL && is_gott_symbol (info, &h->root))
5693     {
5694       Elf_Internal_Rela outrel;
5695       bfd_byte *loc;
5696       asection *s;
5697 
5698       s = mips_elf_rel_dyn_section (info, FALSE);
5699       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5700 
5701       outrel.r_offset = (input_section->output_section->vma
5702 			 + input_section->output_offset
5703 			 + relocation->r_offset);
5704       outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5705       outrel.r_addend = addend;
5706       bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5707 
5708       /* If we've written this relocation for a readonly section,
5709 	 we need to set DF_TEXTREL again, so that we do not delete the
5710 	 DT_TEXTREL tag.  */
5711       if (MIPS_ELF_READONLY_SECTION (input_section))
5712 	info->flags |= DF_TEXTREL;
5713 
5714       *valuep = 0;
5715       return bfd_reloc_ok;
5716     }
5717 
5718   /* Figure out what kind of relocation is being performed.  */
5719   switch (r_type)
5720     {
5721     case R_MIPS_NONE:
5722       return bfd_reloc_continue;
5723 
5724     case R_MIPS_16:
5725       if (howto->partial_inplace)
5726 	addend = _bfd_mips_elf_sign_extend (addend, 16);
5727       value = symbol + addend;
5728       overflowed_p = mips_elf_overflow_p (value, 16);
5729       break;
5730 
5731     case R_MIPS_32:
5732     case R_MIPS_REL32:
5733     case R_MIPS_64:
5734       if ((info->shared
5735 	   || (htab->root.dynamic_sections_created
5736 	       && h != NULL
5737 	       && h->root.def_dynamic
5738 	       && !h->root.def_regular
5739 	       && !h->has_static_relocs))
5740 	  && r_symndx != STN_UNDEF
5741 	  && (h == NULL
5742 	      || h->root.root.type != bfd_link_hash_undefweak
5743 	      || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5744 	  && (input_section->flags & SEC_ALLOC) != 0)
5745 	{
5746 	  /* If we're creating a shared library, then we can't know
5747 	     where the symbol will end up.  So, we create a relocation
5748 	     record in the output, and leave the job up to the dynamic
5749 	     linker.  We must do the same for executable references to
5750 	     shared library symbols, unless we've decided to use copy
5751 	     relocs or PLTs instead.  */
5752 	  value = addend;
5753 	  if (!mips_elf_create_dynamic_relocation (abfd,
5754 						   info,
5755 						   relocation,
5756 						   h,
5757 						   sec,
5758 						   symbol,
5759 						   &value,
5760 						   input_section))
5761 	    return bfd_reloc_undefined;
5762 	}
5763       else
5764 	{
5765 	  if (r_type != R_MIPS_REL32)
5766 	    value = symbol + addend;
5767 	  else
5768 	    value = addend;
5769 	}
5770       value &= howto->dst_mask;
5771       break;
5772 
5773     case R_MIPS_PC32:
5774       value = symbol + addend - p;
5775       value &= howto->dst_mask;
5776       break;
5777 
5778     case R_MIPS16_26:
5779       /* The calculation for R_MIPS16_26 is just the same as for an
5780 	 R_MIPS_26.  It's only the storage of the relocated field into
5781 	 the output file that's different.  That's handled in
5782 	 mips_elf_perform_relocation.  So, we just fall through to the
5783 	 R_MIPS_26 case here.  */
5784     case R_MIPS_26:
5785     case R_MICROMIPS_26_S1:
5786       {
5787 	unsigned int shift;
5788 
5789 	/* Make sure the target of JALX is word-aligned.  Bit 0 must be
5790 	   the correct ISA mode selector and bit 1 must be 0.  */
5791 	if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5792 	  return bfd_reloc_outofrange;
5793 
5794 	/* Shift is 2, unusually, for microMIPS JALX.  */
5795 	shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5796 
5797 	if (was_local_p)
5798 	  value = addend | ((p + 4) & (0xfc000000 << shift));
5799 	else if (howto->partial_inplace)
5800 	  value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5801 	else
5802 	  value = addend;
5803 	value = (value + symbol) >> shift;
5804 	if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5805 	  overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5806 	value &= howto->dst_mask;
5807       }
5808       break;
5809 
5810     case R_MIPS_TLS_DTPREL_HI16:
5811     case R_MIPS16_TLS_DTPREL_HI16:
5812     case R_MICROMIPS_TLS_DTPREL_HI16:
5813       value = (mips_elf_high (addend + symbol - dtprel_base (info))
5814 	       & howto->dst_mask);
5815       break;
5816 
5817     case R_MIPS_TLS_DTPREL_LO16:
5818     case R_MIPS_TLS_DTPREL32:
5819     case R_MIPS_TLS_DTPREL64:
5820     case R_MIPS16_TLS_DTPREL_LO16:
5821     case R_MICROMIPS_TLS_DTPREL_LO16:
5822       value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5823       break;
5824 
5825     case R_MIPS_TLS_TPREL_HI16:
5826     case R_MIPS16_TLS_TPREL_HI16:
5827     case R_MICROMIPS_TLS_TPREL_HI16:
5828       value = (mips_elf_high (addend + symbol - tprel_base (info))
5829 	       & howto->dst_mask);
5830       break;
5831 
5832     case R_MIPS_TLS_TPREL_LO16:
5833     case R_MIPS_TLS_TPREL32:
5834     case R_MIPS_TLS_TPREL64:
5835     case R_MIPS16_TLS_TPREL_LO16:
5836     case R_MICROMIPS_TLS_TPREL_LO16:
5837       value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5838       break;
5839 
5840     case R_MIPS_HI16:
5841     case R_MIPS16_HI16:
5842     case R_MICROMIPS_HI16:
5843       if (!gp_disp_p)
5844 	{
5845 	  value = mips_elf_high (addend + symbol);
5846 	  value &= howto->dst_mask;
5847 	}
5848       else
5849 	{
5850 	  /* For MIPS16 ABI code we generate this sequence
5851 	        0: li      $v0,%hi(_gp_disp)
5852 	        4: addiupc $v1,%lo(_gp_disp)
5853 	        8: sll     $v0,16
5854 	       12: addu    $v0,$v1
5855 	       14: move    $gp,$v0
5856 	     So the offsets of hi and lo relocs are the same, but the
5857 	     base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5858 	     ADDIUPC clears the low two bits of the instruction address,
5859 	     so the base is ($t9 + 4) & ~3.  */
5860 	  if (r_type == R_MIPS16_HI16)
5861 	    value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5862 	  /* The microMIPS .cpload sequence uses the same assembly
5863 	     instructions as the traditional psABI version, but the
5864 	     incoming $t9 has the low bit set.  */
5865 	  else if (r_type == R_MICROMIPS_HI16)
5866 	    value = mips_elf_high (addend + gp - p - 1);
5867 	  else
5868 	    value = mips_elf_high (addend + gp - p);
5869 	  overflowed_p = mips_elf_overflow_p (value, 16);
5870 	}
5871       break;
5872 
5873     case R_MIPS_LO16:
5874     case R_MIPS16_LO16:
5875     case R_MICROMIPS_LO16:
5876     case R_MICROMIPS_HI0_LO16:
5877       if (!gp_disp_p)
5878 	value = (symbol + addend) & howto->dst_mask;
5879       else
5880 	{
5881 	  /* See the comment for R_MIPS16_HI16 above for the reason
5882 	     for this conditional.  */
5883 	  if (r_type == R_MIPS16_LO16)
5884 	    value = addend + gp - (p & ~(bfd_vma) 0x3);
5885 	  else if (r_type == R_MICROMIPS_LO16
5886 		   || r_type == R_MICROMIPS_HI0_LO16)
5887 	    value = addend + gp - p + 3;
5888 	  else
5889 	    value = addend + gp - p + 4;
5890 	  /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5891 	     for overflow.  But, on, say, IRIX5, relocations against
5892 	     _gp_disp are normally generated from the .cpload
5893 	     pseudo-op.  It generates code that normally looks like
5894 	     this:
5895 
5896 	       lui    $gp,%hi(_gp_disp)
5897 	       addiu  $gp,$gp,%lo(_gp_disp)
5898 	       addu   $gp,$gp,$t9
5899 
5900 	     Here $t9 holds the address of the function being called,
5901 	     as required by the MIPS ELF ABI.  The R_MIPS_LO16
5902 	     relocation can easily overflow in this situation, but the
5903 	     R_MIPS_HI16 relocation will handle the overflow.
5904 	     Therefore, we consider this a bug in the MIPS ABI, and do
5905 	     not check for overflow here.  */
5906 	}
5907       break;
5908 
5909     case R_MIPS_LITERAL:
5910     case R_MICROMIPS_LITERAL:
5911       /* Because we don't merge literal sections, we can handle this
5912 	 just like R_MIPS_GPREL16.  In the long run, we should merge
5913 	 shared literals, and then we will need to additional work
5914 	 here.  */
5915 
5916       /* Fall through.  */
5917 
5918     case R_MIPS16_GPREL:
5919       /* The R_MIPS16_GPREL performs the same calculation as
5920 	 R_MIPS_GPREL16, but stores the relocated bits in a different
5921 	 order.  We don't need to do anything special here; the
5922 	 differences are handled in mips_elf_perform_relocation.  */
5923     case R_MIPS_GPREL16:
5924     case R_MICROMIPS_GPREL7_S2:
5925     case R_MICROMIPS_GPREL16:
5926       /* Only sign-extend the addend if it was extracted from the
5927 	 instruction.  If the addend was separate, leave it alone,
5928 	 otherwise we may lose significant bits.  */
5929       if (howto->partial_inplace)
5930 	addend = _bfd_mips_elf_sign_extend (addend, 16);
5931       value = symbol + addend - gp;
5932       /* If the symbol was local, any earlier relocatable links will
5933 	 have adjusted its addend with the gp offset, so compensate
5934 	 for that now.  Don't do it for symbols forced local in this
5935 	 link, though, since they won't have had the gp offset applied
5936 	 to them before.  */
5937       if (was_local_p)
5938 	value += gp0;
5939       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5940 	overflowed_p = mips_elf_overflow_p (value, 16);
5941       break;
5942 
5943     case R_MIPS16_GOT16:
5944     case R_MIPS16_CALL16:
5945     case R_MIPS_GOT16:
5946     case R_MIPS_CALL16:
5947     case R_MICROMIPS_GOT16:
5948     case R_MICROMIPS_CALL16:
5949       /* VxWorks does not have separate local and global semantics for
5950 	 R_MIPS*_GOT16; every relocation evaluates to "G".  */
5951       if (!htab->is_vxworks && local_p)
5952 	{
5953 	  value = mips_elf_got16_entry (abfd, input_bfd, info,
5954 					symbol + addend, !was_local_p);
5955 	  if (value == MINUS_ONE)
5956 	    return bfd_reloc_outofrange;
5957 	  value
5958 	    = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5959 	  overflowed_p = mips_elf_overflow_p (value, 16);
5960 	  break;
5961 	}
5962 
5963       /* Fall through.  */
5964 
5965     case R_MIPS_TLS_GD:
5966     case R_MIPS_TLS_GOTTPREL:
5967     case R_MIPS_TLS_LDM:
5968     case R_MIPS_GOT_DISP:
5969     case R_MIPS16_TLS_GD:
5970     case R_MIPS16_TLS_GOTTPREL:
5971     case R_MIPS16_TLS_LDM:
5972     case R_MICROMIPS_TLS_GD:
5973     case R_MICROMIPS_TLS_GOTTPREL:
5974     case R_MICROMIPS_TLS_LDM:
5975     case R_MICROMIPS_GOT_DISP:
5976       value = g;
5977       overflowed_p = mips_elf_overflow_p (value, 16);
5978       break;
5979 
5980     case R_MIPS_GPREL32:
5981       value = (addend + symbol + gp0 - gp);
5982       if (!save_addend)
5983 	value &= howto->dst_mask;
5984       break;
5985 
5986     case R_MIPS_PC16:
5987     case R_MIPS_GNU_REL16_S2:
5988       if (howto->partial_inplace)
5989 	addend = _bfd_mips_elf_sign_extend (addend, 18);
5990 
5991       if ((symbol + addend) & 3)
5992 	return bfd_reloc_outofrange;
5993 
5994       value = symbol + addend - p;
5995       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5996 	overflowed_p = mips_elf_overflow_p (value, 18);
5997       value >>= howto->rightshift;
5998       value &= howto->dst_mask;
5999       break;
6000 
6001     case R_MIPS_PC21_S2:
6002       if (howto->partial_inplace)
6003 	addend = _bfd_mips_elf_sign_extend (addend, 23);
6004 
6005       if ((symbol + addend) & 3)
6006 	return bfd_reloc_outofrange;
6007 
6008       value = symbol + addend - p;
6009       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6010 	overflowed_p = mips_elf_overflow_p (value, 23);
6011       value >>= howto->rightshift;
6012       value &= howto->dst_mask;
6013       break;
6014 
6015     case R_MIPS_PC26_S2:
6016       if (howto->partial_inplace)
6017 	addend = _bfd_mips_elf_sign_extend (addend, 28);
6018 
6019       if ((symbol + addend) & 3)
6020 	return bfd_reloc_outofrange;
6021 
6022       value = symbol + addend - p;
6023       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6024 	overflowed_p = mips_elf_overflow_p (value, 28);
6025       value >>= howto->rightshift;
6026       value &= howto->dst_mask;
6027       break;
6028 
6029     case R_MIPS_PC18_S3:
6030       if (howto->partial_inplace)
6031 	addend = _bfd_mips_elf_sign_extend (addend, 21);
6032 
6033       if ((symbol + addend) & 7)
6034 	return bfd_reloc_outofrange;
6035 
6036       value = symbol + addend - ((p | 7) ^ 7);
6037       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6038 	overflowed_p = mips_elf_overflow_p (value, 21);
6039       value >>= howto->rightshift;
6040       value &= howto->dst_mask;
6041       break;
6042 
6043     case R_MIPS_PC19_S2:
6044       if (howto->partial_inplace)
6045 	addend = _bfd_mips_elf_sign_extend (addend, 21);
6046 
6047       if ((symbol + addend) & 3)
6048 	return bfd_reloc_outofrange;
6049 
6050       value = symbol + addend - p;
6051       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6052 	overflowed_p = mips_elf_overflow_p (value, 21);
6053       value >>= howto->rightshift;
6054       value &= howto->dst_mask;
6055       break;
6056 
6057     case R_MIPS_PCHI16:
6058       value = mips_elf_high (symbol + addend - p);
6059       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6060 	overflowed_p = mips_elf_overflow_p (value, 16);
6061       value &= howto->dst_mask;
6062       break;
6063 
6064     case R_MIPS_PCLO16:
6065       if (howto->partial_inplace)
6066 	addend = _bfd_mips_elf_sign_extend (addend, 16);
6067       value = symbol + addend - p;
6068       value &= howto->dst_mask;
6069       break;
6070 
6071     case R_MICROMIPS_PC7_S1:
6072       if (howto->partial_inplace)
6073 	addend = _bfd_mips_elf_sign_extend (addend, 8);
6074       value = symbol + addend - p;
6075       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 	overflowed_p = mips_elf_overflow_p (value, 8);
6077       value >>= howto->rightshift;
6078       value &= howto->dst_mask;
6079       break;
6080 
6081     case R_MICROMIPS_PC10_S1:
6082       if (howto->partial_inplace)
6083 	addend = _bfd_mips_elf_sign_extend (addend, 11);
6084       value = symbol + addend - p;
6085       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6086 	overflowed_p = mips_elf_overflow_p (value, 11);
6087       value >>= howto->rightshift;
6088       value &= howto->dst_mask;
6089       break;
6090 
6091     case R_MICROMIPS_PC16_S1:
6092       if (howto->partial_inplace)
6093 	addend = _bfd_mips_elf_sign_extend (addend, 17);
6094       value = symbol + addend - p;
6095       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6096 	overflowed_p = mips_elf_overflow_p (value, 17);
6097       value >>= howto->rightshift;
6098       value &= howto->dst_mask;
6099       break;
6100 
6101     case R_MICROMIPS_PC23_S2:
6102       if (howto->partial_inplace)
6103 	addend = _bfd_mips_elf_sign_extend (addend, 25);
6104       value = symbol + addend - ((p | 3) ^ 3);
6105       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6106 	overflowed_p = mips_elf_overflow_p (value, 25);
6107       value >>= howto->rightshift;
6108       value &= howto->dst_mask;
6109       break;
6110 
6111     case R_MIPS_GOT_HI16:
6112     case R_MIPS_CALL_HI16:
6113     case R_MICROMIPS_GOT_HI16:
6114     case R_MICROMIPS_CALL_HI16:
6115       /* We're allowed to handle these two relocations identically.
6116 	 The dynamic linker is allowed to handle the CALL relocations
6117 	 differently by creating a lazy evaluation stub.  */
6118       value = g;
6119       value = mips_elf_high (value);
6120       value &= howto->dst_mask;
6121       break;
6122 
6123     case R_MIPS_GOT_LO16:
6124     case R_MIPS_CALL_LO16:
6125     case R_MICROMIPS_GOT_LO16:
6126     case R_MICROMIPS_CALL_LO16:
6127       value = g & howto->dst_mask;
6128       break;
6129 
6130     case R_MIPS_GOT_PAGE:
6131     case R_MICROMIPS_GOT_PAGE:
6132       value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6133       if (value == MINUS_ONE)
6134 	return bfd_reloc_outofrange;
6135       value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6136       overflowed_p = mips_elf_overflow_p (value, 16);
6137       break;
6138 
6139     case R_MIPS_GOT_OFST:
6140     case R_MICROMIPS_GOT_OFST:
6141       if (local_p)
6142 	mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6143       else
6144 	value = addend;
6145       overflowed_p = mips_elf_overflow_p (value, 16);
6146       break;
6147 
6148     case R_MIPS_SUB:
6149     case R_MICROMIPS_SUB:
6150       value = symbol - addend;
6151       value &= howto->dst_mask;
6152       break;
6153 
6154     case R_MIPS_HIGHER:
6155     case R_MICROMIPS_HIGHER:
6156       value = mips_elf_higher (addend + symbol);
6157       value &= howto->dst_mask;
6158       break;
6159 
6160     case R_MIPS_HIGHEST:
6161     case R_MICROMIPS_HIGHEST:
6162       value = mips_elf_highest (addend + symbol);
6163       value &= howto->dst_mask;
6164       break;
6165 
6166     case R_MIPS_SCN_DISP:
6167     case R_MICROMIPS_SCN_DISP:
6168       value = symbol + addend - sec->output_offset;
6169       value &= howto->dst_mask;
6170       break;
6171 
6172     case R_MIPS_JALR:
6173     case R_MICROMIPS_JALR:
6174       /* This relocation is only a hint.  In some cases, we optimize
6175 	 it into a bal instruction.  But we don't try to optimize
6176 	 when the symbol does not resolve locally.  */
6177       if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6178 	return bfd_reloc_continue;
6179       value = symbol + addend;
6180       break;
6181 
6182     case R_MIPS_PJUMP:
6183     case R_MIPS_GNU_VTINHERIT:
6184     case R_MIPS_GNU_VTENTRY:
6185       /* We don't do anything with these at present.  */
6186       return bfd_reloc_continue;
6187 
6188     default:
6189       /* An unrecognized relocation type.  */
6190       return bfd_reloc_notsupported;
6191     }
6192 
6193   /* Store the VALUE for our caller.  */
6194   *valuep = value;
6195   return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6196 }
6197 
6198 /* Obtain the field relocated by RELOCATION.  */
6199 
6200 static bfd_vma
mips_elf_obtain_contents(reloc_howto_type * howto,const Elf_Internal_Rela * relocation,bfd * input_bfd,bfd_byte * contents)6201 mips_elf_obtain_contents (reloc_howto_type *howto,
6202 			  const Elf_Internal_Rela *relocation,
6203 			  bfd *input_bfd, bfd_byte *contents)
6204 {
6205   bfd_vma x;
6206   bfd_byte *location = contents + relocation->r_offset;
6207 
6208   /* Obtain the bytes.  */
6209   x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
6210 
6211   return x;
6212 }
6213 
6214 /* It has been determined that the result of the RELOCATION is the
6215    VALUE.  Use HOWTO to place VALUE into the output file at the
6216    appropriate position.  The SECTION is the section to which the
6217    relocation applies.
6218    CROSS_MODE_JUMP_P is true if the relocation field
6219    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6220 
6221    Returns FALSE if anything goes wrong.  */
6222 
6223 static bfd_boolean
mips_elf_perform_relocation(struct bfd_link_info * info,reloc_howto_type * howto,const Elf_Internal_Rela * relocation,bfd_vma value,bfd * input_bfd,asection * input_section,bfd_byte * contents,bfd_boolean cross_mode_jump_p)6224 mips_elf_perform_relocation (struct bfd_link_info *info,
6225 			     reloc_howto_type *howto,
6226 			     const Elf_Internal_Rela *relocation,
6227 			     bfd_vma value, bfd *input_bfd,
6228 			     asection *input_section, bfd_byte *contents,
6229 			     bfd_boolean cross_mode_jump_p)
6230 {
6231   bfd_vma x;
6232   bfd_byte *location;
6233   int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6234 
6235   /* Figure out where the relocation is occurring.  */
6236   location = contents + relocation->r_offset;
6237 
6238   _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6239 
6240   /* Obtain the current value.  */
6241   x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6242 
6243   /* Clear the field we are setting.  */
6244   x &= ~howto->dst_mask;
6245 
6246   /* Set the field.  */
6247   x |= (value & howto->dst_mask);
6248 
6249   /* If required, turn JAL into JALX.  */
6250   if (cross_mode_jump_p && jal_reloc_p (r_type))
6251     {
6252       bfd_boolean ok;
6253       bfd_vma opcode = x >> 26;
6254       bfd_vma jalx_opcode;
6255 
6256       /* Check to see if the opcode is already JAL or JALX.  */
6257       if (r_type == R_MIPS16_26)
6258 	{
6259 	  ok = ((opcode == 0x6) || (opcode == 0x7));
6260 	  jalx_opcode = 0x7;
6261 	}
6262       else if (r_type == R_MICROMIPS_26_S1)
6263 	{
6264 	  ok = ((opcode == 0x3d) || (opcode == 0x3c));
6265 	  jalx_opcode = 0x3c;
6266 	}
6267       else
6268 	{
6269 	  ok = ((opcode == 0x3) || (opcode == 0x1d));
6270 	  jalx_opcode = 0x1d;
6271 	}
6272 
6273       /* If the opcode is not JAL or JALX, there's a problem.  We cannot
6274          convert J or JALS to JALX.  */
6275       if (!ok)
6276 	{
6277 	  (*_bfd_error_handler)
6278 	    (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6279 	     input_bfd,
6280 	     input_section,
6281 	     (unsigned long) relocation->r_offset);
6282 	  bfd_set_error (bfd_error_bad_value);
6283 	  return FALSE;
6284 	}
6285 
6286       /* Make this the JALX opcode.  */
6287       x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6288     }
6289 
6290   /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6291      range.  */
6292   if (!info->relocatable
6293       && !cross_mode_jump_p
6294       && ((JAL_TO_BAL_P (input_bfd)
6295 	   && r_type == R_MIPS_26
6296 	   && (x >> 26) == 0x3)		/* jal addr */
6297 	  || (JALR_TO_BAL_P (input_bfd)
6298 	      && r_type == R_MIPS_JALR
6299 	      && x == 0x0320f809)	/* jalr t9 */
6300 	  || (JR_TO_B_P (input_bfd)
6301 	      && r_type == R_MIPS_JALR
6302 	      && x == 0x03200008)))	/* jr t9 */
6303     {
6304       bfd_vma addr;
6305       bfd_vma dest;
6306       bfd_signed_vma off;
6307 
6308       addr = (input_section->output_section->vma
6309 	      + input_section->output_offset
6310 	      + relocation->r_offset
6311 	      + 4);
6312       if (r_type == R_MIPS_26)
6313 	dest = (value << 2) | ((addr >> 28) << 28);
6314       else
6315 	dest = value;
6316       off = dest - addr;
6317       if (off <= 0x1ffff && off >= -0x20000)
6318 	{
6319 	  if (x == 0x03200008)	/* jr t9 */
6320 	    x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */
6321 	  else
6322 	    x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
6323 	}
6324     }
6325 
6326   /* Put the value into the output.  */
6327   bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6328 
6329   _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6330 			       location);
6331 
6332   return TRUE;
6333 }
6334 
6335 /* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
6336    is the original relocation, which is now being transformed into a
6337    dynamic relocation.  The ADDENDP is adjusted if necessary; the
6338    caller should store the result in place of the original addend.  */
6339 
6340 static bfd_boolean
mips_elf_create_dynamic_relocation(bfd * output_bfd,struct bfd_link_info * info,const Elf_Internal_Rela * rel,struct mips_elf_link_hash_entry * h,asection * sec,bfd_vma symbol,bfd_vma * addendp,asection * input_section)6341 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6342 				    struct bfd_link_info *info,
6343 				    const Elf_Internal_Rela *rel,
6344 				    struct mips_elf_link_hash_entry *h,
6345 				    asection *sec, bfd_vma symbol,
6346 				    bfd_vma *addendp, asection *input_section)
6347 {
6348   Elf_Internal_Rela outrel[3];
6349   asection *sreloc;
6350   bfd *dynobj;
6351   int r_type;
6352   long indx;
6353   bfd_boolean defined_p;
6354   struct mips_elf_link_hash_table *htab;
6355 
6356   htab = mips_elf_hash_table (info);
6357   BFD_ASSERT (htab != NULL);
6358 
6359   r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6360   dynobj = elf_hash_table (info)->dynobj;
6361   sreloc = mips_elf_rel_dyn_section (info, FALSE);
6362   BFD_ASSERT (sreloc != NULL);
6363   BFD_ASSERT (sreloc->contents != NULL);
6364   BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6365 	      < sreloc->size);
6366 
6367   outrel[0].r_offset =
6368     _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6369   if (ABI_64_P (output_bfd))
6370     {
6371       outrel[1].r_offset =
6372 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6373       outrel[2].r_offset =
6374 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6375     }
6376 
6377   if (outrel[0].r_offset == MINUS_ONE)
6378     /* The relocation field has been deleted.  */
6379     return TRUE;
6380 
6381   if (outrel[0].r_offset == MINUS_TWO)
6382     {
6383       /* The relocation field has been converted into a relative value of
6384 	 some sort.  Functions like _bfd_elf_write_section_eh_frame expect
6385 	 the field to be fully relocated, so add in the symbol's value.  */
6386       *addendp += symbol;
6387       return TRUE;
6388     }
6389 
6390   /* We must now calculate the dynamic symbol table index to use
6391      in the relocation.  */
6392   if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6393     {
6394       BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6395       indx = h->root.dynindx;
6396       if (SGI_COMPAT (output_bfd))
6397 	defined_p = h->root.def_regular;
6398       else
6399 	/* ??? glibc's ld.so just adds the final GOT entry to the
6400 	   relocation field.  It therefore treats relocs against
6401 	   defined symbols in the same way as relocs against
6402 	   undefined symbols.  */
6403 	defined_p = FALSE;
6404     }
6405   else
6406     {
6407       if (sec != NULL && bfd_is_abs_section (sec))
6408 	indx = 0;
6409       else if (sec == NULL || sec->owner == NULL)
6410 	{
6411 	  bfd_set_error (bfd_error_bad_value);
6412 	  return FALSE;
6413 	}
6414       else
6415 	{
6416 	  indx = elf_section_data (sec->output_section)->dynindx;
6417 	  if (indx == 0)
6418 	    {
6419 	      asection *osec = htab->root.text_index_section;
6420 	      indx = elf_section_data (osec)->dynindx;
6421 	    }
6422 	  if (indx == 0)
6423 	    abort ();
6424 	}
6425 
6426       /* Instead of generating a relocation using the section
6427 	 symbol, we may as well make it a fully relative
6428 	 relocation.  We want to avoid generating relocations to
6429 	 local symbols because we used to generate them
6430 	 incorrectly, without adding the original symbol value,
6431 	 which is mandated by the ABI for section symbols.  In
6432 	 order to give dynamic loaders and applications time to
6433 	 phase out the incorrect use, we refrain from emitting
6434 	 section-relative relocations.  It's not like they're
6435 	 useful, after all.  This should be a bit more efficient
6436 	 as well.  */
6437       /* ??? Although this behavior is compatible with glibc's ld.so,
6438 	 the ABI says that relocations against STN_UNDEF should have
6439 	 a symbol value of 0.  Irix rld honors this, so relocations
6440 	 against STN_UNDEF have no effect.  */
6441       if (!SGI_COMPAT (output_bfd))
6442 	indx = 0;
6443       defined_p = TRUE;
6444     }
6445 
6446   /* If the relocation was previously an absolute relocation and
6447      this symbol will not be referred to by the relocation, we must
6448      adjust it by the value we give it in the dynamic symbol table.
6449      Otherwise leave the job up to the dynamic linker.  */
6450   if (defined_p && r_type != R_MIPS_REL32)
6451     *addendp += symbol;
6452 
6453   if (htab->is_vxworks)
6454     /* VxWorks uses non-relative relocations for this.  */
6455     outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6456   else
6457     /* The relocation is always an REL32 relocation because we don't
6458        know where the shared library will wind up at load-time.  */
6459     outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6460 				   R_MIPS_REL32);
6461 
6462   /* For strict adherence to the ABI specification, we should
6463      generate a R_MIPS_64 relocation record by itself before the
6464      _REL32/_64 record as well, such that the addend is read in as
6465      a 64-bit value (REL32 is a 32-bit relocation, after all).
6466      However, since none of the existing ELF64 MIPS dynamic
6467      loaders seems to care, we don't waste space with these
6468      artificial relocations.  If this turns out to not be true,
6469      mips_elf_allocate_dynamic_relocation() should be tweaked so
6470      as to make room for a pair of dynamic relocations per
6471      invocation if ABI_64_P, and here we should generate an
6472      additional relocation record with R_MIPS_64 by itself for a
6473      NULL symbol before this relocation record.  */
6474   outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6475 				 ABI_64_P (output_bfd)
6476 				 ? R_MIPS_64
6477 				 : R_MIPS_NONE);
6478   outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6479 
6480   /* Adjust the output offset of the relocation to reference the
6481      correct location in the output file.  */
6482   outrel[0].r_offset += (input_section->output_section->vma
6483 			 + input_section->output_offset);
6484   outrel[1].r_offset += (input_section->output_section->vma
6485 			 + input_section->output_offset);
6486   outrel[2].r_offset += (input_section->output_section->vma
6487 			 + input_section->output_offset);
6488 
6489   /* Put the relocation back out.  We have to use the special
6490      relocation outputter in the 64-bit case since the 64-bit
6491      relocation format is non-standard.  */
6492   if (ABI_64_P (output_bfd))
6493     {
6494       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6495 	(output_bfd, &outrel[0],
6496 	 (sreloc->contents
6497 	  + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6498     }
6499   else if (htab->is_vxworks)
6500     {
6501       /* VxWorks uses RELA rather than REL dynamic relocations.  */
6502       outrel[0].r_addend = *addendp;
6503       bfd_elf32_swap_reloca_out
6504 	(output_bfd, &outrel[0],
6505 	 (sreloc->contents
6506 	  + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6507     }
6508   else
6509     bfd_elf32_swap_reloc_out
6510       (output_bfd, &outrel[0],
6511        (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6512 
6513   /* We've now added another relocation.  */
6514   ++sreloc->reloc_count;
6515 
6516   /* Make sure the output section is writable.  The dynamic linker
6517      will be writing to it.  */
6518   elf_section_data (input_section->output_section)->this_hdr.sh_flags
6519     |= SHF_WRITE;
6520 
6521   /* On IRIX5, make an entry of compact relocation info.  */
6522   if (IRIX_COMPAT (output_bfd) == ict_irix5)
6523     {
6524       asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6525       bfd_byte *cr;
6526 
6527       if (scpt)
6528 	{
6529 	  Elf32_crinfo cptrel;
6530 
6531 	  mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6532 	  cptrel.vaddr = (rel->r_offset
6533 			  + input_section->output_section->vma
6534 			  + input_section->output_offset);
6535 	  if (r_type == R_MIPS_REL32)
6536 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6537 	  else
6538 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6539 	  mips_elf_set_cr_dist2to (cptrel, 0);
6540 	  cptrel.konst = *addendp;
6541 
6542 	  cr = (scpt->contents
6543 		+ sizeof (Elf32_External_compact_rel));
6544 	  mips_elf_set_cr_relvaddr (cptrel, 0);
6545 	  bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6546 				     ((Elf32_External_crinfo *) cr
6547 				      + scpt->reloc_count));
6548 	  ++scpt->reloc_count;
6549 	}
6550     }
6551 
6552   /* If we've written this relocation for a readonly section,
6553      we need to set DF_TEXTREL again, so that we do not delete the
6554      DT_TEXTREL tag.  */
6555   if (MIPS_ELF_READONLY_SECTION (input_section))
6556     info->flags |= DF_TEXTREL;
6557 
6558   return TRUE;
6559 }
6560 
6561 /* Return the MACH for a MIPS e_flags value.  */
6562 
6563 unsigned long
_bfd_elf_mips_mach(flagword flags)6564 _bfd_elf_mips_mach (flagword flags)
6565 {
6566   switch (flags & EF_MIPS_MACH)
6567     {
6568     case E_MIPS_MACH_3900:
6569       return bfd_mach_mips3900;
6570 
6571     case E_MIPS_MACH_4010:
6572       return bfd_mach_mips4010;
6573 
6574     case E_MIPS_MACH_4100:
6575       return bfd_mach_mips4100;
6576 
6577     case E_MIPS_MACH_4111:
6578       return bfd_mach_mips4111;
6579 
6580     case E_MIPS_MACH_4120:
6581       return bfd_mach_mips4120;
6582 
6583     case E_MIPS_MACH_4650:
6584       return bfd_mach_mips4650;
6585 
6586     case E_MIPS_MACH_5400:
6587       return bfd_mach_mips5400;
6588 
6589     case E_MIPS_MACH_5500:
6590       return bfd_mach_mips5500;
6591 
6592     case E_MIPS_MACH_5900:
6593       return bfd_mach_mips5900;
6594 
6595     case E_MIPS_MACH_9000:
6596       return bfd_mach_mips9000;
6597 
6598     case E_MIPS_MACH_SB1:
6599       return bfd_mach_mips_sb1;
6600 
6601     case E_MIPS_MACH_LS2E:
6602       return bfd_mach_mips_loongson_2e;
6603 
6604     case E_MIPS_MACH_LS2F:
6605       return bfd_mach_mips_loongson_2f;
6606 
6607     case E_MIPS_MACH_LS3A:
6608       return bfd_mach_mips_loongson_3a;
6609 
6610     case E_MIPS_MACH_OCTEON3:
6611       return bfd_mach_mips_octeon3;
6612 
6613     case E_MIPS_MACH_OCTEON2:
6614       return bfd_mach_mips_octeon2;
6615 
6616     case E_MIPS_MACH_OCTEON:
6617       return bfd_mach_mips_octeon;
6618 
6619     case E_MIPS_MACH_XLR:
6620       return bfd_mach_mips_xlr;
6621 
6622     default:
6623       switch (flags & EF_MIPS_ARCH)
6624 	{
6625 	default:
6626 	case E_MIPS_ARCH_1:
6627 	  return bfd_mach_mips3000;
6628 
6629 	case E_MIPS_ARCH_2:
6630 	  return bfd_mach_mips6000;
6631 
6632 	case E_MIPS_ARCH_3:
6633 	  return bfd_mach_mips4000;
6634 
6635 	case E_MIPS_ARCH_4:
6636 	  return bfd_mach_mips8000;
6637 
6638 	case E_MIPS_ARCH_5:
6639 	  return bfd_mach_mips5;
6640 
6641 	case E_MIPS_ARCH_32:
6642 	  return bfd_mach_mipsisa32;
6643 
6644 	case E_MIPS_ARCH_64:
6645 	  return bfd_mach_mipsisa64;
6646 
6647 	case E_MIPS_ARCH_32R2:
6648 	  return bfd_mach_mipsisa32r2;
6649 
6650 	case E_MIPS_ARCH_64R2:
6651 	  return bfd_mach_mipsisa64r2;
6652 
6653 	case E_MIPS_ARCH_32R6:
6654 	  return bfd_mach_mipsisa32r6;
6655 
6656 	case E_MIPS_ARCH_64R6:
6657 	  return bfd_mach_mipsisa64r6;
6658 	}
6659     }
6660 
6661   return 0;
6662 }
6663 
6664 /* Return printable name for ABI.  */
6665 
6666 static INLINE char *
elf_mips_abi_name(bfd * abfd)6667 elf_mips_abi_name (bfd *abfd)
6668 {
6669   flagword flags;
6670 
6671   flags = elf_elfheader (abfd)->e_flags;
6672   switch (flags & EF_MIPS_ABI)
6673     {
6674     case 0:
6675       if (ABI_N32_P (abfd))
6676 	return "N32";
6677       else if (ABI_64_P (abfd))
6678 	return "64";
6679       else
6680 	return "none";
6681     case E_MIPS_ABI_O32:
6682       return "O32";
6683     case E_MIPS_ABI_O64:
6684       return "O64";
6685     case E_MIPS_ABI_EABI32:
6686       return "EABI32";
6687     case E_MIPS_ABI_EABI64:
6688       return "EABI64";
6689     default:
6690       return "unknown abi";
6691     }
6692 }
6693 
6694 /* MIPS ELF uses two common sections.  One is the usual one, and the
6695    other is for small objects.  All the small objects are kept
6696    together, and then referenced via the gp pointer, which yields
6697    faster assembler code.  This is what we use for the small common
6698    section.  This approach is copied from ecoff.c.  */
6699 static asection mips_elf_scom_section;
6700 static asymbol mips_elf_scom_symbol;
6701 static asymbol *mips_elf_scom_symbol_ptr;
6702 
6703 /* MIPS ELF also uses an acommon section, which represents an
6704    allocated common symbol which may be overridden by a
6705    definition in a shared library.  */
6706 static asection mips_elf_acom_section;
6707 static asymbol mips_elf_acom_symbol;
6708 static asymbol *mips_elf_acom_symbol_ptr;
6709 
6710 /* This is used for both the 32-bit and the 64-bit ABI.  */
6711 
6712 void
_bfd_mips_elf_symbol_processing(bfd * abfd,asymbol * asym)6713 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6714 {
6715   elf_symbol_type *elfsym;
6716 
6717   /* Handle the special MIPS section numbers that a symbol may use.  */
6718   elfsym = (elf_symbol_type *) asym;
6719   switch (elfsym->internal_elf_sym.st_shndx)
6720     {
6721     case SHN_MIPS_ACOMMON:
6722       /* This section is used in a dynamically linked executable file.
6723 	 It is an allocated common section.  The dynamic linker can
6724 	 either resolve these symbols to something in a shared
6725 	 library, or it can just leave them here.  For our purposes,
6726 	 we can consider these symbols to be in a new section.  */
6727       if (mips_elf_acom_section.name == NULL)
6728 	{
6729 	  /* Initialize the acommon section.  */
6730 	  mips_elf_acom_section.name = ".acommon";
6731 	  mips_elf_acom_section.flags = SEC_ALLOC;
6732 	  mips_elf_acom_section.output_section = &mips_elf_acom_section;
6733 	  mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6734 	  mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6735 	  mips_elf_acom_symbol.name = ".acommon";
6736 	  mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6737 	  mips_elf_acom_symbol.section = &mips_elf_acom_section;
6738 	  mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6739 	}
6740       asym->section = &mips_elf_acom_section;
6741       break;
6742 
6743     case SHN_COMMON:
6744       /* Common symbols less than the GP size are automatically
6745 	 treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
6746       if (asym->value > elf_gp_size (abfd)
6747 	  || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6748 	  || IRIX_COMPAT (abfd) == ict_irix6)
6749 	break;
6750       /* Fall through.  */
6751     case SHN_MIPS_SCOMMON:
6752       if (mips_elf_scom_section.name == NULL)
6753 	{
6754 	  /* Initialize the small common section.  */
6755 	  mips_elf_scom_section.name = ".scommon";
6756 	  mips_elf_scom_section.flags = SEC_IS_COMMON;
6757 	  mips_elf_scom_section.output_section = &mips_elf_scom_section;
6758 	  mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6759 	  mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6760 	  mips_elf_scom_symbol.name = ".scommon";
6761 	  mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6762 	  mips_elf_scom_symbol.section = &mips_elf_scom_section;
6763 	  mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6764 	}
6765       asym->section = &mips_elf_scom_section;
6766       asym->value = elfsym->internal_elf_sym.st_size;
6767       break;
6768 
6769     case SHN_MIPS_SUNDEFINED:
6770       asym->section = bfd_und_section_ptr;
6771       break;
6772 
6773     case SHN_MIPS_TEXT:
6774       {
6775 	asection *section = bfd_get_section_by_name (abfd, ".text");
6776 
6777 	if (section != NULL)
6778 	  {
6779 	    asym->section = section;
6780 	    /* MIPS_TEXT is a bit special, the address is not an offset
6781 	       to the base of the .text section.  So substract the section
6782 	       base address to make it an offset.  */
6783 	    asym->value -= section->vma;
6784 	  }
6785       }
6786       break;
6787 
6788     case SHN_MIPS_DATA:
6789       {
6790 	asection *section = bfd_get_section_by_name (abfd, ".data");
6791 
6792 	if (section != NULL)
6793 	  {
6794 	    asym->section = section;
6795 	    /* MIPS_DATA is a bit special, the address is not an offset
6796 	       to the base of the .data section.  So substract the section
6797 	       base address to make it an offset.  */
6798 	    asym->value -= section->vma;
6799 	  }
6800       }
6801       break;
6802     }
6803 
6804   /* If this is an odd-valued function symbol, assume it's a MIPS16
6805      or microMIPS one.  */
6806   if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6807       && (asym->value & 1) != 0)
6808     {
6809       asym->value--;
6810       if (MICROMIPS_P (abfd))
6811 	elfsym->internal_elf_sym.st_other
6812 	  = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6813       else
6814 	elfsym->internal_elf_sym.st_other
6815 	  = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6816     }
6817 }
6818 
6819 /* Implement elf_backend_eh_frame_address_size.  This differs from
6820    the default in the way it handles EABI64.
6821 
6822    EABI64 was originally specified as an LP64 ABI, and that is what
6823    -mabi=eabi normally gives on a 64-bit target.  However, gcc has
6824    historically accepted the combination of -mabi=eabi and -mlong32,
6825    and this ILP32 variation has become semi-official over time.
6826    Both forms use elf32 and have pointer-sized FDE addresses.
6827 
6828    If an EABI object was generated by GCC 4.0 or above, it will have
6829    an empty .gcc_compiled_longXX section, where XX is the size of longs
6830    in bits.  Unfortunately, ILP32 objects generated by earlier compilers
6831    have no special marking to distinguish them from LP64 objects.
6832 
6833    We don't want users of the official LP64 ABI to be punished for the
6834    existence of the ILP32 variant, but at the same time, we don't want
6835    to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6836    We therefore take the following approach:
6837 
6838       - If ABFD contains a .gcc_compiled_longXX section, use it to
6839         determine the pointer size.
6840 
6841       - Otherwise check the type of the first relocation.  Assume that
6842         the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6843 
6844       - Otherwise punt.
6845 
6846    The second check is enough to detect LP64 objects generated by pre-4.0
6847    compilers because, in the kind of output generated by those compilers,
6848    the first relocation will be associated with either a CIE personality
6849    routine or an FDE start address.  Furthermore, the compilers never
6850    used a special (non-pointer) encoding for this ABI.
6851 
6852    Checking the relocation type should also be safe because there is no
6853    reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
6854    did so.  */
6855 
6856 unsigned int
_bfd_mips_elf_eh_frame_address_size(bfd * abfd,asection * sec)6857 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6858 {
6859   if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6860     return 8;
6861   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6862     {
6863       bfd_boolean long32_p, long64_p;
6864 
6865       long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6866       long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6867       if (long32_p && long64_p)
6868 	return 0;
6869       if (long32_p)
6870 	return 4;
6871       if (long64_p)
6872 	return 8;
6873 
6874       if (sec->reloc_count > 0
6875 	  && elf_section_data (sec)->relocs != NULL
6876 	  && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6877 	      == R_MIPS_64))
6878 	return 8;
6879 
6880       return 0;
6881     }
6882   return 4;
6883 }
6884 
6885 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6886    relocations against two unnamed section symbols to resolve to the
6887    same address.  For example, if we have code like:
6888 
6889 	lw	$4,%got_disp(.data)($gp)
6890 	lw	$25,%got_disp(.text)($gp)
6891 	jalr	$25
6892 
6893    then the linker will resolve both relocations to .data and the program
6894    will jump there rather than to .text.
6895 
6896    We can work around this problem by giving names to local section symbols.
6897    This is also what the MIPSpro tools do.  */
6898 
6899 bfd_boolean
_bfd_mips_elf_name_local_section_symbols(bfd * abfd)6900 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6901 {
6902   return SGI_COMPAT (abfd);
6903 }
6904 
6905 /* Work over a section just before writing it out.  This routine is
6906    used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
6907    sections that need the SHF_MIPS_GPREL flag by name; there has to be
6908    a better way.  */
6909 
6910 bfd_boolean
_bfd_mips_elf_section_processing(bfd * abfd,Elf_Internal_Shdr * hdr)6911 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6912 {
6913   if (hdr->sh_type == SHT_MIPS_REGINFO
6914       && hdr->sh_size > 0)
6915     {
6916       bfd_byte buf[4];
6917 
6918       BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6919       BFD_ASSERT (hdr->contents == NULL);
6920 
6921       if (bfd_seek (abfd,
6922 		    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6923 		    SEEK_SET) != 0)
6924 	return FALSE;
6925       H_PUT_32 (abfd, elf_gp (abfd), buf);
6926       if (bfd_bwrite (buf, 4, abfd) != 4)
6927 	return FALSE;
6928     }
6929 
6930   if (hdr->sh_type == SHT_MIPS_OPTIONS
6931       && hdr->bfd_section != NULL
6932       && mips_elf_section_data (hdr->bfd_section) != NULL
6933       && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6934     {
6935       bfd_byte *contents, *l, *lend;
6936 
6937       /* We stored the section contents in the tdata field in the
6938 	 set_section_contents routine.  We save the section contents
6939 	 so that we don't have to read them again.
6940 	 At this point we know that elf_gp is set, so we can look
6941 	 through the section contents to see if there is an
6942 	 ODK_REGINFO structure.  */
6943 
6944       contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6945       l = contents;
6946       lend = contents + hdr->sh_size;
6947       while (l + sizeof (Elf_External_Options) <= lend)
6948 	{
6949 	  Elf_Internal_Options intopt;
6950 
6951 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6952 					&intopt);
6953 	  if (intopt.size < sizeof (Elf_External_Options))
6954 	    {
6955 	      (*_bfd_error_handler)
6956 		(_("%B: Warning: bad `%s' option size %u smaller than its header"),
6957 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6958 	      break;
6959 	    }
6960 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6961 	    {
6962 	      bfd_byte buf[8];
6963 
6964 	      if (bfd_seek (abfd,
6965 			    (hdr->sh_offset
6966 			     + (l - contents)
6967 			     + sizeof (Elf_External_Options)
6968 			     + (sizeof (Elf64_External_RegInfo) - 8)),
6969 			     SEEK_SET) != 0)
6970 		return FALSE;
6971 	      H_PUT_64 (abfd, elf_gp (abfd), buf);
6972 	      if (bfd_bwrite (buf, 8, abfd) != 8)
6973 		return FALSE;
6974 	    }
6975 	  else if (intopt.kind == ODK_REGINFO)
6976 	    {
6977 	      bfd_byte buf[4];
6978 
6979 	      if (bfd_seek (abfd,
6980 			    (hdr->sh_offset
6981 			     + (l - contents)
6982 			     + sizeof (Elf_External_Options)
6983 			     + (sizeof (Elf32_External_RegInfo) - 4)),
6984 			    SEEK_SET) != 0)
6985 		return FALSE;
6986 	      H_PUT_32 (abfd, elf_gp (abfd), buf);
6987 	      if (bfd_bwrite (buf, 4, abfd) != 4)
6988 		return FALSE;
6989 	    }
6990 	  l += intopt.size;
6991 	}
6992     }
6993 
6994   if (hdr->bfd_section != NULL)
6995     {
6996       const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6997 
6998       /* .sbss is not handled specially here because the GNU/Linux
6999 	 prelinker can convert .sbss from NOBITS to PROGBITS and
7000 	 changing it back to NOBITS breaks the binary.  The entry in
7001 	 _bfd_mips_elf_special_sections will ensure the correct flags
7002 	 are set on .sbss if BFD creates it without reading it from an
7003 	 input file, and without special handling here the flags set
7004 	 on it in an input file will be followed.  */
7005       if (strcmp (name, ".sdata") == 0
7006 	  || strcmp (name, ".lit8") == 0
7007 	  || strcmp (name, ".lit4") == 0)
7008 	hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7009       else if (strcmp (name, ".srdata") == 0)
7010 	hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7011       else if (strcmp (name, ".compact_rel") == 0)
7012 	hdr->sh_flags = 0;
7013       else if (strcmp (name, ".rtproc") == 0)
7014 	{
7015 	  if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7016 	    {
7017 	      unsigned int adjust;
7018 
7019 	      adjust = hdr->sh_size % hdr->sh_addralign;
7020 	      if (adjust != 0)
7021 		hdr->sh_size += hdr->sh_addralign - adjust;
7022 	    }
7023 	}
7024     }
7025 
7026   return TRUE;
7027 }
7028 
7029 /* Handle a MIPS specific section when reading an object file.  This
7030    is called when elfcode.h finds a section with an unknown type.
7031    This routine supports both the 32-bit and 64-bit ELF ABI.
7032 
7033    FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7034    how to.  */
7035 
7036 bfd_boolean
_bfd_mips_elf_section_from_shdr(bfd * abfd,Elf_Internal_Shdr * hdr,const char * name,int shindex)7037 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7038 				 Elf_Internal_Shdr *hdr,
7039 				 const char *name,
7040 				 int shindex)
7041 {
7042   flagword flags = 0;
7043 
7044   /* There ought to be a place to keep ELF backend specific flags, but
7045      at the moment there isn't one.  We just keep track of the
7046      sections by their name, instead.  Fortunately, the ABI gives
7047      suggested names for all the MIPS specific sections, so we will
7048      probably get away with this.  */
7049   switch (hdr->sh_type)
7050     {
7051     case SHT_MIPS_LIBLIST:
7052       if (strcmp (name, ".liblist") != 0)
7053 	return FALSE;
7054       break;
7055     case SHT_MIPS_MSYM:
7056       if (strcmp (name, ".msym") != 0)
7057 	return FALSE;
7058       break;
7059     case SHT_MIPS_CONFLICT:
7060       if (strcmp (name, ".conflict") != 0)
7061 	return FALSE;
7062       break;
7063     case SHT_MIPS_GPTAB:
7064       if (! CONST_STRNEQ (name, ".gptab."))
7065 	return FALSE;
7066       break;
7067     case SHT_MIPS_UCODE:
7068       if (strcmp (name, ".ucode") != 0)
7069 	return FALSE;
7070       break;
7071     case SHT_MIPS_DEBUG:
7072       if (strcmp (name, ".mdebug") != 0)
7073 	return FALSE;
7074       flags = SEC_DEBUGGING;
7075       break;
7076     case SHT_MIPS_REGINFO:
7077       if (strcmp (name, ".reginfo") != 0
7078 	  || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7079 	return FALSE;
7080       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7081       break;
7082     case SHT_MIPS_IFACE:
7083       if (strcmp (name, ".MIPS.interfaces") != 0)
7084 	return FALSE;
7085       break;
7086     case SHT_MIPS_CONTENT:
7087       if (! CONST_STRNEQ (name, ".MIPS.content"))
7088 	return FALSE;
7089       break;
7090     case SHT_MIPS_OPTIONS:
7091       if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7092 	return FALSE;
7093       break;
7094     case SHT_MIPS_ABIFLAGS:
7095       if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7096 	return FALSE;
7097       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7098       break;
7099     case SHT_MIPS_DWARF:
7100       if (! CONST_STRNEQ (name, ".debug_")
7101           && ! CONST_STRNEQ (name, ".zdebug_"))
7102 	return FALSE;
7103       break;
7104     case SHT_MIPS_SYMBOL_LIB:
7105       if (strcmp (name, ".MIPS.symlib") != 0)
7106 	return FALSE;
7107       break;
7108     case SHT_MIPS_EVENTS:
7109       if (! CONST_STRNEQ (name, ".MIPS.events")
7110 	  && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7111 	return FALSE;
7112       break;
7113     default:
7114       break;
7115     }
7116 
7117   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7118     return FALSE;
7119 
7120   if (flags)
7121     {
7122       if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7123 				   (bfd_get_section_flags (abfd,
7124 							   hdr->bfd_section)
7125 				    | flags)))
7126 	return FALSE;
7127     }
7128 
7129   if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7130     {
7131       Elf_External_ABIFlags_v0 ext;
7132 
7133       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7134 				      &ext, 0, sizeof ext))
7135 	return FALSE;
7136       bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7137 					&mips_elf_tdata (abfd)->abiflags);
7138       if (mips_elf_tdata (abfd)->abiflags.version != 0)
7139 	return FALSE;
7140       mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7141     }
7142 
7143   /* FIXME: We should record sh_info for a .gptab section.  */
7144 
7145   /* For a .reginfo section, set the gp value in the tdata information
7146      from the contents of this section.  We need the gp value while
7147      processing relocs, so we just get it now.  The .reginfo section
7148      is not used in the 64-bit MIPS ELF ABI.  */
7149   if (hdr->sh_type == SHT_MIPS_REGINFO)
7150     {
7151       Elf32_External_RegInfo ext;
7152       Elf32_RegInfo s;
7153 
7154       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7155 				      &ext, 0, sizeof ext))
7156 	return FALSE;
7157       bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7158       elf_gp (abfd) = s.ri_gp_value;
7159     }
7160 
7161   /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7162      set the gp value based on what we find.  We may see both
7163      SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7164      they should agree.  */
7165   if (hdr->sh_type == SHT_MIPS_OPTIONS)
7166     {
7167       bfd_byte *contents, *l, *lend;
7168 
7169       contents = bfd_malloc (hdr->sh_size);
7170       if (contents == NULL)
7171 	return FALSE;
7172       if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7173 				      0, hdr->sh_size))
7174 	{
7175 	  free (contents);
7176 	  return FALSE;
7177 	}
7178       l = contents;
7179       lend = contents + hdr->sh_size;
7180       while (l + sizeof (Elf_External_Options) <= lend)
7181 	{
7182 	  Elf_Internal_Options intopt;
7183 
7184 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7185 					&intopt);
7186 	  if (intopt.size < sizeof (Elf_External_Options))
7187 	    {
7188 	      (*_bfd_error_handler)
7189 		(_("%B: Warning: bad `%s' option size %u smaller than its header"),
7190 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7191 	      break;
7192 	    }
7193 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7194 	    {
7195 	      Elf64_Internal_RegInfo intreg;
7196 
7197 	      bfd_mips_elf64_swap_reginfo_in
7198 		(abfd,
7199 		 ((Elf64_External_RegInfo *)
7200 		  (l + sizeof (Elf_External_Options))),
7201 		 &intreg);
7202 	      elf_gp (abfd) = intreg.ri_gp_value;
7203 	    }
7204 	  else if (intopt.kind == ODK_REGINFO)
7205 	    {
7206 	      Elf32_RegInfo intreg;
7207 
7208 	      bfd_mips_elf32_swap_reginfo_in
7209 		(abfd,
7210 		 ((Elf32_External_RegInfo *)
7211 		  (l + sizeof (Elf_External_Options))),
7212 		 &intreg);
7213 	      elf_gp (abfd) = intreg.ri_gp_value;
7214 	    }
7215 	  l += intopt.size;
7216 	}
7217       free (contents);
7218     }
7219 
7220   return TRUE;
7221 }
7222 
7223 /* Set the correct type for a MIPS ELF section.  We do this by the
7224    section name, which is a hack, but ought to work.  This routine is
7225    used by both the 32-bit and the 64-bit ABI.  */
7226 
7227 bfd_boolean
_bfd_mips_elf_fake_sections(bfd * abfd,Elf_Internal_Shdr * hdr,asection * sec)7228 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7229 {
7230   const char *name = bfd_get_section_name (abfd, sec);
7231 
7232   if (strcmp (name, ".liblist") == 0)
7233     {
7234       hdr->sh_type = SHT_MIPS_LIBLIST;
7235       hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7236       /* The sh_link field is set in final_write_processing.  */
7237     }
7238   else if (strcmp (name, ".conflict") == 0)
7239     hdr->sh_type = SHT_MIPS_CONFLICT;
7240   else if (CONST_STRNEQ (name, ".gptab."))
7241     {
7242       hdr->sh_type = SHT_MIPS_GPTAB;
7243       hdr->sh_entsize = sizeof (Elf32_External_gptab);
7244       /* The sh_info field is set in final_write_processing.  */
7245     }
7246   else if (strcmp (name, ".ucode") == 0)
7247     hdr->sh_type = SHT_MIPS_UCODE;
7248   else if (strcmp (name, ".mdebug") == 0)
7249     {
7250       hdr->sh_type = SHT_MIPS_DEBUG;
7251       /* In a shared object on IRIX 5.3, the .mdebug section has an
7252          entsize of 0.  FIXME: Does this matter?  */
7253       if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7254 	hdr->sh_entsize = 0;
7255       else
7256 	hdr->sh_entsize = 1;
7257     }
7258   else if (strcmp (name, ".reginfo") == 0)
7259     {
7260       hdr->sh_type = SHT_MIPS_REGINFO;
7261       /* In a shared object on IRIX 5.3, the .reginfo section has an
7262          entsize of 0x18.  FIXME: Does this matter?  */
7263       if (SGI_COMPAT (abfd))
7264 	{
7265 	  if ((abfd->flags & DYNAMIC) != 0)
7266 	    hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7267 	  else
7268 	    hdr->sh_entsize = 1;
7269 	}
7270       else
7271 	hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7272     }
7273   else if (SGI_COMPAT (abfd)
7274 	   && (strcmp (name, ".hash") == 0
7275 	       || strcmp (name, ".dynamic") == 0
7276 	       || strcmp (name, ".dynstr") == 0))
7277     {
7278       if (SGI_COMPAT (abfd))
7279 	hdr->sh_entsize = 0;
7280 #if 0
7281       /* This isn't how the IRIX6 linker behaves.  */
7282       hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7283 #endif
7284     }
7285   else if (strcmp (name, ".got") == 0
7286 	   || strcmp (name, ".srdata") == 0
7287 	   || strcmp (name, ".sdata") == 0
7288 	   || strcmp (name, ".sbss") == 0
7289 	   || strcmp (name, ".lit4") == 0
7290 	   || strcmp (name, ".lit8") == 0)
7291     hdr->sh_flags |= SHF_MIPS_GPREL;
7292   else if (strcmp (name, ".MIPS.interfaces") == 0)
7293     {
7294       hdr->sh_type = SHT_MIPS_IFACE;
7295       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7296     }
7297   else if (CONST_STRNEQ (name, ".MIPS.content"))
7298     {
7299       hdr->sh_type = SHT_MIPS_CONTENT;
7300       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7301       /* The sh_info field is set in final_write_processing.  */
7302     }
7303   else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7304     {
7305       hdr->sh_type = SHT_MIPS_OPTIONS;
7306       hdr->sh_entsize = 1;
7307       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7308     }
7309   else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7310     {
7311       hdr->sh_type = SHT_MIPS_ABIFLAGS;
7312       hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7313     }
7314   else if (CONST_STRNEQ (name, ".debug_")
7315            || CONST_STRNEQ (name, ".zdebug_"))
7316     {
7317       hdr->sh_type = SHT_MIPS_DWARF;
7318 
7319       /* Irix facilities such as libexc expect a single .debug_frame
7320 	 per executable, the system ones have NOSTRIP set and the linker
7321 	 doesn't merge sections with different flags so ...  */
7322       if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7323 	hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7324     }
7325   else if (strcmp (name, ".MIPS.symlib") == 0)
7326     {
7327       hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7328       /* The sh_link and sh_info fields are set in
7329          final_write_processing.  */
7330     }
7331   else if (CONST_STRNEQ (name, ".MIPS.events")
7332 	   || CONST_STRNEQ (name, ".MIPS.post_rel"))
7333     {
7334       hdr->sh_type = SHT_MIPS_EVENTS;
7335       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7336       /* The sh_link field is set in final_write_processing.  */
7337     }
7338   else if (strcmp (name, ".msym") == 0)
7339     {
7340       hdr->sh_type = SHT_MIPS_MSYM;
7341       hdr->sh_flags |= SHF_ALLOC;
7342       hdr->sh_entsize = 8;
7343     }
7344 
7345   /* The generic elf_fake_sections will set up REL_HDR using the default
7346    kind of relocations.  We used to set up a second header for the
7347    non-default kind of relocations here, but only NewABI would use
7348    these, and the IRIX ld doesn't like resulting empty RELA sections.
7349    Thus we create those header only on demand now.  */
7350 
7351   return TRUE;
7352 }
7353 
7354 /* Given a BFD section, try to locate the corresponding ELF section
7355    index.  This is used by both the 32-bit and the 64-bit ABI.
7356    Actually, it's not clear to me that the 64-bit ABI supports these,
7357    but for non-PIC objects we will certainly want support for at least
7358    the .scommon section.  */
7359 
7360 bfd_boolean
_bfd_mips_elf_section_from_bfd_section(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,int * retval)7361 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7362 					asection *sec, int *retval)
7363 {
7364   if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7365     {
7366       *retval = SHN_MIPS_SCOMMON;
7367       return TRUE;
7368     }
7369   if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7370     {
7371       *retval = SHN_MIPS_ACOMMON;
7372       return TRUE;
7373     }
7374   return FALSE;
7375 }
7376 
7377 /* Hook called by the linker routine which adds symbols from an object
7378    file.  We must handle the special MIPS section numbers here.  */
7379 
7380 bfd_boolean
_bfd_mips_elf_add_symbol_hook(bfd * abfd,struct bfd_link_info * info,Elf_Internal_Sym * sym,const char ** namep,flagword * flagsp ATTRIBUTE_UNUSED,asection ** secp,bfd_vma * valp)7381 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7382 			       Elf_Internal_Sym *sym, const char **namep,
7383 			       flagword *flagsp ATTRIBUTE_UNUSED,
7384 			       asection **secp, bfd_vma *valp)
7385 {
7386   if (SGI_COMPAT (abfd)
7387       && (abfd->flags & DYNAMIC) != 0
7388       && strcmp (*namep, "_rld_new_interface") == 0)
7389     {
7390       /* Skip IRIX5 rld entry name.  */
7391       *namep = NULL;
7392       return TRUE;
7393     }
7394 
7395   /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7396      a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
7397      by setting a DT_NEEDED for the shared object.  Since _gp_disp is
7398      a magic symbol resolved by the linker, we ignore this bogus definition
7399      of _gp_disp.  New ABI objects do not suffer from this problem so this
7400      is not done for them. */
7401   if (!NEWABI_P(abfd)
7402       && (sym->st_shndx == SHN_ABS)
7403       && (strcmp (*namep, "_gp_disp") == 0))
7404     {
7405       *namep = NULL;
7406       return TRUE;
7407     }
7408 
7409   switch (sym->st_shndx)
7410     {
7411     case SHN_COMMON:
7412       /* Common symbols less than the GP size are automatically
7413 	 treated as SHN_MIPS_SCOMMON symbols.  */
7414       if (sym->st_size > elf_gp_size (abfd)
7415 	  || ELF_ST_TYPE (sym->st_info) == STT_TLS
7416 	  || IRIX_COMPAT (abfd) == ict_irix6)
7417 	break;
7418       /* Fall through.  */
7419     case SHN_MIPS_SCOMMON:
7420       *secp = bfd_make_section_old_way (abfd, ".scommon");
7421       (*secp)->flags |= SEC_IS_COMMON;
7422       *valp = sym->st_size;
7423       break;
7424 
7425     case SHN_MIPS_TEXT:
7426       /* This section is used in a shared object.  */
7427       if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7428 	{
7429 	  asymbol *elf_text_symbol;
7430 	  asection *elf_text_section;
7431 	  bfd_size_type amt = sizeof (asection);
7432 
7433 	  elf_text_section = bfd_zalloc (abfd, amt);
7434 	  if (elf_text_section == NULL)
7435 	    return FALSE;
7436 
7437 	  amt = sizeof (asymbol);
7438 	  elf_text_symbol = bfd_zalloc (abfd, amt);
7439 	  if (elf_text_symbol == NULL)
7440 	    return FALSE;
7441 
7442 	  /* Initialize the section.  */
7443 
7444 	  mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7445 	  mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7446 
7447 	  elf_text_section->symbol = elf_text_symbol;
7448 	  elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7449 
7450 	  elf_text_section->name = ".text";
7451 	  elf_text_section->flags = SEC_NO_FLAGS;
7452 	  elf_text_section->output_section = NULL;
7453 	  elf_text_section->owner = abfd;
7454 	  elf_text_symbol->name = ".text";
7455 	  elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7456 	  elf_text_symbol->section = elf_text_section;
7457 	}
7458       /* This code used to do *secp = bfd_und_section_ptr if
7459          info->shared.  I don't know why, and that doesn't make sense,
7460          so I took it out.  */
7461       *secp = mips_elf_tdata (abfd)->elf_text_section;
7462       break;
7463 
7464     case SHN_MIPS_ACOMMON:
7465       /* Fall through. XXX Can we treat this as allocated data?  */
7466     case SHN_MIPS_DATA:
7467       /* This section is used in a shared object.  */
7468       if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7469 	{
7470 	  asymbol *elf_data_symbol;
7471 	  asection *elf_data_section;
7472 	  bfd_size_type amt = sizeof (asection);
7473 
7474 	  elf_data_section = bfd_zalloc (abfd, amt);
7475 	  if (elf_data_section == NULL)
7476 	    return FALSE;
7477 
7478 	  amt = sizeof (asymbol);
7479 	  elf_data_symbol = bfd_zalloc (abfd, amt);
7480 	  if (elf_data_symbol == NULL)
7481 	    return FALSE;
7482 
7483 	  /* Initialize the section.  */
7484 
7485 	  mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7486 	  mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7487 
7488 	  elf_data_section->symbol = elf_data_symbol;
7489 	  elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7490 
7491 	  elf_data_section->name = ".data";
7492 	  elf_data_section->flags = SEC_NO_FLAGS;
7493 	  elf_data_section->output_section = NULL;
7494 	  elf_data_section->owner = abfd;
7495 	  elf_data_symbol->name = ".data";
7496 	  elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7497 	  elf_data_symbol->section = elf_data_section;
7498 	}
7499       /* This code used to do *secp = bfd_und_section_ptr if
7500          info->shared.  I don't know why, and that doesn't make sense,
7501          so I took it out.  */
7502       *secp = mips_elf_tdata (abfd)->elf_data_section;
7503       break;
7504 
7505     case SHN_MIPS_SUNDEFINED:
7506       *secp = bfd_und_section_ptr;
7507       break;
7508     }
7509 
7510   if (SGI_COMPAT (abfd)
7511       && ! info->shared
7512       && info->output_bfd->xvec == abfd->xvec
7513       && strcmp (*namep, "__rld_obj_head") == 0)
7514     {
7515       struct elf_link_hash_entry *h;
7516       struct bfd_link_hash_entry *bh;
7517 
7518       /* Mark __rld_obj_head as dynamic.  */
7519       bh = NULL;
7520       if (! (_bfd_generic_link_add_one_symbol
7521 	     (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7522 	      get_elf_backend_data (abfd)->collect, &bh)))
7523 	return FALSE;
7524 
7525       h = (struct elf_link_hash_entry *) bh;
7526       h->non_elf = 0;
7527       h->def_regular = 1;
7528       h->type = STT_OBJECT;
7529 
7530       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7531 	return FALSE;
7532 
7533       mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7534       mips_elf_hash_table (info)->rld_symbol = h;
7535     }
7536 
7537   /* If this is a mips16 text symbol, add 1 to the value to make it
7538      odd.  This will cause something like .word SYM to come up with
7539      the right value when it is loaded into the PC.  */
7540   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7541     ++*valp;
7542 
7543   return TRUE;
7544 }
7545 
7546 /* This hook function is called before the linker writes out a global
7547    symbol.  We mark symbols as small common if appropriate.  This is
7548    also where we undo the increment of the value for a mips16 symbol.  */
7549 
7550 int
_bfd_mips_elf_link_output_symbol_hook(struct bfd_link_info * info ATTRIBUTE_UNUSED,const char * name ATTRIBUTE_UNUSED,Elf_Internal_Sym * sym,asection * input_sec,struct elf_link_hash_entry * h ATTRIBUTE_UNUSED)7551 _bfd_mips_elf_link_output_symbol_hook
7552   (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7553    const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7554    asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7555 {
7556   /* If we see a common symbol, which implies a relocatable link, then
7557      if a symbol was small common in an input file, mark it as small
7558      common in the output file.  */
7559   if (sym->st_shndx == SHN_COMMON
7560       && strcmp (input_sec->name, ".scommon") == 0)
7561     sym->st_shndx = SHN_MIPS_SCOMMON;
7562 
7563   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7564     sym->st_value &= ~1;
7565 
7566   return 1;
7567 }
7568 
7569 /* Functions for the dynamic linker.  */
7570 
7571 /* Create dynamic sections when linking against a dynamic object.  */
7572 
7573 bfd_boolean
_bfd_mips_elf_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)7574 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7575 {
7576   struct elf_link_hash_entry *h;
7577   struct bfd_link_hash_entry *bh;
7578   flagword flags;
7579   register asection *s;
7580   const char * const *namep;
7581   struct mips_elf_link_hash_table *htab;
7582 
7583   htab = mips_elf_hash_table (info);
7584   BFD_ASSERT (htab != NULL);
7585 
7586   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7587 	   | SEC_LINKER_CREATED | SEC_READONLY);
7588 
7589   /* The psABI requires a read-only .dynamic section, but the VxWorks
7590      EABI doesn't.  */
7591   if (!htab->is_vxworks)
7592     {
7593       s = bfd_get_linker_section (abfd, ".dynamic");
7594       if (s != NULL)
7595 	{
7596 	  if (! bfd_set_section_flags (abfd, s, flags))
7597 	    return FALSE;
7598 	}
7599     }
7600 
7601   /* We need to create .got section.  */
7602   if (!mips_elf_create_got_section (abfd, info))
7603     return FALSE;
7604 
7605   if (! mips_elf_rel_dyn_section (info, TRUE))
7606     return FALSE;
7607 
7608   /* Create .stub section.  */
7609   s = bfd_make_section_anyway_with_flags (abfd,
7610 					  MIPS_ELF_STUB_SECTION_NAME (abfd),
7611 					  flags | SEC_CODE);
7612   if (s == NULL
7613       || ! bfd_set_section_alignment (abfd, s,
7614 				      MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7615     return FALSE;
7616   htab->sstubs = s;
7617 
7618   if (!mips_elf_hash_table (info)->use_rld_obj_head
7619       && info->executable
7620       && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7621     {
7622       s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7623 					      flags &~ (flagword) SEC_READONLY);
7624       if (s == NULL
7625 	  || ! bfd_set_section_alignment (abfd, s,
7626 					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7627 	return FALSE;
7628     }
7629 
7630   /* On IRIX5, we adjust add some additional symbols and change the
7631      alignments of several sections.  There is no ABI documentation
7632      indicating that this is necessary on IRIX6, nor any evidence that
7633      the linker takes such action.  */
7634   if (IRIX_COMPAT (abfd) == ict_irix5)
7635     {
7636       for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7637 	{
7638 	  bh = NULL;
7639 	  if (! (_bfd_generic_link_add_one_symbol
7640 		 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7641 		  NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7642 	    return FALSE;
7643 
7644 	  h = (struct elf_link_hash_entry *) bh;
7645 	  h->non_elf = 0;
7646 	  h->def_regular = 1;
7647 	  h->type = STT_SECTION;
7648 
7649 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
7650 	    return FALSE;
7651 	}
7652 
7653       /* We need to create a .compact_rel section.  */
7654       if (SGI_COMPAT (abfd))
7655 	{
7656 	  if (!mips_elf_create_compact_rel_section (abfd, info))
7657 	    return FALSE;
7658 	}
7659 
7660       /* Change alignments of some sections.  */
7661       s = bfd_get_linker_section (abfd, ".hash");
7662       if (s != NULL)
7663 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7664 
7665       s = bfd_get_linker_section (abfd, ".dynsym");
7666       if (s != NULL)
7667 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7668 
7669       s = bfd_get_linker_section (abfd, ".dynstr");
7670       if (s != NULL)
7671 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7672 
7673       /* ??? */
7674       s = bfd_get_section_by_name (abfd, ".reginfo");
7675       if (s != NULL)
7676 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7677 
7678       s = bfd_get_linker_section (abfd, ".dynamic");
7679       if (s != NULL)
7680 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7681     }
7682 
7683   if (info->executable)
7684     {
7685       const char *name;
7686 
7687       name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7688       bh = NULL;
7689       if (!(_bfd_generic_link_add_one_symbol
7690 	    (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7691 	     NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7692 	return FALSE;
7693 
7694       h = (struct elf_link_hash_entry *) bh;
7695       h->non_elf = 0;
7696       h->def_regular = 1;
7697       h->type = STT_SECTION;
7698 
7699       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7700 	return FALSE;
7701 
7702       if (! mips_elf_hash_table (info)->use_rld_obj_head)
7703 	{
7704 	  /* __rld_map is a four byte word located in the .data section
7705 	     and is filled in by the rtld to contain a pointer to
7706 	     the _r_debug structure. Its symbol value will be set in
7707 	     _bfd_mips_elf_finish_dynamic_symbol.  */
7708 	  s = bfd_get_linker_section (abfd, ".rld_map");
7709 	  BFD_ASSERT (s != NULL);
7710 
7711 	  name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7712 	  bh = NULL;
7713 	  if (!(_bfd_generic_link_add_one_symbol
7714 		(info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7715 		 get_elf_backend_data (abfd)->collect, &bh)))
7716 	    return FALSE;
7717 
7718 	  h = (struct elf_link_hash_entry *) bh;
7719 	  h->non_elf = 0;
7720 	  h->def_regular = 1;
7721 	  h->type = STT_OBJECT;
7722 
7723 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
7724 	    return FALSE;
7725 	  mips_elf_hash_table (info)->rld_symbol = h;
7726 	}
7727     }
7728 
7729   /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7730      Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol.  */
7731   if (!_bfd_elf_create_dynamic_sections (abfd, info))
7732     return FALSE;
7733 
7734   /* Cache the sections created above.  */
7735   htab->splt = bfd_get_linker_section (abfd, ".plt");
7736   htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7737   if (htab->is_vxworks)
7738     {
7739       htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7740       htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7741     }
7742   else
7743     htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7744   if (!htab->sdynbss
7745       || (htab->is_vxworks && !htab->srelbss && !info->shared)
7746       || !htab->srelplt
7747       || !htab->splt)
7748     abort ();
7749 
7750   /* Do the usual VxWorks handling.  */
7751   if (htab->is_vxworks
7752       && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7753     return FALSE;
7754 
7755   return TRUE;
7756 }
7757 
7758 /* Return true if relocation REL against section SEC is a REL rather than
7759    RELA relocation.  RELOCS is the first relocation in the section and
7760    ABFD is the bfd that contains SEC.  */
7761 
7762 static bfd_boolean
mips_elf_rel_relocation_p(bfd * abfd,asection * sec,const Elf_Internal_Rela * relocs,const Elf_Internal_Rela * rel)7763 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7764 			   const Elf_Internal_Rela *relocs,
7765 			   const Elf_Internal_Rela *rel)
7766 {
7767   Elf_Internal_Shdr *rel_hdr;
7768   const struct elf_backend_data *bed;
7769 
7770   /* To determine which flavor of relocation this is, we depend on the
7771      fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */
7772   rel_hdr = elf_section_data (sec)->rel.hdr;
7773   if (rel_hdr == NULL)
7774     return FALSE;
7775   bed = get_elf_backend_data (abfd);
7776   return ((size_t) (rel - relocs)
7777 	  < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7778 }
7779 
7780 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7781    HOWTO is the relocation's howto and CONTENTS points to the contents
7782    of the section that REL is against.  */
7783 
7784 static bfd_vma
mips_elf_read_rel_addend(bfd * abfd,const Elf_Internal_Rela * rel,reloc_howto_type * howto,bfd_byte * contents)7785 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7786 			  reloc_howto_type *howto, bfd_byte *contents)
7787 {
7788   bfd_byte *location;
7789   unsigned int r_type;
7790   bfd_vma addend;
7791 
7792   r_type = ELF_R_TYPE (abfd, rel->r_info);
7793   location = contents + rel->r_offset;
7794 
7795   /* Get the addend, which is stored in the input file.  */
7796   _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7797   addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7798   _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7799 
7800   return addend & howto->src_mask;
7801 }
7802 
7803 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7804    and *ADDEND is the addend for REL itself.  Look for the LO16 relocation
7805    and update *ADDEND with the final addend.  Return true on success
7806    or false if the LO16 could not be found.  RELEND is the exclusive
7807    upper bound on the relocations for REL's section.  */
7808 
7809 static bfd_boolean
mips_elf_add_lo16_rel_addend(bfd * abfd,const Elf_Internal_Rela * rel,const Elf_Internal_Rela * relend,bfd_byte * contents,bfd_vma * addend)7810 mips_elf_add_lo16_rel_addend (bfd *abfd,
7811 			      const Elf_Internal_Rela *rel,
7812 			      const Elf_Internal_Rela *relend,
7813 			      bfd_byte *contents, bfd_vma *addend)
7814 {
7815   unsigned int r_type, lo16_type;
7816   const Elf_Internal_Rela *lo16_relocation;
7817   reloc_howto_type *lo16_howto;
7818   bfd_vma l;
7819 
7820   r_type = ELF_R_TYPE (abfd, rel->r_info);
7821   if (mips16_reloc_p (r_type))
7822     lo16_type = R_MIPS16_LO16;
7823   else if (micromips_reloc_p (r_type))
7824     lo16_type = R_MICROMIPS_LO16;
7825   else if (r_type == R_MIPS_PCHI16)
7826     lo16_type = R_MIPS_PCLO16;
7827   else
7828     lo16_type = R_MIPS_LO16;
7829 
7830   /* The combined value is the sum of the HI16 addend, left-shifted by
7831      sixteen bits, and the LO16 addend, sign extended.  (Usually, the
7832      code does a `lui' of the HI16 value, and then an `addiu' of the
7833      LO16 value.)
7834 
7835      Scan ahead to find a matching LO16 relocation.
7836 
7837      According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7838      be immediately following.  However, for the IRIX6 ABI, the next
7839      relocation may be a composed relocation consisting of several
7840      relocations for the same address.  In that case, the R_MIPS_LO16
7841      relocation may occur as one of these.  We permit a similar
7842      extension in general, as that is useful for GCC.
7843 
7844      In some cases GCC dead code elimination removes the LO16 but keeps
7845      the corresponding HI16.  This is strictly speaking a violation of
7846      the ABI but not immediately harmful.  */
7847   lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7848   if (lo16_relocation == NULL)
7849     return FALSE;
7850 
7851   /* Obtain the addend kept there.  */
7852   lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7853   l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7854 
7855   l <<= lo16_howto->rightshift;
7856   l = _bfd_mips_elf_sign_extend (l, 16);
7857 
7858   *addend <<= 16;
7859   *addend += l;
7860   return TRUE;
7861 }
7862 
7863 /* Try to read the contents of section SEC in bfd ABFD.  Return true and
7864    store the contents in *CONTENTS on success.  Assume that *CONTENTS
7865    already holds the contents if it is nonull on entry.  */
7866 
7867 static bfd_boolean
mips_elf_get_section_contents(bfd * abfd,asection * sec,bfd_byte ** contents)7868 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7869 {
7870   if (*contents)
7871     return TRUE;
7872 
7873   /* Get cached copy if it exists.  */
7874   if (elf_section_data (sec)->this_hdr.contents != NULL)
7875     {
7876       *contents = elf_section_data (sec)->this_hdr.contents;
7877       return TRUE;
7878     }
7879 
7880   return bfd_malloc_and_get_section (abfd, sec, contents);
7881 }
7882 
7883 /* Make a new PLT record to keep internal data.  */
7884 
7885 static struct plt_entry *
mips_elf_make_plt_record(bfd * abfd)7886 mips_elf_make_plt_record (bfd *abfd)
7887 {
7888   struct plt_entry *entry;
7889 
7890   entry = bfd_zalloc (abfd, sizeof (*entry));
7891   if (entry == NULL)
7892     return NULL;
7893 
7894   entry->stub_offset = MINUS_ONE;
7895   entry->mips_offset = MINUS_ONE;
7896   entry->comp_offset = MINUS_ONE;
7897   entry->gotplt_index = MINUS_ONE;
7898   return entry;
7899 }
7900 
7901 /* Look through the relocs for a section during the first phase, and
7902    allocate space in the global offset table and record the need for
7903    standard MIPS and compressed procedure linkage table entries.  */
7904 
7905 bfd_boolean
_bfd_mips_elf_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)7906 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7907 			    asection *sec, const Elf_Internal_Rela *relocs)
7908 {
7909   const char *name;
7910   bfd *dynobj;
7911   Elf_Internal_Shdr *symtab_hdr;
7912   struct elf_link_hash_entry **sym_hashes;
7913   size_t extsymoff;
7914   const Elf_Internal_Rela *rel;
7915   const Elf_Internal_Rela *rel_end;
7916   asection *sreloc;
7917   const struct elf_backend_data *bed;
7918   struct mips_elf_link_hash_table *htab;
7919   bfd_byte *contents;
7920   bfd_vma addend;
7921   reloc_howto_type *howto;
7922 
7923   if (info->relocatable)
7924     return TRUE;
7925 
7926   htab = mips_elf_hash_table (info);
7927   BFD_ASSERT (htab != NULL);
7928 
7929   dynobj = elf_hash_table (info)->dynobj;
7930   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7931   sym_hashes = elf_sym_hashes (abfd);
7932   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7933 
7934   bed = get_elf_backend_data (abfd);
7935   rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7936 
7937   /* Check for the mips16 stub sections.  */
7938 
7939   name = bfd_get_section_name (abfd, sec);
7940   if (FN_STUB_P (name))
7941     {
7942       unsigned long r_symndx;
7943 
7944       /* Look at the relocation information to figure out which symbol
7945          this is for.  */
7946 
7947       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7948       if (r_symndx == 0)
7949 	{
7950 	  (*_bfd_error_handler)
7951 	    (_("%B: Warning: cannot determine the target function for"
7952 	       " stub section `%s'"),
7953 	     abfd, name);
7954 	  bfd_set_error (bfd_error_bad_value);
7955 	  return FALSE;
7956 	}
7957 
7958       if (r_symndx < extsymoff
7959 	  || sym_hashes[r_symndx - extsymoff] == NULL)
7960 	{
7961 	  asection *o;
7962 
7963 	  /* This stub is for a local symbol.  This stub will only be
7964              needed if there is some relocation in this BFD, other
7965              than a 16 bit function call, which refers to this symbol.  */
7966 	  for (o = abfd->sections; o != NULL; o = o->next)
7967 	    {
7968 	      Elf_Internal_Rela *sec_relocs;
7969 	      const Elf_Internal_Rela *r, *rend;
7970 
7971 	      /* We can ignore stub sections when looking for relocs.  */
7972 	      if ((o->flags & SEC_RELOC) == 0
7973 		  || o->reloc_count == 0
7974 		  || section_allows_mips16_refs_p (o))
7975 		continue;
7976 
7977 	      sec_relocs
7978 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7979 					     info->keep_memory);
7980 	      if (sec_relocs == NULL)
7981 		return FALSE;
7982 
7983 	      rend = sec_relocs + o->reloc_count;
7984 	      for (r = sec_relocs; r < rend; r++)
7985 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7986 		    && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7987 		  break;
7988 
7989 	      if (elf_section_data (o)->relocs != sec_relocs)
7990 		free (sec_relocs);
7991 
7992 	      if (r < rend)
7993 		break;
7994 	    }
7995 
7996 	  if (o == NULL)
7997 	    {
7998 	      /* There is no non-call reloc for this stub, so we do
7999                  not need it.  Since this function is called before
8000                  the linker maps input sections to output sections, we
8001                  can easily discard it by setting the SEC_EXCLUDE
8002                  flag.  */
8003 	      sec->flags |= SEC_EXCLUDE;
8004 	      return TRUE;
8005 	    }
8006 
8007 	  /* Record this stub in an array of local symbol stubs for
8008              this BFD.  */
8009 	  if (mips_elf_tdata (abfd)->local_stubs == NULL)
8010 	    {
8011 	      unsigned long symcount;
8012 	      asection **n;
8013 	      bfd_size_type amt;
8014 
8015 	      if (elf_bad_symtab (abfd))
8016 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8017 	      else
8018 		symcount = symtab_hdr->sh_info;
8019 	      amt = symcount * sizeof (asection *);
8020 	      n = bfd_zalloc (abfd, amt);
8021 	      if (n == NULL)
8022 		return FALSE;
8023 	      mips_elf_tdata (abfd)->local_stubs = n;
8024 	    }
8025 
8026 	  sec->flags |= SEC_KEEP;
8027 	  mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8028 
8029 	  /* We don't need to set mips16_stubs_seen in this case.
8030              That flag is used to see whether we need to look through
8031              the global symbol table for stubs.  We don't need to set
8032              it here, because we just have a local stub.  */
8033 	}
8034       else
8035 	{
8036 	  struct mips_elf_link_hash_entry *h;
8037 
8038 	  h = ((struct mips_elf_link_hash_entry *)
8039 	       sym_hashes[r_symndx - extsymoff]);
8040 
8041 	  while (h->root.root.type == bfd_link_hash_indirect
8042 		 || h->root.root.type == bfd_link_hash_warning)
8043 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8044 
8045 	  /* H is the symbol this stub is for.  */
8046 
8047 	  /* If we already have an appropriate stub for this function, we
8048 	     don't need another one, so we can discard this one.  Since
8049 	     this function is called before the linker maps input sections
8050 	     to output sections, we can easily discard it by setting the
8051 	     SEC_EXCLUDE flag.  */
8052 	  if (h->fn_stub != NULL)
8053 	    {
8054 	      sec->flags |= SEC_EXCLUDE;
8055 	      return TRUE;
8056 	    }
8057 
8058 	  sec->flags |= SEC_KEEP;
8059 	  h->fn_stub = sec;
8060 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8061 	}
8062     }
8063   else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8064     {
8065       unsigned long r_symndx;
8066       struct mips_elf_link_hash_entry *h;
8067       asection **loc;
8068 
8069       /* Look at the relocation information to figure out which symbol
8070          this is for.  */
8071 
8072       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8073       if (r_symndx == 0)
8074 	{
8075 	  (*_bfd_error_handler)
8076 	    (_("%B: Warning: cannot determine the target function for"
8077 	       " stub section `%s'"),
8078 	     abfd, name);
8079 	  bfd_set_error (bfd_error_bad_value);
8080 	  return FALSE;
8081 	}
8082 
8083       if (r_symndx < extsymoff
8084 	  || sym_hashes[r_symndx - extsymoff] == NULL)
8085 	{
8086 	  asection *o;
8087 
8088 	  /* This stub is for a local symbol.  This stub will only be
8089              needed if there is some relocation (R_MIPS16_26) in this BFD
8090              that refers to this symbol.  */
8091 	  for (o = abfd->sections; o != NULL; o = o->next)
8092 	    {
8093 	      Elf_Internal_Rela *sec_relocs;
8094 	      const Elf_Internal_Rela *r, *rend;
8095 
8096 	      /* We can ignore stub sections when looking for relocs.  */
8097 	      if ((o->flags & SEC_RELOC) == 0
8098 		  || o->reloc_count == 0
8099 		  || section_allows_mips16_refs_p (o))
8100 		continue;
8101 
8102 	      sec_relocs
8103 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8104 					     info->keep_memory);
8105 	      if (sec_relocs == NULL)
8106 		return FALSE;
8107 
8108 	      rend = sec_relocs + o->reloc_count;
8109 	      for (r = sec_relocs; r < rend; r++)
8110 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8111 		    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8112 		    break;
8113 
8114 	      if (elf_section_data (o)->relocs != sec_relocs)
8115 		free (sec_relocs);
8116 
8117 	      if (r < rend)
8118 		break;
8119 	    }
8120 
8121 	  if (o == NULL)
8122 	    {
8123 	      /* There is no non-call reloc for this stub, so we do
8124                  not need it.  Since this function is called before
8125                  the linker maps input sections to output sections, we
8126                  can easily discard it by setting the SEC_EXCLUDE
8127                  flag.  */
8128 	      sec->flags |= SEC_EXCLUDE;
8129 	      return TRUE;
8130 	    }
8131 
8132 	  /* Record this stub in an array of local symbol call_stubs for
8133              this BFD.  */
8134 	  if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8135 	    {
8136 	      unsigned long symcount;
8137 	      asection **n;
8138 	      bfd_size_type amt;
8139 
8140 	      if (elf_bad_symtab (abfd))
8141 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8142 	      else
8143 		symcount = symtab_hdr->sh_info;
8144 	      amt = symcount * sizeof (asection *);
8145 	      n = bfd_zalloc (abfd, amt);
8146 	      if (n == NULL)
8147 		return FALSE;
8148 	      mips_elf_tdata (abfd)->local_call_stubs = n;
8149 	    }
8150 
8151 	  sec->flags |= SEC_KEEP;
8152 	  mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8153 
8154 	  /* We don't need to set mips16_stubs_seen in this case.
8155              That flag is used to see whether we need to look through
8156              the global symbol table for stubs.  We don't need to set
8157              it here, because we just have a local stub.  */
8158 	}
8159       else
8160 	{
8161 	  h = ((struct mips_elf_link_hash_entry *)
8162 	       sym_hashes[r_symndx - extsymoff]);
8163 
8164 	  /* H is the symbol this stub is for.  */
8165 
8166 	  if (CALL_FP_STUB_P (name))
8167 	    loc = &h->call_fp_stub;
8168 	  else
8169 	    loc = &h->call_stub;
8170 
8171 	  /* If we already have an appropriate stub for this function, we
8172 	     don't need another one, so we can discard this one.  Since
8173 	     this function is called before the linker maps input sections
8174 	     to output sections, we can easily discard it by setting the
8175 	     SEC_EXCLUDE flag.  */
8176 	  if (*loc != NULL)
8177 	    {
8178 	      sec->flags |= SEC_EXCLUDE;
8179 	      return TRUE;
8180 	    }
8181 
8182 	  sec->flags |= SEC_KEEP;
8183 	  *loc = sec;
8184 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8185 	}
8186     }
8187 
8188   sreloc = NULL;
8189   contents = NULL;
8190   for (rel = relocs; rel < rel_end; ++rel)
8191     {
8192       unsigned long r_symndx;
8193       unsigned int r_type;
8194       struct elf_link_hash_entry *h;
8195       bfd_boolean can_make_dynamic_p;
8196       bfd_boolean call_reloc_p;
8197       bfd_boolean constrain_symbol_p;
8198 
8199       r_symndx = ELF_R_SYM (abfd, rel->r_info);
8200       r_type = ELF_R_TYPE (abfd, rel->r_info);
8201 
8202       if (r_symndx < extsymoff)
8203 	h = NULL;
8204       else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8205 	{
8206 	  (*_bfd_error_handler)
8207 	    (_("%B: Malformed reloc detected for section %s"),
8208 	     abfd, name);
8209 	  bfd_set_error (bfd_error_bad_value);
8210 	  return FALSE;
8211 	}
8212       else
8213 	{
8214 	  h = sym_hashes[r_symndx - extsymoff];
8215 	  if (h != NULL)
8216 	    {
8217 	      while (h->root.type == bfd_link_hash_indirect
8218 		     || h->root.type == bfd_link_hash_warning)
8219 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
8220 
8221 	      /* PR15323, ref flags aren't set for references in the
8222 		 same object.  */
8223 	      h->root.non_ir_ref = 1;
8224 	    }
8225 	}
8226 
8227       /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8228 	 relocation into a dynamic one.  */
8229       can_make_dynamic_p = FALSE;
8230 
8231       /* Set CALL_RELOC_P to true if the relocation is for a call,
8232 	 and if pointer equality therefore doesn't matter.  */
8233       call_reloc_p = FALSE;
8234 
8235       /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8236 	 into account when deciding how to define the symbol.
8237 	 Relocations in nonallocatable sections such as .pdr and
8238 	 .debug* should have no effect.  */
8239       constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8240 
8241       switch (r_type)
8242 	{
8243 	case R_MIPS_CALL16:
8244 	case R_MIPS_CALL_HI16:
8245 	case R_MIPS_CALL_LO16:
8246 	case R_MIPS16_CALL16:
8247 	case R_MICROMIPS_CALL16:
8248 	case R_MICROMIPS_CALL_HI16:
8249 	case R_MICROMIPS_CALL_LO16:
8250 	  call_reloc_p = TRUE;
8251 	  /* Fall through.  */
8252 
8253 	case R_MIPS_GOT16:
8254 	case R_MIPS_GOT_HI16:
8255 	case R_MIPS_GOT_LO16:
8256 	case R_MIPS_GOT_PAGE:
8257 	case R_MIPS_GOT_OFST:
8258 	case R_MIPS_GOT_DISP:
8259 	case R_MIPS_TLS_GOTTPREL:
8260 	case R_MIPS_TLS_GD:
8261 	case R_MIPS_TLS_LDM:
8262 	case R_MIPS16_GOT16:
8263 	case R_MIPS16_TLS_GOTTPREL:
8264 	case R_MIPS16_TLS_GD:
8265 	case R_MIPS16_TLS_LDM:
8266 	case R_MICROMIPS_GOT16:
8267 	case R_MICROMIPS_GOT_HI16:
8268 	case R_MICROMIPS_GOT_LO16:
8269 	case R_MICROMIPS_GOT_PAGE:
8270 	case R_MICROMIPS_GOT_OFST:
8271 	case R_MICROMIPS_GOT_DISP:
8272 	case R_MICROMIPS_TLS_GOTTPREL:
8273 	case R_MICROMIPS_TLS_GD:
8274 	case R_MICROMIPS_TLS_LDM:
8275 	  if (dynobj == NULL)
8276 	    elf_hash_table (info)->dynobj = dynobj = abfd;
8277 	  if (!mips_elf_create_got_section (dynobj, info))
8278 	    return FALSE;
8279 	  if (htab->is_vxworks && !info->shared)
8280 	    {
8281 	      (*_bfd_error_handler)
8282 		(_("%B: GOT reloc at 0x%lx not expected in executables"),
8283 		 abfd, (unsigned long) rel->r_offset);
8284 	      bfd_set_error (bfd_error_bad_value);
8285 	      return FALSE;
8286 	    }
8287 	  can_make_dynamic_p = TRUE;
8288 	  break;
8289 
8290 	case R_MIPS_NONE:
8291 	case R_MIPS_JALR:
8292 	case R_MICROMIPS_JALR:
8293 	  /* These relocations have empty fields and are purely there to
8294 	     provide link information.  The symbol value doesn't matter.  */
8295 	  constrain_symbol_p = FALSE;
8296 	  break;
8297 
8298 	case R_MIPS_GPREL16:
8299 	case R_MIPS_GPREL32:
8300 	case R_MIPS16_GPREL:
8301 	case R_MICROMIPS_GPREL16:
8302 	  /* GP-relative relocations always resolve to a definition in a
8303 	     regular input file, ignoring the one-definition rule.  This is
8304 	     important for the GP setup sequence in NewABI code, which
8305 	     always resolves to a local function even if other relocations
8306 	     against the symbol wouldn't.  */
8307 	  constrain_symbol_p = FALSE;
8308 	  break;
8309 
8310 	case R_MIPS_32:
8311 	case R_MIPS_REL32:
8312 	case R_MIPS_64:
8313 	  /* In VxWorks executables, references to external symbols
8314 	     must be handled using copy relocs or PLT entries; it is not
8315 	     possible to convert this relocation into a dynamic one.
8316 
8317 	     For executables that use PLTs and copy-relocs, we have a
8318 	     choice between converting the relocation into a dynamic
8319 	     one or using copy relocations or PLT entries.  It is
8320 	     usually better to do the former, unless the relocation is
8321 	     against a read-only section.  */
8322 	  if ((info->shared
8323 	       || (h != NULL
8324 		   && !htab->is_vxworks
8325 		   && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8326 		   && !(!info->nocopyreloc
8327 			&& !PIC_OBJECT_P (abfd)
8328 			&& MIPS_ELF_READONLY_SECTION (sec))))
8329 	      && (sec->flags & SEC_ALLOC) != 0)
8330 	    {
8331 	      can_make_dynamic_p = TRUE;
8332 	      if (dynobj == NULL)
8333 		elf_hash_table (info)->dynobj = dynobj = abfd;
8334 	    }
8335 	  break;
8336 
8337 	case R_MIPS_26:
8338 	case R_MIPS_PC16:
8339 	case R_MIPS_PC21_S2:
8340 	case R_MIPS_PC26_S2:
8341 	case R_MIPS16_26:
8342 	case R_MICROMIPS_26_S1:
8343 	case R_MICROMIPS_PC7_S1:
8344 	case R_MICROMIPS_PC10_S1:
8345 	case R_MICROMIPS_PC16_S1:
8346 	case R_MICROMIPS_PC23_S2:
8347 	  call_reloc_p = TRUE;
8348 	  break;
8349 	}
8350 
8351       if (h)
8352 	{
8353 	  if (constrain_symbol_p)
8354 	    {
8355 	      if (!can_make_dynamic_p)
8356 		((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8357 
8358 	      if (!call_reloc_p)
8359 		h->pointer_equality_needed = 1;
8360 
8361 	      /* We must not create a stub for a symbol that has
8362 		 relocations related to taking the function's address.
8363 		 This doesn't apply to VxWorks, where CALL relocs refer
8364 		 to a .got.plt entry instead of a normal .got entry.  */
8365 	      if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8366 		((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8367 	    }
8368 
8369 	  /* Relocations against the special VxWorks __GOTT_BASE__ and
8370 	     __GOTT_INDEX__ symbols must be left to the loader.  Allocate
8371 	     room for them in .rela.dyn.  */
8372 	  if (is_gott_symbol (info, h))
8373 	    {
8374 	      if (sreloc == NULL)
8375 		{
8376 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
8377 		  if (sreloc == NULL)
8378 		    return FALSE;
8379 		}
8380 	      mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8381 	      if (MIPS_ELF_READONLY_SECTION (sec))
8382 		/* We tell the dynamic linker that there are
8383 		   relocations against the text segment.  */
8384 		info->flags |= DF_TEXTREL;
8385 	    }
8386 	}
8387       else if (call_lo16_reloc_p (r_type)
8388 	       || got_lo16_reloc_p (r_type)
8389 	       || got_disp_reloc_p (r_type)
8390 	       || (got16_reloc_p (r_type) && htab->is_vxworks))
8391 	{
8392 	  /* We may need a local GOT entry for this relocation.  We
8393 	     don't count R_MIPS_GOT_PAGE because we can estimate the
8394 	     maximum number of pages needed by looking at the size of
8395 	     the segment.  Similar comments apply to R_MIPS*_GOT16 and
8396 	     R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8397 	     always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
8398 	     R_MIPS_CALL_HI16 because these are always followed by an
8399 	     R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
8400 	  if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8401 						 rel->r_addend, info, r_type))
8402 	    return FALSE;
8403 	}
8404 
8405       if (h != NULL
8406 	  && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8407 						  ELF_ST_IS_MIPS16 (h->other)))
8408 	((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8409 
8410       switch (r_type)
8411 	{
8412 	case R_MIPS_CALL16:
8413 	case R_MIPS16_CALL16:
8414 	case R_MICROMIPS_CALL16:
8415 	  if (h == NULL)
8416 	    {
8417 	      (*_bfd_error_handler)
8418 		(_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8419 		 abfd, (unsigned long) rel->r_offset);
8420 	      bfd_set_error (bfd_error_bad_value);
8421 	      return FALSE;
8422 	    }
8423 	  /* Fall through.  */
8424 
8425 	case R_MIPS_CALL_HI16:
8426 	case R_MIPS_CALL_LO16:
8427 	case R_MICROMIPS_CALL_HI16:
8428 	case R_MICROMIPS_CALL_LO16:
8429 	  if (h != NULL)
8430 	    {
8431 	      /* Make sure there is room in the regular GOT to hold the
8432 		 function's address.  We may eliminate it in favour of
8433 		 a .got.plt entry later; see mips_elf_count_got_symbols.  */
8434 	      if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8435 						      r_type))
8436 		return FALSE;
8437 
8438 	      /* We need a stub, not a plt entry for the undefined
8439 		 function.  But we record it as if it needs plt.  See
8440 		 _bfd_elf_adjust_dynamic_symbol.  */
8441 	      h->needs_plt = 1;
8442 	      h->type = STT_FUNC;
8443 	    }
8444 	  break;
8445 
8446 	case R_MIPS_GOT_PAGE:
8447 	case R_MICROMIPS_GOT_PAGE:
8448 	case R_MIPS16_GOT16:
8449 	case R_MIPS_GOT16:
8450 	case R_MIPS_GOT_HI16:
8451 	case R_MIPS_GOT_LO16:
8452 	case R_MICROMIPS_GOT16:
8453 	case R_MICROMIPS_GOT_HI16:
8454 	case R_MICROMIPS_GOT_LO16:
8455 	  if (!h || got_page_reloc_p (r_type))
8456 	    {
8457 	      /* This relocation needs (or may need, if h != NULL) a
8458 		 page entry in the GOT.  For R_MIPS_GOT_PAGE we do not
8459 		 know for sure until we know whether the symbol is
8460 		 preemptible.  */
8461 	      if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8462 		{
8463 		  if (!mips_elf_get_section_contents (abfd, sec, &contents))
8464 		    return FALSE;
8465 		  howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8466 		  addend = mips_elf_read_rel_addend (abfd, rel,
8467 						     howto, contents);
8468 		  if (got16_reloc_p (r_type))
8469 		    mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8470 						  contents, &addend);
8471 		  else
8472 		    addend <<= howto->rightshift;
8473 		}
8474 	      else
8475 		addend = rel->r_addend;
8476 	      if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8477 						 h, addend))
8478 		return FALSE;
8479 
8480 	      if (h)
8481 		{
8482 		  struct mips_elf_link_hash_entry *hmips =
8483 		    (struct mips_elf_link_hash_entry *) h;
8484 
8485 		  /* This symbol is definitely not overridable.  */
8486 		  if (hmips->root.def_regular
8487 		      && ! (info->shared && ! info->symbolic
8488 			    && ! hmips->root.forced_local))
8489 		    h = NULL;
8490 		}
8491 	    }
8492 	  /* If this is a global, overridable symbol, GOT_PAGE will
8493 	     decay to GOT_DISP, so we'll need a GOT entry for it.  */
8494 	  /* Fall through.  */
8495 
8496 	case R_MIPS_GOT_DISP:
8497 	case R_MICROMIPS_GOT_DISP:
8498 	  if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8499 						       FALSE, r_type))
8500 	    return FALSE;
8501 	  break;
8502 
8503 	case R_MIPS_TLS_GOTTPREL:
8504 	case R_MIPS16_TLS_GOTTPREL:
8505 	case R_MICROMIPS_TLS_GOTTPREL:
8506 	  if (info->shared)
8507 	    info->flags |= DF_STATIC_TLS;
8508 	  /* Fall through */
8509 
8510 	case R_MIPS_TLS_LDM:
8511 	case R_MIPS16_TLS_LDM:
8512 	case R_MICROMIPS_TLS_LDM:
8513 	  if (tls_ldm_reloc_p (r_type))
8514 	    {
8515 	      r_symndx = STN_UNDEF;
8516 	      h = NULL;
8517 	    }
8518 	  /* Fall through */
8519 
8520 	case R_MIPS_TLS_GD:
8521 	case R_MIPS16_TLS_GD:
8522 	case R_MICROMIPS_TLS_GD:
8523 	  /* This symbol requires a global offset table entry, or two
8524 	     for TLS GD relocations.  */
8525 	  if (h != NULL)
8526 	    {
8527 	      if (!mips_elf_record_global_got_symbol (h, abfd, info,
8528 						      FALSE, r_type))
8529 		return FALSE;
8530 	    }
8531 	  else
8532 	    {
8533 	      if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8534 						     rel->r_addend,
8535 						     info, r_type))
8536 		return FALSE;
8537 	    }
8538 	  break;
8539 
8540 	case R_MIPS_32:
8541 	case R_MIPS_REL32:
8542 	case R_MIPS_64:
8543 	  /* In VxWorks executables, references to external symbols
8544 	     are handled using copy relocs or PLT stubs, so there's
8545 	     no need to add a .rela.dyn entry for this relocation.  */
8546 	  if (can_make_dynamic_p)
8547 	    {
8548 	      if (sreloc == NULL)
8549 		{
8550 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
8551 		  if (sreloc == NULL)
8552 		    return FALSE;
8553 		}
8554 	      if (info->shared && h == NULL)
8555 		{
8556 		  /* When creating a shared object, we must copy these
8557 		     reloc types into the output file as R_MIPS_REL32
8558 		     relocs.  Make room for this reloc in .rel(a).dyn.  */
8559 		  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8560 		  if (MIPS_ELF_READONLY_SECTION (sec))
8561 		    /* We tell the dynamic linker that there are
8562 		       relocations against the text segment.  */
8563 		    info->flags |= DF_TEXTREL;
8564 		}
8565 	      else
8566 		{
8567 		  struct mips_elf_link_hash_entry *hmips;
8568 
8569 		  /* For a shared object, we must copy this relocation
8570 		     unless the symbol turns out to be undefined and
8571 		     weak with non-default visibility, in which case
8572 		     it will be left as zero.
8573 
8574 		     We could elide R_MIPS_REL32 for locally binding symbols
8575 		     in shared libraries, but do not yet do so.
8576 
8577 		     For an executable, we only need to copy this
8578 		     reloc if the symbol is defined in a dynamic
8579 		     object.  */
8580 		  hmips = (struct mips_elf_link_hash_entry *) h;
8581 		  ++hmips->possibly_dynamic_relocs;
8582 		  if (MIPS_ELF_READONLY_SECTION (sec))
8583 		    /* We need it to tell the dynamic linker if there
8584 		       are relocations against the text segment.  */
8585 		    hmips->readonly_reloc = TRUE;
8586 		}
8587 	    }
8588 
8589 	  if (SGI_COMPAT (abfd))
8590 	    mips_elf_hash_table (info)->compact_rel_size +=
8591 	      sizeof (Elf32_External_crinfo);
8592 	  break;
8593 
8594 	case R_MIPS_26:
8595 	case R_MIPS_GPREL16:
8596 	case R_MIPS_LITERAL:
8597 	case R_MIPS_GPREL32:
8598 	case R_MICROMIPS_26_S1:
8599 	case R_MICROMIPS_GPREL16:
8600 	case R_MICROMIPS_LITERAL:
8601 	case R_MICROMIPS_GPREL7_S2:
8602 	  if (SGI_COMPAT (abfd))
8603 	    mips_elf_hash_table (info)->compact_rel_size +=
8604 	      sizeof (Elf32_External_crinfo);
8605 	  break;
8606 
8607 	  /* This relocation describes the C++ object vtable hierarchy.
8608 	     Reconstruct it for later use during GC.  */
8609 	case R_MIPS_GNU_VTINHERIT:
8610 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8611 	    return FALSE;
8612 	  break;
8613 
8614 	  /* This relocation describes which C++ vtable entries are actually
8615 	     used.  Record for later use during GC.  */
8616 	case R_MIPS_GNU_VTENTRY:
8617 	  BFD_ASSERT (h != NULL);
8618 	  if (h != NULL
8619 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8620 	    return FALSE;
8621 	  break;
8622 
8623 	default:
8624 	  break;
8625 	}
8626 
8627       /* Record the need for a PLT entry.  At this point we don't know
8628          yet if we are going to create a PLT in the first place, but
8629          we only record whether the relocation requires a standard MIPS
8630          or a compressed code entry anyway.  If we don't make a PLT after
8631          all, then we'll just ignore these arrangements.  Likewise if
8632          a PLT entry is not created because the symbol is satisfied
8633          locally.  */
8634       if (h != NULL
8635 	  && jal_reloc_p (r_type)
8636 	  && !SYMBOL_CALLS_LOCAL (info, h))
8637 	{
8638 	  if (h->plt.plist == NULL)
8639 	    h->plt.plist = mips_elf_make_plt_record (abfd);
8640 	  if (h->plt.plist == NULL)
8641 	    return FALSE;
8642 
8643 	  if (r_type == R_MIPS_26)
8644 	    h->plt.plist->need_mips = TRUE;
8645 	  else
8646 	    h->plt.plist->need_comp = TRUE;
8647 	}
8648 
8649       /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8650 	 if there is one.  We only need to handle global symbols here;
8651 	 we decide whether to keep or delete stubs for local symbols
8652 	 when processing the stub's relocations.  */
8653       if (h != NULL
8654 	  && !mips16_call_reloc_p (r_type)
8655 	  && !section_allows_mips16_refs_p (sec))
8656 	{
8657 	  struct mips_elf_link_hash_entry *mh;
8658 
8659 	  mh = (struct mips_elf_link_hash_entry *) h;
8660 	  mh->need_fn_stub = TRUE;
8661 	}
8662 
8663       /* Refuse some position-dependent relocations when creating a
8664 	 shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
8665 	 not PIC, but we can create dynamic relocations and the result
8666 	 will be fine.  Also do not refuse R_MIPS_LO16, which can be
8667 	 combined with R_MIPS_GOT16.  */
8668       if (info->shared)
8669 	{
8670 	  switch (r_type)
8671 	    {
8672 	    case R_MIPS16_HI16:
8673 	    case R_MIPS_HI16:
8674 	    case R_MIPS_HIGHER:
8675 	    case R_MIPS_HIGHEST:
8676 	    case R_MICROMIPS_HI16:
8677 	    case R_MICROMIPS_HIGHER:
8678 	    case R_MICROMIPS_HIGHEST:
8679 	      /* Don't refuse a high part relocation if it's against
8680 		 no symbol (e.g. part of a compound relocation).  */
8681 	      if (r_symndx == STN_UNDEF)
8682 		break;
8683 
8684 	      /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8685 		 and has a special meaning.  */
8686 	      if (!NEWABI_P (abfd) && h != NULL
8687 		  && strcmp (h->root.root.string, "_gp_disp") == 0)
8688 		break;
8689 
8690 	      /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */
8691 	      if (is_gott_symbol (info, h))
8692 		break;
8693 
8694 	      /* FALLTHROUGH */
8695 
8696 	    case R_MIPS16_26:
8697 	    case R_MIPS_26:
8698 	    case R_MICROMIPS_26_S1:
8699 	      howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8700 	      (*_bfd_error_handler)
8701 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8702 		 abfd, howto->name,
8703 		 (h) ? h->root.root.string : "a local symbol");
8704 	      bfd_set_error (bfd_error_bad_value);
8705 	      return FALSE;
8706 	    default:
8707 	      break;
8708 	    }
8709 	}
8710     }
8711 
8712   return TRUE;
8713 }
8714 
8715 bfd_boolean
_bfd_mips_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * again)8716 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8717 			 struct bfd_link_info *link_info,
8718 			 bfd_boolean *again)
8719 {
8720   Elf_Internal_Rela *internal_relocs;
8721   Elf_Internal_Rela *irel, *irelend;
8722   Elf_Internal_Shdr *symtab_hdr;
8723   bfd_byte *contents = NULL;
8724   size_t extsymoff;
8725   bfd_boolean changed_contents = FALSE;
8726   bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8727   Elf_Internal_Sym *isymbuf = NULL;
8728 
8729   /* We are not currently changing any sizes, so only one pass.  */
8730   *again = FALSE;
8731 
8732   if (link_info->relocatable)
8733     return TRUE;
8734 
8735   internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8736 					       link_info->keep_memory);
8737   if (internal_relocs == NULL)
8738     return TRUE;
8739 
8740   irelend = internal_relocs + sec->reloc_count
8741     * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8742   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8743   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8744 
8745   for (irel = internal_relocs; irel < irelend; irel++)
8746     {
8747       bfd_vma symval;
8748       bfd_signed_vma sym_offset;
8749       unsigned int r_type;
8750       unsigned long r_symndx;
8751       asection *sym_sec;
8752       unsigned long instruction;
8753 
8754       /* Turn jalr into bgezal, and jr into beq, if they're marked
8755 	 with a JALR relocation, that indicate where they jump to.
8756 	 This saves some pipeline bubbles.  */
8757       r_type = ELF_R_TYPE (abfd, irel->r_info);
8758       if (r_type != R_MIPS_JALR)
8759 	continue;
8760 
8761       r_symndx = ELF_R_SYM (abfd, irel->r_info);
8762       /* Compute the address of the jump target.  */
8763       if (r_symndx >= extsymoff)
8764 	{
8765 	  struct mips_elf_link_hash_entry *h
8766 	    = ((struct mips_elf_link_hash_entry *)
8767 	       elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8768 
8769 	  while (h->root.root.type == bfd_link_hash_indirect
8770 		 || h->root.root.type == bfd_link_hash_warning)
8771 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8772 
8773 	  /* If a symbol is undefined, or if it may be overridden,
8774 	     skip it.  */
8775 	  if (! ((h->root.root.type == bfd_link_hash_defined
8776 		  || h->root.root.type == bfd_link_hash_defweak)
8777 		 && h->root.root.u.def.section)
8778 	      || (link_info->shared && ! link_info->symbolic
8779 		  && !h->root.forced_local))
8780 	    continue;
8781 
8782 	  sym_sec = h->root.root.u.def.section;
8783 	  if (sym_sec->output_section)
8784 	    symval = (h->root.root.u.def.value
8785 		      + sym_sec->output_section->vma
8786 		      + sym_sec->output_offset);
8787 	  else
8788 	    symval = h->root.root.u.def.value;
8789 	}
8790       else
8791 	{
8792 	  Elf_Internal_Sym *isym;
8793 
8794 	  /* Read this BFD's symbols if we haven't done so already.  */
8795 	  if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8796 	    {
8797 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8798 	      if (isymbuf == NULL)
8799 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8800 						symtab_hdr->sh_info, 0,
8801 						NULL, NULL, NULL);
8802 	      if (isymbuf == NULL)
8803 		goto relax_return;
8804 	    }
8805 
8806 	  isym = isymbuf + r_symndx;
8807 	  if (isym->st_shndx == SHN_UNDEF)
8808 	    continue;
8809 	  else if (isym->st_shndx == SHN_ABS)
8810 	    sym_sec = bfd_abs_section_ptr;
8811 	  else if (isym->st_shndx == SHN_COMMON)
8812 	    sym_sec = bfd_com_section_ptr;
8813 	  else
8814 	    sym_sec
8815 	      = bfd_section_from_elf_index (abfd, isym->st_shndx);
8816 	  symval = isym->st_value
8817 	    + sym_sec->output_section->vma
8818 	    + sym_sec->output_offset;
8819 	}
8820 
8821       /* Compute branch offset, from delay slot of the jump to the
8822 	 branch target.  */
8823       sym_offset = (symval + irel->r_addend)
8824 	- (sec_start + irel->r_offset + 4);
8825 
8826       /* Branch offset must be properly aligned.  */
8827       if ((sym_offset & 3) != 0)
8828 	continue;
8829 
8830       sym_offset >>= 2;
8831 
8832       /* Check that it's in range.  */
8833       if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8834 	continue;
8835 
8836       /* Get the section contents if we haven't done so already.  */
8837       if (!mips_elf_get_section_contents (abfd, sec, &contents))
8838 	goto relax_return;
8839 
8840       instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8841 
8842       /* If it was jalr <reg>, turn it into bgezal $zero, <target>.  */
8843       if ((instruction & 0xfc1fffff) == 0x0000f809)
8844 	instruction = 0x04110000;
8845       /* If it was jr <reg>, turn it into b <target>.  */
8846       else if ((instruction & 0xfc1fffff) == 0x00000008)
8847 	instruction = 0x10000000;
8848       else
8849 	continue;
8850 
8851       instruction |= (sym_offset & 0xffff);
8852       bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8853       changed_contents = TRUE;
8854     }
8855 
8856   if (contents != NULL
8857       && elf_section_data (sec)->this_hdr.contents != contents)
8858     {
8859       if (!changed_contents && !link_info->keep_memory)
8860         free (contents);
8861       else
8862         {
8863           /* Cache the section contents for elf_link_input_bfd.  */
8864           elf_section_data (sec)->this_hdr.contents = contents;
8865         }
8866     }
8867   return TRUE;
8868 
8869  relax_return:
8870   if (contents != NULL
8871       && elf_section_data (sec)->this_hdr.contents != contents)
8872     free (contents);
8873   return FALSE;
8874 }
8875 
8876 /* Allocate space for global sym dynamic relocs.  */
8877 
8878 static bfd_boolean
allocate_dynrelocs(struct elf_link_hash_entry * h,void * inf)8879 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8880 {
8881   struct bfd_link_info *info = inf;
8882   bfd *dynobj;
8883   struct mips_elf_link_hash_entry *hmips;
8884   struct mips_elf_link_hash_table *htab;
8885 
8886   htab = mips_elf_hash_table (info);
8887   BFD_ASSERT (htab != NULL);
8888 
8889   dynobj = elf_hash_table (info)->dynobj;
8890   hmips = (struct mips_elf_link_hash_entry *) h;
8891 
8892   /* VxWorks executables are handled elsewhere; we only need to
8893      allocate relocations in shared objects.  */
8894   if (htab->is_vxworks && !info->shared)
8895     return TRUE;
8896 
8897   /* Ignore indirect symbols.  All relocations against such symbols
8898      will be redirected to the target symbol.  */
8899   if (h->root.type == bfd_link_hash_indirect)
8900     return TRUE;
8901 
8902   /* If this symbol is defined in a dynamic object, or we are creating
8903      a shared library, we will need to copy any R_MIPS_32 or
8904      R_MIPS_REL32 relocs against it into the output file.  */
8905   if (! info->relocatable
8906       && hmips->possibly_dynamic_relocs != 0
8907       && (h->root.type == bfd_link_hash_defweak
8908 	  || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8909 	  || info->shared))
8910     {
8911       bfd_boolean do_copy = TRUE;
8912 
8913       if (h->root.type == bfd_link_hash_undefweak)
8914 	{
8915 	  /* Do not copy relocations for undefined weak symbols with
8916 	     non-default visibility.  */
8917 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8918 	    do_copy = FALSE;
8919 
8920 	  /* Make sure undefined weak symbols are output as a dynamic
8921 	     symbol in PIEs.  */
8922 	  else if (h->dynindx == -1 && !h->forced_local)
8923 	    {
8924 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
8925 		return FALSE;
8926 	    }
8927 	}
8928 
8929       if (do_copy)
8930 	{
8931 	  /* Even though we don't directly need a GOT entry for this symbol,
8932 	     the SVR4 psABI requires it to have a dynamic symbol table
8933 	     index greater that DT_MIPS_GOTSYM if there are dynamic
8934 	     relocations against it.
8935 
8936 	     VxWorks does not enforce the same mapping between the GOT
8937 	     and the symbol table, so the same requirement does not
8938 	     apply there.  */
8939 	  if (!htab->is_vxworks)
8940 	    {
8941 	      if (hmips->global_got_area > GGA_RELOC_ONLY)
8942 		hmips->global_got_area = GGA_RELOC_ONLY;
8943 	      hmips->got_only_for_calls = FALSE;
8944 	    }
8945 
8946 	  mips_elf_allocate_dynamic_relocations
8947 	    (dynobj, info, hmips->possibly_dynamic_relocs);
8948 	  if (hmips->readonly_reloc)
8949 	    /* We tell the dynamic linker that there are relocations
8950 	       against the text segment.  */
8951 	    info->flags |= DF_TEXTREL;
8952 	}
8953     }
8954 
8955   return TRUE;
8956 }
8957 
8958 /* Adjust a symbol defined by a dynamic object and referenced by a
8959    regular object.  The current definition is in some section of the
8960    dynamic object, but we're not including those sections.  We have to
8961    change the definition to something the rest of the link can
8962    understand.  */
8963 
8964 bfd_boolean
_bfd_mips_elf_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)8965 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8966 				     struct elf_link_hash_entry *h)
8967 {
8968   bfd *dynobj;
8969   struct mips_elf_link_hash_entry *hmips;
8970   struct mips_elf_link_hash_table *htab;
8971 
8972   htab = mips_elf_hash_table (info);
8973   BFD_ASSERT (htab != NULL);
8974 
8975   dynobj = elf_hash_table (info)->dynobj;
8976   hmips = (struct mips_elf_link_hash_entry *) h;
8977 
8978   /* Make sure we know what is going on here.  */
8979   BFD_ASSERT (dynobj != NULL
8980 	      && (h->needs_plt
8981 		  || h->u.weakdef != NULL
8982 		  || (h->def_dynamic
8983 		      && h->ref_regular
8984 		      && !h->def_regular)));
8985 
8986   hmips = (struct mips_elf_link_hash_entry *) h;
8987 
8988   /* If there are call relocations against an externally-defined symbol,
8989      see whether we can create a MIPS lazy-binding stub for it.  We can
8990      only do this if all references to the function are through call
8991      relocations, and in that case, the traditional lazy-binding stubs
8992      are much more efficient than PLT entries.
8993 
8994      Traditional stubs are only available on SVR4 psABI-based systems;
8995      VxWorks always uses PLTs instead.  */
8996   if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8997     {
8998       if (! elf_hash_table (info)->dynamic_sections_created)
8999 	return TRUE;
9000 
9001       /* If this symbol is not defined in a regular file, then set
9002 	 the symbol to the stub location.  This is required to make
9003 	 function pointers compare as equal between the normal
9004 	 executable and the shared library.  */
9005       if (!h->def_regular)
9006 	{
9007 	  hmips->needs_lazy_stub = TRUE;
9008 	  htab->lazy_stub_count++;
9009 	  return TRUE;
9010 	}
9011     }
9012   /* As above, VxWorks requires PLT entries for externally-defined
9013      functions that are only accessed through call relocations.
9014 
9015      Both VxWorks and non-VxWorks targets also need PLT entries if there
9016      are static-only relocations against an externally-defined function.
9017      This can technically occur for shared libraries if there are
9018      branches to the symbol, although it is unlikely that this will be
9019      used in practice due to the short ranges involved.  It can occur
9020      for any relative or absolute relocation in executables; in that
9021      case, the PLT entry becomes the function's canonical address.  */
9022   else if (((h->needs_plt && !hmips->no_fn_stub)
9023 	    || (h->type == STT_FUNC && hmips->has_static_relocs))
9024 	   && htab->use_plts_and_copy_relocs
9025 	   && !SYMBOL_CALLS_LOCAL (info, h)
9026 	   && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9027 		&& h->root.type == bfd_link_hash_undefweak))
9028     {
9029       bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9030       bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9031 
9032       /* If this is the first symbol to need a PLT entry, then make some
9033          basic setup.  Also work out PLT entry sizes.  We'll need them
9034          for PLT offset calculations.  */
9035       if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9036 	{
9037 	  BFD_ASSERT (htab->sgotplt->size == 0);
9038 	  BFD_ASSERT (htab->plt_got_index == 0);
9039 
9040 	  /* If we're using the PLT additions to the psABI, each PLT
9041 	     entry is 16 bytes and the PLT0 entry is 32 bytes.
9042 	     Encourage better cache usage by aligning.  We do this
9043 	     lazily to avoid pessimizing traditional objects.  */
9044 	  if (!htab->is_vxworks
9045 	      && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9046 	    return FALSE;
9047 
9048 	  /* Make sure that .got.plt is word-aligned.  We do this lazily
9049 	     for the same reason as above.  */
9050 	  if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9051 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9052 	    return FALSE;
9053 
9054 	  /* On non-VxWorks targets, the first two entries in .got.plt
9055 	     are reserved.  */
9056 	  if (!htab->is_vxworks)
9057 	    htab->plt_got_index
9058 	      += (get_elf_backend_data (dynobj)->got_header_size
9059 		  / MIPS_ELF_GOT_SIZE (dynobj));
9060 
9061 	  /* On VxWorks, also allocate room for the header's
9062 	     .rela.plt.unloaded entries.  */
9063 	  if (htab->is_vxworks && !info->shared)
9064 	    htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9065 
9066 	  /* Now work out the sizes of individual PLT entries.  */
9067 	  if (htab->is_vxworks && info->shared)
9068 	    htab->plt_mips_entry_size
9069 	      = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9070 	  else if (htab->is_vxworks)
9071 	    htab->plt_mips_entry_size
9072 	      = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9073 	  else if (newabi_p)
9074 	    htab->plt_mips_entry_size
9075 	      = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9076 	  else if (!micromips_p)
9077 	    {
9078 	      htab->plt_mips_entry_size
9079 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9080 	      htab->plt_comp_entry_size
9081 		= 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9082 	    }
9083 	  else if (htab->insn32)
9084 	    {
9085 	      htab->plt_mips_entry_size
9086 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9087 	      htab->plt_comp_entry_size
9088 		= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9089 	    }
9090 	  else
9091 	    {
9092 	      htab->plt_mips_entry_size
9093 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9094 	      htab->plt_comp_entry_size
9095 		= 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9096 	    }
9097 	}
9098 
9099       if (h->plt.plist == NULL)
9100 	h->plt.plist = mips_elf_make_plt_record (dynobj);
9101       if (h->plt.plist == NULL)
9102 	return FALSE;
9103 
9104       /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9105          n32 or n64, so always use a standard entry there.
9106 
9107          If the symbol has a MIPS16 call stub and gets a PLT entry, then
9108          all MIPS16 calls will go via that stub, and there is no benefit
9109          to having a MIPS16 entry.  And in the case of call_stub a
9110          standard entry actually has to be used as the stub ends with a J
9111          instruction.  */
9112       if (newabi_p
9113 	  || htab->is_vxworks
9114 	  || hmips->call_stub
9115 	  || hmips->call_fp_stub)
9116 	{
9117 	  h->plt.plist->need_mips = TRUE;
9118 	  h->plt.plist->need_comp = FALSE;
9119 	}
9120 
9121       /* Otherwise, if there are no direct calls to the function, we
9122          have a free choice of whether to use standard or compressed
9123          entries.  Prefer microMIPS entries if the object is known to
9124          contain microMIPS code, so that it becomes possible to create
9125          pure microMIPS binaries.  Prefer standard entries otherwise,
9126          because MIPS16 ones are no smaller and are usually slower.  */
9127       if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9128 	{
9129 	  if (micromips_p)
9130 	    h->plt.plist->need_comp = TRUE;
9131 	  else
9132 	    h->plt.plist->need_mips = TRUE;
9133 	}
9134 
9135       if (h->plt.plist->need_mips)
9136 	{
9137 	  h->plt.plist->mips_offset = htab->plt_mips_offset;
9138 	  htab->plt_mips_offset += htab->plt_mips_entry_size;
9139 	}
9140       if (h->plt.plist->need_comp)
9141 	{
9142 	  h->plt.plist->comp_offset = htab->plt_comp_offset;
9143 	  htab->plt_comp_offset += htab->plt_comp_entry_size;
9144 	}
9145 
9146       /* Reserve the corresponding .got.plt entry now too.  */
9147       h->plt.plist->gotplt_index = htab->plt_got_index++;
9148 
9149       /* If the output file has no definition of the symbol, set the
9150 	 symbol's value to the address of the stub.  */
9151       if (!info->shared && !h->def_regular)
9152 	hmips->use_plt_entry = TRUE;
9153 
9154       /* Make room for the R_MIPS_JUMP_SLOT relocation.  */
9155       htab->srelplt->size += (htab->is_vxworks
9156 			      ? MIPS_ELF_RELA_SIZE (dynobj)
9157 			      : MIPS_ELF_REL_SIZE (dynobj));
9158 
9159       /* Make room for the .rela.plt.unloaded relocations.  */
9160       if (htab->is_vxworks && !info->shared)
9161 	htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9162 
9163       /* All relocations against this symbol that could have been made
9164 	 dynamic will now refer to the PLT entry instead.  */
9165       hmips->possibly_dynamic_relocs = 0;
9166 
9167       return TRUE;
9168     }
9169 
9170   /* If this is a weak symbol, and there is a real definition, the
9171      processor independent code will have arranged for us to see the
9172      real definition first, and we can just use the same value.  */
9173   if (h->u.weakdef != NULL)
9174     {
9175       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9176 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
9177       h->root.u.def.section = h->u.weakdef->root.u.def.section;
9178       h->root.u.def.value = h->u.weakdef->root.u.def.value;
9179       return TRUE;
9180     }
9181 
9182   /* Otherwise, there is nothing further to do for symbols defined
9183      in regular objects.  */
9184   if (h->def_regular)
9185     return TRUE;
9186 
9187   /* There's also nothing more to do if we'll convert all relocations
9188      against this symbol into dynamic relocations.  */
9189   if (!hmips->has_static_relocs)
9190     return TRUE;
9191 
9192   /* We're now relying on copy relocations.  Complain if we have
9193      some that we can't convert.  */
9194   if (!htab->use_plts_and_copy_relocs || info->shared)
9195     {
9196       (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9197 			       "dynamic symbol %s"),
9198 			     h->root.root.string);
9199       bfd_set_error (bfd_error_bad_value);
9200       return FALSE;
9201     }
9202 
9203   /* We must allocate the symbol in our .dynbss section, which will
9204      become part of the .bss section of the executable.  There will be
9205      an entry for this symbol in the .dynsym section.  The dynamic
9206      object will contain position independent code, so all references
9207      from the dynamic object to this symbol will go through the global
9208      offset table.  The dynamic linker will use the .dynsym entry to
9209      determine the address it must put in the global offset table, so
9210      both the dynamic object and the regular object will refer to the
9211      same memory location for the variable.  */
9212 
9213   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9214     {
9215       if (htab->is_vxworks)
9216 	htab->srelbss->size += sizeof (Elf32_External_Rela);
9217       else
9218 	mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9219       h->needs_copy = 1;
9220     }
9221 
9222   /* All relocations against this symbol that could have been made
9223      dynamic will now refer to the local copy instead.  */
9224   hmips->possibly_dynamic_relocs = 0;
9225 
9226   return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
9227 }
9228 
9229 /* This function is called after all the input files have been read,
9230    and the input sections have been assigned to output sections.  We
9231    check for any mips16 stub sections that we can discard.  */
9232 
9233 bfd_boolean
_bfd_mips_elf_always_size_sections(bfd * output_bfd,struct bfd_link_info * info)9234 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9235 				    struct bfd_link_info *info)
9236 {
9237   asection *sect;
9238   struct mips_elf_link_hash_table *htab;
9239   struct mips_htab_traverse_info hti;
9240 
9241   htab = mips_elf_hash_table (info);
9242   BFD_ASSERT (htab != NULL);
9243 
9244   /* The .reginfo section has a fixed size.  */
9245   sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9246   if (sect != NULL)
9247     bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9248 
9249   /* The .MIPS.abiflags section has a fixed size.  */
9250   sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9251   if (sect != NULL)
9252     bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9253 
9254   hti.info = info;
9255   hti.output_bfd = output_bfd;
9256   hti.error = FALSE;
9257   mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9258 			       mips_elf_check_symbols, &hti);
9259   if (hti.error)
9260     return FALSE;
9261 
9262   return TRUE;
9263 }
9264 
9265 /* If the link uses a GOT, lay it out and work out its size.  */
9266 
9267 static bfd_boolean
mips_elf_lay_out_got(bfd * output_bfd,struct bfd_link_info * info)9268 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9269 {
9270   bfd *dynobj;
9271   asection *s;
9272   struct mips_got_info *g;
9273   bfd_size_type loadable_size = 0;
9274   bfd_size_type page_gotno;
9275   bfd *ibfd;
9276   struct mips_elf_traverse_got_arg tga;
9277   struct mips_elf_link_hash_table *htab;
9278 
9279   htab = mips_elf_hash_table (info);
9280   BFD_ASSERT (htab != NULL);
9281 
9282   s = htab->sgot;
9283   if (s == NULL)
9284     return TRUE;
9285 
9286   dynobj = elf_hash_table (info)->dynobj;
9287   g = htab->got_info;
9288 
9289   /* Allocate room for the reserved entries.  VxWorks always reserves
9290      3 entries; other objects only reserve 2 entries.  */
9291   BFD_ASSERT (g->assigned_low_gotno == 0);
9292   if (htab->is_vxworks)
9293     htab->reserved_gotno = 3;
9294   else
9295     htab->reserved_gotno = 2;
9296   g->local_gotno += htab->reserved_gotno;
9297   g->assigned_low_gotno = htab->reserved_gotno;
9298 
9299   /* Decide which symbols need to go in the global part of the GOT and
9300      count the number of reloc-only GOT symbols.  */
9301   mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9302 
9303   if (!mips_elf_resolve_final_got_entries (info, g))
9304     return FALSE;
9305 
9306   /* Calculate the total loadable size of the output.  That
9307      will give us the maximum number of GOT_PAGE entries
9308      required.  */
9309   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9310     {
9311       asection *subsection;
9312 
9313       for (subsection = ibfd->sections;
9314 	   subsection;
9315 	   subsection = subsection->next)
9316 	{
9317 	  if ((subsection->flags & SEC_ALLOC) == 0)
9318 	    continue;
9319 	  loadable_size += ((subsection->size + 0xf)
9320 			    &~ (bfd_size_type) 0xf);
9321 	}
9322     }
9323 
9324   if (htab->is_vxworks)
9325     /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9326        relocations against local symbols evaluate to "G", and the EABI does
9327        not include R_MIPS_GOT_PAGE.  */
9328     page_gotno = 0;
9329   else
9330     /* Assume there are two loadable segments consisting of contiguous
9331        sections.  Is 5 enough?  */
9332     page_gotno = (loadable_size >> 16) + 5;
9333 
9334   /* Choose the smaller of the two page estimates; both are intended to be
9335      conservative.  */
9336   if (page_gotno > g->page_gotno)
9337     page_gotno = g->page_gotno;
9338 
9339   g->local_gotno += page_gotno;
9340   g->assigned_high_gotno = g->local_gotno - 1;
9341 
9342   s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9343   s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9344   s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9345 
9346   /* VxWorks does not support multiple GOTs.  It initializes $gp to
9347      __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9348      dynamic loader.  */
9349   if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9350     {
9351       if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9352 	return FALSE;
9353     }
9354   else
9355     {
9356       /* Record that all bfds use G.  This also has the effect of freeing
9357 	 the per-bfd GOTs, which we no longer need.  */
9358       for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9359 	if (mips_elf_bfd_got (ibfd, FALSE))
9360 	  mips_elf_replace_bfd_got (ibfd, g);
9361       mips_elf_replace_bfd_got (output_bfd, g);
9362 
9363       /* Set up TLS entries.  */
9364       g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9365       tga.info = info;
9366       tga.g = g;
9367       tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9368       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9369       if (!tga.g)
9370 	return FALSE;
9371       BFD_ASSERT (g->tls_assigned_gotno
9372 		  == g->global_gotno + g->local_gotno + g->tls_gotno);
9373 
9374       /* Each VxWorks GOT entry needs an explicit relocation.  */
9375       if (htab->is_vxworks && info->shared)
9376 	g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9377 
9378       /* Allocate room for the TLS relocations.  */
9379       if (g->relocs)
9380 	mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9381     }
9382 
9383   return TRUE;
9384 }
9385 
9386 /* Estimate the size of the .MIPS.stubs section.  */
9387 
9388 static void
mips_elf_estimate_stub_size(bfd * output_bfd,struct bfd_link_info * info)9389 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9390 {
9391   struct mips_elf_link_hash_table *htab;
9392   bfd_size_type dynsymcount;
9393 
9394   htab = mips_elf_hash_table (info);
9395   BFD_ASSERT (htab != NULL);
9396 
9397   if (htab->lazy_stub_count == 0)
9398     return;
9399 
9400   /* IRIX rld assumes that a function stub isn't at the end of the .text
9401      section, so add a dummy entry to the end.  */
9402   htab->lazy_stub_count++;
9403 
9404   /* Get a worst-case estimate of the number of dynamic symbols needed.
9405      At this point, dynsymcount does not account for section symbols
9406      and count_section_dynsyms may overestimate the number that will
9407      be needed.  */
9408   dynsymcount = (elf_hash_table (info)->dynsymcount
9409 		 + count_section_dynsyms (output_bfd, info));
9410 
9411   /* Determine the size of one stub entry.  There's no disadvantage
9412      from using microMIPS code here, so for the sake of pure-microMIPS
9413      binaries we prefer it whenever there's any microMIPS code in
9414      output produced at all.  This has a benefit of stubs being
9415      shorter by 4 bytes each too, unless in the insn32 mode.  */
9416   if (!MICROMIPS_P (output_bfd))
9417     htab->function_stub_size = (dynsymcount > 0x10000
9418 				? MIPS_FUNCTION_STUB_BIG_SIZE
9419 				: MIPS_FUNCTION_STUB_NORMAL_SIZE);
9420   else if (htab->insn32)
9421     htab->function_stub_size = (dynsymcount > 0x10000
9422 				? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9423 				: MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9424   else
9425     htab->function_stub_size = (dynsymcount > 0x10000
9426 				? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9427 				: MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9428 
9429   htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9430 }
9431 
9432 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9433    mips_htab_traverse_info.  If H needs a traditional MIPS lazy-binding
9434    stub, allocate an entry in the stubs section.  */
9435 
9436 static bfd_boolean
mips_elf_allocate_lazy_stub(struct mips_elf_link_hash_entry * h,void * data)9437 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9438 {
9439   struct mips_htab_traverse_info *hti = data;
9440   struct mips_elf_link_hash_table *htab;
9441   struct bfd_link_info *info;
9442   bfd *output_bfd;
9443 
9444   info = hti->info;
9445   output_bfd = hti->output_bfd;
9446   htab = mips_elf_hash_table (info);
9447   BFD_ASSERT (htab != NULL);
9448 
9449   if (h->needs_lazy_stub)
9450     {
9451       bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9452       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9453       bfd_vma isa_bit = micromips_p;
9454 
9455       BFD_ASSERT (htab->root.dynobj != NULL);
9456       if (h->root.plt.plist == NULL)
9457 	h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9458       if (h->root.plt.plist == NULL)
9459 	{
9460 	  hti->error = TRUE;
9461 	  return FALSE;
9462 	}
9463       h->root.root.u.def.section = htab->sstubs;
9464       h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9465       h->root.plt.plist->stub_offset = htab->sstubs->size;
9466       h->root.other = other;
9467       htab->sstubs->size += htab->function_stub_size;
9468     }
9469   return TRUE;
9470 }
9471 
9472 /* Allocate offsets in the stubs section to each symbol that needs one.
9473    Set the final size of the .MIPS.stub section.  */
9474 
9475 static bfd_boolean
mips_elf_lay_out_lazy_stubs(struct bfd_link_info * info)9476 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9477 {
9478   bfd *output_bfd = info->output_bfd;
9479   bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9480   unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9481   bfd_vma isa_bit = micromips_p;
9482   struct mips_elf_link_hash_table *htab;
9483   struct mips_htab_traverse_info hti;
9484   struct elf_link_hash_entry *h;
9485   bfd *dynobj;
9486 
9487   htab = mips_elf_hash_table (info);
9488   BFD_ASSERT (htab != NULL);
9489 
9490   if (htab->lazy_stub_count == 0)
9491     return TRUE;
9492 
9493   htab->sstubs->size = 0;
9494   hti.info = info;
9495   hti.output_bfd = output_bfd;
9496   hti.error = FALSE;
9497   mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9498   if (hti.error)
9499     return FALSE;
9500   htab->sstubs->size += htab->function_stub_size;
9501   BFD_ASSERT (htab->sstubs->size
9502 	      == htab->lazy_stub_count * htab->function_stub_size);
9503 
9504   dynobj = elf_hash_table (info)->dynobj;
9505   BFD_ASSERT (dynobj != NULL);
9506   h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9507   if (h == NULL)
9508     return FALSE;
9509   h->root.u.def.value = isa_bit;
9510   h->other = other;
9511   h->type = STT_FUNC;
9512 
9513   return TRUE;
9514 }
9515 
9516 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9517    bfd_link_info.  If H uses the address of a PLT entry as the value
9518    of the symbol, then set the entry in the symbol table now.  Prefer
9519    a standard MIPS PLT entry.  */
9520 
9521 static bfd_boolean
mips_elf_set_plt_sym_value(struct mips_elf_link_hash_entry * h,void * data)9522 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9523 {
9524   struct bfd_link_info *info = data;
9525   bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9526   struct mips_elf_link_hash_table *htab;
9527   unsigned int other;
9528   bfd_vma isa_bit;
9529   bfd_vma val;
9530 
9531   htab = mips_elf_hash_table (info);
9532   BFD_ASSERT (htab != NULL);
9533 
9534   if (h->use_plt_entry)
9535     {
9536       BFD_ASSERT (h->root.plt.plist != NULL);
9537       BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9538 		  || h->root.plt.plist->comp_offset != MINUS_ONE);
9539 
9540       val = htab->plt_header_size;
9541       if (h->root.plt.plist->mips_offset != MINUS_ONE)
9542 	{
9543 	  isa_bit = 0;
9544 	  val += h->root.plt.plist->mips_offset;
9545 	  other = 0;
9546 	}
9547       else
9548 	{
9549 	  isa_bit = 1;
9550 	  val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9551 	  other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9552 	}
9553       val += isa_bit;
9554       /* For VxWorks, point at the PLT load stub rather than the lazy
9555          resolution stub; this stub will become the canonical function
9556          address.  */
9557       if (htab->is_vxworks)
9558 	val += 8;
9559 
9560       h->root.root.u.def.section = htab->splt;
9561       h->root.root.u.def.value = val;
9562       h->root.other = other;
9563     }
9564 
9565   return TRUE;
9566 }
9567 
9568 /* Set the sizes of the dynamic sections.  */
9569 
9570 bfd_boolean
_bfd_mips_elf_size_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)9571 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9572 				     struct bfd_link_info *info)
9573 {
9574   bfd *dynobj;
9575   asection *s, *sreldyn;
9576   bfd_boolean reltext;
9577   struct mips_elf_link_hash_table *htab;
9578 
9579   htab = mips_elf_hash_table (info);
9580   BFD_ASSERT (htab != NULL);
9581   dynobj = elf_hash_table (info)->dynobj;
9582   BFD_ASSERT (dynobj != NULL);
9583 
9584   if (elf_hash_table (info)->dynamic_sections_created)
9585     {
9586       /* Set the contents of the .interp section to the interpreter.  */
9587       if (info->executable)
9588 	{
9589 	  s = bfd_get_linker_section (dynobj, ".interp");
9590 	  BFD_ASSERT (s != NULL);
9591 	  s->size
9592 	    = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9593 	  s->contents
9594 	    = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9595 	}
9596 
9597       /* Figure out the size of the PLT header if we know that we
9598          are using it.  For the sake of cache alignment always use
9599          a standard header whenever any standard entries are present
9600          even if microMIPS entries are present as well.  This also
9601          lets the microMIPS header rely on the value of $v0 only set
9602          by microMIPS entries, for a small size reduction.
9603 
9604          Set symbol table entry values for symbols that use the
9605          address of their PLT entry now that we can calculate it.
9606 
9607          Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9608          haven't already in _bfd_elf_create_dynamic_sections.  */
9609       if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9610 	{
9611 	  bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9612 				     && !htab->plt_mips_offset);
9613 	  unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9614 	  bfd_vma isa_bit = micromips_p;
9615 	  struct elf_link_hash_entry *h;
9616 	  bfd_vma size;
9617 
9618 	  BFD_ASSERT (htab->use_plts_and_copy_relocs);
9619 	  BFD_ASSERT (htab->sgotplt->size == 0);
9620 	  BFD_ASSERT (htab->splt->size == 0);
9621 
9622 	  if (htab->is_vxworks && info->shared)
9623 	    size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9624 	  else if (htab->is_vxworks)
9625 	    size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9626 	  else if (ABI_64_P (output_bfd))
9627 	    size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9628 	  else if (ABI_N32_P (output_bfd))
9629 	    size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9630 	  else if (!micromips_p)
9631 	    size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9632 	  else if (htab->insn32)
9633 	    size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9634 	  else
9635 	    size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9636 
9637 	  htab->plt_header_is_comp = micromips_p;
9638 	  htab->plt_header_size = size;
9639 	  htab->splt->size = (size
9640 			      + htab->plt_mips_offset
9641 			      + htab->plt_comp_offset);
9642 	  htab->sgotplt->size = (htab->plt_got_index
9643 				 * MIPS_ELF_GOT_SIZE (dynobj));
9644 
9645 	  mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9646 
9647 	  if (htab->root.hplt == NULL)
9648 	    {
9649 	      h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9650 					       "_PROCEDURE_LINKAGE_TABLE_");
9651 	      htab->root.hplt = h;
9652 	      if (h == NULL)
9653 		return FALSE;
9654 	    }
9655 
9656 	  h = htab->root.hplt;
9657 	  h->root.u.def.value = isa_bit;
9658 	  h->other = other;
9659 	  h->type = STT_FUNC;
9660 	}
9661     }
9662 
9663   /* Allocate space for global sym dynamic relocs.  */
9664   elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9665 
9666   mips_elf_estimate_stub_size (output_bfd, info);
9667 
9668   if (!mips_elf_lay_out_got (output_bfd, info))
9669     return FALSE;
9670 
9671   mips_elf_lay_out_lazy_stubs (info);
9672 
9673   /* The check_relocs and adjust_dynamic_symbol entry points have
9674      determined the sizes of the various dynamic sections.  Allocate
9675      memory for them.  */
9676   reltext = FALSE;
9677   for (s = dynobj->sections; s != NULL; s = s->next)
9678     {
9679       const char *name;
9680 
9681       /* It's OK to base decisions on the section name, because none
9682 	 of the dynobj section names depend upon the input files.  */
9683       name = bfd_get_section_name (dynobj, s);
9684 
9685       if ((s->flags & SEC_LINKER_CREATED) == 0)
9686 	continue;
9687 
9688       if (CONST_STRNEQ (name, ".rel"))
9689 	{
9690 	  if (s->size != 0)
9691 	    {
9692 	      const char *outname;
9693 	      asection *target;
9694 
9695 	      /* If this relocation section applies to a read only
9696                  section, then we probably need a DT_TEXTREL entry.
9697                  If the relocation section is .rel(a).dyn, we always
9698                  assert a DT_TEXTREL entry rather than testing whether
9699                  there exists a relocation to a read only section or
9700                  not.  */
9701 	      outname = bfd_get_section_name (output_bfd,
9702 					      s->output_section);
9703 	      target = bfd_get_section_by_name (output_bfd, outname + 4);
9704 	      if ((target != NULL
9705 		   && (target->flags & SEC_READONLY) != 0
9706 		   && (target->flags & SEC_ALLOC) != 0)
9707 		  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9708 		reltext = TRUE;
9709 
9710 	      /* We use the reloc_count field as a counter if we need
9711 		 to copy relocs into the output file.  */
9712 	      if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9713 		s->reloc_count = 0;
9714 
9715 	      /* If combreloc is enabled, elf_link_sort_relocs() will
9716 		 sort relocations, but in a different way than we do,
9717 		 and before we're done creating relocations.  Also, it
9718 		 will move them around between input sections'
9719 		 relocation's contents, so our sorting would be
9720 		 broken, so don't let it run.  */
9721 	      info->combreloc = 0;
9722 	    }
9723 	}
9724       else if (info->executable
9725 	       && ! mips_elf_hash_table (info)->use_rld_obj_head
9726 	       && CONST_STRNEQ (name, ".rld_map"))
9727 	{
9728 	  /* We add a room for __rld_map.  It will be filled in by the
9729 	     rtld to contain a pointer to the _r_debug structure.  */
9730 	  s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9731 	}
9732       else if (SGI_COMPAT (output_bfd)
9733 	       && CONST_STRNEQ (name, ".compact_rel"))
9734 	s->size += mips_elf_hash_table (info)->compact_rel_size;
9735       else if (s == htab->splt)
9736 	{
9737 	  /* If the last PLT entry has a branch delay slot, allocate
9738 	     room for an extra nop to fill the delay slot.  This is
9739 	     for CPUs without load interlocking.  */
9740 	  if (! LOAD_INTERLOCKS_P (output_bfd)
9741 	      && ! htab->is_vxworks && s->size > 0)
9742 	    s->size += 4;
9743 	}
9744       else if (! CONST_STRNEQ (name, ".init")
9745 	       && s != htab->sgot
9746 	       && s != htab->sgotplt
9747 	       && s != htab->sstubs
9748 	       && s != htab->sdynbss)
9749 	{
9750 	  /* It's not one of our sections, so don't allocate space.  */
9751 	  continue;
9752 	}
9753 
9754       if (s->size == 0)
9755 	{
9756 	  s->flags |= SEC_EXCLUDE;
9757 	  continue;
9758 	}
9759 
9760       if ((s->flags & SEC_HAS_CONTENTS) == 0)
9761 	continue;
9762 
9763       /* Allocate memory for the section contents.  */
9764       s->contents = bfd_zalloc (dynobj, s->size);
9765       if (s->contents == NULL)
9766 	{
9767 	  bfd_set_error (bfd_error_no_memory);
9768 	  return FALSE;
9769 	}
9770     }
9771 
9772   if (elf_hash_table (info)->dynamic_sections_created)
9773     {
9774       /* Add some entries to the .dynamic section.  We fill in the
9775 	 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9776 	 must add the entries now so that we get the correct size for
9777 	 the .dynamic section.  */
9778 
9779       /* SGI object has the equivalence of DT_DEBUG in the
9780 	 DT_MIPS_RLD_MAP entry.  This must come first because glibc
9781 	 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9782 	 may only look at the first one they see.  */
9783       if (!info->shared
9784 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9785 	return FALSE;
9786 
9787       if (info->executable
9788 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP2, 0))
9789 	return FALSE;
9790 
9791       /* The DT_DEBUG entry may be filled in by the dynamic linker and
9792 	 used by the debugger.  */
9793       if (info->executable
9794 	  && !SGI_COMPAT (output_bfd)
9795 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9796 	return FALSE;
9797 
9798       if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9799 	info->flags |= DF_TEXTREL;
9800 
9801       if ((info->flags & DF_TEXTREL) != 0)
9802 	{
9803 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9804 	    return FALSE;
9805 
9806 	  /* Clear the DF_TEXTREL flag.  It will be set again if we
9807 	     write out an actual text relocation; we may not, because
9808 	     at this point we do not know whether e.g. any .eh_frame
9809 	     absolute relocations have been converted to PC-relative.  */
9810 	  info->flags &= ~DF_TEXTREL;
9811 	}
9812 
9813       if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9814 	return FALSE;
9815 
9816       sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9817       if (htab->is_vxworks)
9818 	{
9819 	  /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
9820 	     use any of the DT_MIPS_* tags.  */
9821 	  if (sreldyn && sreldyn->size > 0)
9822 	    {
9823 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9824 		return FALSE;
9825 
9826 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9827 		return FALSE;
9828 
9829 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9830 		return FALSE;
9831 	    }
9832 	}
9833       else
9834 	{
9835 	  if (sreldyn && sreldyn->size > 0)
9836 	    {
9837 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9838 		return FALSE;
9839 
9840 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9841 		return FALSE;
9842 
9843 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9844 		return FALSE;
9845 	    }
9846 
9847 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9848 	    return FALSE;
9849 
9850 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9851 	    return FALSE;
9852 
9853 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9854 	    return FALSE;
9855 
9856 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9857 	    return FALSE;
9858 
9859 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9860 	    return FALSE;
9861 
9862 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9863 	    return FALSE;
9864 
9865 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9866 	    return FALSE;
9867 
9868 	  if (IRIX_COMPAT (dynobj) == ict_irix5
9869 	      && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9870 	    return FALSE;
9871 
9872 	  if (IRIX_COMPAT (dynobj) == ict_irix6
9873 	      && (bfd_get_section_by_name
9874 		  (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9875 	      && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9876 	    return FALSE;
9877 	}
9878       if (htab->splt->size > 0)
9879 	{
9880 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9881 	    return FALSE;
9882 
9883 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9884 	    return FALSE;
9885 
9886 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9887 	    return FALSE;
9888 
9889 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9890 	    return FALSE;
9891 	}
9892       if (htab->is_vxworks
9893 	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9894 	return FALSE;
9895     }
9896 
9897   return TRUE;
9898 }
9899 
9900 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9901    Adjust its R_ADDEND field so that it is correct for the output file.
9902    LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9903    and sections respectively; both use symbol indexes.  */
9904 
9905 static void
mips_elf_adjust_addend(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,Elf_Internal_Sym * local_syms,asection ** local_sections,Elf_Internal_Rela * rel)9906 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9907 			bfd *input_bfd, Elf_Internal_Sym *local_syms,
9908 			asection **local_sections, Elf_Internal_Rela *rel)
9909 {
9910   unsigned int r_type, r_symndx;
9911   Elf_Internal_Sym *sym;
9912   asection *sec;
9913 
9914   if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9915     {
9916       r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9917       if (gprel16_reloc_p (r_type)
9918 	  || r_type == R_MIPS_GPREL32
9919 	  || literal_reloc_p (r_type))
9920 	{
9921 	  rel->r_addend += _bfd_get_gp_value (input_bfd);
9922 	  rel->r_addend -= _bfd_get_gp_value (output_bfd);
9923 	}
9924 
9925       r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9926       sym = local_syms + r_symndx;
9927 
9928       /* Adjust REL's addend to account for section merging.  */
9929       if (!info->relocatable)
9930 	{
9931 	  sec = local_sections[r_symndx];
9932 	  _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9933 	}
9934 
9935       /* This would normally be done by the rela_normal code in elflink.c.  */
9936       if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9937 	rel->r_addend += local_sections[r_symndx]->output_offset;
9938     }
9939 }
9940 
9941 /* Handle relocations against symbols from removed linkonce sections,
9942    or sections discarded by a linker script.  We use this wrapper around
9943    RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9944    on 64-bit ELF targets.  In this case for any relocation handled, which
9945    always be the first in a triplet, the remaining two have to be processed
9946    together with the first, even if they are R_MIPS_NONE.  It is the symbol
9947    index referred by the first reloc that applies to all the three and the
9948    remaining two never refer to an object symbol.  And it is the final
9949    relocation (the last non-null one) that determines the output field of
9950    the whole relocation so retrieve the corresponding howto structure for
9951    the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9952 
9953    Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9954    and therefore requires to be pasted in a loop.  It also defines a block
9955    and does not protect any of its arguments, hence the extra brackets.  */
9956 
9957 static void
mips_reloc_against_discarded_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,Elf_Internal_Rela ** rel,const Elf_Internal_Rela ** relend,bfd_boolean rel_reloc,reloc_howto_type * howto,bfd_byte * contents)9958 mips_reloc_against_discarded_section (bfd *output_bfd,
9959 				      struct bfd_link_info *info,
9960 				      bfd *input_bfd, asection *input_section,
9961 				      Elf_Internal_Rela **rel,
9962 				      const Elf_Internal_Rela **relend,
9963 				      bfd_boolean rel_reloc,
9964 				      reloc_howto_type *howto,
9965 				      bfd_byte *contents)
9966 {
9967   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9968   int count = bed->s->int_rels_per_ext_rel;
9969   unsigned int r_type;
9970   int i;
9971 
9972   for (i = count - 1; i > 0; i--)
9973     {
9974       r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9975       if (r_type != R_MIPS_NONE)
9976 	{
9977 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9978 	  break;
9979 	}
9980     }
9981   do
9982     {
9983        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9984 					(*rel), count, (*relend),
9985 					howto, i, contents);
9986     }
9987   while (0);
9988 }
9989 
9990 /* Relocate a MIPS ELF section.  */
9991 
9992 bfd_boolean
_bfd_mips_elf_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)9993 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9994 				bfd *input_bfd, asection *input_section,
9995 				bfd_byte *contents, Elf_Internal_Rela *relocs,
9996 				Elf_Internal_Sym *local_syms,
9997 				asection **local_sections)
9998 {
9999   Elf_Internal_Rela *rel;
10000   const Elf_Internal_Rela *relend;
10001   bfd_vma addend = 0;
10002   bfd_boolean use_saved_addend_p = FALSE;
10003   const struct elf_backend_data *bed;
10004 
10005   bed = get_elf_backend_data (output_bfd);
10006   relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10007   for (rel = relocs; rel < relend; ++rel)
10008     {
10009       const char *name;
10010       bfd_vma value = 0;
10011       reloc_howto_type *howto;
10012       bfd_boolean cross_mode_jump_p = FALSE;
10013       /* TRUE if the relocation is a RELA relocation, rather than a
10014          REL relocation.  */
10015       bfd_boolean rela_relocation_p = TRUE;
10016       unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10017       const char *msg;
10018       unsigned long r_symndx;
10019       asection *sec;
10020       Elf_Internal_Shdr *symtab_hdr;
10021       struct elf_link_hash_entry *h;
10022       bfd_boolean rel_reloc;
10023 
10024       rel_reloc = (NEWABI_P (input_bfd)
10025 		   && mips_elf_rel_relocation_p (input_bfd, input_section,
10026 						 relocs, rel));
10027       /* Find the relocation howto for this relocation.  */
10028       howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10029 
10030       r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10031       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10032       if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10033 	{
10034 	  sec = local_sections[r_symndx];
10035 	  h = NULL;
10036 	}
10037       else
10038 	{
10039 	  unsigned long extsymoff;
10040 
10041 	  extsymoff = 0;
10042 	  if (!elf_bad_symtab (input_bfd))
10043 	    extsymoff = symtab_hdr->sh_info;
10044 	  h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10045 	  while (h->root.type == bfd_link_hash_indirect
10046 		 || h->root.type == bfd_link_hash_warning)
10047 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10048 
10049 	  sec = NULL;
10050 	  if (h->root.type == bfd_link_hash_defined
10051 	      || h->root.type == bfd_link_hash_defweak)
10052 	    sec = h->root.u.def.section;
10053 	}
10054 
10055       if (sec != NULL && discarded_section (sec))
10056 	{
10057 	  mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10058 						input_section, &rel, &relend,
10059 						rel_reloc, howto, contents);
10060 	  continue;
10061 	}
10062 
10063       if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10064 	{
10065 	  /* Some 32-bit code uses R_MIPS_64.  In particular, people use
10066 	     64-bit code, but make sure all their addresses are in the
10067 	     lowermost or uppermost 32-bit section of the 64-bit address
10068 	     space.  Thus, when they use an R_MIPS_64 they mean what is
10069 	     usually meant by R_MIPS_32, with the exception that the
10070 	     stored value is sign-extended to 64 bits.  */
10071 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10072 
10073 	  /* On big-endian systems, we need to lie about the position
10074 	     of the reloc.  */
10075 	  if (bfd_big_endian (input_bfd))
10076 	    rel->r_offset += 4;
10077 	}
10078 
10079       if (!use_saved_addend_p)
10080 	{
10081 	  /* If these relocations were originally of the REL variety,
10082 	     we must pull the addend out of the field that will be
10083 	     relocated.  Otherwise, we simply use the contents of the
10084 	     RELA relocation.  */
10085 	  if (mips_elf_rel_relocation_p (input_bfd, input_section,
10086 					 relocs, rel))
10087 	    {
10088 	      rela_relocation_p = FALSE;
10089 	      addend = mips_elf_read_rel_addend (input_bfd, rel,
10090 						 howto, contents);
10091 	      if (hi16_reloc_p (r_type)
10092 		  || (got16_reloc_p (r_type)
10093 		      && mips_elf_local_relocation_p (input_bfd, rel,
10094 						      local_sections)))
10095 		{
10096 		  if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10097 						     contents, &addend))
10098 		    {
10099 		      if (h)
10100 			name = h->root.root.string;
10101 		      else
10102 			name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10103 						 local_syms + r_symndx,
10104 						 sec);
10105 		      (*_bfd_error_handler)
10106 			(_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10107 			 input_bfd, input_section, name, howto->name,
10108 			 rel->r_offset);
10109 		    }
10110 		}
10111 	      else
10112 		addend <<= howto->rightshift;
10113 	    }
10114 	  else
10115 	    addend = rel->r_addend;
10116 	  mips_elf_adjust_addend (output_bfd, info, input_bfd,
10117 				  local_syms, local_sections, rel);
10118 	}
10119 
10120       if (info->relocatable)
10121 	{
10122 	  if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10123 	      && bfd_big_endian (input_bfd))
10124 	    rel->r_offset -= 4;
10125 
10126 	  if (!rela_relocation_p && rel->r_addend)
10127 	    {
10128 	      addend += rel->r_addend;
10129 	      if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10130 		addend = mips_elf_high (addend);
10131 	      else if (r_type == R_MIPS_HIGHER)
10132 		addend = mips_elf_higher (addend);
10133 	      else if (r_type == R_MIPS_HIGHEST)
10134 		addend = mips_elf_highest (addend);
10135 	      else
10136 		addend >>= howto->rightshift;
10137 
10138 	      /* We use the source mask, rather than the destination
10139 		 mask because the place to which we are writing will be
10140 		 source of the addend in the final link.  */
10141 	      addend &= howto->src_mask;
10142 
10143 	      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10144 		/* See the comment above about using R_MIPS_64 in the 32-bit
10145 		   ABI.  Here, we need to update the addend.  It would be
10146 		   possible to get away with just using the R_MIPS_32 reloc
10147 		   but for endianness.  */
10148 		{
10149 		  bfd_vma sign_bits;
10150 		  bfd_vma low_bits;
10151 		  bfd_vma high_bits;
10152 
10153 		  if (addend & ((bfd_vma) 1 << 31))
10154 #ifdef BFD64
10155 		    sign_bits = ((bfd_vma) 1 << 32) - 1;
10156 #else
10157 		    sign_bits = -1;
10158 #endif
10159 		  else
10160 		    sign_bits = 0;
10161 
10162 		  /* If we don't know that we have a 64-bit type,
10163 		     do two separate stores.  */
10164 		  if (bfd_big_endian (input_bfd))
10165 		    {
10166 		      /* Store the sign-bits (which are most significant)
10167 			 first.  */
10168 		      low_bits = sign_bits;
10169 		      high_bits = addend;
10170 		    }
10171 		  else
10172 		    {
10173 		      low_bits = addend;
10174 		      high_bits = sign_bits;
10175 		    }
10176 		  bfd_put_32 (input_bfd, low_bits,
10177 			      contents + rel->r_offset);
10178 		  bfd_put_32 (input_bfd, high_bits,
10179 			      contents + rel->r_offset + 4);
10180 		  continue;
10181 		}
10182 
10183 	      if (! mips_elf_perform_relocation (info, howto, rel, addend,
10184 						 input_bfd, input_section,
10185 						 contents, FALSE))
10186 		return FALSE;
10187 	    }
10188 
10189 	  /* Go on to the next relocation.  */
10190 	  continue;
10191 	}
10192 
10193       /* In the N32 and 64-bit ABIs there may be multiple consecutive
10194 	 relocations for the same offset.  In that case we are
10195 	 supposed to treat the output of each relocation as the addend
10196 	 for the next.  */
10197       if (rel + 1 < relend
10198 	  && rel->r_offset == rel[1].r_offset
10199 	  && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10200 	use_saved_addend_p = TRUE;
10201       else
10202 	use_saved_addend_p = FALSE;
10203 
10204       /* Figure out what value we are supposed to relocate.  */
10205       switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10206 					     input_section, info, rel,
10207 					     addend, howto, local_syms,
10208 					     local_sections, &value,
10209 					     &name, &cross_mode_jump_p,
10210 					     use_saved_addend_p))
10211 	{
10212 	case bfd_reloc_continue:
10213 	  /* There's nothing to do.  */
10214 	  continue;
10215 
10216 	case bfd_reloc_undefined:
10217 	  /* mips_elf_calculate_relocation already called the
10218 	     undefined_symbol callback.  There's no real point in
10219 	     trying to perform the relocation at this point, so we
10220 	     just skip ahead to the next relocation.  */
10221 	  continue;
10222 
10223 	case bfd_reloc_notsupported:
10224 	  msg = _("internal error: unsupported relocation error");
10225 	  info->callbacks->warning
10226 	    (info, msg, name, input_bfd, input_section, rel->r_offset);
10227 	  return FALSE;
10228 
10229 	case bfd_reloc_overflow:
10230 	  if (use_saved_addend_p)
10231 	    /* Ignore overflow until we reach the last relocation for
10232 	       a given location.  */
10233 	    ;
10234 	  else
10235 	    {
10236 	      struct mips_elf_link_hash_table *htab;
10237 
10238 	      htab = mips_elf_hash_table (info);
10239 	      BFD_ASSERT (htab != NULL);
10240 	      BFD_ASSERT (name != NULL);
10241 	      if (!htab->small_data_overflow_reported
10242 		  && (gprel16_reloc_p (howto->type)
10243 		      || literal_reloc_p (howto->type)))
10244 		{
10245 		  msg = _("small-data section exceeds 64KB;"
10246 			  " lower small-data size limit (see option -G)");
10247 
10248 		  htab->small_data_overflow_reported = TRUE;
10249 		  (*info->callbacks->einfo) ("%P: %s\n", msg);
10250 		}
10251 	      if (! ((*info->callbacks->reloc_overflow)
10252 		     (info, NULL, name, howto->name, (bfd_vma) 0,
10253 		      input_bfd, input_section, rel->r_offset)))
10254 		return FALSE;
10255 	    }
10256 	  break;
10257 
10258 	case bfd_reloc_ok:
10259 	  break;
10260 
10261 	case bfd_reloc_outofrange:
10262 	  if (jal_reloc_p (howto->type))
10263 	    {
10264 	      msg = _("JALX to a non-word-aligned address");
10265 	      info->callbacks->warning
10266 		(info, msg, name, input_bfd, input_section, rel->r_offset);
10267 	      return FALSE;
10268 	    }
10269 	  if (aligned_pcrel_reloc_p (howto->type))
10270 	    {
10271 	      msg = _("PC-relative load from unaligned address");
10272 	      info->callbacks->warning
10273 		(info, msg, name, input_bfd, input_section, rel->r_offset);
10274 	      return FALSE;
10275 	    }
10276 	  /* Fall through.  */
10277 
10278 	default:
10279 	  abort ();
10280 	  break;
10281 	}
10282 
10283       /* If we've got another relocation for the address, keep going
10284 	 until we reach the last one.  */
10285       if (use_saved_addend_p)
10286 	{
10287 	  addend = value;
10288 	  continue;
10289 	}
10290 
10291       if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10292 	/* See the comment above about using R_MIPS_64 in the 32-bit
10293 	   ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
10294 	   that calculated the right value.  Now, however, we
10295 	   sign-extend the 32-bit result to 64-bits, and store it as a
10296 	   64-bit value.  We are especially generous here in that we
10297 	   go to extreme lengths to support this usage on systems with
10298 	   only a 32-bit VMA.  */
10299 	{
10300 	  bfd_vma sign_bits;
10301 	  bfd_vma low_bits;
10302 	  bfd_vma high_bits;
10303 
10304 	  if (value & ((bfd_vma) 1 << 31))
10305 #ifdef BFD64
10306 	    sign_bits = ((bfd_vma) 1 << 32) - 1;
10307 #else
10308 	    sign_bits = -1;
10309 #endif
10310 	  else
10311 	    sign_bits = 0;
10312 
10313 	  /* If we don't know that we have a 64-bit type,
10314 	     do two separate stores.  */
10315 	  if (bfd_big_endian (input_bfd))
10316 	    {
10317 	      /* Undo what we did above.  */
10318 	      rel->r_offset -= 4;
10319 	      /* Store the sign-bits (which are most significant)
10320 		 first.  */
10321 	      low_bits = sign_bits;
10322 	      high_bits = value;
10323 	    }
10324 	  else
10325 	    {
10326 	      low_bits = value;
10327 	      high_bits = sign_bits;
10328 	    }
10329 	  bfd_put_32 (input_bfd, low_bits,
10330 		      contents + rel->r_offset);
10331 	  bfd_put_32 (input_bfd, high_bits,
10332 		      contents + rel->r_offset + 4);
10333 	  continue;
10334 	}
10335 
10336       /* Actually perform the relocation.  */
10337       if (! mips_elf_perform_relocation (info, howto, rel, value,
10338 					 input_bfd, input_section,
10339 					 contents, cross_mode_jump_p))
10340 	return FALSE;
10341     }
10342 
10343   return TRUE;
10344 }
10345 
10346 /* A function that iterates over each entry in la25_stubs and fills
10347    in the code for each one.  DATA points to a mips_htab_traverse_info.  */
10348 
10349 static int
mips_elf_create_la25_stub(void ** slot,void * data)10350 mips_elf_create_la25_stub (void **slot, void *data)
10351 {
10352   struct mips_htab_traverse_info *hti;
10353   struct mips_elf_link_hash_table *htab;
10354   struct mips_elf_la25_stub *stub;
10355   asection *s;
10356   bfd_byte *loc;
10357   bfd_vma offset, target, target_high, target_low;
10358 
10359   stub = (struct mips_elf_la25_stub *) *slot;
10360   hti = (struct mips_htab_traverse_info *) data;
10361   htab = mips_elf_hash_table (hti->info);
10362   BFD_ASSERT (htab != NULL);
10363 
10364   /* Create the section contents, if we haven't already.  */
10365   s = stub->stub_section;
10366   loc = s->contents;
10367   if (loc == NULL)
10368     {
10369       loc = bfd_malloc (s->size);
10370       if (loc == NULL)
10371 	{
10372 	  hti->error = TRUE;
10373 	  return FALSE;
10374 	}
10375       s->contents = loc;
10376     }
10377 
10378   /* Work out where in the section this stub should go.  */
10379   offset = stub->offset;
10380 
10381   /* Work out the target address.  */
10382   target = mips_elf_get_la25_target (stub, &s);
10383   target += s->output_section->vma + s->output_offset;
10384 
10385   target_high = ((target + 0x8000) >> 16) & 0xffff;
10386   target_low = (target & 0xffff);
10387 
10388   if (stub->stub_section != htab->strampoline)
10389     {
10390       /* This is a simple LUI/ADDIU stub.  Zero out the beginning
10391 	 of the section and write the two instructions at the end.  */
10392       memset (loc, 0, offset);
10393       loc += offset;
10394       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10395 	{
10396 	  bfd_put_micromips_32 (hti->output_bfd,
10397 				LA25_LUI_MICROMIPS (target_high),
10398 				loc);
10399 	  bfd_put_micromips_32 (hti->output_bfd,
10400 				LA25_ADDIU_MICROMIPS (target_low),
10401 				loc + 4);
10402 	}
10403       else
10404 	{
10405 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10406 	  bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10407 	}
10408     }
10409   else
10410     {
10411       /* This is trampoline.  */
10412       loc += offset;
10413       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10414 	{
10415 	  bfd_put_micromips_32 (hti->output_bfd,
10416 				LA25_LUI_MICROMIPS (target_high), loc);
10417 	  bfd_put_micromips_32 (hti->output_bfd,
10418 				LA25_J_MICROMIPS (target), loc + 4);
10419 	  bfd_put_micromips_32 (hti->output_bfd,
10420 				LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10421 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10422 	}
10423       else
10424 	{
10425 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10426 	  bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10427 	  bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10428 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10429 	}
10430     }
10431   return TRUE;
10432 }
10433 
10434 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10435    adjust it appropriately now.  */
10436 
10437 static void
mips_elf_irix6_finish_dynamic_symbol(bfd * abfd ATTRIBUTE_UNUSED,const char * name,Elf_Internal_Sym * sym)10438 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10439 				      const char *name, Elf_Internal_Sym *sym)
10440 {
10441   /* The linker script takes care of providing names and values for
10442      these, but we must place them into the right sections.  */
10443   static const char* const text_section_symbols[] = {
10444     "_ftext",
10445     "_etext",
10446     "__dso_displacement",
10447     "__elf_header",
10448     "__program_header_table",
10449     NULL
10450   };
10451 
10452   static const char* const data_section_symbols[] = {
10453     "_fdata",
10454     "_edata",
10455     "_end",
10456     "_fbss",
10457     NULL
10458   };
10459 
10460   const char* const *p;
10461   int i;
10462 
10463   for (i = 0; i < 2; ++i)
10464     for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10465 	 *p;
10466 	 ++p)
10467       if (strcmp (*p, name) == 0)
10468 	{
10469 	  /* All of these symbols are given type STT_SECTION by the
10470 	     IRIX6 linker.  */
10471 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10472 	  sym->st_other = STO_PROTECTED;
10473 
10474 	  /* The IRIX linker puts these symbols in special sections.  */
10475 	  if (i == 0)
10476 	    sym->st_shndx = SHN_MIPS_TEXT;
10477 	  else
10478 	    sym->st_shndx = SHN_MIPS_DATA;
10479 
10480 	  break;
10481 	}
10482 }
10483 
10484 /* Finish up dynamic symbol handling.  We set the contents of various
10485    dynamic sections here.  */
10486 
10487 bfd_boolean
_bfd_mips_elf_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)10488 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10489 				     struct bfd_link_info *info,
10490 				     struct elf_link_hash_entry *h,
10491 				     Elf_Internal_Sym *sym)
10492 {
10493   bfd *dynobj;
10494   asection *sgot;
10495   struct mips_got_info *g, *gg;
10496   const char *name;
10497   int idx;
10498   struct mips_elf_link_hash_table *htab;
10499   struct mips_elf_link_hash_entry *hmips;
10500 
10501   htab = mips_elf_hash_table (info);
10502   BFD_ASSERT (htab != NULL);
10503   dynobj = elf_hash_table (info)->dynobj;
10504   hmips = (struct mips_elf_link_hash_entry *) h;
10505 
10506   BFD_ASSERT (!htab->is_vxworks);
10507 
10508   if (h->plt.plist != NULL
10509       && (h->plt.plist->mips_offset != MINUS_ONE
10510 	  || h->plt.plist->comp_offset != MINUS_ONE))
10511     {
10512       /* We've decided to create a PLT entry for this symbol.  */
10513       bfd_byte *loc;
10514       bfd_vma header_address, got_address;
10515       bfd_vma got_address_high, got_address_low, load;
10516       bfd_vma got_index;
10517       bfd_vma isa_bit;
10518 
10519       got_index = h->plt.plist->gotplt_index;
10520 
10521       BFD_ASSERT (htab->use_plts_and_copy_relocs);
10522       BFD_ASSERT (h->dynindx != -1);
10523       BFD_ASSERT (htab->splt != NULL);
10524       BFD_ASSERT (got_index != MINUS_ONE);
10525       BFD_ASSERT (!h->def_regular);
10526 
10527       /* Calculate the address of the PLT header.  */
10528       isa_bit = htab->plt_header_is_comp;
10529       header_address = (htab->splt->output_section->vma
10530 			+ htab->splt->output_offset + isa_bit);
10531 
10532       /* Calculate the address of the .got.plt entry.  */
10533       got_address = (htab->sgotplt->output_section->vma
10534 		     + htab->sgotplt->output_offset
10535 		     + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10536 
10537       got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10538       got_address_low = got_address & 0xffff;
10539 
10540       /* Initially point the .got.plt entry at the PLT header.  */
10541       loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10542       if (ABI_64_P (output_bfd))
10543 	bfd_put_64 (output_bfd, header_address, loc);
10544       else
10545 	bfd_put_32 (output_bfd, header_address, loc);
10546 
10547       /* Now handle the PLT itself.  First the standard entry (the order
10548          does not matter, we just have to pick one).  */
10549       if (h->plt.plist->mips_offset != MINUS_ONE)
10550 	{
10551 	  const bfd_vma *plt_entry;
10552 	  bfd_vma plt_offset;
10553 
10554 	  plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10555 
10556 	  BFD_ASSERT (plt_offset <= htab->splt->size);
10557 
10558 	  /* Find out where the .plt entry should go.  */
10559 	  loc = htab->splt->contents + plt_offset;
10560 
10561 	  /* Pick the load opcode.  */
10562 	  load = MIPS_ELF_LOAD_WORD (output_bfd);
10563 
10564 	  /* Fill in the PLT entry itself.  */
10565 
10566 	  if (MIPSR6_P (output_bfd)
10567 	      && mips_elf_hash_table (info)->compact_branches)
10568 	    plt_entry = mipsr6_exec_plt_entry_compact;
10569 	  else if (MIPSR6_P (output_bfd))
10570 	    plt_entry = mipsr6_exec_plt_entry;
10571 	  else
10572 	    plt_entry = mips_exec_plt_entry;
10573 	  bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10574 	  bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10575 		      loc + 4);
10576 
10577 	  if (! LOAD_INTERLOCKS_P (output_bfd) || MIPSR6_P (output_bfd))
10578 	    {
10579 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10580 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10581 	    }
10582 	  else
10583 	    {
10584 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10585 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10586 			  loc + 12);
10587 	    }
10588 	}
10589 
10590       /* Now the compressed entry.  They come after any standard ones.  */
10591       if (h->plt.plist->comp_offset != MINUS_ONE)
10592 	{
10593 	  bfd_vma plt_offset;
10594 
10595 	  plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10596 			+ h->plt.plist->comp_offset);
10597 
10598 	  BFD_ASSERT (plt_offset <= htab->splt->size);
10599 
10600 	  /* Find out where the .plt entry should go.  */
10601 	  loc = htab->splt->contents + plt_offset;
10602 
10603 	  /* Fill in the PLT entry itself.  */
10604 	  if (!MICROMIPS_P (output_bfd))
10605 	    {
10606 	      const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10607 
10608 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
10609 	      bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10610 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10611 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10612 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10613 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10614 	      bfd_put_32 (output_bfd, got_address, loc + 12);
10615 	    }
10616 	  else if (htab->insn32)
10617 	    {
10618 	      const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10619 
10620 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
10621 	      bfd_put_16 (output_bfd, got_address_high, loc + 2);
10622 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10623 	      bfd_put_16 (output_bfd, got_address_low, loc + 6);
10624 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10625 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10626 	      bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10627 	      bfd_put_16 (output_bfd, got_address_low, loc + 14);
10628 	    }
10629 	  else
10630 	    {
10631 	      const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10632 	      bfd_signed_vma gotpc_offset;
10633 	      bfd_vma loc_address;
10634 
10635 	      BFD_ASSERT (got_address % 4 == 0);
10636 
10637 	      loc_address = (htab->splt->output_section->vma
10638 			     + htab->splt->output_offset + plt_offset);
10639 	      gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10640 
10641 	      /* ADDIUPC has a span of +/-16MB, check we're in range.  */
10642 	      if (gotpc_offset + 0x1000000 >= 0x2000000)
10643 		{
10644 		  (*_bfd_error_handler)
10645 		    (_("%B: `%A' offset of %ld from `%A' "
10646 		       "beyond the range of ADDIUPC"),
10647 		     output_bfd,
10648 		     htab->sgotplt->output_section,
10649 		     htab->splt->output_section,
10650 		     (long) gotpc_offset);
10651 		  bfd_set_error (bfd_error_no_error);
10652 		  return FALSE;
10653 		}
10654 	      bfd_put_16 (output_bfd,
10655 			  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10656 	      bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10657 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10658 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10659 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10660 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10661 	    }
10662 	}
10663 
10664       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
10665       mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10666 					  got_index - 2, h->dynindx,
10667 					  R_MIPS_JUMP_SLOT, got_address);
10668 
10669       /* We distinguish between PLT entries and lazy-binding stubs by
10670 	 giving the former an st_other value of STO_MIPS_PLT.  Set the
10671 	 flag and leave the value if there are any relocations in the
10672 	 binary where pointer equality matters.  */
10673       sym->st_shndx = SHN_UNDEF;
10674       if (h->pointer_equality_needed)
10675 	sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10676       else
10677 	{
10678 	  sym->st_value = 0;
10679 	  sym->st_other = 0;
10680 	}
10681     }
10682 
10683   if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10684     {
10685       /* We've decided to create a lazy-binding stub.  */
10686       bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10687       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10688       bfd_vma stub_size = htab->function_stub_size;
10689       bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10690       bfd_vma isa_bit = micromips_p;
10691       bfd_vma stub_big_size;
10692 
10693       if (!micromips_p)
10694 	stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10695       else if (htab->insn32)
10696 	stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10697       else
10698 	stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10699 
10700       /* This symbol has a stub.  Set it up.  */
10701 
10702       BFD_ASSERT (h->dynindx != -1);
10703 
10704       BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10705 
10706       /* Values up to 2^31 - 1 are allowed.  Larger values would cause
10707 	 sign extension at runtime in the stub, resulting in a negative
10708 	 index value.  */
10709       if (h->dynindx & ~0x7fffffff)
10710 	return FALSE;
10711 
10712       /* Fill the stub.  */
10713       if (micromips_p)
10714 	{
10715 	  idx = 0;
10716 	  bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10717 				stub + idx);
10718 	  idx += 4;
10719 	  if (htab->insn32)
10720 	    {
10721 	      bfd_put_micromips_32 (output_bfd,
10722 				    STUB_MOVE32_MICROMIPS (output_bfd),
10723 				    stub + idx);
10724 	      idx += 4;
10725 	    }
10726 	  else
10727 	    {
10728 	      bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10729 	      idx += 2;
10730 	    }
10731 	  if (stub_size == stub_big_size)
10732 	    {
10733 	      long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10734 
10735 	      bfd_put_micromips_32 (output_bfd,
10736 				    STUB_LUI_MICROMIPS (dynindx_hi),
10737 				    stub + idx);
10738 	      idx += 4;
10739 	    }
10740 	  if (htab->insn32)
10741 	    {
10742 	      bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10743 				    stub + idx);
10744 	      idx += 4;
10745 	    }
10746 	  else
10747 	    {
10748 	      bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10749 	      idx += 2;
10750 	    }
10751 
10752 	  /* If a large stub is not required and sign extension is not a
10753 	     problem, then use legacy code in the stub.  */
10754 	  if (stub_size == stub_big_size)
10755 	    bfd_put_micromips_32 (output_bfd,
10756 				  STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10757 				  stub + idx);
10758 	  else if (h->dynindx & ~0x7fff)
10759 	    bfd_put_micromips_32 (output_bfd,
10760 				  STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10761 				  stub + idx);
10762 	  else
10763 	    bfd_put_micromips_32 (output_bfd,
10764 				  STUB_LI16S_MICROMIPS (output_bfd,
10765 							h->dynindx),
10766 				  stub + idx);
10767 	}
10768       else
10769 	{
10770 	  idx = 0;
10771 	  bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10772 	  idx += 4;
10773 	  bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10774 	  idx += 4;
10775 	  if (stub_size == stub_big_size)
10776 	    {
10777 	      bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10778 			  stub + idx);
10779 	      idx += 4;
10780 	    }
10781 	  bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10782 	  idx += 4;
10783 
10784 	  /* If a large stub is not required and sign extension is not a
10785 	     problem, then use legacy code in the stub.  */
10786 	  if (stub_size == stub_big_size)
10787 	    bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10788 			stub + idx);
10789 	  else if (h->dynindx & ~0x7fff)
10790 	    bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10791 			stub + idx);
10792 	  else
10793 	    bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10794 			stub + idx);
10795 	}
10796 
10797       BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10798       memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10799 	      stub, stub_size);
10800 
10801       /* Mark the symbol as undefined.  stub_offset != -1 occurs
10802 	 only for the referenced symbol.  */
10803       sym->st_shndx = SHN_UNDEF;
10804 
10805       /* The run-time linker uses the st_value field of the symbol
10806 	 to reset the global offset table entry for this external
10807 	 to its stub address when unlinking a shared object.  */
10808       sym->st_value = (htab->sstubs->output_section->vma
10809 		       + htab->sstubs->output_offset
10810 		       + h->plt.plist->stub_offset
10811 		       + isa_bit);
10812       sym->st_other = other;
10813     }
10814 
10815   /* If we have a MIPS16 function with a stub, the dynamic symbol must
10816      refer to the stub, since only the stub uses the standard calling
10817      conventions.  */
10818   if (h->dynindx != -1 && hmips->fn_stub != NULL)
10819     {
10820       BFD_ASSERT (hmips->need_fn_stub);
10821       sym->st_value = (hmips->fn_stub->output_section->vma
10822 		       + hmips->fn_stub->output_offset);
10823       sym->st_size = hmips->fn_stub->size;
10824       sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10825     }
10826 
10827   BFD_ASSERT (h->dynindx != -1
10828 	      || h->forced_local);
10829 
10830   sgot = htab->sgot;
10831   g = htab->got_info;
10832   BFD_ASSERT (g != NULL);
10833 
10834   /* Run through the global symbol table, creating GOT entries for all
10835      the symbols that need them.  */
10836   if (hmips->global_got_area != GGA_NONE)
10837     {
10838       bfd_vma offset;
10839       bfd_vma value;
10840 
10841       value = sym->st_value;
10842       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10843       MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10844     }
10845 
10846   if (hmips->global_got_area != GGA_NONE && g->next)
10847     {
10848       struct mips_got_entry e, *p;
10849       bfd_vma entry;
10850       bfd_vma offset;
10851 
10852       gg = g;
10853 
10854       e.abfd = output_bfd;
10855       e.symndx = -1;
10856       e.d.h = hmips;
10857       e.tls_type = GOT_TLS_NONE;
10858 
10859       for (g = g->next; g->next != gg; g = g->next)
10860 	{
10861 	  if (g->got_entries
10862 	      && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10863 							   &e)))
10864 	    {
10865 	      offset = p->gotidx;
10866 	      BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10867 	      if (info->shared
10868 		  || (elf_hash_table (info)->dynamic_sections_created
10869 		      && p->d.h != NULL
10870 		      && p->d.h->root.def_dynamic
10871 		      && !p->d.h->root.def_regular))
10872 		{
10873 		  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
10874 		     the various compatibility problems, it's easier to mock
10875 		     up an R_MIPS_32 or R_MIPS_64 relocation and leave
10876 		     mips_elf_create_dynamic_relocation to calculate the
10877 		     appropriate addend.  */
10878 		  Elf_Internal_Rela rel[3];
10879 
10880 		  memset (rel, 0, sizeof (rel));
10881 		  if (ABI_64_P (output_bfd))
10882 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10883 		  else
10884 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10885 		  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10886 
10887 		  entry = 0;
10888 		  if (! (mips_elf_create_dynamic_relocation
10889 			 (output_bfd, info, rel,
10890 			  e.d.h, NULL, sym->st_value, &entry, sgot)))
10891 		    return FALSE;
10892 		}
10893 	      else
10894 		entry = sym->st_value;
10895 	      MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10896 	    }
10897 	}
10898     }
10899 
10900   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
10901   name = h->root.root.string;
10902   if (h == elf_hash_table (info)->hdynamic
10903       || h == elf_hash_table (info)->hgot)
10904     sym->st_shndx = SHN_ABS;
10905   else if (strcmp (name, "_DYNAMIC_LINK") == 0
10906 	   || strcmp (name, "_DYNAMIC_LINKING") == 0)
10907     {
10908       sym->st_shndx = SHN_ABS;
10909       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10910       sym->st_value = 1;
10911     }
10912   else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10913     {
10914       sym->st_shndx = SHN_ABS;
10915       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10916       sym->st_value = elf_gp (output_bfd);
10917     }
10918   else if (SGI_COMPAT (output_bfd))
10919     {
10920       if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10921 	  || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10922 	{
10923 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10924 	  sym->st_other = STO_PROTECTED;
10925 	  sym->st_value = 0;
10926 	  sym->st_shndx = SHN_MIPS_DATA;
10927 	}
10928       else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10929 	{
10930 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10931 	  sym->st_other = STO_PROTECTED;
10932 	  sym->st_value = mips_elf_hash_table (info)->procedure_count;
10933 	  sym->st_shndx = SHN_ABS;
10934 	}
10935       else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10936 	{
10937 	  if (h->type == STT_FUNC)
10938 	    sym->st_shndx = SHN_MIPS_TEXT;
10939 	  else if (h->type == STT_OBJECT)
10940 	    sym->st_shndx = SHN_MIPS_DATA;
10941 	}
10942     }
10943 
10944   /* Emit a copy reloc, if needed.  */
10945   if (h->needs_copy)
10946     {
10947       asection *s;
10948       bfd_vma symval;
10949 
10950       BFD_ASSERT (h->dynindx != -1);
10951       BFD_ASSERT (htab->use_plts_and_copy_relocs);
10952 
10953       s = mips_elf_rel_dyn_section (info, FALSE);
10954       symval = (h->root.u.def.section->output_section->vma
10955 		+ h->root.u.def.section->output_offset
10956 		+ h->root.u.def.value);
10957       mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10958 					  h->dynindx, R_MIPS_COPY, symval);
10959     }
10960 
10961   /* Handle the IRIX6-specific symbols.  */
10962   if (IRIX_COMPAT (output_bfd) == ict_irix6)
10963     mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10964 
10965   /* Keep dynamic compressed symbols odd.  This allows the dynamic linker
10966      to treat compressed symbols like any other.  */
10967   if (ELF_ST_IS_MIPS16 (sym->st_other))
10968     {
10969       BFD_ASSERT (sym->st_value & 1);
10970       sym->st_other -= STO_MIPS16;
10971     }
10972   else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10973     {
10974       BFD_ASSERT (sym->st_value & 1);
10975       sym->st_other -= STO_MICROMIPS;
10976     }
10977 
10978   return TRUE;
10979 }
10980 
10981 /* Likewise, for VxWorks.  */
10982 
10983 bfd_boolean
_bfd_mips_vxworks_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)10984 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10985 					 struct bfd_link_info *info,
10986 					 struct elf_link_hash_entry *h,
10987 					 Elf_Internal_Sym *sym)
10988 {
10989   bfd *dynobj;
10990   asection *sgot;
10991   struct mips_got_info *g;
10992   struct mips_elf_link_hash_table *htab;
10993   struct mips_elf_link_hash_entry *hmips;
10994 
10995   htab = mips_elf_hash_table (info);
10996   BFD_ASSERT (htab != NULL);
10997   dynobj = elf_hash_table (info)->dynobj;
10998   hmips = (struct mips_elf_link_hash_entry *) h;
10999 
11000   if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11001     {
11002       bfd_byte *loc;
11003       bfd_vma plt_address, got_address, got_offset, branch_offset;
11004       Elf_Internal_Rela rel;
11005       static const bfd_vma *plt_entry;
11006       bfd_vma gotplt_index;
11007       bfd_vma plt_offset;
11008 
11009       plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11010       gotplt_index = h->plt.plist->gotplt_index;
11011 
11012       BFD_ASSERT (h->dynindx != -1);
11013       BFD_ASSERT (htab->splt != NULL);
11014       BFD_ASSERT (gotplt_index != MINUS_ONE);
11015       BFD_ASSERT (plt_offset <= htab->splt->size);
11016 
11017       /* Calculate the address of the .plt entry.  */
11018       plt_address = (htab->splt->output_section->vma
11019 		     + htab->splt->output_offset
11020 		     + plt_offset);
11021 
11022       /* Calculate the address of the .got.plt entry.  */
11023       got_address = (htab->sgotplt->output_section->vma
11024 		     + htab->sgotplt->output_offset
11025 		     + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11026 
11027       /* Calculate the offset of the .got.plt entry from
11028 	 _GLOBAL_OFFSET_TABLE_.  */
11029       got_offset = mips_elf_gotplt_index (info, h);
11030 
11031       /* Calculate the offset for the branch at the start of the PLT
11032 	 entry.  The branch jumps to the beginning of .plt.  */
11033       branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11034 
11035       /* Fill in the initial value of the .got.plt entry.  */
11036       bfd_put_32 (output_bfd, plt_address,
11037 		  (htab->sgotplt->contents
11038 		   + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11039 
11040       /* Find out where the .plt entry should go.  */
11041       loc = htab->splt->contents + plt_offset;
11042 
11043       if (info->shared)
11044 	{
11045 	  plt_entry = mips_vxworks_shared_plt_entry;
11046 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11047 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11048 	}
11049       else
11050 	{
11051 	  bfd_vma got_address_high, got_address_low;
11052 
11053 	  plt_entry = mips_vxworks_exec_plt_entry;
11054 	  got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11055 	  got_address_low = got_address & 0xffff;
11056 
11057 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11058 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11059 	  bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11060 	  bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11061 	  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11062 	  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11063 	  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11064 	  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11065 
11066 	  loc = (htab->srelplt2->contents
11067 		 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11068 
11069 	  /* Emit a relocation for the .got.plt entry.  */
11070 	  rel.r_offset = got_address;
11071 	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11072 	  rel.r_addend = plt_offset;
11073 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11074 
11075 	  /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
11076 	  loc += sizeof (Elf32_External_Rela);
11077 	  rel.r_offset = plt_address + 8;
11078 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11079 	  rel.r_addend = got_offset;
11080 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11081 
11082 	  /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
11083 	  loc += sizeof (Elf32_External_Rela);
11084 	  rel.r_offset += 4;
11085 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11086 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11087 	}
11088 
11089       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
11090       loc = (htab->srelplt->contents
11091 	     + gotplt_index * sizeof (Elf32_External_Rela));
11092       rel.r_offset = got_address;
11093       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11094       rel.r_addend = 0;
11095       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11096 
11097       if (!h->def_regular)
11098 	sym->st_shndx = SHN_UNDEF;
11099     }
11100 
11101   BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11102 
11103   sgot = htab->sgot;
11104   g = htab->got_info;
11105   BFD_ASSERT (g != NULL);
11106 
11107   /* See if this symbol has an entry in the GOT.  */
11108   if (hmips->global_got_area != GGA_NONE)
11109     {
11110       bfd_vma offset;
11111       Elf_Internal_Rela outrel;
11112       bfd_byte *loc;
11113       asection *s;
11114 
11115       /* Install the symbol value in the GOT.   */
11116       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11117       MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11118 
11119       /* Add a dynamic relocation for it.  */
11120       s = mips_elf_rel_dyn_section (info, FALSE);
11121       loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11122       outrel.r_offset = (sgot->output_section->vma
11123 			 + sgot->output_offset
11124 			 + offset);
11125       outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11126       outrel.r_addend = 0;
11127       bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11128     }
11129 
11130   /* Emit a copy reloc, if needed.  */
11131   if (h->needs_copy)
11132     {
11133       Elf_Internal_Rela rel;
11134 
11135       BFD_ASSERT (h->dynindx != -1);
11136 
11137       rel.r_offset = (h->root.u.def.section->output_section->vma
11138 		      + h->root.u.def.section->output_offset
11139 		      + h->root.u.def.value);
11140       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11141       rel.r_addend = 0;
11142       bfd_elf32_swap_reloca_out (output_bfd, &rel,
11143 				 htab->srelbss->contents
11144 				 + (htab->srelbss->reloc_count
11145 				    * sizeof (Elf32_External_Rela)));
11146       ++htab->srelbss->reloc_count;
11147     }
11148 
11149   /* If this is a mips16/microMIPS symbol, force the value to be even.  */
11150   if (ELF_ST_IS_COMPRESSED (sym->st_other))
11151     sym->st_value &= ~1;
11152 
11153   return TRUE;
11154 }
11155 
11156 /* Write out a plt0 entry to the beginning of .plt.  */
11157 
11158 static bfd_boolean
mips_finish_exec_plt(bfd * output_bfd,struct bfd_link_info * info)11159 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11160 {
11161   bfd_byte *loc;
11162   bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11163   static const bfd_vma *plt_entry;
11164   struct mips_elf_link_hash_table *htab;
11165 
11166   htab = mips_elf_hash_table (info);
11167   BFD_ASSERT (htab != NULL);
11168 
11169   if (ABI_64_P (output_bfd))
11170     plt_entry = mips_n64_exec_plt0_entry;
11171   else if (ABI_N32_P (output_bfd))
11172     plt_entry = mips_n32_exec_plt0_entry;
11173   else if (!htab->plt_header_is_comp)
11174     plt_entry = mips_o32_exec_plt0_entry;
11175   else if (htab->insn32)
11176     plt_entry = micromips_insn32_o32_exec_plt0_entry;
11177   else
11178     plt_entry = micromips_o32_exec_plt0_entry;
11179 
11180   /* Calculate the value of .got.plt.  */
11181   gotplt_value = (htab->sgotplt->output_section->vma
11182 		  + htab->sgotplt->output_offset);
11183   gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11184   gotplt_value_low = gotplt_value & 0xffff;
11185 
11186   /* The PLT sequence is not safe for N64 if .got.plt's address can
11187      not be loaded in two instructions.  */
11188   BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11189 	      || ~(gotplt_value | 0x7fffffff) == 0);
11190 
11191   /* Install the PLT header.  */
11192   loc = htab->splt->contents;
11193   if (plt_entry == micromips_o32_exec_plt0_entry)
11194     {
11195       bfd_vma gotpc_offset;
11196       bfd_vma loc_address;
11197       size_t i;
11198 
11199       BFD_ASSERT (gotplt_value % 4 == 0);
11200 
11201       loc_address = (htab->splt->output_section->vma
11202 		     + htab->splt->output_offset);
11203       gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11204 
11205       /* ADDIUPC has a span of +/-16MB, check we're in range.  */
11206       if (gotpc_offset + 0x1000000 >= 0x2000000)
11207 	{
11208 	  (*_bfd_error_handler)
11209 	    (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11210 	     output_bfd,
11211 	     htab->sgotplt->output_section,
11212 	     htab->splt->output_section,
11213 	     (long) gotpc_offset);
11214 	  bfd_set_error (bfd_error_no_error);
11215 	  return FALSE;
11216 	}
11217       bfd_put_16 (output_bfd,
11218 		  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11219       bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11220       for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11221 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11222     }
11223   else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11224     {
11225       size_t i;
11226 
11227       bfd_put_16 (output_bfd, plt_entry[0], loc);
11228       bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11229       bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11230       bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11231       bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11232       bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11233       for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11234 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11235     }
11236   else
11237     {
11238       bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11239       bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11240       bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11241       bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11242       bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11243       bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11244       bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11245       bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11246     }
11247 
11248   return TRUE;
11249 }
11250 
11251 /* Install the PLT header for a VxWorks executable and finalize the
11252    contents of .rela.plt.unloaded.  */
11253 
11254 static void
mips_vxworks_finish_exec_plt(bfd * output_bfd,struct bfd_link_info * info)11255 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11256 {
11257   Elf_Internal_Rela rela;
11258   bfd_byte *loc;
11259   bfd_vma got_value, got_value_high, got_value_low, plt_address;
11260   static const bfd_vma *plt_entry;
11261   struct mips_elf_link_hash_table *htab;
11262 
11263   htab = mips_elf_hash_table (info);
11264   BFD_ASSERT (htab != NULL);
11265 
11266   plt_entry = mips_vxworks_exec_plt0_entry;
11267 
11268   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
11269   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11270 	       + htab->root.hgot->root.u.def.section->output_offset
11271 	       + htab->root.hgot->root.u.def.value);
11272 
11273   got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11274   got_value_low = got_value & 0xffff;
11275 
11276   /* Calculate the address of the PLT header.  */
11277   plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11278 
11279   /* Install the PLT header.  */
11280   loc = htab->splt->contents;
11281   bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11282   bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11283   bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11284   bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11285   bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11286   bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11287 
11288   /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
11289   loc = htab->srelplt2->contents;
11290   rela.r_offset = plt_address;
11291   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11292   rela.r_addend = 0;
11293   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11294   loc += sizeof (Elf32_External_Rela);
11295 
11296   /* Output the relocation for the following addiu of
11297      %lo(_GLOBAL_OFFSET_TABLE_).  */
11298   rela.r_offset += 4;
11299   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11300   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11301   loc += sizeof (Elf32_External_Rela);
11302 
11303   /* Fix up the remaining relocations.  They may have the wrong
11304      symbol index for _G_O_T_ or _P_L_T_ depending on the order
11305      in which symbols were output.  */
11306   while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11307     {
11308       Elf_Internal_Rela rel;
11309 
11310       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11311       rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11312       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11313       loc += sizeof (Elf32_External_Rela);
11314 
11315       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11316       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11317       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11318       loc += sizeof (Elf32_External_Rela);
11319 
11320       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11321       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11322       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11323       loc += sizeof (Elf32_External_Rela);
11324     }
11325 }
11326 
11327 /* Install the PLT header for a VxWorks shared library.  */
11328 
11329 static void
mips_vxworks_finish_shared_plt(bfd * output_bfd,struct bfd_link_info * info)11330 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11331 {
11332   unsigned int i;
11333   struct mips_elf_link_hash_table *htab;
11334 
11335   htab = mips_elf_hash_table (info);
11336   BFD_ASSERT (htab != NULL);
11337 
11338   /* We just need to copy the entry byte-by-byte.  */
11339   for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11340     bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11341 		htab->splt->contents + i * 4);
11342 }
11343 
11344 /* Finish up the dynamic sections.  */
11345 
11346 bfd_boolean
_bfd_mips_elf_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)11347 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11348 				       struct bfd_link_info *info)
11349 {
11350   bfd *dynobj;
11351   asection *sdyn;
11352   asection *sgot;
11353   struct mips_got_info *gg, *g;
11354   struct mips_elf_link_hash_table *htab;
11355 
11356   htab = mips_elf_hash_table (info);
11357   BFD_ASSERT (htab != NULL);
11358 
11359   dynobj = elf_hash_table (info)->dynobj;
11360 
11361   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11362 
11363   sgot = htab->sgot;
11364   gg = htab->got_info;
11365 
11366   if (elf_hash_table (info)->dynamic_sections_created)
11367     {
11368       bfd_byte *b;
11369       int dyn_to_skip = 0, dyn_skipped = 0;
11370 
11371       BFD_ASSERT (sdyn != NULL);
11372       BFD_ASSERT (gg != NULL);
11373 
11374       g = mips_elf_bfd_got (output_bfd, FALSE);
11375       BFD_ASSERT (g != NULL);
11376 
11377       for (b = sdyn->contents;
11378 	   b < sdyn->contents + sdyn->size;
11379 	   b += MIPS_ELF_DYN_SIZE (dynobj))
11380 	{
11381 	  Elf_Internal_Dyn dyn;
11382 	  const char *name;
11383 	  size_t elemsize;
11384 	  asection *s;
11385 	  bfd_boolean swap_out_p;
11386 
11387 	  /* Read in the current dynamic entry.  */
11388 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11389 
11390 	  /* Assume that we're going to modify it and write it out.  */
11391 	  swap_out_p = TRUE;
11392 
11393 	  switch (dyn.d_tag)
11394 	    {
11395 	    case DT_RELENT:
11396 	      dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11397 	      break;
11398 
11399 	    case DT_RELAENT:
11400 	      BFD_ASSERT (htab->is_vxworks);
11401 	      dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11402 	      break;
11403 
11404 	    case DT_STRSZ:
11405 	      /* Rewrite DT_STRSZ.  */
11406 	      dyn.d_un.d_val =
11407 		_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11408 	      break;
11409 
11410 	    case DT_PLTGOT:
11411 	      s = htab->sgot;
11412 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11413 	      break;
11414 
11415 	    case DT_MIPS_PLTGOT:
11416 	      s = htab->sgotplt;
11417 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11418 	      break;
11419 
11420 	    case DT_MIPS_RLD_VERSION:
11421 	      dyn.d_un.d_val = 1; /* XXX */
11422 	      break;
11423 
11424 	    case DT_MIPS_FLAGS:
11425 	      dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11426 	      break;
11427 
11428 	    case DT_MIPS_TIME_STAMP:
11429 	      {
11430 		time_t t;
11431 		time (&t);
11432 		dyn.d_un.d_val = t;
11433 	      }
11434 	      break;
11435 
11436 	    case DT_MIPS_ICHECKSUM:
11437 	      /* XXX FIXME: */
11438 	      swap_out_p = FALSE;
11439 	      break;
11440 
11441 	    case DT_MIPS_IVERSION:
11442 	      /* XXX FIXME: */
11443 	      swap_out_p = FALSE;
11444 	      break;
11445 
11446 	    case DT_MIPS_BASE_ADDRESS:
11447 	      s = output_bfd->sections;
11448 	      BFD_ASSERT (s != NULL);
11449 	      dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11450 	      break;
11451 
11452 	    case DT_MIPS_LOCAL_GOTNO:
11453 	      dyn.d_un.d_val = g->local_gotno;
11454 	      break;
11455 
11456 	    case DT_MIPS_UNREFEXTNO:
11457 	      /* The index into the dynamic symbol table which is the
11458 		 entry of the first external symbol that is not
11459 		 referenced within the same object.  */
11460 	      dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11461 	      break;
11462 
11463 	    case DT_MIPS_GOTSYM:
11464 	      if (htab->global_gotsym)
11465 		{
11466 		  dyn.d_un.d_val = htab->global_gotsym->dynindx;
11467 		  break;
11468 		}
11469 	      /* In case if we don't have global got symbols we default
11470 		 to setting DT_MIPS_GOTSYM to the same value as
11471 		 DT_MIPS_SYMTABNO, so we just fall through.  */
11472 
11473 	    case DT_MIPS_SYMTABNO:
11474 	      name = ".dynsym";
11475 	      elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11476 	      s = bfd_get_section_by_name (output_bfd, name);
11477 
11478 	      if (s != NULL)
11479 		dyn.d_un.d_val = s->size / elemsize;
11480 	      else
11481 		dyn.d_un.d_val = 0;
11482 	      break;
11483 
11484 	    case DT_MIPS_HIPAGENO:
11485 	      dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11486 	      break;
11487 
11488 	    case DT_MIPS_RLD_MAP:
11489 	      {
11490 		struct elf_link_hash_entry *h;
11491 		h = mips_elf_hash_table (info)->rld_symbol;
11492 		if (!h)
11493 		  {
11494 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11495 		    swap_out_p = FALSE;
11496 		    break;
11497 		  }
11498 		s = h->root.u.def.section;
11499 		dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11500 				  + h->root.u.def.value);
11501 	      }
11502 	      break;
11503 
11504 	    case DT_MIPS_RLD_MAP2:
11505 	      {
11506 		struct elf_link_hash_entry *h;
11507 		bfd_vma dt_addr, rld_addr;
11508 		h = mips_elf_hash_table (info)->rld_symbol;
11509 		if (!h)
11510 		  {
11511 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11512 		    swap_out_p = FALSE;
11513 		    break;
11514 		  }
11515 		s = h->root.u.def.section;
11516 
11517 		dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11518 			   + (b - sdyn->contents));
11519 		rld_addr = (s->output_section->vma + s->output_offset
11520 			    + h->root.u.def.value);
11521 		dyn.d_un.d_ptr = rld_addr - dt_addr;
11522 	      }
11523 	      break;
11524 
11525 	    case DT_MIPS_OPTIONS:
11526 	      s = (bfd_get_section_by_name
11527 		   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11528 	      dyn.d_un.d_ptr = s->vma;
11529 	      break;
11530 
11531 	    case DT_RELASZ:
11532 	      BFD_ASSERT (htab->is_vxworks);
11533 	      /* The count does not include the JUMP_SLOT relocations.  */
11534 	      if (htab->srelplt)
11535 		dyn.d_un.d_val -= htab->srelplt->size;
11536 	      break;
11537 
11538 	    case DT_PLTREL:
11539 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11540 	      if (htab->is_vxworks)
11541 		dyn.d_un.d_val = DT_RELA;
11542 	      else
11543 		dyn.d_un.d_val = DT_REL;
11544 	      break;
11545 
11546 	    case DT_PLTRELSZ:
11547 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11548 	      dyn.d_un.d_val = htab->srelplt->size;
11549 	      break;
11550 
11551 	    case DT_JMPREL:
11552 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11553 	      dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11554 				+ htab->srelplt->output_offset);
11555 	      break;
11556 
11557 	    case DT_TEXTREL:
11558 	      /* If we didn't need any text relocations after all, delete
11559 		 the dynamic tag.  */
11560 	      if (!(info->flags & DF_TEXTREL))
11561 		{
11562 		  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11563 		  swap_out_p = FALSE;
11564 		}
11565 	      break;
11566 
11567 	    case DT_FLAGS:
11568 	      /* If we didn't need any text relocations after all, clear
11569 		 DF_TEXTREL from DT_FLAGS.  */
11570 	      if (!(info->flags & DF_TEXTREL))
11571 		dyn.d_un.d_val &= ~DF_TEXTREL;
11572 	      else
11573 		swap_out_p = FALSE;
11574 	      break;
11575 
11576 	    default:
11577 	      swap_out_p = FALSE;
11578 	      if (htab->is_vxworks
11579 		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11580 		swap_out_p = TRUE;
11581 	      break;
11582 	    }
11583 
11584 	  if (swap_out_p || dyn_skipped)
11585 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11586 	      (dynobj, &dyn, b - dyn_skipped);
11587 
11588 	  if (dyn_to_skip)
11589 	    {
11590 	      dyn_skipped += dyn_to_skip;
11591 	      dyn_to_skip = 0;
11592 	    }
11593 	}
11594 
11595       /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
11596       if (dyn_skipped > 0)
11597 	memset (b - dyn_skipped, 0, dyn_skipped);
11598     }
11599 
11600   if (sgot != NULL && sgot->size > 0
11601       && !bfd_is_abs_section (sgot->output_section))
11602     {
11603       if (htab->is_vxworks)
11604 	{
11605 	  /* The first entry of the global offset table points to the
11606 	     ".dynamic" section.  The second is initialized by the
11607 	     loader and contains the shared library identifier.
11608 	     The third is also initialized by the loader and points
11609 	     to the lazy resolution stub.  */
11610 	  MIPS_ELF_PUT_WORD (output_bfd,
11611 			     sdyn->output_offset + sdyn->output_section->vma,
11612 			     sgot->contents);
11613 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
11614 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11615 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
11616 			     sgot->contents
11617 			     + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11618 	}
11619       else
11620 	{
11621 	  /* The first entry of the global offset table will be filled at
11622 	     runtime. The second entry will be used by some runtime loaders.
11623 	     This isn't the case of IRIX rld.  */
11624 	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11625 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11626 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11627 	}
11628 
11629       elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11630 	 = MIPS_ELF_GOT_SIZE (output_bfd);
11631     }
11632 
11633   /* Generate dynamic relocations for the non-primary gots.  */
11634   if (gg != NULL && gg->next)
11635     {
11636       Elf_Internal_Rela rel[3];
11637       bfd_vma addend = 0;
11638 
11639       memset (rel, 0, sizeof (rel));
11640       rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11641 
11642       for (g = gg->next; g->next != gg; g = g->next)
11643 	{
11644 	  bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11645 	    + g->next->tls_gotno;
11646 
11647 	  MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11648 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11649 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11650 			     sgot->contents
11651 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11652 
11653 	  if (! info->shared)
11654 	    continue;
11655 
11656 	  for (; got_index < g->local_gotno; got_index++)
11657 	    {
11658 	      if (got_index >= g->assigned_low_gotno
11659 		  && got_index <= g->assigned_high_gotno)
11660 		continue;
11661 
11662 	      rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11663 		= got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11664 	      if (!(mips_elf_create_dynamic_relocation
11665 		    (output_bfd, info, rel, NULL,
11666 		     bfd_abs_section_ptr,
11667 		     0, &addend, sgot)))
11668 		return FALSE;
11669 	      BFD_ASSERT (addend == 0);
11670 	    }
11671 	}
11672     }
11673 
11674   /* The generation of dynamic relocations for the non-primary gots
11675      adds more dynamic relocations.  We cannot count them until
11676      here.  */
11677 
11678   if (elf_hash_table (info)->dynamic_sections_created)
11679     {
11680       bfd_byte *b;
11681       bfd_boolean swap_out_p;
11682 
11683       BFD_ASSERT (sdyn != NULL);
11684 
11685       for (b = sdyn->contents;
11686 	   b < sdyn->contents + sdyn->size;
11687 	   b += MIPS_ELF_DYN_SIZE (dynobj))
11688 	{
11689 	  Elf_Internal_Dyn dyn;
11690 	  asection *s;
11691 
11692 	  /* Read in the current dynamic entry.  */
11693 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11694 
11695 	  /* Assume that we're going to modify it and write it out.  */
11696 	  swap_out_p = TRUE;
11697 
11698 	  switch (dyn.d_tag)
11699 	    {
11700 	    case DT_RELSZ:
11701 	      /* Reduce DT_RELSZ to account for any relocations we
11702 		 decided not to make.  This is for the n64 irix rld,
11703 		 which doesn't seem to apply any relocations if there
11704 		 are trailing null entries.  */
11705 	      s = mips_elf_rel_dyn_section (info, FALSE);
11706 	      dyn.d_un.d_val = (s->reloc_count
11707 				* (ABI_64_P (output_bfd)
11708 				   ? sizeof (Elf64_Mips_External_Rel)
11709 				   : sizeof (Elf32_External_Rel)));
11710 	      /* Adjust the section size too.  Tools like the prelinker
11711 		 can reasonably expect the values to the same.  */
11712 	      elf_section_data (s->output_section)->this_hdr.sh_size
11713 		= dyn.d_un.d_val;
11714 	      break;
11715 
11716 	    default:
11717 	      swap_out_p = FALSE;
11718 	      break;
11719 	    }
11720 
11721 	  if (swap_out_p)
11722 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11723 	      (dynobj, &dyn, b);
11724 	}
11725     }
11726 
11727   {
11728     asection *s;
11729     Elf32_compact_rel cpt;
11730 
11731     if (SGI_COMPAT (output_bfd))
11732       {
11733 	/* Write .compact_rel section out.  */
11734 	s = bfd_get_linker_section (dynobj, ".compact_rel");
11735 	if (s != NULL)
11736 	  {
11737 	    cpt.id1 = 1;
11738 	    cpt.num = s->reloc_count;
11739 	    cpt.id2 = 2;
11740 	    cpt.offset = (s->output_section->filepos
11741 			  + sizeof (Elf32_External_compact_rel));
11742 	    cpt.reserved0 = 0;
11743 	    cpt.reserved1 = 0;
11744 	    bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11745 					    ((Elf32_External_compact_rel *)
11746 					     s->contents));
11747 
11748 	    /* Clean up a dummy stub function entry in .text.  */
11749 	    if (htab->sstubs != NULL)
11750 	      {
11751 		file_ptr dummy_offset;
11752 
11753 		BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11754 		dummy_offset = htab->sstubs->size - htab->function_stub_size;
11755 		memset (htab->sstubs->contents + dummy_offset, 0,
11756 			htab->function_stub_size);
11757 	      }
11758 	  }
11759       }
11760 
11761     /* The psABI says that the dynamic relocations must be sorted in
11762        increasing order of r_symndx.  The VxWorks EABI doesn't require
11763        this, and because the code below handles REL rather than RELA
11764        relocations, using it for VxWorks would be outright harmful.  */
11765     if (!htab->is_vxworks)
11766       {
11767 	s = mips_elf_rel_dyn_section (info, FALSE);
11768 	if (s != NULL
11769 	    && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11770 	  {
11771 	    reldyn_sorting_bfd = output_bfd;
11772 
11773 	    if (ABI_64_P (output_bfd))
11774 	      qsort ((Elf64_External_Rel *) s->contents + 1,
11775 		     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11776 		     sort_dynamic_relocs_64);
11777 	    else
11778 	      qsort ((Elf32_External_Rel *) s->contents + 1,
11779 		     s->reloc_count - 1, sizeof (Elf32_External_Rel),
11780 		     sort_dynamic_relocs);
11781 	  }
11782       }
11783   }
11784 
11785   if (htab->splt && htab->splt->size > 0)
11786     {
11787       if (htab->is_vxworks)
11788 	{
11789 	  if (info->shared)
11790 	    mips_vxworks_finish_shared_plt (output_bfd, info);
11791 	  else
11792 	    mips_vxworks_finish_exec_plt (output_bfd, info);
11793 	}
11794       else
11795 	{
11796 	  BFD_ASSERT (!info->shared);
11797 	  if (!mips_finish_exec_plt (output_bfd, info))
11798 	    return FALSE;
11799 	}
11800     }
11801   return TRUE;
11802 }
11803 
11804 
11805 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
11806 
11807 static void
mips_set_isa_flags(bfd * abfd)11808 mips_set_isa_flags (bfd *abfd)
11809 {
11810   flagword val;
11811 
11812   switch (bfd_get_mach (abfd))
11813     {
11814     default:
11815     case bfd_mach_mips3000:
11816       val = E_MIPS_ARCH_1;
11817       break;
11818 
11819     case bfd_mach_mips3900:
11820       val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11821       break;
11822 
11823     case bfd_mach_mips6000:
11824       val = E_MIPS_ARCH_2;
11825       break;
11826 
11827     case bfd_mach_mips4000:
11828     case bfd_mach_mips4300:
11829     case bfd_mach_mips4400:
11830     case bfd_mach_mips4600:
11831       val = E_MIPS_ARCH_3;
11832       break;
11833 
11834     case bfd_mach_mips4010:
11835       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11836       break;
11837 
11838     case bfd_mach_mips4100:
11839       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11840       break;
11841 
11842     case bfd_mach_mips4111:
11843       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11844       break;
11845 
11846     case bfd_mach_mips4120:
11847       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11848       break;
11849 
11850     case bfd_mach_mips4650:
11851       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11852       break;
11853 
11854     case bfd_mach_mips5400:
11855       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11856       break;
11857 
11858     case bfd_mach_mips5500:
11859       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11860       break;
11861 
11862     case bfd_mach_mips5900:
11863       val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11864       break;
11865 
11866     case bfd_mach_mips9000:
11867       val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11868       break;
11869 
11870     case bfd_mach_mips5000:
11871     case bfd_mach_mips7000:
11872     case bfd_mach_mips8000:
11873     case bfd_mach_mips10000:
11874     case bfd_mach_mips12000:
11875     case bfd_mach_mips14000:
11876     case bfd_mach_mips16000:
11877       val = E_MIPS_ARCH_4;
11878       break;
11879 
11880     case bfd_mach_mips5:
11881       val = E_MIPS_ARCH_5;
11882       break;
11883 
11884     case bfd_mach_mips_loongson_2e:
11885       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11886       break;
11887 
11888     case bfd_mach_mips_loongson_2f:
11889       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11890       break;
11891 
11892     case bfd_mach_mips_sb1:
11893       val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11894       break;
11895 
11896     case bfd_mach_mips_loongson_3a:
11897       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11898       break;
11899 
11900     case bfd_mach_mips_octeon:
11901     case bfd_mach_mips_octeonp:
11902       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11903       break;
11904 
11905     case bfd_mach_mips_octeon3:
11906       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11907       break;
11908 
11909     case bfd_mach_mips_xlr:
11910       val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11911       break;
11912 
11913     case bfd_mach_mips_octeon2:
11914       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11915       break;
11916 
11917     case bfd_mach_mipsisa32:
11918       val = E_MIPS_ARCH_32;
11919       break;
11920 
11921     case bfd_mach_mipsisa64:
11922       val = E_MIPS_ARCH_64;
11923       break;
11924 
11925     case bfd_mach_mipsisa32r2:
11926     case bfd_mach_mipsisa32r3:
11927     case bfd_mach_mipsisa32r5:
11928       val = E_MIPS_ARCH_32R2;
11929       break;
11930 
11931     case bfd_mach_mipsisa64r2:
11932     case bfd_mach_mipsisa64r3:
11933     case bfd_mach_mipsisa64r5:
11934       val = E_MIPS_ARCH_64R2;
11935       break;
11936 
11937     case bfd_mach_mipsisa32r6:
11938       val = E_MIPS_ARCH_32R6;
11939       break;
11940 
11941     case bfd_mach_mipsisa64r6:
11942       val = E_MIPS_ARCH_64R6;
11943       break;
11944     }
11945   elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11946   elf_elfheader (abfd)->e_flags |= val;
11947 
11948 }
11949 
11950 
11951 /* The final processing done just before writing out a MIPS ELF object
11952    file.  This gets the MIPS architecture right based on the machine
11953    number.  This is used by both the 32-bit and the 64-bit ABI.  */
11954 
11955 void
_bfd_mips_elf_final_write_processing(bfd * abfd,bfd_boolean linker ATTRIBUTE_UNUSED)11956 _bfd_mips_elf_final_write_processing (bfd *abfd,
11957 				      bfd_boolean linker ATTRIBUTE_UNUSED)
11958 {
11959   unsigned int i;
11960   Elf_Internal_Shdr **hdrpp;
11961   const char *name;
11962   asection *sec;
11963 
11964   /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11965      is nonzero.  This is for compatibility with old objects, which used
11966      a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
11967   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11968     mips_set_isa_flags (abfd);
11969 
11970   /* Set the sh_info field for .gptab sections and other appropriate
11971      info for each special section.  */
11972   for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11973        i < elf_numsections (abfd);
11974        i++, hdrpp++)
11975     {
11976       switch ((*hdrpp)->sh_type)
11977 	{
11978 	case SHT_MIPS_MSYM:
11979 	case SHT_MIPS_LIBLIST:
11980 	  sec = bfd_get_section_by_name (abfd, ".dynstr");
11981 	  if (sec != NULL)
11982 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11983 	  break;
11984 
11985 	case SHT_MIPS_GPTAB:
11986 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11987 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11988 	  BFD_ASSERT (name != NULL
11989 		      && CONST_STRNEQ (name, ".gptab."));
11990 	  sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11991 	  BFD_ASSERT (sec != NULL);
11992 	  (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11993 	  break;
11994 
11995 	case SHT_MIPS_CONTENT:
11996 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11997 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11998 	  BFD_ASSERT (name != NULL
11999 		      && CONST_STRNEQ (name, ".MIPS.content"));
12000 	  sec = bfd_get_section_by_name (abfd,
12001 					 name + sizeof ".MIPS.content" - 1);
12002 	  BFD_ASSERT (sec != NULL);
12003 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12004 	  break;
12005 
12006 	case SHT_MIPS_SYMBOL_LIB:
12007 	  sec = bfd_get_section_by_name (abfd, ".dynsym");
12008 	  if (sec != NULL)
12009 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12010 	  sec = bfd_get_section_by_name (abfd, ".liblist");
12011 	  if (sec != NULL)
12012 	    (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12013 	  break;
12014 
12015 	case SHT_MIPS_EVENTS:
12016 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12017 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12018 	  BFD_ASSERT (name != NULL);
12019 	  if (CONST_STRNEQ (name, ".MIPS.events"))
12020 	    sec = bfd_get_section_by_name (abfd,
12021 					   name + sizeof ".MIPS.events" - 1);
12022 	  else
12023 	    {
12024 	      BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12025 	      sec = bfd_get_section_by_name (abfd,
12026 					     (name
12027 					      + sizeof ".MIPS.post_rel" - 1));
12028 	    }
12029 	  BFD_ASSERT (sec != NULL);
12030 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12031 	  break;
12032 
12033 	}
12034     }
12035 }
12036 
12037 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12038    segments.  */
12039 
12040 int
_bfd_mips_elf_additional_program_headers(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)12041 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12042 					  struct bfd_link_info *info ATTRIBUTE_UNUSED)
12043 {
12044   asection *s;
12045   int ret = 0;
12046 
12047   /* See if we need a PT_MIPS_REGINFO segment.  */
12048   s = bfd_get_section_by_name (abfd, ".reginfo");
12049   if (s && (s->flags & SEC_LOAD))
12050     ++ret;
12051 
12052   /* See if we need a PT_MIPS_ABIFLAGS segment.  */
12053   if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12054     ++ret;
12055 
12056   /* See if we need a PT_MIPS_OPTIONS segment.  */
12057   if (IRIX_COMPAT (abfd) == ict_irix6
12058       && bfd_get_section_by_name (abfd,
12059 				  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12060     ++ret;
12061 
12062   /* See if we need a PT_MIPS_RTPROC segment.  */
12063   if (IRIX_COMPAT (abfd) == ict_irix5
12064       && bfd_get_section_by_name (abfd, ".dynamic")
12065       && bfd_get_section_by_name (abfd, ".mdebug"))
12066     ++ret;
12067 
12068   /* Allocate a PT_NULL header in dynamic objects.  See
12069      _bfd_mips_elf_modify_segment_map for details.  */
12070   if (!SGI_COMPAT (abfd)
12071       && bfd_get_section_by_name (abfd, ".dynamic"))
12072     ++ret;
12073 
12074   return ret;
12075 }
12076 
12077 /* Modify the segment map for an IRIX5 executable.  */
12078 
12079 bfd_boolean
_bfd_mips_elf_modify_segment_map(bfd * abfd,struct bfd_link_info * info)12080 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12081 				  struct bfd_link_info *info)
12082 {
12083   asection *s;
12084   struct elf_segment_map *m, **pm;
12085   bfd_size_type amt;
12086 
12087   /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12088      segment.  */
12089   s = bfd_get_section_by_name (abfd, ".reginfo");
12090   if (s != NULL && (s->flags & SEC_LOAD) != 0)
12091     {
12092       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12093 	if (m->p_type == PT_MIPS_REGINFO)
12094 	  break;
12095       if (m == NULL)
12096 	{
12097 	  amt = sizeof *m;
12098 	  m = bfd_zalloc (abfd, amt);
12099 	  if (m == NULL)
12100 	    return FALSE;
12101 
12102 	  m->p_type = PT_MIPS_REGINFO;
12103 	  m->count = 1;
12104 	  m->sections[0] = s;
12105 
12106 	  /* We want to put it after the PHDR and INTERP segments.  */
12107 	  pm = &elf_seg_map (abfd);
12108 	  while (*pm != NULL
12109 		 && ((*pm)->p_type == PT_PHDR
12110 		     || (*pm)->p_type == PT_INTERP))
12111 	    pm = &(*pm)->next;
12112 
12113 	  m->next = *pm;
12114 	  *pm = m;
12115 	}
12116     }
12117 
12118   /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12119      segment.  */
12120   s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12121   if (s != NULL && (s->flags & SEC_LOAD) != 0)
12122     {
12123       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12124 	if (m->p_type == PT_MIPS_ABIFLAGS)
12125 	  break;
12126       if (m == NULL)
12127 	{
12128 	  amt = sizeof *m;
12129 	  m = bfd_zalloc (abfd, amt);
12130 	  if (m == NULL)
12131 	    return FALSE;
12132 
12133 	  m->p_type = PT_MIPS_ABIFLAGS;
12134 	  m->count = 1;
12135 	  m->sections[0] = s;
12136 
12137 	  /* We want to put it after the PHDR and INTERP segments.  */
12138 	  pm = &elf_seg_map (abfd);
12139 	  while (*pm != NULL
12140 		 && ((*pm)->p_type == PT_PHDR
12141 		     || (*pm)->p_type == PT_INTERP))
12142 	    pm = &(*pm)->next;
12143 
12144 	  m->next = *pm;
12145 	  *pm = m;
12146 	}
12147     }
12148 
12149   /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12150      .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
12151      PT_MIPS_OPTIONS segment immediately following the program header
12152      table.  */
12153   if (NEWABI_P (abfd)
12154       /* On non-IRIX6 new abi, we'll have already created a segment
12155 	 for this section, so don't create another.  I'm not sure this
12156 	 is not also the case for IRIX 6, but I can't test it right
12157 	 now.  */
12158       && IRIX_COMPAT (abfd) == ict_irix6)
12159     {
12160       for (s = abfd->sections; s; s = s->next)
12161 	if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12162 	  break;
12163 
12164       if (s)
12165 	{
12166 	  struct elf_segment_map *options_segment;
12167 
12168 	  pm = &elf_seg_map (abfd);
12169 	  while (*pm != NULL
12170 		 && ((*pm)->p_type == PT_PHDR
12171 		     || (*pm)->p_type == PT_INTERP))
12172 	    pm = &(*pm)->next;
12173 
12174 	  if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12175 	    {
12176 	      amt = sizeof (struct elf_segment_map);
12177 	      options_segment = bfd_zalloc (abfd, amt);
12178 	      options_segment->next = *pm;
12179 	      options_segment->p_type = PT_MIPS_OPTIONS;
12180 	      options_segment->p_flags = PF_R;
12181 	      options_segment->p_flags_valid = TRUE;
12182 	      options_segment->count = 1;
12183 	      options_segment->sections[0] = s;
12184 	      *pm = options_segment;
12185 	    }
12186 	}
12187     }
12188   else
12189     {
12190       if (IRIX_COMPAT (abfd) == ict_irix5)
12191 	{
12192 	  /* If there are .dynamic and .mdebug sections, we make a room
12193 	     for the RTPROC header.  FIXME: Rewrite without section names.  */
12194 	  if (bfd_get_section_by_name (abfd, ".interp") == NULL
12195 	      && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12196 	      && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12197 	    {
12198 	      for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12199 		if (m->p_type == PT_MIPS_RTPROC)
12200 		  break;
12201 	      if (m == NULL)
12202 		{
12203 		  amt = sizeof *m;
12204 		  m = bfd_zalloc (abfd, amt);
12205 		  if (m == NULL)
12206 		    return FALSE;
12207 
12208 		  m->p_type = PT_MIPS_RTPROC;
12209 
12210 		  s = bfd_get_section_by_name (abfd, ".rtproc");
12211 		  if (s == NULL)
12212 		    {
12213 		      m->count = 0;
12214 		      m->p_flags = 0;
12215 		      m->p_flags_valid = 1;
12216 		    }
12217 		  else
12218 		    {
12219 		      m->count = 1;
12220 		      m->sections[0] = s;
12221 		    }
12222 
12223 		  /* We want to put it after the DYNAMIC segment.  */
12224 		  pm = &elf_seg_map (abfd);
12225 		  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12226 		    pm = &(*pm)->next;
12227 		  if (*pm != NULL)
12228 		    pm = &(*pm)->next;
12229 
12230 		  m->next = *pm;
12231 		  *pm = m;
12232 		}
12233 	    }
12234 	}
12235       /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12236 	 .dynstr, .dynsym, and .hash sections, and everything in
12237 	 between.  */
12238       for (pm = &elf_seg_map (abfd); *pm != NULL;
12239 	   pm = &(*pm)->next)
12240 	if ((*pm)->p_type == PT_DYNAMIC)
12241 	  break;
12242       m = *pm;
12243       /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12244 	 glibc's dynamic linker has traditionally derived the number of
12245 	 tags from the p_filesz field, and sometimes allocates stack
12246 	 arrays of that size.  An overly-big PT_DYNAMIC segment can
12247 	 be actively harmful in such cases.  Making PT_DYNAMIC contain
12248 	 other sections can also make life hard for the prelinker,
12249 	 which might move one of the other sections to a different
12250 	 PT_LOAD segment.  */
12251       if (SGI_COMPAT (abfd)
12252 	  && m != NULL
12253 	  && m->count == 1
12254 	  && strcmp (m->sections[0]->name, ".dynamic") == 0)
12255 	{
12256 	  static const char *sec_names[] =
12257 	  {
12258 	    ".dynamic", ".dynstr", ".dynsym", ".hash"
12259 	  };
12260 	  bfd_vma low, high;
12261 	  unsigned int i, c;
12262 	  struct elf_segment_map *n;
12263 
12264 	  low = ~(bfd_vma) 0;
12265 	  high = 0;
12266 	  for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12267 	    {
12268 	      s = bfd_get_section_by_name (abfd, sec_names[i]);
12269 	      if (s != NULL && (s->flags & SEC_LOAD) != 0)
12270 		{
12271 		  bfd_size_type sz;
12272 
12273 		  if (low > s->vma)
12274 		    low = s->vma;
12275 		  sz = s->size;
12276 		  if (high < s->vma + sz)
12277 		    high = s->vma + sz;
12278 		}
12279 	    }
12280 
12281 	  c = 0;
12282 	  for (s = abfd->sections; s != NULL; s = s->next)
12283 	    if ((s->flags & SEC_LOAD) != 0
12284 		&& s->vma >= low
12285 		&& s->vma + s->size <= high)
12286 	      ++c;
12287 
12288 	  amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12289 	  n = bfd_zalloc (abfd, amt);
12290 	  if (n == NULL)
12291 	    return FALSE;
12292 	  *n = *m;
12293 	  n->count = c;
12294 
12295 	  i = 0;
12296 	  for (s = abfd->sections; s != NULL; s = s->next)
12297 	    {
12298 	      if ((s->flags & SEC_LOAD) != 0
12299 		  && s->vma >= low
12300 		  && s->vma + s->size <= high)
12301 		{
12302 		  n->sections[i] = s;
12303 		  ++i;
12304 		}
12305 	    }
12306 
12307 	  *pm = n;
12308 	}
12309     }
12310 
12311   /* Allocate a spare program header in dynamic objects so that tools
12312      like the prelinker can add an extra PT_LOAD entry.
12313 
12314      If the prelinker needs to make room for a new PT_LOAD entry, its
12315      standard procedure is to move the first (read-only) sections into
12316      the new (writable) segment.  However, the MIPS ABI requires
12317      .dynamic to be in a read-only segment, and the section will often
12318      start within sizeof (ElfNN_Phdr) bytes of the last program header.
12319 
12320      Although the prelinker could in principle move .dynamic to a
12321      writable segment, it seems better to allocate a spare program
12322      header instead, and avoid the need to move any sections.
12323      There is a long tradition of allocating spare dynamic tags,
12324      so allocating a spare program header seems like a natural
12325      extension.
12326 
12327      If INFO is NULL, we may be copying an already prelinked binary
12328      with objcopy or strip, so do not add this header.  */
12329   if (info != NULL
12330       && !SGI_COMPAT (abfd)
12331       && bfd_get_section_by_name (abfd, ".dynamic"))
12332     {
12333       for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12334 	if ((*pm)->p_type == PT_NULL)
12335 	  break;
12336       if (*pm == NULL)
12337 	{
12338 	  m = bfd_zalloc (abfd, sizeof (*m));
12339 	  if (m == NULL)
12340 	    return FALSE;
12341 
12342 	  m->p_type = PT_NULL;
12343 	  *pm = m;
12344 	}
12345     }
12346 
12347   return TRUE;
12348 }
12349 
12350 /* Return the section that should be marked against GC for a given
12351    relocation.  */
12352 
12353 asection *
_bfd_mips_elf_gc_mark_hook(asection * sec,struct bfd_link_info * info,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)12354 _bfd_mips_elf_gc_mark_hook (asection *sec,
12355 			    struct bfd_link_info *info,
12356 			    Elf_Internal_Rela *rel,
12357 			    struct elf_link_hash_entry *h,
12358 			    Elf_Internal_Sym *sym)
12359 {
12360   /* ??? Do mips16 stub sections need to be handled special?  */
12361 
12362   if (h != NULL)
12363     switch (ELF_R_TYPE (sec->owner, rel->r_info))
12364       {
12365       case R_MIPS_GNU_VTINHERIT:
12366       case R_MIPS_GNU_VTENTRY:
12367 	return NULL;
12368       }
12369 
12370   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12371 }
12372 
12373 /* Update the got entry reference counts for the section being removed.  */
12374 
12375 bfd_boolean
_bfd_mips_elf_gc_sweep_hook(bfd * abfd ATTRIBUTE_UNUSED,struct bfd_link_info * info ATTRIBUTE_UNUSED,asection * sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * relocs ATTRIBUTE_UNUSED)12376 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12377 			     struct bfd_link_info *info ATTRIBUTE_UNUSED,
12378 			     asection *sec ATTRIBUTE_UNUSED,
12379 			     const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12380 {
12381 #if 0
12382   Elf_Internal_Shdr *symtab_hdr;
12383   struct elf_link_hash_entry **sym_hashes;
12384   bfd_signed_vma *local_got_refcounts;
12385   const Elf_Internal_Rela *rel, *relend;
12386   unsigned long r_symndx;
12387   struct elf_link_hash_entry *h;
12388 
12389   if (info->relocatable)
12390     return TRUE;
12391 
12392   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12393   sym_hashes = elf_sym_hashes (abfd);
12394   local_got_refcounts = elf_local_got_refcounts (abfd);
12395 
12396   relend = relocs + sec->reloc_count;
12397   for (rel = relocs; rel < relend; rel++)
12398     switch (ELF_R_TYPE (abfd, rel->r_info))
12399       {
12400       case R_MIPS16_GOT16:
12401       case R_MIPS16_CALL16:
12402       case R_MIPS_GOT16:
12403       case R_MIPS_CALL16:
12404       case R_MIPS_CALL_HI16:
12405       case R_MIPS_CALL_LO16:
12406       case R_MIPS_GOT_HI16:
12407       case R_MIPS_GOT_LO16:
12408       case R_MIPS_GOT_DISP:
12409       case R_MIPS_GOT_PAGE:
12410       case R_MIPS_GOT_OFST:
12411       case R_MICROMIPS_GOT16:
12412       case R_MICROMIPS_CALL16:
12413       case R_MICROMIPS_CALL_HI16:
12414       case R_MICROMIPS_CALL_LO16:
12415       case R_MICROMIPS_GOT_HI16:
12416       case R_MICROMIPS_GOT_LO16:
12417       case R_MICROMIPS_GOT_DISP:
12418       case R_MICROMIPS_GOT_PAGE:
12419       case R_MICROMIPS_GOT_OFST:
12420 	/* ??? It would seem that the existing MIPS code does no sort
12421 	   of reference counting or whatnot on its GOT and PLT entries,
12422 	   so it is not possible to garbage collect them at this time.  */
12423 	break;
12424 
12425       default:
12426 	break;
12427       }
12428 #endif
12429 
12430   return TRUE;
12431 }
12432 
12433 /* Prevent .MIPS.abiflags from being discarded with --gc-sections.  */
12434 
12435 bfd_boolean
_bfd_mips_elf_gc_mark_extra_sections(struct bfd_link_info * info,elf_gc_mark_hook_fn gc_mark_hook)12436 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12437 				      elf_gc_mark_hook_fn gc_mark_hook)
12438 {
12439   bfd *sub;
12440 
12441   _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12442 
12443   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12444     {
12445       asection *o;
12446 
12447       if (! is_mips_elf (sub))
12448 	continue;
12449 
12450       for (o = sub->sections; o != NULL; o = o->next)
12451 	if (!o->gc_mark
12452 	    && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12453 		 (bfd_get_section_name (sub, o)))
12454 	  {
12455 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12456 	      return FALSE;
12457 	  }
12458     }
12459 
12460   return TRUE;
12461 }
12462 
12463 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12464    hiding the old indirect symbol.  Process additional relocation
12465    information.  Also called for weakdefs, in which case we just let
12466    _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
12467 
12468 void
_bfd_mips_elf_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * dir,struct elf_link_hash_entry * ind)12469 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12470 				    struct elf_link_hash_entry *dir,
12471 				    struct elf_link_hash_entry *ind)
12472 {
12473   struct mips_elf_link_hash_entry *dirmips, *indmips;
12474 
12475   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12476 
12477   dirmips = (struct mips_elf_link_hash_entry *) dir;
12478   indmips = (struct mips_elf_link_hash_entry *) ind;
12479   /* Any absolute non-dynamic relocations against an indirect or weak
12480      definition will be against the target symbol.  */
12481   if (indmips->has_static_relocs)
12482     dirmips->has_static_relocs = TRUE;
12483 
12484   if (ind->root.type != bfd_link_hash_indirect)
12485     return;
12486 
12487   dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12488   if (indmips->readonly_reloc)
12489     dirmips->readonly_reloc = TRUE;
12490   if (indmips->no_fn_stub)
12491     dirmips->no_fn_stub = TRUE;
12492   if (indmips->fn_stub)
12493     {
12494       dirmips->fn_stub = indmips->fn_stub;
12495       indmips->fn_stub = NULL;
12496     }
12497   if (indmips->need_fn_stub)
12498     {
12499       dirmips->need_fn_stub = TRUE;
12500       indmips->need_fn_stub = FALSE;
12501     }
12502   if (indmips->call_stub)
12503     {
12504       dirmips->call_stub = indmips->call_stub;
12505       indmips->call_stub = NULL;
12506     }
12507   if (indmips->call_fp_stub)
12508     {
12509       dirmips->call_fp_stub = indmips->call_fp_stub;
12510       indmips->call_fp_stub = NULL;
12511     }
12512   if (indmips->global_got_area < dirmips->global_got_area)
12513     dirmips->global_got_area = indmips->global_got_area;
12514   if (indmips->global_got_area < GGA_NONE)
12515     indmips->global_got_area = GGA_NONE;
12516   if (indmips->has_nonpic_branches)
12517     dirmips->has_nonpic_branches = TRUE;
12518 }
12519 
12520 #define PDR_SIZE 32
12521 
12522 bfd_boolean
_bfd_mips_elf_discard_info(bfd * abfd,struct elf_reloc_cookie * cookie,struct bfd_link_info * info)12523 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12524 			    struct bfd_link_info *info)
12525 {
12526   asection *o;
12527   bfd_boolean ret = FALSE;
12528   unsigned char *tdata;
12529   size_t i, skip;
12530 
12531   o = bfd_get_section_by_name (abfd, ".pdr");
12532   if (! o)
12533     return FALSE;
12534   if (o->size == 0)
12535     return FALSE;
12536   if (o->size % PDR_SIZE != 0)
12537     return FALSE;
12538   if (o->output_section != NULL
12539       && bfd_is_abs_section (o->output_section))
12540     return FALSE;
12541 
12542   tdata = bfd_zmalloc (o->size / PDR_SIZE);
12543   if (! tdata)
12544     return FALSE;
12545 
12546   cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12547 					    info->keep_memory);
12548   if (!cookie->rels)
12549     {
12550       free (tdata);
12551       return FALSE;
12552     }
12553 
12554   cookie->rel = cookie->rels;
12555   cookie->relend = cookie->rels + o->reloc_count;
12556 
12557   for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12558     {
12559       if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12560 	{
12561 	  tdata[i] = 1;
12562 	  skip ++;
12563 	}
12564     }
12565 
12566   if (skip != 0)
12567     {
12568       mips_elf_section_data (o)->u.tdata = tdata;
12569       if (o->rawsize == 0)
12570 	o->rawsize = o->size;
12571       o->size -= skip * PDR_SIZE;
12572       ret = TRUE;
12573     }
12574   else
12575     free (tdata);
12576 
12577   if (! info->keep_memory)
12578     free (cookie->rels);
12579 
12580   return ret;
12581 }
12582 
12583 bfd_boolean
_bfd_mips_elf_ignore_discarded_relocs(asection * sec)12584 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12585 {
12586   if (strcmp (sec->name, ".pdr") == 0)
12587     return TRUE;
12588   return FALSE;
12589 }
12590 
12591 bfd_boolean
_bfd_mips_elf_write_section(bfd * output_bfd,struct bfd_link_info * link_info ATTRIBUTE_UNUSED,asection * sec,bfd_byte * contents)12592 _bfd_mips_elf_write_section (bfd *output_bfd,
12593 			     struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12594                              asection *sec, bfd_byte *contents)
12595 {
12596   bfd_byte *to, *from, *end;
12597   int i;
12598 
12599   if (strcmp (sec->name, ".pdr") != 0)
12600     return FALSE;
12601 
12602   if (mips_elf_section_data (sec)->u.tdata == NULL)
12603     return FALSE;
12604 
12605   to = contents;
12606   end = contents + sec->size;
12607   for (from = contents, i = 0;
12608        from < end;
12609        from += PDR_SIZE, i++)
12610     {
12611       if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12612 	continue;
12613       if (to != from)
12614 	memcpy (to, from, PDR_SIZE);
12615       to += PDR_SIZE;
12616     }
12617   bfd_set_section_contents (output_bfd, sec->output_section, contents,
12618 			    sec->output_offset, sec->size);
12619   return TRUE;
12620 }
12621 
12622 /* microMIPS code retains local labels for linker relaxation.  Omit them
12623    from output by default for clarity.  */
12624 
12625 bfd_boolean
_bfd_mips_elf_is_target_special_symbol(bfd * abfd,asymbol * sym)12626 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12627 {
12628   return _bfd_elf_is_local_label_name (abfd, sym->name);
12629 }
12630 
12631 /* MIPS ELF uses a special find_nearest_line routine in order the
12632    handle the ECOFF debugging information.  */
12633 
12634 struct mips_elf_find_line
12635 {
12636   struct ecoff_debug_info d;
12637   struct ecoff_find_line i;
12638 };
12639 
12640 bfd_boolean
_bfd_mips_elf_find_nearest_line(bfd * abfd,asymbol ** symbols,asection * section,bfd_vma offset,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * line_ptr,unsigned int * discriminator_ptr)12641 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12642 				 asection *section, bfd_vma offset,
12643 				 const char **filename_ptr,
12644 				 const char **functionname_ptr,
12645 				 unsigned int *line_ptr,
12646 				 unsigned int *discriminator_ptr)
12647 {
12648   asection *msec;
12649 
12650   if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12651 				     filename_ptr, functionname_ptr,
12652 				     line_ptr, discriminator_ptr,
12653 				     dwarf_debug_sections,
12654 				     ABI_64_P (abfd) ? 8 : 0,
12655 				     &elf_tdata (abfd)->dwarf2_find_line_info))
12656     return TRUE;
12657 
12658   if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12659 				     filename_ptr, functionname_ptr,
12660 				     line_ptr))
12661     return TRUE;
12662 
12663   msec = bfd_get_section_by_name (abfd, ".mdebug");
12664   if (msec != NULL)
12665     {
12666       flagword origflags;
12667       struct mips_elf_find_line *fi;
12668       const struct ecoff_debug_swap * const swap =
12669 	get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12670 
12671       /* If we are called during a link, mips_elf_final_link may have
12672 	 cleared the SEC_HAS_CONTENTS field.  We force it back on here
12673 	 if appropriate (which it normally will be).  */
12674       origflags = msec->flags;
12675       if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12676 	msec->flags |= SEC_HAS_CONTENTS;
12677 
12678       fi = mips_elf_tdata (abfd)->find_line_info;
12679       if (fi == NULL)
12680 	{
12681 	  bfd_size_type external_fdr_size;
12682 	  char *fraw_src;
12683 	  char *fraw_end;
12684 	  struct fdr *fdr_ptr;
12685 	  bfd_size_type amt = sizeof (struct mips_elf_find_line);
12686 
12687 	  fi = bfd_zalloc (abfd, amt);
12688 	  if (fi == NULL)
12689 	    {
12690 	      msec->flags = origflags;
12691 	      return FALSE;
12692 	    }
12693 
12694 	  if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12695 	    {
12696 	      msec->flags = origflags;
12697 	      return FALSE;
12698 	    }
12699 
12700 	  /* Swap in the FDR information.  */
12701 	  amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12702 	  fi->d.fdr = bfd_alloc (abfd, amt);
12703 	  if (fi->d.fdr == NULL)
12704 	    {
12705 	      msec->flags = origflags;
12706 	      return FALSE;
12707 	    }
12708 	  external_fdr_size = swap->external_fdr_size;
12709 	  fdr_ptr = fi->d.fdr;
12710 	  fraw_src = (char *) fi->d.external_fdr;
12711 	  fraw_end = (fraw_src
12712 		      + fi->d.symbolic_header.ifdMax * external_fdr_size);
12713 	  for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12714 	    (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12715 
12716 	  mips_elf_tdata (abfd)->find_line_info = fi;
12717 
12718 	  /* Note that we don't bother to ever free this information.
12719              find_nearest_line is either called all the time, as in
12720              objdump -l, so the information should be saved, or it is
12721              rarely called, as in ld error messages, so the memory
12722              wasted is unimportant.  Still, it would probably be a
12723              good idea for free_cached_info to throw it away.  */
12724 	}
12725 
12726       if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12727 				  &fi->i, filename_ptr, functionname_ptr,
12728 				  line_ptr))
12729 	{
12730 	  msec->flags = origflags;
12731 	  return TRUE;
12732 	}
12733 
12734       msec->flags = origflags;
12735     }
12736 
12737   /* Fall back on the generic ELF find_nearest_line routine.  */
12738 
12739   return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12740 				     filename_ptr, functionname_ptr,
12741 				     line_ptr, discriminator_ptr);
12742 }
12743 
12744 bfd_boolean
_bfd_mips_elf_find_inliner_info(bfd * abfd,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * line_ptr)12745 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12746 				 const char **filename_ptr,
12747 				 const char **functionname_ptr,
12748 				 unsigned int *line_ptr)
12749 {
12750   bfd_boolean found;
12751   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12752 					 functionname_ptr, line_ptr,
12753 					 & elf_tdata (abfd)->dwarf2_find_line_info);
12754   return found;
12755 }
12756 
12757 
12758 /* When are writing out the .options or .MIPS.options section,
12759    remember the bytes we are writing out, so that we can install the
12760    GP value in the section_processing routine.  */
12761 
12762 bfd_boolean
_bfd_mips_elf_set_section_contents(bfd * abfd,sec_ptr section,const void * location,file_ptr offset,bfd_size_type count)12763 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12764 				    const void *location,
12765 				    file_ptr offset, bfd_size_type count)
12766 {
12767   if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12768     {
12769       bfd_byte *c;
12770 
12771       if (elf_section_data (section) == NULL)
12772 	{
12773 	  bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12774 	  section->used_by_bfd = bfd_zalloc (abfd, amt);
12775 	  if (elf_section_data (section) == NULL)
12776 	    return FALSE;
12777 	}
12778       c = mips_elf_section_data (section)->u.tdata;
12779       if (c == NULL)
12780 	{
12781 	  c = bfd_zalloc (abfd, section->size);
12782 	  if (c == NULL)
12783 	    return FALSE;
12784 	  mips_elf_section_data (section)->u.tdata = c;
12785 	}
12786 
12787       memcpy (c + offset, location, count);
12788     }
12789 
12790   return _bfd_elf_set_section_contents (abfd, section, location, offset,
12791 					count);
12792 }
12793 
12794 /* This is almost identical to bfd_generic_get_... except that some
12795    MIPS relocations need to be handled specially.  Sigh.  */
12796 
12797 bfd_byte *
_bfd_elf_mips_get_relocated_section_contents(bfd * abfd,struct bfd_link_info * link_info,struct bfd_link_order * link_order,bfd_byte * data,bfd_boolean relocatable,asymbol ** symbols)12798 _bfd_elf_mips_get_relocated_section_contents
12799   (bfd *abfd,
12800    struct bfd_link_info *link_info,
12801    struct bfd_link_order *link_order,
12802    bfd_byte *data,
12803    bfd_boolean relocatable,
12804    asymbol **symbols)
12805 {
12806   /* Get enough memory to hold the stuff */
12807   bfd *input_bfd = link_order->u.indirect.section->owner;
12808   asection *input_section = link_order->u.indirect.section;
12809   bfd_size_type sz;
12810 
12811   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12812   arelent **reloc_vector = NULL;
12813   long reloc_count;
12814 
12815   if (reloc_size < 0)
12816     goto error_return;
12817 
12818   reloc_vector = bfd_malloc (reloc_size);
12819   if (reloc_vector == NULL && reloc_size != 0)
12820     goto error_return;
12821 
12822   /* read in the section */
12823   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12824   if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12825     goto error_return;
12826 
12827   reloc_count = bfd_canonicalize_reloc (input_bfd,
12828 					input_section,
12829 					reloc_vector,
12830 					symbols);
12831   if (reloc_count < 0)
12832     goto error_return;
12833 
12834   if (reloc_count > 0)
12835     {
12836       arelent **parent;
12837       /* for mips */
12838       int gp_found;
12839       bfd_vma gp = 0x12345678;	/* initialize just to shut gcc up */
12840 
12841       {
12842 	struct bfd_hash_entry *h;
12843 	struct bfd_link_hash_entry *lh;
12844 	/* Skip all this stuff if we aren't mixing formats.  */
12845 	if (abfd && input_bfd
12846 	    && abfd->xvec == input_bfd->xvec)
12847 	  lh = 0;
12848 	else
12849 	  {
12850 	    h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12851 	    lh = (struct bfd_link_hash_entry *) h;
12852 	  }
12853       lookup:
12854 	if (lh)
12855 	  {
12856 	    switch (lh->type)
12857 	      {
12858 	      case bfd_link_hash_undefined:
12859 	      case bfd_link_hash_undefweak:
12860 	      case bfd_link_hash_common:
12861 		gp_found = 0;
12862 		break;
12863 	      case bfd_link_hash_defined:
12864 	      case bfd_link_hash_defweak:
12865 		gp_found = 1;
12866 		gp = lh->u.def.value;
12867 		break;
12868 	      case bfd_link_hash_indirect:
12869 	      case bfd_link_hash_warning:
12870 		lh = lh->u.i.link;
12871 		/* @@FIXME  ignoring warning for now */
12872 		goto lookup;
12873 	      case bfd_link_hash_new:
12874 	      default:
12875 		abort ();
12876 	      }
12877 	  }
12878 	else
12879 	  gp_found = 0;
12880       }
12881       /* end mips */
12882       for (parent = reloc_vector; *parent != NULL; parent++)
12883 	{
12884 	  char *error_message = NULL;
12885 	  bfd_reloc_status_type r;
12886 
12887 	  /* Specific to MIPS: Deal with relocation types that require
12888 	     knowing the gp of the output bfd.  */
12889 	  asymbol *sym = *(*parent)->sym_ptr_ptr;
12890 
12891 	  /* If we've managed to find the gp and have a special
12892 	     function for the relocation then go ahead, else default
12893 	     to the generic handling.  */
12894 	  if (gp_found
12895 	      && (*parent)->howto->special_function
12896 	      == _bfd_mips_elf32_gprel16_reloc)
12897 	    r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12898 					       input_section, relocatable,
12899 					       data, gp);
12900 	  else
12901 	    r = bfd_perform_relocation (input_bfd, *parent, data,
12902 					input_section,
12903 					relocatable ? abfd : NULL,
12904 					&error_message);
12905 
12906 	  if (relocatable)
12907 	    {
12908 	      asection *os = input_section->output_section;
12909 
12910 	      /* A partial link, so keep the relocs */
12911 	      os->orelocation[os->reloc_count] = *parent;
12912 	      os->reloc_count++;
12913 	    }
12914 
12915 	  if (r != bfd_reloc_ok)
12916 	    {
12917 	      switch (r)
12918 		{
12919 		case bfd_reloc_undefined:
12920 		  if (!((*link_info->callbacks->undefined_symbol)
12921 			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12922 			 input_bfd, input_section, (*parent)->address, TRUE)))
12923 		    goto error_return;
12924 		  break;
12925 		case bfd_reloc_dangerous:
12926 		  BFD_ASSERT (error_message != NULL);
12927 		  if (!((*link_info->callbacks->reloc_dangerous)
12928 			(link_info, error_message, input_bfd, input_section,
12929 			 (*parent)->address)))
12930 		    goto error_return;
12931 		  break;
12932 		case bfd_reloc_overflow:
12933 		  if (!((*link_info->callbacks->reloc_overflow)
12934 			(link_info, NULL,
12935 			 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12936 			 (*parent)->howto->name, (*parent)->addend,
12937 			 input_bfd, input_section, (*parent)->address)))
12938 		    goto error_return;
12939 		  break;
12940 		case bfd_reloc_outofrange:
12941 		default:
12942 		  abort ();
12943 		  break;
12944 		}
12945 
12946 	    }
12947 	}
12948     }
12949   if (reloc_vector != NULL)
12950     free (reloc_vector);
12951   return data;
12952 
12953 error_return:
12954   if (reloc_vector != NULL)
12955     free (reloc_vector);
12956   return NULL;
12957 }
12958 
12959 static bfd_boolean
mips_elf_relax_delete_bytes(bfd * abfd,asection * sec,bfd_vma addr,int count)12960 mips_elf_relax_delete_bytes (bfd *abfd,
12961 			     asection *sec, bfd_vma addr, int count)
12962 {
12963   Elf_Internal_Shdr *symtab_hdr;
12964   unsigned int sec_shndx;
12965   bfd_byte *contents;
12966   Elf_Internal_Rela *irel, *irelend;
12967   Elf_Internal_Sym *isym;
12968   Elf_Internal_Sym *isymend;
12969   struct elf_link_hash_entry **sym_hashes;
12970   struct elf_link_hash_entry **end_hashes;
12971   struct elf_link_hash_entry **start_hashes;
12972   unsigned int symcount;
12973 
12974   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12975   contents = elf_section_data (sec)->this_hdr.contents;
12976 
12977   irel = elf_section_data (sec)->relocs;
12978   irelend = irel + sec->reloc_count;
12979 
12980   /* Actually delete the bytes.  */
12981   memmove (contents + addr, contents + addr + count,
12982 	   (size_t) (sec->size - addr - count));
12983   sec->size -= count;
12984 
12985   /* Adjust all the relocs.  */
12986   for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12987     {
12988       /* Get the new reloc address.  */
12989       if (irel->r_offset > addr)
12990 	irel->r_offset -= count;
12991     }
12992 
12993   BFD_ASSERT (addr % 2 == 0);
12994   BFD_ASSERT (count % 2 == 0);
12995 
12996   /* Adjust the local symbols defined in this section.  */
12997   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12998   isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12999   for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13000     if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13001       isym->st_value -= count;
13002 
13003   /* Now adjust the global symbols defined in this section.  */
13004   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13005 	      - symtab_hdr->sh_info);
13006   sym_hashes = start_hashes = elf_sym_hashes (abfd);
13007   end_hashes = sym_hashes + symcount;
13008 
13009   for (; sym_hashes < end_hashes; sym_hashes++)
13010     {
13011       struct elf_link_hash_entry *sym_hash = *sym_hashes;
13012 
13013       if ((sym_hash->root.type == bfd_link_hash_defined
13014 	   || sym_hash->root.type == bfd_link_hash_defweak)
13015 	  && sym_hash->root.u.def.section == sec)
13016 	{
13017 	  bfd_vma value = sym_hash->root.u.def.value;
13018 
13019 	  if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13020 	    value &= MINUS_TWO;
13021 	  if (value > addr)
13022 	    sym_hash->root.u.def.value -= count;
13023 	}
13024     }
13025 
13026   return TRUE;
13027 }
13028 
13029 
13030 /* Opcodes needed for microMIPS relaxation as found in
13031    opcodes/micromips-opc.c.  */
13032 
13033 struct opcode_descriptor {
13034   unsigned long match;
13035   unsigned long mask;
13036 };
13037 
13038 /* The $ra register aka $31.  */
13039 
13040 #define RA 31
13041 
13042 /* 32-bit instruction format register fields.  */
13043 
13044 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13045 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13046 
13047 /* Check if a 5-bit register index can be abbreviated to 3 bits.  */
13048 
13049 #define OP16_VALID_REG(r) \
13050   ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13051 
13052 
13053 /* 32-bit and 16-bit branches.  */
13054 
13055 static const struct opcode_descriptor b_insns_32[] = {
13056   { /* "b",	"p",		*/ 0x40400000, 0xffff0000 }, /* bgez 0 */
13057   { /* "b",	"p",		*/ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13058   { 0, 0 }  /* End marker for find_match().  */
13059 };
13060 
13061 static const struct opcode_descriptor bc_insn_32 =
13062   { /* "bc(1|2)(ft)", "N,p",	*/ 0x42800000, 0xfec30000 };
13063 
13064 static const struct opcode_descriptor bz_insn_32 =
13065   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 };
13066 
13067 static const struct opcode_descriptor bzal_insn_32 =
13068   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 };
13069 
13070 static const struct opcode_descriptor beq_insn_32 =
13071   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 };
13072 
13073 static const struct opcode_descriptor b_insn_16 =
13074   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 };
13075 
13076 static const struct opcode_descriptor bz_insn_16 =
13077   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 };
13078 
13079 
13080 /* 32-bit and 16-bit branch EQ and NE zero.  */
13081 
13082 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13083    eq and second the ne.  This convention is used when replacing a
13084    32-bit BEQ/BNE with the 16-bit version.  */
13085 
13086 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13087 
13088 static const struct opcode_descriptor bz_rs_insns_32[] = {
13089   { /* "beqz",	"s,p",		*/ 0x94000000, 0xffe00000 },
13090   { /* "bnez",	"s,p",		*/ 0xb4000000, 0xffe00000 },
13091   { 0, 0 }  /* End marker for find_match().  */
13092 };
13093 
13094 static const struct opcode_descriptor bz_rt_insns_32[] = {
13095   { /* "beqz",	"t,p",		*/ 0x94000000, 0xfc01f000 },
13096   { /* "bnez",	"t,p",		*/ 0xb4000000, 0xfc01f000 },
13097   { 0, 0 }  /* End marker for find_match().  */
13098 };
13099 
13100 static const struct opcode_descriptor bzc_insns_32[] = {
13101   { /* "beqzc",	"s,p",		*/ 0x40e00000, 0xffe00000 },
13102   { /* "bnezc",	"s,p",		*/ 0x40a00000, 0xffe00000 },
13103   { 0, 0 }  /* End marker for find_match().  */
13104 };
13105 
13106 static const struct opcode_descriptor bz_insns_16[] = {
13107   { /* "beqz",	"md,mE",	*/ 0x8c00,     0xfc00 },
13108   { /* "bnez",	"md,mE",	*/ 0xac00,     0xfc00 },
13109   { 0, 0 }  /* End marker for find_match().  */
13110 };
13111 
13112 /* Switch between a 5-bit register index and its 3-bit shorthand.  */
13113 
13114 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13115 #define BZ16_REG_FIELD(r) \
13116   (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13117 
13118 
13119 /* 32-bit instructions with a delay slot.  */
13120 
13121 static const struct opcode_descriptor jal_insn_32_bd16 =
13122   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 };
13123 
13124 static const struct opcode_descriptor jal_insn_32_bd32 =
13125   { /* "jal",	"a",		*/ 0xf4000000, 0xfc000000 };
13126 
13127 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13128   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 };
13129 
13130 static const struct opcode_descriptor j_insn_32 =
13131   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 };
13132 
13133 static const struct opcode_descriptor jalr_insn_32 =
13134   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff };
13135 
13136 /* This table can be compacted, because no opcode replacement is made.  */
13137 
13138 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13139   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 },
13140 
13141   { /* "jalrs[.hb]", "t,s",	*/ 0x00004f3c, 0xfc00efff },
13142   { /* "b(ge|lt)zals", "s,p",	*/ 0x42200000, 0xffa00000 },
13143 
13144   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 },
13145   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 },
13146   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 },
13147   { 0, 0 }  /* End marker for find_match().  */
13148 };
13149 
13150 /* This table can be compacted, because no opcode replacement is made.  */
13151 
13152 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13153   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 },
13154 
13155   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff },
13156   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 },
13157   { 0, 0 }  /* End marker for find_match().  */
13158 };
13159 
13160 
13161 /* 16-bit instructions with a delay slot.  */
13162 
13163 static const struct opcode_descriptor jalr_insn_16_bd16 =
13164   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 };
13165 
13166 static const struct opcode_descriptor jalr_insn_16_bd32 =
13167   { /* "jalr",	"my,mj",	*/ 0x45c0,     0xffe0 };
13168 
13169 static const struct opcode_descriptor jr_insn_16 =
13170   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 };
13171 
13172 #define JR16_REG(opcode) ((opcode) & 0x1f)
13173 
13174 /* This table can be compacted, because no opcode replacement is made.  */
13175 
13176 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13177   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 },
13178 
13179   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 },
13180   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 },
13181   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 },
13182   { 0, 0 }  /* End marker for find_match().  */
13183 };
13184 
13185 
13186 /* LUI instruction.  */
13187 
13188 static const struct opcode_descriptor lui_insn =
13189  { /* "lui",	"s,u",		*/ 0x41a00000, 0xffe00000 };
13190 
13191 
13192 /* ADDIU instruction.  */
13193 
13194 static const struct opcode_descriptor addiu_insn =
13195   { /* "addiu",	"t,r,j",	*/ 0x30000000, 0xfc000000 };
13196 
13197 static const struct opcode_descriptor addiupc_insn =
13198   { /* "addiu",	"mb,$pc,mQ",	*/ 0x78000000, 0xfc000000 };
13199 
13200 #define ADDIUPC_REG_FIELD(r) \
13201   (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13202 
13203 
13204 /* Relaxable instructions in a JAL delay slot: MOVE.  */
13205 
13206 /* The 16-bit move has rd in 9:5 and rs in 4:0.  The 32-bit moves
13207    (ADDU, OR) have rd in 15:11 and rs in 10:16.  */
13208 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13209 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13210 
13211 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13212 #define MOVE16_RS_FIELD(r) (((r) & 0x1f)     )
13213 
13214 static const struct opcode_descriptor move_insns_32[] = {
13215   { /* "move",	"d,s",		*/ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13216   { /* "move",	"d,s",		*/ 0x00000290, 0xffe007ff }, /* or   d,s,$0 */
13217   { 0, 0 }  /* End marker for find_match().  */
13218 };
13219 
13220 static const struct opcode_descriptor move_insn_16 =
13221   { /* "move",	"mp,mj",	*/ 0x0c00,     0xfc00 };
13222 
13223 
13224 /* NOP instructions.  */
13225 
13226 static const struct opcode_descriptor nop_insn_32 =
13227   { /* "nop",	"",		*/ 0x00000000, 0xffffffff };
13228 
13229 static const struct opcode_descriptor nop_insn_16 =
13230   { /* "nop",	"",		*/ 0x0c00,     0xffff };
13231 
13232 
13233 /* Instruction match support.  */
13234 
13235 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13236 
13237 static int
find_match(unsigned long opcode,const struct opcode_descriptor insn[])13238 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13239 {
13240   unsigned long indx;
13241 
13242   for (indx = 0; insn[indx].mask != 0; indx++)
13243     if (MATCH (opcode, insn[indx]))
13244       return indx;
13245 
13246   return -1;
13247 }
13248 
13249 
13250 /* Branch and delay slot decoding support.  */
13251 
13252 /* If PTR points to what *might* be a 16-bit branch or jump, then
13253    return the minimum length of its delay slot, otherwise return 0.
13254    Non-zero results are not definitive as we might be checking against
13255    the second half of another instruction.  */
13256 
13257 static int
check_br16_dslot(bfd * abfd,bfd_byte * ptr)13258 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13259 {
13260   unsigned long opcode;
13261   int bdsize;
13262 
13263   opcode = bfd_get_16 (abfd, ptr);
13264   if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13265     /* 16-bit branch/jump with a 32-bit delay slot.  */
13266     bdsize = 4;
13267   else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13268 	   || find_match (opcode, ds_insns_16_bd16) >= 0)
13269     /* 16-bit branch/jump with a 16-bit delay slot.  */
13270     bdsize = 2;
13271   else
13272     /* No delay slot.  */
13273     bdsize = 0;
13274 
13275   return bdsize;
13276 }
13277 
13278 /* If PTR points to what *might* be a 32-bit branch or jump, then
13279    return the minimum length of its delay slot, otherwise return 0.
13280    Non-zero results are not definitive as we might be checking against
13281    the second half of another instruction.  */
13282 
13283 static int
check_br32_dslot(bfd * abfd,bfd_byte * ptr)13284 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13285 {
13286   unsigned long opcode;
13287   int bdsize;
13288 
13289   opcode = bfd_get_micromips_32 (abfd, ptr);
13290   if (find_match (opcode, ds_insns_32_bd32) >= 0)
13291     /* 32-bit branch/jump with a 32-bit delay slot.  */
13292     bdsize = 4;
13293   else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13294     /* 32-bit branch/jump with a 16-bit delay slot.  */
13295     bdsize = 2;
13296   else
13297     /* No delay slot.  */
13298     bdsize = 0;
13299 
13300   return bdsize;
13301 }
13302 
13303 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13304    that doesn't fiddle with REG, then return TRUE, otherwise FALSE.  */
13305 
13306 static bfd_boolean
check_br16(bfd * abfd,bfd_byte * ptr,unsigned long reg)13307 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13308 {
13309   unsigned long opcode;
13310 
13311   opcode = bfd_get_16 (abfd, ptr);
13312   if (MATCH (opcode, b_insn_16)
13313 						/* B16  */
13314       || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13315 						/* JR16  */
13316       || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13317 						/* BEQZ16, BNEZ16  */
13318       || (MATCH (opcode, jalr_insn_16_bd32)
13319 						/* JALR16  */
13320 	  && reg != JR16_REG (opcode) && reg != RA))
13321     return TRUE;
13322 
13323   return FALSE;
13324 }
13325 
13326 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13327    then return TRUE, otherwise FALSE.  */
13328 
13329 static bfd_boolean
check_br32(bfd * abfd,bfd_byte * ptr,unsigned long reg)13330 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13331 {
13332   unsigned long opcode;
13333 
13334   opcode = bfd_get_micromips_32 (abfd, ptr);
13335   if (MATCH (opcode, j_insn_32)
13336 						/* J  */
13337       || MATCH (opcode, bc_insn_32)
13338 						/* BC1F, BC1T, BC2F, BC2T  */
13339       || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13340 						/* JAL, JALX  */
13341       || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13342 						/* BGEZ, BGTZ, BLEZ, BLTZ  */
13343       || (MATCH (opcode, bzal_insn_32)
13344 						/* BGEZAL, BLTZAL  */
13345 	  && reg != OP32_SREG (opcode) && reg != RA)
13346       || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13347 						/* JALR, JALR.HB, BEQ, BNE  */
13348 	  && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13349     return TRUE;
13350 
13351   return FALSE;
13352 }
13353 
13354 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13355    IRELEND) at OFFSET indicate that there must be a compact branch there,
13356    then return TRUE, otherwise FALSE.  */
13357 
13358 static bfd_boolean
check_relocated_bzc(bfd * abfd,const bfd_byte * ptr,bfd_vma offset,const Elf_Internal_Rela * internal_relocs,const Elf_Internal_Rela * irelend)13359 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13360 		     const Elf_Internal_Rela *internal_relocs,
13361 		     const Elf_Internal_Rela *irelend)
13362 {
13363   const Elf_Internal_Rela *irel;
13364   unsigned long opcode;
13365 
13366   opcode = bfd_get_micromips_32 (abfd, ptr);
13367   if (find_match (opcode, bzc_insns_32) < 0)
13368     return FALSE;
13369 
13370   for (irel = internal_relocs; irel < irelend; irel++)
13371     if (irel->r_offset == offset
13372 	&& ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13373       return TRUE;
13374 
13375   return FALSE;
13376 }
13377 
13378 /* Bitsize checking.  */
13379 #define IS_BITSIZE(val, N)						\
13380   (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1)))		\
13381     - (1ULL << ((N) - 1))) == (val))
13382 
13383 
13384 bfd_boolean
_bfd_mips_elf_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * again)13385 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13386 			     struct bfd_link_info *link_info,
13387 			     bfd_boolean *again)
13388 {
13389   bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13390   Elf_Internal_Shdr *symtab_hdr;
13391   Elf_Internal_Rela *internal_relocs;
13392   Elf_Internal_Rela *irel, *irelend;
13393   bfd_byte *contents = NULL;
13394   Elf_Internal_Sym *isymbuf = NULL;
13395 
13396   /* Assume nothing changes.  */
13397   *again = FALSE;
13398 
13399   /* We don't have to do anything for a relocatable link, if
13400      this section does not have relocs, or if this is not a
13401      code section.  */
13402 
13403   if (link_info->relocatable
13404       || (sec->flags & SEC_RELOC) == 0
13405       || sec->reloc_count == 0
13406       || (sec->flags & SEC_CODE) == 0)
13407     return TRUE;
13408 
13409   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13410 
13411   /* Get a copy of the native relocations.  */
13412   internal_relocs = (_bfd_elf_link_read_relocs
13413 		     (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13414 		      link_info->keep_memory));
13415   if (internal_relocs == NULL)
13416     goto error_return;
13417 
13418   /* Walk through them looking for relaxing opportunities.  */
13419   irelend = internal_relocs + sec->reloc_count;
13420   for (irel = internal_relocs; irel < irelend; irel++)
13421     {
13422       unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13423       unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13424       bfd_boolean target_is_micromips_code_p;
13425       unsigned long opcode;
13426       bfd_vma symval;
13427       bfd_vma pcrval;
13428       bfd_byte *ptr;
13429       int fndopc;
13430 
13431       /* The number of bytes to delete for relaxation and from where
13432          to delete these bytes starting at irel->r_offset.  */
13433       int delcnt = 0;
13434       int deloff = 0;
13435 
13436       /* If this isn't something that can be relaxed, then ignore
13437          this reloc.  */
13438       if (r_type != R_MICROMIPS_HI16
13439 	  && r_type != R_MICROMIPS_PC16_S1
13440 	  && r_type != R_MICROMIPS_26_S1)
13441 	continue;
13442 
13443       /* Get the section contents if we haven't done so already.  */
13444       if (contents == NULL)
13445 	{
13446 	  /* Get cached copy if it exists.  */
13447 	  if (elf_section_data (sec)->this_hdr.contents != NULL)
13448 	    contents = elf_section_data (sec)->this_hdr.contents;
13449 	  /* Go get them off disk.  */
13450 	  else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13451 	    goto error_return;
13452 	}
13453       ptr = contents + irel->r_offset;
13454 
13455       /* Read this BFD's local symbols if we haven't done so already.  */
13456       if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13457 	{
13458 	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13459 	  if (isymbuf == NULL)
13460 	    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13461 					    symtab_hdr->sh_info, 0,
13462 					    NULL, NULL, NULL);
13463 	  if (isymbuf == NULL)
13464 	    goto error_return;
13465 	}
13466 
13467       /* Get the value of the symbol referred to by the reloc.  */
13468       if (r_symndx < symtab_hdr->sh_info)
13469 	{
13470 	  /* A local symbol.  */
13471 	  Elf_Internal_Sym *isym;
13472 	  asection *sym_sec;
13473 
13474 	  isym = isymbuf + r_symndx;
13475 	  if (isym->st_shndx == SHN_UNDEF)
13476 	    sym_sec = bfd_und_section_ptr;
13477 	  else if (isym->st_shndx == SHN_ABS)
13478 	    sym_sec = bfd_abs_section_ptr;
13479 	  else if (isym->st_shndx == SHN_COMMON)
13480 	    sym_sec = bfd_com_section_ptr;
13481 	  else
13482 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13483 	  symval = (isym->st_value
13484 		    + sym_sec->output_section->vma
13485 		    + sym_sec->output_offset);
13486 	  target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13487 	}
13488       else
13489 	{
13490 	  unsigned long indx;
13491 	  struct elf_link_hash_entry *h;
13492 
13493 	  /* An external symbol.  */
13494 	  indx = r_symndx - symtab_hdr->sh_info;
13495 	  h = elf_sym_hashes (abfd)[indx];
13496 	  BFD_ASSERT (h != NULL);
13497 
13498 	  if (h->root.type != bfd_link_hash_defined
13499 	      && h->root.type != bfd_link_hash_defweak)
13500 	    /* This appears to be a reference to an undefined
13501 	       symbol.  Just ignore it -- it will be caught by the
13502 	       regular reloc processing.  */
13503 	    continue;
13504 
13505 	  symval = (h->root.u.def.value
13506 		    + h->root.u.def.section->output_section->vma
13507 		    + h->root.u.def.section->output_offset);
13508 	  target_is_micromips_code_p = (!h->needs_plt
13509 					&& ELF_ST_IS_MICROMIPS (h->other));
13510 	}
13511 
13512 
13513       /* For simplicity of coding, we are going to modify the
13514          section contents, the section relocs, and the BFD symbol
13515          table.  We must tell the rest of the code not to free up this
13516          information.  It would be possible to instead create a table
13517          of changes which have to be made, as is done in coff-mips.c;
13518          that would be more work, but would require less memory when
13519          the linker is run.  */
13520 
13521       /* Only 32-bit instructions relaxed.  */
13522       if (irel->r_offset + 4 > sec->size)
13523 	continue;
13524 
13525       opcode = bfd_get_micromips_32 (abfd, ptr);
13526 
13527       /* This is the pc-relative distance from the instruction the
13528          relocation is applied to, to the symbol referred.  */
13529       pcrval = (symval
13530 		- (sec->output_section->vma + sec->output_offset)
13531 		- irel->r_offset);
13532 
13533       /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13534          of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13535          R_MICROMIPS_PC23_S2.  The R_MICROMIPS_PC23_S2 condition is
13536 
13537            (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13538 
13539          where pcrval has first to be adjusted to apply against the LO16
13540          location (we make the adjustment later on, when we have figured
13541          out the offset).  */
13542       if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13543 	{
13544 	  bfd_boolean bzc = FALSE;
13545 	  unsigned long nextopc;
13546 	  unsigned long reg;
13547 	  bfd_vma offset;
13548 
13549 	  /* Give up if the previous reloc was a HI16 against this symbol
13550 	     too.  */
13551 	  if (irel > internal_relocs
13552 	      && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13553 	      && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13554 	    continue;
13555 
13556 	  /* Or if the next reloc is not a LO16 against this symbol.  */
13557 	  if (irel + 1 >= irelend
13558 	      || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13559 	      || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13560 	    continue;
13561 
13562 	  /* Or if the second next reloc is a LO16 against this symbol too.  */
13563 	  if (irel + 2 >= irelend
13564 	      && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13565 	      && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13566 	    continue;
13567 
13568 	  /* See if the LUI instruction *might* be in a branch delay slot.
13569 	     We check whether what looks like a 16-bit branch or jump is
13570 	     actually an immediate argument to a compact branch, and let
13571 	     it through if so.  */
13572 	  if (irel->r_offset >= 2
13573 	      && check_br16_dslot (abfd, ptr - 2)
13574 	      && !(irel->r_offset >= 4
13575 		   && (bzc = check_relocated_bzc (abfd,
13576 						  ptr - 4, irel->r_offset - 4,
13577 						  internal_relocs, irelend))))
13578 	    continue;
13579 	  if (irel->r_offset >= 4
13580 	      && !bzc
13581 	      && check_br32_dslot (abfd, ptr - 4))
13582 	    continue;
13583 
13584 	  reg = OP32_SREG (opcode);
13585 
13586 	  /* We only relax adjacent instructions or ones separated with
13587 	     a branch or jump that has a delay slot.  The branch or jump
13588 	     must not fiddle with the register used to hold the address.
13589 	     Subtract 4 for the LUI itself.  */
13590 	  offset = irel[1].r_offset - irel[0].r_offset;
13591 	  switch (offset - 4)
13592 	    {
13593 	    case 0:
13594 	      break;
13595 	    case 2:
13596 	      if (check_br16 (abfd, ptr + 4, reg))
13597 		break;
13598 	      continue;
13599 	    case 4:
13600 	      if (check_br32 (abfd, ptr + 4, reg))
13601 		break;
13602 	      continue;
13603 	    default:
13604 	      continue;
13605 	    }
13606 
13607 	  nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13608 
13609 	  /* Give up unless the same register is used with both
13610 	     relocations.  */
13611 	  if (OP32_SREG (nextopc) != reg)
13612 	    continue;
13613 
13614 	  /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13615 	     and rounding up to take masking of the two LSBs into account.  */
13616 	  pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13617 
13618 	  /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16.  */
13619 	  if (IS_BITSIZE (symval, 16))
13620 	    {
13621 	      /* Fix the relocation's type.  */
13622 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13623 
13624 	      /* Instructions using R_MICROMIPS_LO16 have the base or
13625 	         source register in bits 20:16.  This register becomes $0
13626 	         (zero) as the result of the R_MICROMIPS_HI16 being 0.  */
13627 	      nextopc &= ~0x001f0000;
13628 	      bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13629 			  contents + irel[1].r_offset);
13630 	    }
13631 
13632 	  /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13633 	     We add 4 to take LUI deletion into account while checking
13634 	     the PC-relative distance.  */
13635 	  else if (symval % 4 == 0
13636 		   && IS_BITSIZE (pcrval + 4, 25)
13637 		   && MATCH (nextopc, addiu_insn)
13638 		   && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13639 		   && OP16_VALID_REG (OP32_TREG (nextopc)))
13640 	    {
13641 	      /* Fix the relocation's type.  */
13642 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13643 
13644 	      /* Replace ADDIU with the ADDIUPC version.  */
13645 	      nextopc = (addiupc_insn.match
13646 			 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13647 
13648 	      bfd_put_micromips_32 (abfd, nextopc,
13649 				    contents + irel[1].r_offset);
13650 	    }
13651 
13652 	  /* Can't do anything, give up, sigh...  */
13653 	  else
13654 	    continue;
13655 
13656 	  /* Fix the relocation's type.  */
13657 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13658 
13659 	  /* Delete the LUI instruction: 4 bytes at irel->r_offset.  */
13660 	  delcnt = 4;
13661 	  deloff = 0;
13662 	}
13663 
13664       /* Compact branch relaxation -- due to the multitude of macros
13665          employed by the compiler/assembler, compact branches are not
13666          always generated.  Obviously, this can/will be fixed elsewhere,
13667          but there is no drawback in double checking it here.  */
13668       else if (r_type == R_MICROMIPS_PC16_S1
13669 	       && irel->r_offset + 5 < sec->size
13670 	       && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13671 		   || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13672 	       && ((!insn32
13673 		    && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13674 					nop_insn_16) ? 2 : 0))
13675 		   || (irel->r_offset + 7 < sec->size
13676 		       && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13677 								 ptr + 4),
13678 					   nop_insn_32) ? 4 : 0))))
13679 	{
13680 	  unsigned long reg;
13681 
13682 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13683 
13684 	  /* Replace BEQZ/BNEZ with the compact version.  */
13685 	  opcode = (bzc_insns_32[fndopc].match
13686 		    | BZC32_REG_FIELD (reg)
13687 		    | (opcode & 0xffff));		/* Addend value.  */
13688 
13689 	  bfd_put_micromips_32 (abfd, opcode, ptr);
13690 
13691 	  /* Delete the delay slot NOP: two or four bytes from
13692 	     irel->offset + 4; delcnt has already been set above.  */
13693 	  deloff = 4;
13694 	}
13695 
13696       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1.  We need
13697          to check the distance from the next instruction, so subtract 2.  */
13698       else if (!insn32
13699 	       && r_type == R_MICROMIPS_PC16_S1
13700 	       && IS_BITSIZE (pcrval - 2, 11)
13701 	       && find_match (opcode, b_insns_32) >= 0)
13702 	{
13703 	  /* Fix the relocation's type.  */
13704 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13705 
13706 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
13707 	  bfd_put_16 (abfd,
13708 		      (b_insn_16.match
13709 		       | (opcode & 0x3ff)),		/* Addend value.  */
13710 		      ptr);
13711 
13712 	  /* Delete 2 bytes from irel->r_offset + 2.  */
13713 	  delcnt = 2;
13714 	  deloff = 2;
13715 	}
13716 
13717       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1.  We need
13718          to check the distance from the next instruction, so subtract 2.  */
13719       else if (!insn32
13720 	       && r_type == R_MICROMIPS_PC16_S1
13721 	       && IS_BITSIZE (pcrval - 2, 8)
13722 	       && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13723 		    && OP16_VALID_REG (OP32_SREG (opcode)))
13724 		   || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13725 		       && OP16_VALID_REG (OP32_TREG (opcode)))))
13726 	{
13727 	  unsigned long reg;
13728 
13729 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13730 
13731 	  /* Fix the relocation's type.  */
13732 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13733 
13734 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
13735 	  bfd_put_16 (abfd,
13736 		      (bz_insns_16[fndopc].match
13737 		       | BZ16_REG_FIELD (reg)
13738 		       | (opcode & 0x7f)),		/* Addend value.  */
13739 		      ptr);
13740 
13741 	  /* Delete 2 bytes from irel->r_offset + 2.  */
13742 	  delcnt = 2;
13743 	  deloff = 2;
13744 	}
13745 
13746       /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets.  */
13747       else if (!insn32
13748 	       && r_type == R_MICROMIPS_26_S1
13749 	       && target_is_micromips_code_p
13750 	       && irel->r_offset + 7 < sec->size
13751 	       && MATCH (opcode, jal_insn_32_bd32))
13752 	{
13753 	  unsigned long n32opc;
13754 	  bfd_boolean relaxed = FALSE;
13755 
13756 	  n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13757 
13758 	  if (MATCH (n32opc, nop_insn_32))
13759 	    {
13760 	      /* Replace delay slot 32-bit NOP with a 16-bit NOP.  */
13761 	      bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13762 
13763 	      relaxed = TRUE;
13764 	    }
13765 	  else if (find_match (n32opc, move_insns_32) >= 0)
13766 	    {
13767 	      /* Replace delay slot 32-bit MOVE with 16-bit MOVE.  */
13768 	      bfd_put_16 (abfd,
13769 			  (move_insn_16.match
13770 			   | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13771 			   | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13772 			  ptr + 4);
13773 
13774 	      relaxed = TRUE;
13775 	    }
13776 	  /* Other 32-bit instructions relaxable to 16-bit
13777 	     instructions will be handled here later.  */
13778 
13779 	  if (relaxed)
13780 	    {
13781 	      /* JAL with 32-bit delay slot that is changed to a JALS
13782 	         with 16-bit delay slot.  */
13783 	      bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13784 
13785 	      /* Delete 2 bytes from irel->r_offset + 6.  */
13786 	      delcnt = 2;
13787 	      deloff = 6;
13788 	    }
13789 	}
13790 
13791       if (delcnt != 0)
13792 	{
13793 	  /* Note that we've changed the relocs, section contents, etc.  */
13794 	  elf_section_data (sec)->relocs = internal_relocs;
13795 	  elf_section_data (sec)->this_hdr.contents = contents;
13796 	  symtab_hdr->contents = (unsigned char *) isymbuf;
13797 
13798 	  /* Delete bytes depending on the delcnt and deloff.  */
13799 	  if (!mips_elf_relax_delete_bytes (abfd, sec,
13800 					    irel->r_offset + deloff, delcnt))
13801 	    goto error_return;
13802 
13803 	  /* That will change things, so we should relax again.
13804 	     Note that this is not required, and it may be slow.  */
13805 	  *again = TRUE;
13806 	}
13807     }
13808 
13809   if (isymbuf != NULL
13810       && symtab_hdr->contents != (unsigned char *) isymbuf)
13811     {
13812       if (! link_info->keep_memory)
13813 	free (isymbuf);
13814       else
13815 	{
13816 	  /* Cache the symbols for elf_link_input_bfd.  */
13817 	  symtab_hdr->contents = (unsigned char *) isymbuf;
13818 	}
13819     }
13820 
13821   if (contents != NULL
13822       && elf_section_data (sec)->this_hdr.contents != contents)
13823     {
13824       if (! link_info->keep_memory)
13825 	free (contents);
13826       else
13827 	{
13828 	  /* Cache the section contents for elf_link_input_bfd.  */
13829 	  elf_section_data (sec)->this_hdr.contents = contents;
13830 	}
13831     }
13832 
13833   if (internal_relocs != NULL
13834       && elf_section_data (sec)->relocs != internal_relocs)
13835     free (internal_relocs);
13836 
13837   return TRUE;
13838 
13839  error_return:
13840   if (isymbuf != NULL
13841       && symtab_hdr->contents != (unsigned char *) isymbuf)
13842     free (isymbuf);
13843   if (contents != NULL
13844       && elf_section_data (sec)->this_hdr.contents != contents)
13845     free (contents);
13846   if (internal_relocs != NULL
13847       && elf_section_data (sec)->relocs != internal_relocs)
13848     free (internal_relocs);
13849 
13850   return FALSE;
13851 }
13852 
13853 /* Create a MIPS ELF linker hash table.  */
13854 
13855 struct bfd_link_hash_table *
_bfd_mips_elf_link_hash_table_create(bfd * abfd)13856 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13857 {
13858   struct mips_elf_link_hash_table *ret;
13859   bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13860 
13861   ret = bfd_zmalloc (amt);
13862   if (ret == NULL)
13863     return NULL;
13864 
13865   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13866 				      mips_elf_link_hash_newfunc,
13867 				      sizeof (struct mips_elf_link_hash_entry),
13868 				      MIPS_ELF_DATA))
13869     {
13870       free (ret);
13871       return NULL;
13872     }
13873   ret->root.init_plt_refcount.plist = NULL;
13874   ret->root.init_plt_offset.plist = NULL;
13875 
13876   return &ret->root.root;
13877 }
13878 
13879 /* Likewise, but indicate that the target is VxWorks.  */
13880 
13881 struct bfd_link_hash_table *
_bfd_mips_vxworks_link_hash_table_create(bfd * abfd)13882 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13883 {
13884   struct bfd_link_hash_table *ret;
13885 
13886   ret = _bfd_mips_elf_link_hash_table_create (abfd);
13887   if (ret)
13888     {
13889       struct mips_elf_link_hash_table *htab;
13890 
13891       htab = (struct mips_elf_link_hash_table *) ret;
13892       htab->use_plts_and_copy_relocs = TRUE;
13893       htab->is_vxworks = TRUE;
13894     }
13895   return ret;
13896 }
13897 
13898 /* A function that the linker calls if we are allowed to use PLTs
13899    and copy relocs.  */
13900 
13901 void
_bfd_mips_elf_use_plts_and_copy_relocs(struct bfd_link_info * info)13902 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13903 {
13904   mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13905 }
13906 
13907 /* A function that the linker calls to select between all or only
13908    32-bit microMIPS instructions.  */
13909 
13910 void
_bfd_mips_elf_insn32(struct bfd_link_info * info,bfd_boolean on)13911 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13912 {
13913   mips_elf_hash_table (info)->insn32 = on;
13914 }
13915 
13916 void
_bfd_mips_elf_compact_branches(struct bfd_link_info * info,bfd_boolean on)13917 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
13918 {
13919   mips_elf_hash_table (info)->compact_branches = on;
13920 }
13921 
13922 
13923 /* Return the .MIPS.abiflags value representing each ISA Extension.  */
13924 
13925 unsigned int
bfd_mips_isa_ext(bfd * abfd)13926 bfd_mips_isa_ext (bfd *abfd)
13927 {
13928   switch (bfd_get_mach (abfd))
13929     {
13930     case bfd_mach_mips3900:
13931       return AFL_EXT_3900;
13932     case bfd_mach_mips4010:
13933       return AFL_EXT_4010;
13934     case bfd_mach_mips4100:
13935       return AFL_EXT_4100;
13936     case bfd_mach_mips4111:
13937       return AFL_EXT_4111;
13938     case bfd_mach_mips4120:
13939       return AFL_EXT_4120;
13940     case bfd_mach_mips4650:
13941       return AFL_EXT_4650;
13942     case bfd_mach_mips5400:
13943       return AFL_EXT_5400;
13944     case bfd_mach_mips5500:
13945       return AFL_EXT_5500;
13946     case bfd_mach_mips5900:
13947       return AFL_EXT_5900;
13948     case bfd_mach_mips10000:
13949       return AFL_EXT_10000;
13950     case bfd_mach_mips_loongson_2e:
13951       return AFL_EXT_LOONGSON_2E;
13952     case bfd_mach_mips_loongson_2f:
13953       return AFL_EXT_LOONGSON_2F;
13954     case bfd_mach_mips_loongson_3a:
13955       return AFL_EXT_LOONGSON_3A;
13956     case bfd_mach_mips_sb1:
13957       return AFL_EXT_SB1;
13958     case bfd_mach_mips_octeon:
13959       return AFL_EXT_OCTEON;
13960     case bfd_mach_mips_octeonp:
13961       return AFL_EXT_OCTEONP;
13962     case bfd_mach_mips_octeon3:
13963       return AFL_EXT_OCTEON3;
13964     case bfd_mach_mips_octeon2:
13965       return AFL_EXT_OCTEON2;
13966     case bfd_mach_mips_xlr:
13967       return AFL_EXT_XLR;
13968     }
13969   return 0;
13970 }
13971 
13972 /* Update the isa_level, isa_rev, isa_ext fields of abiflags.  */
13973 
13974 static void
update_mips_abiflags_isa(bfd * abfd,Elf_Internal_ABIFlags_v0 * abiflags)13975 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
13976 {
13977   switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
13978     {
13979     case E_MIPS_ARCH_1:
13980       abiflags->isa_level = 1;
13981       abiflags->isa_rev = 0;
13982       break;
13983     case E_MIPS_ARCH_2:
13984       abiflags->isa_level = 2;
13985       abiflags->isa_rev = 0;
13986       break;
13987     case E_MIPS_ARCH_3:
13988       abiflags->isa_level = 3;
13989       abiflags->isa_rev = 0;
13990       break;
13991     case E_MIPS_ARCH_4:
13992       abiflags->isa_level = 4;
13993       abiflags->isa_rev = 0;
13994       break;
13995     case E_MIPS_ARCH_5:
13996       abiflags->isa_level = 5;
13997       abiflags->isa_rev = 0;
13998       break;
13999     case E_MIPS_ARCH_32:
14000       abiflags->isa_level = 32;
14001       abiflags->isa_rev = 1;
14002       break;
14003     case E_MIPS_ARCH_32R2:
14004       abiflags->isa_level = 32;
14005       /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag.  */
14006       if (abiflags->isa_rev < 2)
14007 	abiflags->isa_rev = 2;
14008       break;
14009     case E_MIPS_ARCH_32R6:
14010       abiflags->isa_level = 32;
14011       abiflags->isa_rev = 6;
14012       break;
14013     case E_MIPS_ARCH_64:
14014       abiflags->isa_level = 64;
14015       abiflags->isa_rev = 1;
14016       break;
14017     case E_MIPS_ARCH_64R2:
14018       /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag.  */
14019       abiflags->isa_level = 64;
14020       if (abiflags->isa_rev < 2)
14021 	abiflags->isa_rev = 2;
14022       break;
14023     case E_MIPS_ARCH_64R6:
14024       abiflags->isa_level = 64;
14025       abiflags->isa_rev = 6;
14026       break;
14027     default:
14028       (*_bfd_error_handler)
14029 	(_("%B: Unknown architecture %s"),
14030 	 abfd, bfd_printable_name (abfd));
14031     }
14032 
14033   abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14034 }
14035 
14036 /* Return true if the given ELF header flags describe a 32-bit binary.  */
14037 
14038 static bfd_boolean
mips_32bit_flags_p(flagword flags)14039 mips_32bit_flags_p (flagword flags)
14040 {
14041   return ((flags & EF_MIPS_32BITMODE) != 0
14042 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14043 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14044 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14045 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14046 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14047 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14048 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14049 }
14050 
14051 /* Infer the content of the ABI flags based on the elf header.  */
14052 
14053 static void
infer_mips_abiflags(bfd * abfd,Elf_Internal_ABIFlags_v0 * abiflags)14054 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14055 {
14056   obj_attribute *in_attr;
14057 
14058   memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14059   update_mips_abiflags_isa (abfd, abiflags);
14060 
14061   if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14062     abiflags->gpr_size = AFL_REG_32;
14063   else
14064     abiflags->gpr_size = AFL_REG_64;
14065 
14066   abiflags->cpr1_size = AFL_REG_NONE;
14067 
14068   in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14069   abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14070 
14071   if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14072       || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14073       || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14074 	  && abiflags->gpr_size == AFL_REG_32))
14075     abiflags->cpr1_size = AFL_REG_32;
14076   else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14077 	   || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14078 	   || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14079     abiflags->cpr1_size = AFL_REG_64;
14080 
14081   abiflags->cpr2_size = AFL_REG_NONE;
14082 
14083   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14084     abiflags->ases |= AFL_ASE_MDMX;
14085   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14086     abiflags->ases |= AFL_ASE_MIPS16;
14087   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14088     abiflags->ases |= AFL_ASE_MICROMIPS;
14089 
14090   if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14091       && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14092       && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14093       && abiflags->isa_level >= 32
14094       && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14095     abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14096 }
14097 
14098 /* We need to use a special link routine to handle the .reginfo and
14099    the .mdebug sections.  We need to merge all instances of these
14100    sections together, not write them all out sequentially.  */
14101 
14102 bfd_boolean
_bfd_mips_elf_final_link(bfd * abfd,struct bfd_link_info * info)14103 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14104 {
14105   asection *o;
14106   struct bfd_link_order *p;
14107   asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14108   asection *rtproc_sec, *abiflags_sec;
14109   Elf32_RegInfo reginfo;
14110   struct ecoff_debug_info debug;
14111   struct mips_htab_traverse_info hti;
14112   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14113   const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14114   HDRR *symhdr = &debug.symbolic_header;
14115   void *mdebug_handle = NULL;
14116   asection *s;
14117   EXTR esym;
14118   unsigned int i;
14119   bfd_size_type amt;
14120   struct mips_elf_link_hash_table *htab;
14121 
14122   static const char * const secname[] =
14123   {
14124     ".text", ".init", ".fini", ".data",
14125     ".rodata", ".sdata", ".sbss", ".bss"
14126   };
14127   static const int sc[] =
14128   {
14129     scText, scInit, scFini, scData,
14130     scRData, scSData, scSBss, scBss
14131   };
14132 
14133   /* Sort the dynamic symbols so that those with GOT entries come after
14134      those without.  */
14135   htab = mips_elf_hash_table (info);
14136   BFD_ASSERT (htab != NULL);
14137 
14138   if (!mips_elf_sort_hash_table (abfd, info))
14139     return FALSE;
14140 
14141   /* Create any scheduled LA25 stubs.  */
14142   hti.info = info;
14143   hti.output_bfd = abfd;
14144   hti.error = FALSE;
14145   htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14146   if (hti.error)
14147     return FALSE;
14148 
14149   /* Get a value for the GP register.  */
14150   if (elf_gp (abfd) == 0)
14151     {
14152       struct bfd_link_hash_entry *h;
14153 
14154       h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14155       if (h != NULL && h->type == bfd_link_hash_defined)
14156 	elf_gp (abfd) = (h->u.def.value
14157 			 + h->u.def.section->output_section->vma
14158 			 + h->u.def.section->output_offset);
14159       else if (htab->is_vxworks
14160 	       && (h = bfd_link_hash_lookup (info->hash,
14161 					     "_GLOBAL_OFFSET_TABLE_",
14162 					     FALSE, FALSE, TRUE))
14163 	       && h->type == bfd_link_hash_defined)
14164 	elf_gp (abfd) = (h->u.def.section->output_section->vma
14165 			 + h->u.def.section->output_offset
14166 			 + h->u.def.value);
14167       else if (info->relocatable)
14168 	{
14169 	  bfd_vma lo = MINUS_ONE;
14170 
14171 	  /* Find the GP-relative section with the lowest offset.  */
14172 	  for (o = abfd->sections; o != NULL; o = o->next)
14173 	    if (o->vma < lo
14174 		&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14175 	      lo = o->vma;
14176 
14177 	  /* And calculate GP relative to that.  */
14178 	  elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14179 	}
14180       else
14181 	{
14182 	  /* If the relocate_section function needs to do a reloc
14183 	     involving the GP value, it should make a reloc_dangerous
14184 	     callback to warn that GP is not defined.  */
14185 	}
14186     }
14187 
14188   /* Go through the sections and collect the .reginfo and .mdebug
14189      information.  */
14190   abiflags_sec = NULL;
14191   reginfo_sec = NULL;
14192   mdebug_sec = NULL;
14193   gptab_data_sec = NULL;
14194   gptab_bss_sec = NULL;
14195   for (o = abfd->sections; o != NULL; o = o->next)
14196     {
14197       if (strcmp (o->name, ".MIPS.abiflags") == 0)
14198 	{
14199 	  /* We have found the .MIPS.abiflags section in the output file.
14200 	     Look through all the link_orders comprising it and remove them.
14201 	     The data is merged in _bfd_mips_elf_merge_private_bfd_data.  */
14202 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14203 	    {
14204 	      asection *input_section;
14205 
14206 	      if (p->type != bfd_indirect_link_order)
14207 		{
14208 		  if (p->type == bfd_data_link_order)
14209 		    continue;
14210 		  abort ();
14211 		}
14212 
14213 	      input_section = p->u.indirect.section;
14214 
14215 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14216 		 elf_link_input_bfd ignores this section.  */
14217 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14218 	    }
14219 
14220 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
14221 	  BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14222 
14223 	  /* Skip this section later on (I don't think this currently
14224 	     matters, but someday it might).  */
14225 	  o->map_head.link_order = NULL;
14226 
14227 	  abiflags_sec = o;
14228 	}
14229 
14230       if (strcmp (o->name, ".reginfo") == 0)
14231 	{
14232 	  memset (&reginfo, 0, sizeof reginfo);
14233 
14234 	  /* We have found the .reginfo section in the output file.
14235 	     Look through all the link_orders comprising it and merge
14236 	     the information together.  */
14237 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14238 	    {
14239 	      asection *input_section;
14240 	      bfd *input_bfd;
14241 	      Elf32_External_RegInfo ext;
14242 	      Elf32_RegInfo sub;
14243 
14244 	      if (p->type != bfd_indirect_link_order)
14245 		{
14246 		  if (p->type == bfd_data_link_order)
14247 		    continue;
14248 		  abort ();
14249 		}
14250 
14251 	      input_section = p->u.indirect.section;
14252 	      input_bfd = input_section->owner;
14253 
14254 	      if (! bfd_get_section_contents (input_bfd, input_section,
14255 					      &ext, 0, sizeof ext))
14256 		return FALSE;
14257 
14258 	      bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14259 
14260 	      reginfo.ri_gprmask |= sub.ri_gprmask;
14261 	      reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14262 	      reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14263 	      reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14264 	      reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14265 
14266 	      /* ri_gp_value is set by the function
14267 		 mips_elf32_section_processing when the section is
14268 		 finally written out.  */
14269 
14270 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14271 		 elf_link_input_bfd ignores this section.  */
14272 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14273 	    }
14274 
14275 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
14276 	  BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14277 
14278 	  /* Skip this section later on (I don't think this currently
14279 	     matters, but someday it might).  */
14280 	  o->map_head.link_order = NULL;
14281 
14282 	  reginfo_sec = o;
14283 	}
14284 
14285       if (strcmp (o->name, ".mdebug") == 0)
14286 	{
14287 	  struct extsym_info einfo;
14288 	  bfd_vma last;
14289 
14290 	  /* We have found the .mdebug section in the output file.
14291 	     Look through all the link_orders comprising it and merge
14292 	     the information together.  */
14293 	  symhdr->magic = swap->sym_magic;
14294 	  /* FIXME: What should the version stamp be?  */
14295 	  symhdr->vstamp = 0;
14296 	  symhdr->ilineMax = 0;
14297 	  symhdr->cbLine = 0;
14298 	  symhdr->idnMax = 0;
14299 	  symhdr->ipdMax = 0;
14300 	  symhdr->isymMax = 0;
14301 	  symhdr->ioptMax = 0;
14302 	  symhdr->iauxMax = 0;
14303 	  symhdr->issMax = 0;
14304 	  symhdr->issExtMax = 0;
14305 	  symhdr->ifdMax = 0;
14306 	  symhdr->crfd = 0;
14307 	  symhdr->iextMax = 0;
14308 
14309 	  /* We accumulate the debugging information itself in the
14310 	     debug_info structure.  */
14311 	  debug.line = NULL;
14312 	  debug.external_dnr = NULL;
14313 	  debug.external_pdr = NULL;
14314 	  debug.external_sym = NULL;
14315 	  debug.external_opt = NULL;
14316 	  debug.external_aux = NULL;
14317 	  debug.ss = NULL;
14318 	  debug.ssext = debug.ssext_end = NULL;
14319 	  debug.external_fdr = NULL;
14320 	  debug.external_rfd = NULL;
14321 	  debug.external_ext = debug.external_ext_end = NULL;
14322 
14323 	  mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14324 	  if (mdebug_handle == NULL)
14325 	    return FALSE;
14326 
14327 	  esym.jmptbl = 0;
14328 	  esym.cobol_main = 0;
14329 	  esym.weakext = 0;
14330 	  esym.reserved = 0;
14331 	  esym.ifd = ifdNil;
14332 	  esym.asym.iss = issNil;
14333 	  esym.asym.st = stLocal;
14334 	  esym.asym.reserved = 0;
14335 	  esym.asym.index = indexNil;
14336 	  last = 0;
14337 	  for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14338 	    {
14339 	      esym.asym.sc = sc[i];
14340 	      s = bfd_get_section_by_name (abfd, secname[i]);
14341 	      if (s != NULL)
14342 		{
14343 		  esym.asym.value = s->vma;
14344 		  last = s->vma + s->size;
14345 		}
14346 	      else
14347 		esym.asym.value = last;
14348 	      if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14349 						 secname[i], &esym))
14350 		return FALSE;
14351 	    }
14352 
14353 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14354 	    {
14355 	      asection *input_section;
14356 	      bfd *input_bfd;
14357 	      const struct ecoff_debug_swap *input_swap;
14358 	      struct ecoff_debug_info input_debug;
14359 	      char *eraw_src;
14360 	      char *eraw_end;
14361 
14362 	      if (p->type != bfd_indirect_link_order)
14363 		{
14364 		  if (p->type == bfd_data_link_order)
14365 		    continue;
14366 		  abort ();
14367 		}
14368 
14369 	      input_section = p->u.indirect.section;
14370 	      input_bfd = input_section->owner;
14371 
14372 	      if (!is_mips_elf (input_bfd))
14373 		{
14374 		  /* I don't know what a non MIPS ELF bfd would be
14375 		     doing with a .mdebug section, but I don't really
14376 		     want to deal with it.  */
14377 		  continue;
14378 		}
14379 
14380 	      input_swap = (get_elf_backend_data (input_bfd)
14381 			    ->elf_backend_ecoff_debug_swap);
14382 
14383 	      BFD_ASSERT (p->size == input_section->size);
14384 
14385 	      /* The ECOFF linking code expects that we have already
14386 		 read in the debugging information and set up an
14387 		 ecoff_debug_info structure, so we do that now.  */
14388 	      if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14389 						   &input_debug))
14390 		return FALSE;
14391 
14392 	      if (! (bfd_ecoff_debug_accumulate
14393 		     (mdebug_handle, abfd, &debug, swap, input_bfd,
14394 		      &input_debug, input_swap, info)))
14395 		return FALSE;
14396 
14397 	      /* Loop through the external symbols.  For each one with
14398 		 interesting information, try to find the symbol in
14399 		 the linker global hash table and save the information
14400 		 for the output external symbols.  */
14401 	      eraw_src = input_debug.external_ext;
14402 	      eraw_end = (eraw_src
14403 			  + (input_debug.symbolic_header.iextMax
14404 			     * input_swap->external_ext_size));
14405 	      for (;
14406 		   eraw_src < eraw_end;
14407 		   eraw_src += input_swap->external_ext_size)
14408 		{
14409 		  EXTR ext;
14410 		  const char *name;
14411 		  struct mips_elf_link_hash_entry *h;
14412 
14413 		  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14414 		  if (ext.asym.sc == scNil
14415 		      || ext.asym.sc == scUndefined
14416 		      || ext.asym.sc == scSUndefined)
14417 		    continue;
14418 
14419 		  name = input_debug.ssext + ext.asym.iss;
14420 		  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14421 						 name, FALSE, FALSE, TRUE);
14422 		  if (h == NULL || h->esym.ifd != -2)
14423 		    continue;
14424 
14425 		  if (ext.ifd != -1)
14426 		    {
14427 		      BFD_ASSERT (ext.ifd
14428 				  < input_debug.symbolic_header.ifdMax);
14429 		      ext.ifd = input_debug.ifdmap[ext.ifd];
14430 		    }
14431 
14432 		  h->esym = ext;
14433 		}
14434 
14435 	      /* Free up the information we just read.  */
14436 	      free (input_debug.line);
14437 	      free (input_debug.external_dnr);
14438 	      free (input_debug.external_pdr);
14439 	      free (input_debug.external_sym);
14440 	      free (input_debug.external_opt);
14441 	      free (input_debug.external_aux);
14442 	      free (input_debug.ss);
14443 	      free (input_debug.ssext);
14444 	      free (input_debug.external_fdr);
14445 	      free (input_debug.external_rfd);
14446 	      free (input_debug.external_ext);
14447 
14448 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14449 		 elf_link_input_bfd ignores this section.  */
14450 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14451 	    }
14452 
14453 	  if (SGI_COMPAT (abfd) && info->shared)
14454 	    {
14455 	      /* Create .rtproc section.  */
14456 	      rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14457 	      if (rtproc_sec == NULL)
14458 		{
14459 		  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14460 				    | SEC_LINKER_CREATED | SEC_READONLY);
14461 
14462 		  rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14463 								   ".rtproc",
14464 								   flags);
14465 		  if (rtproc_sec == NULL
14466 		      || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14467 		    return FALSE;
14468 		}
14469 
14470 	      if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14471 						     info, rtproc_sec,
14472 						     &debug))
14473 		return FALSE;
14474 	    }
14475 
14476 	  /* Build the external symbol information.  */
14477 	  einfo.abfd = abfd;
14478 	  einfo.info = info;
14479 	  einfo.debug = &debug;
14480 	  einfo.swap = swap;
14481 	  einfo.failed = FALSE;
14482 	  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14483 				       mips_elf_output_extsym, &einfo);
14484 	  if (einfo.failed)
14485 	    return FALSE;
14486 
14487 	  /* Set the size of the .mdebug section.  */
14488 	  o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14489 
14490 	  /* Skip this section later on (I don't think this currently
14491 	     matters, but someday it might).  */
14492 	  o->map_head.link_order = NULL;
14493 
14494 	  mdebug_sec = o;
14495 	}
14496 
14497       if (CONST_STRNEQ (o->name, ".gptab."))
14498 	{
14499 	  const char *subname;
14500 	  unsigned int c;
14501 	  Elf32_gptab *tab;
14502 	  Elf32_External_gptab *ext_tab;
14503 	  unsigned int j;
14504 
14505 	  /* The .gptab.sdata and .gptab.sbss sections hold
14506 	     information describing how the small data area would
14507 	     change depending upon the -G switch.  These sections
14508 	     not used in executables files.  */
14509 	  if (! info->relocatable)
14510 	    {
14511 	      for (p = o->map_head.link_order; p != NULL; p = p->next)
14512 		{
14513 		  asection *input_section;
14514 
14515 		  if (p->type != bfd_indirect_link_order)
14516 		    {
14517 		      if (p->type == bfd_data_link_order)
14518 			continue;
14519 		      abort ();
14520 		    }
14521 
14522 		  input_section = p->u.indirect.section;
14523 
14524 		  /* Hack: reset the SEC_HAS_CONTENTS flag so that
14525 		     elf_link_input_bfd ignores this section.  */
14526 		  input_section->flags &= ~SEC_HAS_CONTENTS;
14527 		}
14528 
14529 	      /* Skip this section later on (I don't think this
14530 		 currently matters, but someday it might).  */
14531 	      o->map_head.link_order = NULL;
14532 
14533 	      /* Really remove the section.  */
14534 	      bfd_section_list_remove (abfd, o);
14535 	      --abfd->section_count;
14536 
14537 	      continue;
14538 	    }
14539 
14540 	  /* There is one gptab for initialized data, and one for
14541 	     uninitialized data.  */
14542 	  if (strcmp (o->name, ".gptab.sdata") == 0)
14543 	    gptab_data_sec = o;
14544 	  else if (strcmp (o->name, ".gptab.sbss") == 0)
14545 	    gptab_bss_sec = o;
14546 	  else
14547 	    {
14548 	      (*_bfd_error_handler)
14549 		(_("%s: illegal section name `%s'"),
14550 		 bfd_get_filename (abfd), o->name);
14551 	      bfd_set_error (bfd_error_nonrepresentable_section);
14552 	      return FALSE;
14553 	    }
14554 
14555 	  /* The linker script always combines .gptab.data and
14556 	     .gptab.sdata into .gptab.sdata, and likewise for
14557 	     .gptab.bss and .gptab.sbss.  It is possible that there is
14558 	     no .sdata or .sbss section in the output file, in which
14559 	     case we must change the name of the output section.  */
14560 	  subname = o->name + sizeof ".gptab" - 1;
14561 	  if (bfd_get_section_by_name (abfd, subname) == NULL)
14562 	    {
14563 	      if (o == gptab_data_sec)
14564 		o->name = ".gptab.data";
14565 	      else
14566 		o->name = ".gptab.bss";
14567 	      subname = o->name + sizeof ".gptab" - 1;
14568 	      BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14569 	    }
14570 
14571 	  /* Set up the first entry.  */
14572 	  c = 1;
14573 	  amt = c * sizeof (Elf32_gptab);
14574 	  tab = bfd_malloc (amt);
14575 	  if (tab == NULL)
14576 	    return FALSE;
14577 	  tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14578 	  tab[0].gt_header.gt_unused = 0;
14579 
14580 	  /* Combine the input sections.  */
14581 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14582 	    {
14583 	      asection *input_section;
14584 	      bfd *input_bfd;
14585 	      bfd_size_type size;
14586 	      unsigned long last;
14587 	      bfd_size_type gpentry;
14588 
14589 	      if (p->type != bfd_indirect_link_order)
14590 		{
14591 		  if (p->type == bfd_data_link_order)
14592 		    continue;
14593 		  abort ();
14594 		}
14595 
14596 	      input_section = p->u.indirect.section;
14597 	      input_bfd = input_section->owner;
14598 
14599 	      /* Combine the gptab entries for this input section one
14600 		 by one.  We know that the input gptab entries are
14601 		 sorted by ascending -G value.  */
14602 	      size = input_section->size;
14603 	      last = 0;
14604 	      for (gpentry = sizeof (Elf32_External_gptab);
14605 		   gpentry < size;
14606 		   gpentry += sizeof (Elf32_External_gptab))
14607 		{
14608 		  Elf32_External_gptab ext_gptab;
14609 		  Elf32_gptab int_gptab;
14610 		  unsigned long val;
14611 		  unsigned long add;
14612 		  bfd_boolean exact;
14613 		  unsigned int look;
14614 
14615 		  if (! (bfd_get_section_contents
14616 			 (input_bfd, input_section, &ext_gptab, gpentry,
14617 			  sizeof (Elf32_External_gptab))))
14618 		    {
14619 		      free (tab);
14620 		      return FALSE;
14621 		    }
14622 
14623 		  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14624 						&int_gptab);
14625 		  val = int_gptab.gt_entry.gt_g_value;
14626 		  add = int_gptab.gt_entry.gt_bytes - last;
14627 
14628 		  exact = FALSE;
14629 		  for (look = 1; look < c; look++)
14630 		    {
14631 		      if (tab[look].gt_entry.gt_g_value >= val)
14632 			tab[look].gt_entry.gt_bytes += add;
14633 
14634 		      if (tab[look].gt_entry.gt_g_value == val)
14635 			exact = TRUE;
14636 		    }
14637 
14638 		  if (! exact)
14639 		    {
14640 		      Elf32_gptab *new_tab;
14641 		      unsigned int max;
14642 
14643 		      /* We need a new table entry.  */
14644 		      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14645 		      new_tab = bfd_realloc (tab, amt);
14646 		      if (new_tab == NULL)
14647 			{
14648 			  free (tab);
14649 			  return FALSE;
14650 			}
14651 		      tab = new_tab;
14652 		      tab[c].gt_entry.gt_g_value = val;
14653 		      tab[c].gt_entry.gt_bytes = add;
14654 
14655 		      /* Merge in the size for the next smallest -G
14656 			 value, since that will be implied by this new
14657 			 value.  */
14658 		      max = 0;
14659 		      for (look = 1; look < c; look++)
14660 			{
14661 			  if (tab[look].gt_entry.gt_g_value < val
14662 			      && (max == 0
14663 				  || (tab[look].gt_entry.gt_g_value
14664 				      > tab[max].gt_entry.gt_g_value)))
14665 			    max = look;
14666 			}
14667 		      if (max != 0)
14668 			tab[c].gt_entry.gt_bytes +=
14669 			  tab[max].gt_entry.gt_bytes;
14670 
14671 		      ++c;
14672 		    }
14673 
14674 		  last = int_gptab.gt_entry.gt_bytes;
14675 		}
14676 
14677 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14678 		 elf_link_input_bfd ignores this section.  */
14679 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14680 	    }
14681 
14682 	  /* The table must be sorted by -G value.  */
14683 	  if (c > 2)
14684 	    qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14685 
14686 	  /* Swap out the table.  */
14687 	  amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14688 	  ext_tab = bfd_alloc (abfd, amt);
14689 	  if (ext_tab == NULL)
14690 	    {
14691 	      free (tab);
14692 	      return FALSE;
14693 	    }
14694 
14695 	  for (j = 0; j < c; j++)
14696 	    bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14697 	  free (tab);
14698 
14699 	  o->size = c * sizeof (Elf32_External_gptab);
14700 	  o->contents = (bfd_byte *) ext_tab;
14701 
14702 	  /* Skip this section later on (I don't think this currently
14703 	     matters, but someday it might).  */
14704 	  o->map_head.link_order = NULL;
14705 	}
14706     }
14707 
14708   /* Invoke the regular ELF backend linker to do all the work.  */
14709   if (!bfd_elf_final_link (abfd, info))
14710     return FALSE;
14711 
14712   /* Now write out the computed sections.  */
14713 
14714   if (abiflags_sec != NULL)
14715     {
14716       Elf_External_ABIFlags_v0 ext;
14717       Elf_Internal_ABIFlags_v0 *abiflags;
14718 
14719       abiflags = &mips_elf_tdata (abfd)->abiflags;
14720 
14721       /* Set up the abiflags if no valid input sections were found.  */
14722       if (!mips_elf_tdata (abfd)->abiflags_valid)
14723 	{
14724 	  infer_mips_abiflags (abfd, abiflags);
14725 	  mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14726 	}
14727       bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14728       if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14729 	return FALSE;
14730     }
14731 
14732   if (reginfo_sec != NULL)
14733     {
14734       Elf32_External_RegInfo ext;
14735 
14736       bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14737       if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14738 	return FALSE;
14739     }
14740 
14741   if (mdebug_sec != NULL)
14742     {
14743       BFD_ASSERT (abfd->output_has_begun);
14744       if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14745 					       swap, info,
14746 					       mdebug_sec->filepos))
14747 	return FALSE;
14748 
14749       bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14750     }
14751 
14752   if (gptab_data_sec != NULL)
14753     {
14754       if (! bfd_set_section_contents (abfd, gptab_data_sec,
14755 				      gptab_data_sec->contents,
14756 				      0, gptab_data_sec->size))
14757 	return FALSE;
14758     }
14759 
14760   if (gptab_bss_sec != NULL)
14761     {
14762       if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14763 				      gptab_bss_sec->contents,
14764 				      0, gptab_bss_sec->size))
14765 	return FALSE;
14766     }
14767 
14768   if (SGI_COMPAT (abfd))
14769     {
14770       rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14771       if (rtproc_sec != NULL)
14772 	{
14773 	  if (! bfd_set_section_contents (abfd, rtproc_sec,
14774 					  rtproc_sec->contents,
14775 					  0, rtproc_sec->size))
14776 	    return FALSE;
14777 	}
14778     }
14779 
14780   return TRUE;
14781 }
14782 
14783 /* Structure for saying that BFD machine EXTENSION extends BASE.  */
14784 
14785 struct mips_mach_extension
14786 {
14787   unsigned long extension, base;
14788 };
14789 
14790 
14791 /* An array describing how BFD machines relate to one another.  The entries
14792    are ordered topologically with MIPS I extensions listed last.  */
14793 
14794 static const struct mips_mach_extension mips_mach_extensions[] =
14795 {
14796   /* MIPS64r2 extensions.  */
14797   { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14798   { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14799   { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14800   { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14801   { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14802 
14803   /* MIPS64 extensions.  */
14804   { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14805   { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14806   { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14807 
14808   /* MIPS V extensions.  */
14809   { bfd_mach_mipsisa64, bfd_mach_mips5 },
14810 
14811   /* R10000 extensions.  */
14812   { bfd_mach_mips12000, bfd_mach_mips10000 },
14813   { bfd_mach_mips14000, bfd_mach_mips10000 },
14814   { bfd_mach_mips16000, bfd_mach_mips10000 },
14815 
14816   /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
14817      vr5400 ISA, but doesn't include the multimedia stuff.  It seems
14818      better to allow vr5400 and vr5500 code to be merged anyway, since
14819      many libraries will just use the core ISA.  Perhaps we could add
14820      some sort of ASE flag if this ever proves a problem.  */
14821   { bfd_mach_mips5500, bfd_mach_mips5400 },
14822   { bfd_mach_mips5400, bfd_mach_mips5000 },
14823 
14824   /* MIPS IV extensions.  */
14825   { bfd_mach_mips5, bfd_mach_mips8000 },
14826   { bfd_mach_mips10000, bfd_mach_mips8000 },
14827   { bfd_mach_mips5000, bfd_mach_mips8000 },
14828   { bfd_mach_mips7000, bfd_mach_mips8000 },
14829   { bfd_mach_mips9000, bfd_mach_mips8000 },
14830 
14831   /* VR4100 extensions.  */
14832   { bfd_mach_mips4120, bfd_mach_mips4100 },
14833   { bfd_mach_mips4111, bfd_mach_mips4100 },
14834 
14835   /* MIPS III extensions.  */
14836   { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14837   { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14838   { bfd_mach_mips8000, bfd_mach_mips4000 },
14839   { bfd_mach_mips4650, bfd_mach_mips4000 },
14840   { bfd_mach_mips4600, bfd_mach_mips4000 },
14841   { bfd_mach_mips4400, bfd_mach_mips4000 },
14842   { bfd_mach_mips4300, bfd_mach_mips4000 },
14843   { bfd_mach_mips4100, bfd_mach_mips4000 },
14844   { bfd_mach_mips4010, bfd_mach_mips4000 },
14845   { bfd_mach_mips5900, bfd_mach_mips4000 },
14846 
14847   /* MIPS32 extensions.  */
14848   { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14849 
14850   /* MIPS II extensions.  */
14851   { bfd_mach_mips4000, bfd_mach_mips6000 },
14852   { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14853 
14854   /* MIPS I extensions.  */
14855   { bfd_mach_mips6000, bfd_mach_mips3000 },
14856   { bfd_mach_mips3900, bfd_mach_mips3000 }
14857 };
14858 
14859 
14860 /* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
14861 
14862 static bfd_boolean
mips_mach_extends_p(unsigned long base,unsigned long extension)14863 mips_mach_extends_p (unsigned long base, unsigned long extension)
14864 {
14865   size_t i;
14866 
14867   if (extension == base)
14868     return TRUE;
14869 
14870   if (base == bfd_mach_mipsisa32
14871       && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14872     return TRUE;
14873 
14874   if (base == bfd_mach_mipsisa32r2
14875       && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14876     return TRUE;
14877 
14878   for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14879     if (extension == mips_mach_extensions[i].extension)
14880       {
14881 	extension = mips_mach_extensions[i].base;
14882 	if (extension == base)
14883 	  return TRUE;
14884       }
14885 
14886   return FALSE;
14887 }
14888 
14889 
14890 /* Merge object attributes from IBFD into OBFD.  Raise an error if
14891    there are conflicting attributes.  */
14892 static bfd_boolean
mips_elf_merge_obj_attributes(bfd * ibfd,bfd * obfd)14893 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14894 {
14895   obj_attribute *in_attr;
14896   obj_attribute *out_attr;
14897   bfd *abi_fp_bfd;
14898   bfd *abi_msa_bfd;
14899 
14900   abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14901   in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14902   if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14903     mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14904 
14905   abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14906   if (!abi_msa_bfd
14907       && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14908     mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14909 
14910   if (!elf_known_obj_attributes_proc (obfd)[0].i)
14911     {
14912       /* This is the first object.  Copy the attributes.  */
14913       _bfd_elf_copy_obj_attributes (ibfd, obfd);
14914 
14915       /* Use the Tag_null value to indicate the attributes have been
14916 	 initialized.  */
14917       elf_known_obj_attributes_proc (obfd)[0].i = 1;
14918 
14919       return TRUE;
14920     }
14921 
14922   /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14923      non-conflicting ones.  */
14924   out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14925   if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14926     {
14927       int out_fp, in_fp;
14928 
14929       out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14930       in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14931       out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14932       if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14933 	out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14934       else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14935 	       && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14936 		   || in_fp == Val_GNU_MIPS_ABI_FP_64
14937 		   || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14938 	{
14939 	  mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14940 	  out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14941 	}
14942       else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14943 	       && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14944 		   || out_fp == Val_GNU_MIPS_ABI_FP_64
14945 		   || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14946 	/* Keep the current setting.  */;
14947       else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14948 	       && in_fp == Val_GNU_MIPS_ABI_FP_64)
14949 	{
14950 	  mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14951 	  out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14952 	}
14953       else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14954 	       && out_fp == Val_GNU_MIPS_ABI_FP_64)
14955 	/* Keep the current setting.  */;
14956       else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14957 	{
14958 	  const char *out_string, *in_string;
14959 
14960 	  out_string = _bfd_mips_fp_abi_string (out_fp);
14961 	  in_string = _bfd_mips_fp_abi_string (in_fp);
14962 	  /* First warn about cases involving unrecognised ABIs.  */
14963 	  if (!out_string && !in_string)
14964 	    _bfd_error_handler
14965 	      (_("Warning: %B uses unknown floating point ABI %d "
14966 		 "(set by %B), %B uses unknown floating point ABI %d"),
14967 	       obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14968 	  else if (!out_string)
14969 	    _bfd_error_handler
14970 	      (_("Warning: %B uses unknown floating point ABI %d "
14971 		 "(set by %B), %B uses %s"),
14972 	       obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14973 	  else if (!in_string)
14974 	    _bfd_error_handler
14975 	      (_("Warning: %B uses %s (set by %B), "
14976 		 "%B uses unknown floating point ABI %d"),
14977 	       obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14978 	  else
14979 	    {
14980 	      /* If one of the bfds is soft-float, the other must be
14981 		 hard-float.  The exact choice of hard-float ABI isn't
14982 		 really relevant to the error message.  */
14983 	      if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14984 		out_string = "-mhard-float";
14985 	      else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14986 		in_string = "-mhard-float";
14987 	      _bfd_error_handler
14988 		(_("Warning: %B uses %s (set by %B), %B uses %s"),
14989 		 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14990 	    }
14991 	}
14992     }
14993 
14994   /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14995      non-conflicting ones.  */
14996   if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14997     {
14998       out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14999       if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15000 	out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15001       else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15002 	switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15003 	  {
15004 	  case Val_GNU_MIPS_ABI_MSA_128:
15005 	    _bfd_error_handler
15006 	      (_("Warning: %B uses %s (set by %B), "
15007 		 "%B uses unknown MSA ABI %d"),
15008 	       obfd, abi_msa_bfd, ibfd,
15009 	       "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15010 	    break;
15011 
15012 	  default:
15013 	    switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15014 	      {
15015 	      case Val_GNU_MIPS_ABI_MSA_128:
15016 		_bfd_error_handler
15017 		  (_("Warning: %B uses unknown MSA ABI %d "
15018 		     "(set by %B), %B uses %s"),
15019 		     obfd, abi_msa_bfd, ibfd,
15020 		     out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15021 		  break;
15022 
15023 	      default:
15024 		_bfd_error_handler
15025 		  (_("Warning: %B uses unknown MSA ABI %d "
15026 		     "(set by %B), %B uses unknown MSA ABI %d"),
15027 		   obfd, abi_msa_bfd, ibfd,
15028 		   out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15029 		   in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15030 		break;
15031 	      }
15032 	  }
15033     }
15034 
15035   /* Merge Tag_compatibility attributes and any common GNU ones.  */
15036   _bfd_elf_merge_object_attributes (ibfd, obfd);
15037 
15038   return TRUE;
15039 }
15040 
15041 /* Merge backend specific data from an object file to the output
15042    object file when linking.  */
15043 
15044 bfd_boolean
_bfd_mips_elf_merge_private_bfd_data(bfd * ibfd,bfd * obfd)15045 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15046 {
15047   flagword old_flags;
15048   flagword new_flags;
15049   bfd_boolean ok;
15050   bfd_boolean null_input_bfd = TRUE;
15051   asection *sec;
15052   obj_attribute *out_attr;
15053 
15054   /* Check if we have the same endianness.  */
15055   if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15056     {
15057       (*_bfd_error_handler)
15058 	(_("%B: endianness incompatible with that of the selected emulation"),
15059 	 ibfd);
15060       return FALSE;
15061     }
15062 
15063   if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15064     return TRUE;
15065 
15066   if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15067     {
15068       (*_bfd_error_handler)
15069 	(_("%B: ABI is incompatible with that of the selected emulation"),
15070 	 ibfd);
15071       return FALSE;
15072     }
15073 
15074   /* Set up the FP ABI attribute from the abiflags if it is not already
15075      set.  */
15076   if (mips_elf_tdata (ibfd)->abiflags_valid)
15077     {
15078       obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15079       if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15080         in_attr[Tag_GNU_MIPS_ABI_FP].i =
15081 	  mips_elf_tdata (ibfd)->abiflags.fp_abi;
15082     }
15083 
15084   if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15085     return FALSE;
15086 
15087   /* Check to see if the input BFD actually contains any sections.
15088      If not, its flags may not have been initialised either, but it cannot
15089      actually cause any incompatibility.  */
15090   for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15091     {
15092       /* Ignore synthetic sections and empty .text, .data and .bss sections
15093 	 which are automatically generated by gas.  Also ignore fake
15094 	 (s)common sections, since merely defining a common symbol does
15095 	 not affect compatibility.  */
15096       if ((sec->flags & SEC_IS_COMMON) == 0
15097 	  && strcmp (sec->name, ".reginfo")
15098 	  && strcmp (sec->name, ".mdebug")
15099 	  && (sec->size != 0
15100 	      || (strcmp (sec->name, ".text")
15101 		  && strcmp (sec->name, ".data")
15102 		  && strcmp (sec->name, ".bss"))))
15103 	{
15104 	  null_input_bfd = FALSE;
15105 	  break;
15106 	}
15107     }
15108   if (null_input_bfd)
15109     return TRUE;
15110 
15111   /* Populate abiflags using existing information.  */
15112   if (!mips_elf_tdata (ibfd)->abiflags_valid)
15113     {
15114       infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15115       mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15116     }
15117   else
15118     {
15119       Elf_Internal_ABIFlags_v0 abiflags;
15120       Elf_Internal_ABIFlags_v0 in_abiflags;
15121       infer_mips_abiflags (ibfd, &abiflags);
15122       in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15123 
15124       /* It is not possible to infer the correct ISA revision
15125          for R3 or R5 so drop down to R2 for the checks.  */
15126       if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15127 	in_abiflags.isa_rev = 2;
15128 
15129       if (in_abiflags.isa_level != abiflags.isa_level
15130 	  || in_abiflags.isa_rev != abiflags.isa_rev
15131 	  || in_abiflags.isa_ext != abiflags.isa_ext)
15132 	(*_bfd_error_handler)
15133 	  (_("%B: warning: Inconsistent ISA between e_flags and "
15134 	     ".MIPS.abiflags"), ibfd);
15135       if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15136 	  && in_abiflags.fp_abi != abiflags.fp_abi)
15137 	(*_bfd_error_handler)
15138 	  (_("%B: warning: Inconsistent FP ABI between e_flags and "
15139 	     ".MIPS.abiflags"), ibfd);
15140       if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15141 	(*_bfd_error_handler)
15142 	  (_("%B: warning: Inconsistent ASEs between e_flags and "
15143 	     ".MIPS.abiflags"), ibfd);
15144       if (in_abiflags.isa_ext != abiflags.isa_ext)
15145 	(*_bfd_error_handler)
15146 	  (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15147 	     ".MIPS.abiflags"), ibfd);
15148       if (in_abiflags.flags2 != 0)
15149 	(*_bfd_error_handler)
15150 	  (_("%B: warning: Unexpected flag in the flags2 field of "
15151 	     ".MIPS.abiflags (0x%lx)"), ibfd,
15152 	   (unsigned long) in_abiflags.flags2);
15153     }
15154 
15155   if (!mips_elf_tdata (obfd)->abiflags_valid)
15156     {
15157       /* Copy input abiflags if output abiflags are not already valid.  */
15158       mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15159       mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15160     }
15161 
15162   if (! elf_flags_init (obfd))
15163     {
15164       elf_flags_init (obfd) = TRUE;
15165       elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15166       elf_elfheader (obfd)->e_ident[EI_CLASS]
15167 	= elf_elfheader (ibfd)->e_ident[EI_CLASS];
15168 
15169       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15170 	  && (bfd_get_arch_info (obfd)->the_default
15171 	      || mips_mach_extends_p (bfd_get_mach (obfd),
15172 				      bfd_get_mach (ibfd))))
15173 	{
15174 	  if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15175 				   bfd_get_mach (ibfd)))
15176 	    return FALSE;
15177 
15178 	  /* Update the ABI flags isa_level, isa_rev and isa_ext fields.  */
15179 	  update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15180 	}
15181 
15182       return TRUE;
15183     }
15184 
15185   /* Update the output abiflags fp_abi using the computed fp_abi.  */
15186   out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15187   mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15188 
15189 #define max(a,b) ((a) > (b) ? (a) : (b))
15190   /* Merge abiflags.  */
15191   mips_elf_tdata (obfd)->abiflags.isa_rev
15192     = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15193 	   mips_elf_tdata (ibfd)->abiflags.isa_rev);
15194   mips_elf_tdata (obfd)->abiflags.gpr_size
15195     = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15196 	   mips_elf_tdata (ibfd)->abiflags.gpr_size);
15197   mips_elf_tdata (obfd)->abiflags.cpr1_size
15198     = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15199 	   mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15200   mips_elf_tdata (obfd)->abiflags.cpr2_size
15201     = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15202 	   mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15203 #undef max
15204   mips_elf_tdata (obfd)->abiflags.ases
15205     |= mips_elf_tdata (ibfd)->abiflags.ases;
15206   mips_elf_tdata (obfd)->abiflags.flags1
15207     |= mips_elf_tdata (ibfd)->abiflags.flags1;
15208 
15209   new_flags = elf_elfheader (ibfd)->e_flags;
15210   elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15211   old_flags = elf_elfheader (obfd)->e_flags;
15212 
15213   /* Check flag compatibility.  */
15214 
15215   new_flags &= ~EF_MIPS_NOREORDER;
15216   old_flags &= ~EF_MIPS_NOREORDER;
15217 
15218   /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
15219      doesn't seem to matter.  */
15220   new_flags &= ~EF_MIPS_XGOT;
15221   old_flags &= ~EF_MIPS_XGOT;
15222 
15223   /* MIPSpro generates ucode info in n64 objects.  Again, we should
15224      just be able to ignore this.  */
15225   new_flags &= ~EF_MIPS_UCODE;
15226   old_flags &= ~EF_MIPS_UCODE;
15227 
15228   /* DSOs should only be linked with CPIC code.  */
15229   if ((ibfd->flags & DYNAMIC) != 0)
15230     new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15231 
15232   if (new_flags == old_flags)
15233     return TRUE;
15234 
15235   ok = TRUE;
15236 
15237   if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15238       != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15239     {
15240       (*_bfd_error_handler)
15241 	(_("%B: warning: linking abicalls files with non-abicalls files"),
15242 	 ibfd);
15243       ok = TRUE;
15244     }
15245 
15246   if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15247     elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15248   if (! (new_flags & EF_MIPS_PIC))
15249     elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15250 
15251   new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15252   old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15253 
15254   /* Compare the ISAs.  */
15255   if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15256     {
15257       (*_bfd_error_handler)
15258 	(_("%B: linking 32-bit code with 64-bit code"),
15259 	 ibfd);
15260       ok = FALSE;
15261     }
15262   else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15263     {
15264       /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
15265       if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15266 	{
15267 	  /* Copy the architecture info from IBFD to OBFD.  Also copy
15268 	     the 32-bit flag (if set) so that we continue to recognise
15269 	     OBFD as a 32-bit binary.  */
15270 	  bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15271 	  elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15272 	  elf_elfheader (obfd)->e_flags
15273 	    |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15274 
15275 	  /* Update the ABI flags isa_level, isa_rev, isa_ext fields.  */
15276 	  update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15277 
15278 	  /* Copy across the ABI flags if OBFD doesn't use them
15279 	     and if that was what caused us to treat IBFD as 32-bit.  */
15280 	  if ((old_flags & EF_MIPS_ABI) == 0
15281 	      && mips_32bit_flags_p (new_flags)
15282 	      && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15283 	    elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15284 	}
15285       else
15286 	{
15287 	  /* The ISAs aren't compatible.  */
15288 	  (*_bfd_error_handler)
15289 	    (_("%B: linking %s module with previous %s modules"),
15290 	     ibfd,
15291 	     bfd_printable_name (ibfd),
15292 	     bfd_printable_name (obfd));
15293 	  ok = FALSE;
15294 	}
15295     }
15296 
15297   new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15298   old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15299 
15300   /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
15301      does set EI_CLASS differently from any 32-bit ABI.  */
15302   if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15303       || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15304 	  != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15305     {
15306       /* Only error if both are set (to different values).  */
15307       if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15308 	  || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15309 	      != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15310 	{
15311 	  (*_bfd_error_handler)
15312 	    (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15313 	     ibfd,
15314 	     elf_mips_abi_name (ibfd),
15315 	     elf_mips_abi_name (obfd));
15316 	  ok = FALSE;
15317 	}
15318       new_flags &= ~EF_MIPS_ABI;
15319       old_flags &= ~EF_MIPS_ABI;
15320     }
15321 
15322   /* Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
15323      and allow arbitrary mixing of the remaining ASEs (retain the union).  */
15324   if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15325     {
15326       int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15327       int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15328       int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15329       int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15330       int micro_mis = old_m16 && new_micro;
15331       int m16_mis = old_micro && new_m16;
15332 
15333       if (m16_mis || micro_mis)
15334 	{
15335 	  (*_bfd_error_handler)
15336 	    (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15337 	     ibfd,
15338 	     m16_mis ? "MIPS16" : "microMIPS",
15339 	     m16_mis ? "microMIPS" : "MIPS16");
15340 	  ok = FALSE;
15341 	}
15342 
15343       elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15344 
15345       new_flags &= ~ EF_MIPS_ARCH_ASE;
15346       old_flags &= ~ EF_MIPS_ARCH_ASE;
15347     }
15348 
15349   /* Compare NaN encodings.  */
15350   if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15351     {
15352       _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15353 			  ibfd,
15354 			  (new_flags & EF_MIPS_NAN2008
15355 			   ? "-mnan=2008" : "-mnan=legacy"),
15356 			  (old_flags & EF_MIPS_NAN2008
15357 			   ? "-mnan=2008" : "-mnan=legacy"));
15358       ok = FALSE;
15359       new_flags &= ~EF_MIPS_NAN2008;
15360       old_flags &= ~EF_MIPS_NAN2008;
15361     }
15362 
15363   /* Compare FP64 state.  */
15364   if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15365     {
15366       _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15367 			  ibfd,
15368 			  (new_flags & EF_MIPS_FP64
15369 			   ? "-mfp64" : "-mfp32"),
15370 			  (old_flags & EF_MIPS_FP64
15371 			   ? "-mfp64" : "-mfp32"));
15372       ok = FALSE;
15373       new_flags &= ~EF_MIPS_FP64;
15374       old_flags &= ~EF_MIPS_FP64;
15375     }
15376 
15377   /* Warn about any other mismatches */
15378   if (new_flags != old_flags)
15379     {
15380       (*_bfd_error_handler)
15381 	(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15382 	 ibfd, (unsigned long) new_flags,
15383 	 (unsigned long) old_flags);
15384       ok = FALSE;
15385     }
15386 
15387   if (! ok)
15388     {
15389       bfd_set_error (bfd_error_bad_value);
15390       return FALSE;
15391     }
15392 
15393   return TRUE;
15394 }
15395 
15396 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
15397 
15398 bfd_boolean
_bfd_mips_elf_set_private_flags(bfd * abfd,flagword flags)15399 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15400 {
15401   BFD_ASSERT (!elf_flags_init (abfd)
15402 	      || elf_elfheader (abfd)->e_flags == flags);
15403 
15404   elf_elfheader (abfd)->e_flags = flags;
15405   elf_flags_init (abfd) = TRUE;
15406   return TRUE;
15407 }
15408 
15409 char *
_bfd_mips_elf_get_target_dtag(bfd_vma dtag)15410 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15411 {
15412   switch (dtag)
15413     {
15414     default: return "";
15415     case DT_MIPS_RLD_VERSION:
15416       return "MIPS_RLD_VERSION";
15417     case DT_MIPS_TIME_STAMP:
15418       return "MIPS_TIME_STAMP";
15419     case DT_MIPS_ICHECKSUM:
15420       return "MIPS_ICHECKSUM";
15421     case DT_MIPS_IVERSION:
15422       return "MIPS_IVERSION";
15423     case DT_MIPS_FLAGS:
15424       return "MIPS_FLAGS";
15425     case DT_MIPS_BASE_ADDRESS:
15426       return "MIPS_BASE_ADDRESS";
15427     case DT_MIPS_MSYM:
15428       return "MIPS_MSYM";
15429     case DT_MIPS_CONFLICT:
15430       return "MIPS_CONFLICT";
15431     case DT_MIPS_LIBLIST:
15432       return "MIPS_LIBLIST";
15433     case DT_MIPS_LOCAL_GOTNO:
15434       return "MIPS_LOCAL_GOTNO";
15435     case DT_MIPS_CONFLICTNO:
15436       return "MIPS_CONFLICTNO";
15437     case DT_MIPS_LIBLISTNO:
15438       return "MIPS_LIBLISTNO";
15439     case DT_MIPS_SYMTABNO:
15440       return "MIPS_SYMTABNO";
15441     case DT_MIPS_UNREFEXTNO:
15442       return "MIPS_UNREFEXTNO";
15443     case DT_MIPS_GOTSYM:
15444       return "MIPS_GOTSYM";
15445     case DT_MIPS_HIPAGENO:
15446       return "MIPS_HIPAGENO";
15447     case DT_MIPS_RLD_MAP:
15448       return "MIPS_RLD_MAP";
15449     case DT_MIPS_RLD_MAP2:
15450       return "MIPS_RLD_MAP2";
15451     case DT_MIPS_DELTA_CLASS:
15452       return "MIPS_DELTA_CLASS";
15453     case DT_MIPS_DELTA_CLASS_NO:
15454       return "MIPS_DELTA_CLASS_NO";
15455     case DT_MIPS_DELTA_INSTANCE:
15456       return "MIPS_DELTA_INSTANCE";
15457     case DT_MIPS_DELTA_INSTANCE_NO:
15458       return "MIPS_DELTA_INSTANCE_NO";
15459     case DT_MIPS_DELTA_RELOC:
15460       return "MIPS_DELTA_RELOC";
15461     case DT_MIPS_DELTA_RELOC_NO:
15462       return "MIPS_DELTA_RELOC_NO";
15463     case DT_MIPS_DELTA_SYM:
15464       return "MIPS_DELTA_SYM";
15465     case DT_MIPS_DELTA_SYM_NO:
15466       return "MIPS_DELTA_SYM_NO";
15467     case DT_MIPS_DELTA_CLASSSYM:
15468       return "MIPS_DELTA_CLASSSYM";
15469     case DT_MIPS_DELTA_CLASSSYM_NO:
15470       return "MIPS_DELTA_CLASSSYM_NO";
15471     case DT_MIPS_CXX_FLAGS:
15472       return "MIPS_CXX_FLAGS";
15473     case DT_MIPS_PIXIE_INIT:
15474       return "MIPS_PIXIE_INIT";
15475     case DT_MIPS_SYMBOL_LIB:
15476       return "MIPS_SYMBOL_LIB";
15477     case DT_MIPS_LOCALPAGE_GOTIDX:
15478       return "MIPS_LOCALPAGE_GOTIDX";
15479     case DT_MIPS_LOCAL_GOTIDX:
15480       return "MIPS_LOCAL_GOTIDX";
15481     case DT_MIPS_HIDDEN_GOTIDX:
15482       return "MIPS_HIDDEN_GOTIDX";
15483     case DT_MIPS_PROTECTED_GOTIDX:
15484       return "MIPS_PROTECTED_GOT_IDX";
15485     case DT_MIPS_OPTIONS:
15486       return "MIPS_OPTIONS";
15487     case DT_MIPS_INTERFACE:
15488       return "MIPS_INTERFACE";
15489     case DT_MIPS_DYNSTR_ALIGN:
15490       return "DT_MIPS_DYNSTR_ALIGN";
15491     case DT_MIPS_INTERFACE_SIZE:
15492       return "DT_MIPS_INTERFACE_SIZE";
15493     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15494       return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15495     case DT_MIPS_PERF_SUFFIX:
15496       return "DT_MIPS_PERF_SUFFIX";
15497     case DT_MIPS_COMPACT_SIZE:
15498       return "DT_MIPS_COMPACT_SIZE";
15499     case DT_MIPS_GP_VALUE:
15500       return "DT_MIPS_GP_VALUE";
15501     case DT_MIPS_AUX_DYNAMIC:
15502       return "DT_MIPS_AUX_DYNAMIC";
15503     case DT_MIPS_PLTGOT:
15504       return "DT_MIPS_PLTGOT";
15505     case DT_MIPS_RWPLT:
15506       return "DT_MIPS_RWPLT";
15507     }
15508 }
15509 
15510 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15511    not known.  */
15512 
15513 const char *
_bfd_mips_fp_abi_string(int fp)15514 _bfd_mips_fp_abi_string (int fp)
15515 {
15516   switch (fp)
15517     {
15518       /* These strings aren't translated because they're simply
15519 	 option lists.  */
15520     case Val_GNU_MIPS_ABI_FP_DOUBLE:
15521       return "-mdouble-float";
15522 
15523     case Val_GNU_MIPS_ABI_FP_SINGLE:
15524       return "-msingle-float";
15525 
15526     case Val_GNU_MIPS_ABI_FP_SOFT:
15527       return "-msoft-float";
15528 
15529     case Val_GNU_MIPS_ABI_FP_OLD_64:
15530       return _("-mips32r2 -mfp64 (12 callee-saved)");
15531 
15532     case Val_GNU_MIPS_ABI_FP_XX:
15533       return "-mfpxx";
15534 
15535     case Val_GNU_MIPS_ABI_FP_64:
15536       return "-mgp32 -mfp64";
15537 
15538     case Val_GNU_MIPS_ABI_FP_64A:
15539       return "-mgp32 -mfp64 -mno-odd-spreg";
15540 
15541     default:
15542       return 0;
15543     }
15544 }
15545 
15546 static void
print_mips_ases(FILE * file,unsigned int mask)15547 print_mips_ases (FILE *file, unsigned int mask)
15548 {
15549   if (mask & AFL_ASE_DSP)
15550     fputs ("\n\tDSP ASE", file);
15551   if (mask & AFL_ASE_DSPR2)
15552     fputs ("\n\tDSP R2 ASE", file);
15553   if (mask & AFL_ASE_DSPR6)
15554     fputs ("\n\tDSP R6 ASE", file);
15555   if (mask & AFL_ASE_EVA)
15556     fputs ("\n\tEnhanced VA Scheme", file);
15557   if (mask & AFL_ASE_MCU)
15558     fputs ("\n\tMCU (MicroController) ASE", file);
15559   if (mask & AFL_ASE_MDMX)
15560     fputs ("\n\tMDMX ASE", file);
15561   if (mask & AFL_ASE_MIPS3D)
15562     fputs ("\n\tMIPS-3D ASE", file);
15563   if (mask & AFL_ASE_MT)
15564     fputs ("\n\tMT ASE", file);
15565   if (mask & AFL_ASE_SMARTMIPS)
15566     fputs ("\n\tSmartMIPS ASE", file);
15567   if (mask & AFL_ASE_VIRT)
15568     fputs ("\n\tVZ ASE", file);
15569   if (mask & AFL_ASE_MSA)
15570     fputs ("\n\tMSA ASE", file);
15571   if (mask & AFL_ASE_MIPS16)
15572     fputs ("\n\tMIPS16 ASE", file);
15573   if (mask & AFL_ASE_MICROMIPS)
15574     fputs ("\n\tMICROMIPS ASE", file);
15575   if (mask & AFL_ASE_XPA)
15576     fputs ("\n\tXPA ASE", file);
15577   if (mask == 0)
15578     fprintf (file, "\n\t%s", _("None"));
15579   else if ((mask & ~AFL_ASE_MASK) != 0)
15580     fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15581 }
15582 
15583 static void
print_mips_isa_ext(FILE * file,unsigned int isa_ext)15584 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15585 {
15586   switch (isa_ext)
15587     {
15588     case 0:
15589       fputs (_("None"), file);
15590       break;
15591     case AFL_EXT_XLR:
15592       fputs ("RMI XLR", file);
15593       break;
15594     case AFL_EXT_OCTEON3:
15595       fputs ("Cavium Networks Octeon3", file);
15596       break;
15597     case AFL_EXT_OCTEON2:
15598       fputs ("Cavium Networks Octeon2", file);
15599       break;
15600     case AFL_EXT_OCTEONP:
15601       fputs ("Cavium Networks OcteonP", file);
15602       break;
15603     case AFL_EXT_LOONGSON_3A:
15604       fputs ("Loongson 3A", file);
15605       break;
15606     case AFL_EXT_OCTEON:
15607       fputs ("Cavium Networks Octeon", file);
15608       break;
15609     case AFL_EXT_5900:
15610       fputs ("Toshiba R5900", file);
15611       break;
15612     case AFL_EXT_4650:
15613       fputs ("MIPS R4650", file);
15614       break;
15615     case AFL_EXT_4010:
15616       fputs ("LSI R4010", file);
15617       break;
15618     case AFL_EXT_4100:
15619       fputs ("NEC VR4100", file);
15620       break;
15621     case AFL_EXT_3900:
15622       fputs ("Toshiba R3900", file);
15623       break;
15624     case AFL_EXT_10000:
15625       fputs ("MIPS R10000", file);
15626       break;
15627     case AFL_EXT_SB1:
15628       fputs ("Broadcom SB-1", file);
15629       break;
15630     case AFL_EXT_4111:
15631       fputs ("NEC VR4111/VR4181", file);
15632       break;
15633     case AFL_EXT_4120:
15634       fputs ("NEC VR4120", file);
15635       break;
15636     case AFL_EXT_5400:
15637       fputs ("NEC VR5400", file);
15638       break;
15639     case AFL_EXT_5500:
15640       fputs ("NEC VR5500", file);
15641       break;
15642     case AFL_EXT_LOONGSON_2E:
15643       fputs ("ST Microelectronics Loongson 2E", file);
15644       break;
15645     case AFL_EXT_LOONGSON_2F:
15646       fputs ("ST Microelectronics Loongson 2F", file);
15647       break;
15648     default:
15649       fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15650       break;
15651     }
15652 }
15653 
15654 static void
print_mips_fp_abi_value(FILE * file,int val)15655 print_mips_fp_abi_value (FILE *file, int val)
15656 {
15657   switch (val)
15658     {
15659     case Val_GNU_MIPS_ABI_FP_ANY:
15660       fprintf (file, _("Hard or soft float\n"));
15661       break;
15662     case Val_GNU_MIPS_ABI_FP_DOUBLE:
15663       fprintf (file, _("Hard float (double precision)\n"));
15664       break;
15665     case Val_GNU_MIPS_ABI_FP_SINGLE:
15666       fprintf (file, _("Hard float (single precision)\n"));
15667       break;
15668     case Val_GNU_MIPS_ABI_FP_SOFT:
15669       fprintf (file, _("Soft float\n"));
15670       break;
15671     case Val_GNU_MIPS_ABI_FP_OLD_64:
15672       fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15673       break;
15674     case Val_GNU_MIPS_ABI_FP_XX:
15675       fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15676       break;
15677     case Val_GNU_MIPS_ABI_FP_64:
15678       fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15679       break;
15680     case Val_GNU_MIPS_ABI_FP_64A:
15681       fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15682       break;
15683     default:
15684       fprintf (file, "??? (%d)\n", val);
15685       break;
15686     }
15687 }
15688 
15689 static int
get_mips_reg_size(int reg_size)15690 get_mips_reg_size (int reg_size)
15691 {
15692   return (reg_size == AFL_REG_NONE) ? 0
15693 	 : (reg_size == AFL_REG_32) ? 32
15694 	 : (reg_size == AFL_REG_64) ? 64
15695 	 : (reg_size == AFL_REG_128) ? 128
15696 	 : -1;
15697 }
15698 
15699 bfd_boolean
_bfd_mips_elf_print_private_bfd_data(bfd * abfd,void * ptr)15700 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15701 {
15702   FILE *file = ptr;
15703 
15704   BFD_ASSERT (abfd != NULL && ptr != NULL);
15705 
15706   /* Print normal ELF private data.  */
15707   _bfd_elf_print_private_bfd_data (abfd, ptr);
15708 
15709   /* xgettext:c-format */
15710   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15711 
15712   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15713     fprintf (file, _(" [abi=O32]"));
15714   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15715     fprintf (file, _(" [abi=O64]"));
15716   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15717     fprintf (file, _(" [abi=EABI32]"));
15718   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15719     fprintf (file, _(" [abi=EABI64]"));
15720   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15721     fprintf (file, _(" [abi unknown]"));
15722   else if (ABI_N32_P (abfd))
15723     fprintf (file, _(" [abi=N32]"));
15724   else if (ABI_64_P (abfd))
15725     fprintf (file, _(" [abi=64]"));
15726   else
15727     fprintf (file, _(" [no abi set]"));
15728 
15729   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15730     fprintf (file, " [mips1]");
15731   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15732     fprintf (file, " [mips2]");
15733   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15734     fprintf (file, " [mips3]");
15735   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15736     fprintf (file, " [mips4]");
15737   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15738     fprintf (file, " [mips5]");
15739   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15740     fprintf (file, " [mips32]");
15741   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15742     fprintf (file, " [mips64]");
15743   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15744     fprintf (file, " [mips32r2]");
15745   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15746     fprintf (file, " [mips64r2]");
15747   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15748     fprintf (file, " [mips32r6]");
15749   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15750     fprintf (file, " [mips64r6]");
15751   else
15752     fprintf (file, _(" [unknown ISA]"));
15753 
15754   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15755     fprintf (file, " [mdmx]");
15756 
15757   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15758     fprintf (file, " [mips16]");
15759 
15760   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15761     fprintf (file, " [micromips]");
15762 
15763   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15764     fprintf (file, " [nan2008]");
15765 
15766   if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15767     fprintf (file, " [old fp64]");
15768 
15769   if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15770     fprintf (file, " [32bitmode]");
15771   else
15772     fprintf (file, _(" [not 32bitmode]"));
15773 
15774   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15775     fprintf (file, " [noreorder]");
15776 
15777   if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15778     fprintf (file, " [PIC]");
15779 
15780   if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15781     fprintf (file, " [CPIC]");
15782 
15783   if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15784     fprintf (file, " [XGOT]");
15785 
15786   if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15787     fprintf (file, " [UCODE]");
15788 
15789   fputc ('\n', file);
15790 
15791   if (mips_elf_tdata (abfd)->abiflags_valid)
15792     {
15793       Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15794       fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15795       fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15796       if (abiflags->isa_rev > 1)
15797 	fprintf (file, "r%d", abiflags->isa_rev);
15798       fprintf (file, "\nGPR size: %d",
15799 	       get_mips_reg_size (abiflags->gpr_size));
15800       fprintf (file, "\nCPR1 size: %d",
15801 	       get_mips_reg_size (abiflags->cpr1_size));
15802       fprintf (file, "\nCPR2 size: %d",
15803 	       get_mips_reg_size (abiflags->cpr2_size));
15804       fputs ("\nFP ABI: ", file);
15805       print_mips_fp_abi_value (file, abiflags->fp_abi);
15806       fputs ("ISA Extension: ", file);
15807       print_mips_isa_ext (file, abiflags->isa_ext);
15808       fputs ("\nASEs:", file);
15809       print_mips_ases (file, abiflags->ases);
15810       fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15811       fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15812       fputc ('\n', file);
15813     }
15814 
15815   return TRUE;
15816 }
15817 
15818 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15819 {
15820   { STRING_COMMA_LEN (".lit4"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15821   { STRING_COMMA_LEN (".lit8"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15822   { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15823   { STRING_COMMA_LEN (".sbss"),  -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15824   { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15825   { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
15826   { NULL,                     0,  0, 0,              0 }
15827 };
15828 
15829 /* Merge non visibility st_other attributes.  Ensure that the
15830    STO_OPTIONAL flag is copied into h->other, even if this is not a
15831    definiton of the symbol.  */
15832 void
_bfd_mips_elf_merge_symbol_attribute(struct elf_link_hash_entry * h,const Elf_Internal_Sym * isym,bfd_boolean definition,bfd_boolean dynamic ATTRIBUTE_UNUSED)15833 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15834 				      const Elf_Internal_Sym *isym,
15835 				      bfd_boolean definition,
15836 				      bfd_boolean dynamic ATTRIBUTE_UNUSED)
15837 {
15838   if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15839     {
15840       unsigned char other;
15841 
15842       other = (definition ? isym->st_other : h->other);
15843       other &= ~ELF_ST_VISIBILITY (-1);
15844       h->other = other | ELF_ST_VISIBILITY (h->other);
15845     }
15846 
15847   if (!definition
15848       && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15849     h->other |= STO_OPTIONAL;
15850 }
15851 
15852 /* Decide whether an undefined symbol is special and can be ignored.
15853    This is the case for OPTIONAL symbols on IRIX.  */
15854 bfd_boolean
_bfd_mips_elf_ignore_undef_symbol(struct elf_link_hash_entry * h)15855 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15856 {
15857   return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15858 }
15859 
15860 bfd_boolean
_bfd_mips_elf_common_definition(Elf_Internal_Sym * sym)15861 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15862 {
15863   return (sym->st_shndx == SHN_COMMON
15864 	  || sym->st_shndx == SHN_MIPS_ACOMMON
15865 	  || sym->st_shndx == SHN_MIPS_SCOMMON);
15866 }
15867 
15868 /* Return address for Ith PLT stub in section PLT, for relocation REL
15869    or (bfd_vma) -1 if it should not be included.  */
15870 
15871 bfd_vma
_bfd_mips_elf_plt_sym_val(bfd_vma i,const asection * plt,const arelent * rel ATTRIBUTE_UNUSED)15872 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15873 			   const arelent *rel ATTRIBUTE_UNUSED)
15874 {
15875   return (plt->vma
15876 	  + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15877 	  + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15878 }
15879 
15880 /* Build a table of synthetic symbols to represent the PLT.  As with MIPS16
15881    and microMIPS PLT slots we may have a many-to-one mapping between .plt
15882    and .got.plt and also the slots may be of a different size each we walk
15883    the PLT manually fetching instructions and matching them against known
15884    patterns.  To make things easier standard MIPS slots, if any, always come
15885    first.  As we don't create proper ELF symbols we use the UDATA.I member
15886    of ASYMBOL to carry ISA annotation.  The encoding used is the same as
15887    with the ST_OTHER member of the ELF symbol.  */
15888 
15889 long
_bfd_mips_elf_get_synthetic_symtab(bfd * abfd,long symcount ATTRIBUTE_UNUSED,asymbol ** syms ATTRIBUTE_UNUSED,long dynsymcount,asymbol ** dynsyms,asymbol ** ret)15890 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15891 				    long symcount ATTRIBUTE_UNUSED,
15892 				    asymbol **syms ATTRIBUTE_UNUSED,
15893 				    long dynsymcount, asymbol **dynsyms,
15894 				    asymbol **ret)
15895 {
15896   static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15897   static const char microsuffix[] = "@micromipsplt";
15898   static const char m16suffix[] = "@mips16plt";
15899   static const char mipssuffix[] = "@plt";
15900 
15901   bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15902   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15903   bfd_boolean micromips_p = MICROMIPS_P (abfd);
15904   Elf_Internal_Shdr *hdr;
15905   bfd_byte *plt_data;
15906   bfd_vma plt_offset;
15907   unsigned int other;
15908   bfd_vma entry_size;
15909   bfd_vma plt0_size;
15910   asection *relplt;
15911   bfd_vma opcode;
15912   asection *plt;
15913   asymbol *send;
15914   size_t size;
15915   char *names;
15916   long counti;
15917   arelent *p;
15918   asymbol *s;
15919   char *nend;
15920   long count;
15921   long pi;
15922   long i;
15923   long n;
15924 
15925   *ret = NULL;
15926 
15927   if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15928     return 0;
15929 
15930   relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15931   if (relplt == NULL)
15932     return 0;
15933 
15934   hdr = &elf_section_data (relplt)->this_hdr;
15935   if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15936     return 0;
15937 
15938   plt = bfd_get_section_by_name (abfd, ".plt");
15939   if (plt == NULL)
15940     return 0;
15941 
15942   slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15943   if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15944     return -1;
15945   p = relplt->relocation;
15946 
15947   /* Calculating the exact amount of space required for symbols would
15948      require two passes over the PLT, so just pessimise assuming two
15949      PLT slots per relocation.  */
15950   count = relplt->size / hdr->sh_entsize;
15951   counti = count * bed->s->int_rels_per_ext_rel;
15952   size = 2 * count * sizeof (asymbol);
15953   size += count * (sizeof (mipssuffix) +
15954 		   (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15955   for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15956     size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15957 
15958   /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too.  */
15959   size += sizeof (asymbol) + sizeof (pltname);
15960 
15961   if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15962     return -1;
15963 
15964   if (plt->size < 16)
15965     return -1;
15966 
15967   s = *ret = bfd_malloc (size);
15968   if (s == NULL)
15969     return -1;
15970   send = s + 2 * count + 1;
15971 
15972   names = (char *) send;
15973   nend = (char *) s + size;
15974   n = 0;
15975 
15976   opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15977   if (opcode == 0x3302fffe)
15978     {
15979       if (!micromips_p)
15980 	return -1;
15981       plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15982       other = STO_MICROMIPS;
15983     }
15984   else if (opcode == 0x0398c1d0)
15985     {
15986       if (!micromips_p)
15987 	return -1;
15988       plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15989       other = STO_MICROMIPS;
15990     }
15991   else
15992     {
15993       plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15994       other = 0;
15995     }
15996 
15997   s->the_bfd = abfd;
15998   s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15999   s->section = plt;
16000   s->value = 0;
16001   s->name = names;
16002   s->udata.i = other;
16003   memcpy (names, pltname, sizeof (pltname));
16004   names += sizeof (pltname);
16005   ++s, ++n;
16006 
16007   pi = 0;
16008   for (plt_offset = plt0_size;
16009        plt_offset + 8 <= plt->size && s < send;
16010        plt_offset += entry_size)
16011     {
16012       bfd_vma gotplt_addr;
16013       const char *suffix;
16014       bfd_vma gotplt_hi;
16015       bfd_vma gotplt_lo;
16016       size_t suffixlen;
16017 
16018       opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16019 
16020       /* Check if the second word matches the expected MIPS16 instruction.  */
16021       if (opcode == 0x651aeb00)
16022 	{
16023 	  if (micromips_p)
16024 	    return -1;
16025 	  /* Truncated table???  */
16026 	  if (plt_offset + 16 > plt->size)
16027 	    break;
16028 	  gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16029 	  entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16030 	  suffixlen = sizeof (m16suffix);
16031 	  suffix = m16suffix;
16032 	  other = STO_MIPS16;
16033 	}
16034       /* Likewise the expected microMIPS instruction (no insn32 mode).  */
16035       else if (opcode == 0xff220000)
16036 	{
16037 	  if (!micromips_p)
16038 	    return -1;
16039 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16040 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16041 	  gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16042 	  gotplt_lo <<= 2;
16043 	  gotplt_addr = gotplt_hi + gotplt_lo;
16044 	  gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16045 	  entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16046 	  suffixlen = sizeof (microsuffix);
16047 	  suffix = microsuffix;
16048 	  other = STO_MICROMIPS;
16049 	}
16050       /* Likewise the expected microMIPS instruction (insn32 mode).  */
16051       else if ((opcode & 0xffff0000) == 0xff2f0000)
16052 	{
16053 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16054 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16055 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16056 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16057 	  gotplt_addr = gotplt_hi + gotplt_lo;
16058 	  entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16059 	  suffixlen = sizeof (microsuffix);
16060 	  suffix = microsuffix;
16061 	  other = STO_MICROMIPS;
16062 	}
16063       /* Otherwise assume standard MIPS code.  */
16064       else
16065 	{
16066 	  gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16067 	  gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16068 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16069 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16070 	  gotplt_addr = gotplt_hi + gotplt_lo;
16071 	  entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16072 	  suffixlen = sizeof (mipssuffix);
16073 	  suffix = mipssuffix;
16074 	  other = 0;
16075 	}
16076       /* Truncated table???  */
16077       if (plt_offset + entry_size > plt->size)
16078 	break;
16079 
16080       for (i = 0;
16081 	   i < count && p[pi].address != gotplt_addr;
16082 	   i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16083 
16084       if (i < count)
16085 	{
16086 	  size_t namelen;
16087 	  size_t len;
16088 
16089 	  *s = **p[pi].sym_ptr_ptr;
16090 	  /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since
16091 	     we are defining a symbol, ensure one of them is set.  */
16092 	  if ((s->flags & BSF_LOCAL) == 0)
16093 	    s->flags |= BSF_GLOBAL;
16094 	  s->flags |= BSF_SYNTHETIC;
16095 	  s->section = plt;
16096 	  s->value = plt_offset;
16097 	  s->name = names;
16098 	  s->udata.i = other;
16099 
16100 	  len = strlen ((*p[pi].sym_ptr_ptr)->name);
16101 	  namelen = len + suffixlen;
16102 	  if (names + namelen > nend)
16103 	    break;
16104 
16105 	  memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16106 	  names += len;
16107 	  memcpy (names, suffix, suffixlen);
16108 	  names += suffixlen;
16109 
16110 	  ++s, ++n;
16111 	  pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16112 	}
16113     }
16114 
16115   free (plt_data);
16116 
16117   return n;
16118 }
16119 
16120 void
_bfd_mips_post_process_headers(bfd * abfd,struct bfd_link_info * link_info)16121 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16122 {
16123   struct mips_elf_link_hash_table *htab;
16124   Elf_Internal_Ehdr *i_ehdrp;
16125 
16126   i_ehdrp = elf_elfheader (abfd);
16127   if (link_info)
16128     {
16129       htab = mips_elf_hash_table (link_info);
16130       BFD_ASSERT (htab != NULL);
16131 
16132       if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16133 	i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16134     }
16135 
16136   _bfd_elf_post_process_headers (abfd, link_info);
16137 
16138   if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16139       || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16140     i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16141 }
16142