1 //---------------------------------------------------------------------------------
2 //
3 // Little Color Management System
4 // Copyright (c) 1998-2011 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 //
24 //---------------------------------------------------------------------------------
25 //
26
27 #include "lcms2_internal.h"
28
29
30 //----------------------------------------------------------------------------------
31
32 // Optimization for 8 bits, Shaper-CLUT (3 inputs only)
33 typedef struct {
34
35 cmsContext ContextID;
36
37 const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
38
39 cmsUInt16Number rx[256], ry[256], rz[256];
40 cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
41
42
43 } Prelin8Data;
44
45
46 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
47 typedef struct {
48
49 cmsContext ContextID;
50
51 // Number of channels
52 int nInputs;
53 int nOutputs;
54
55 _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
56 cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
57
58 _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
59 const cmsInterpParams* CLUTparams; // (not-owned pointer)
60
61
62 _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
63 cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
64
65
66 } Prelin16Data;
67
68
69 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
70
71 typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
72
73 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
74
75 typedef struct {
76
77 cmsContext ContextID;
78
79 cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
80 cmsS1Fixed14Number Shaper1G[256];
81 cmsS1Fixed14Number Shaper1B[256];
82
83 cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
84 cmsS1Fixed14Number Off[3];
85
86 cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
87 cmsUInt16Number Shaper2G[16385];
88 cmsUInt16Number Shaper2B[16385];
89
90 } MatShaper8Data;
91
92 // Curves, optimization is shared between 8 and 16 bits
93 typedef struct {
94
95 cmsContext ContextID;
96
97 int nCurves; // Number of curves
98 int nElements; // Elements in curves
99 cmsUInt16Number** Curves; // Points to a dynamically allocated array
100
101 } Curves16Data;
102
103
104 // Simple optimizations ----------------------------------------------------------------------------------------------------------
105
106
107 // Remove an element in linked chain
108 static
_RemoveElement(cmsStage ** head)109 void _RemoveElement(cmsStage** head)
110 {
111 cmsStage* mpe = *head;
112 cmsStage* next = mpe ->Next;
113 *head = next;
114 cmsStageFree(mpe);
115 }
116
117 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
118 static
_Remove1Op(cmsPipeline * Lut,cmsStageSignature UnaryOp)119 cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
120 {
121 cmsStage** pt = &Lut ->Elements;
122 cmsBool AnyOpt = FALSE;
123
124 while (*pt != NULL) {
125
126 if ((*pt) ->Implements == UnaryOp) {
127 _RemoveElement(pt);
128 AnyOpt = TRUE;
129 }
130 else
131 pt = &((*pt) -> Next);
132 }
133
134 return AnyOpt;
135 }
136
137 // Same, but only if two adjacent elements are found
138 static
_Remove2Op(cmsPipeline * Lut,cmsStageSignature Op1,cmsStageSignature Op2)139 cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
140 {
141 cmsStage** pt1;
142 cmsStage** pt2;
143 cmsBool AnyOpt = FALSE;
144
145 pt1 = &Lut ->Elements;
146 if (*pt1 == NULL) return AnyOpt;
147
148 while (*pt1 != NULL) {
149
150 pt2 = &((*pt1) -> Next);
151 if (*pt2 == NULL) return AnyOpt;
152
153 if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
154 _RemoveElement(pt2);
155 _RemoveElement(pt1);
156 AnyOpt = TRUE;
157 }
158 else
159 pt1 = &((*pt1) -> Next);
160 }
161
162 return AnyOpt;
163 }
164
165 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
166 // by a v4 to v2 and vice-versa. The elements are then discarded.
167 static
PreOptimize(cmsPipeline * Lut)168 cmsBool PreOptimize(cmsPipeline* Lut)
169 {
170 cmsBool AnyOpt = FALSE, Opt;
171
172 do {
173
174 Opt = FALSE;
175
176 // Remove all identities
177 Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
178
179 // Remove XYZ2Lab followed by Lab2XYZ
180 Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
181
182 // Remove Lab2XYZ followed by XYZ2Lab
183 Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
184
185 // Remove V4 to V2 followed by V2 to V4
186 Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
187
188 // Remove V2 to V4 followed by V4 to V2
189 Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
190
191 // Remove float pcs Lab conversions
192 Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
193
194 // Remove float pcs Lab conversions
195 Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
196
197 if (Opt) AnyOpt = TRUE;
198
199 } while (Opt);
200
201 return AnyOpt;
202 }
203
204 static
Eval16nop1D(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const struct _cms_interp_struc * p)205 void Eval16nop1D(register const cmsUInt16Number Input[],
206 register cmsUInt16Number Output[],
207 register const struct _cms_interp_struc* p)
208 {
209 Output[0] = Input[0];
210
211 cmsUNUSED_PARAMETER(p);
212 }
213
214 static
PrelinEval16(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const void * D)215 void PrelinEval16(register const cmsUInt16Number Input[],
216 register cmsUInt16Number Output[],
217 register const void* D)
218 {
219 Prelin16Data* p16 = (Prelin16Data*) D;
220 cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
221 cmsUInt16Number StageDEF[cmsMAXCHANNELS];
222 int i;
223
224 for (i=0; i < p16 ->nInputs; i++) {
225
226 p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
227 }
228
229 p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
230
231 for (i=0; i < p16 ->nOutputs; i++) {
232
233 p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
234 }
235 }
236
237
238 static
PrelinOpt16free(cmsContext ContextID,void * ptr)239 void PrelinOpt16free(cmsContext ContextID, void* ptr)
240 {
241 Prelin16Data* p16 = (Prelin16Data*) ptr;
242
243 _cmsFree(ContextID, p16 ->EvalCurveOut16);
244 _cmsFree(ContextID, p16 ->ParamsCurveOut16);
245
246 _cmsFree(ContextID, p16);
247 }
248
249 static
Prelin16dup(cmsContext ContextID,const void * ptr)250 void* Prelin16dup(cmsContext ContextID, const void* ptr)
251 {
252 Prelin16Data* p16 = (Prelin16Data*) ptr;
253 Prelin16Data* Duped = _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
254
255 if (Duped == NULL) return NULL;
256
257 Duped ->EvalCurveOut16 = (_cmsInterpFn16*)_cmsDupMem(ContextID, p16 ->EvalCurveOut16, p16 ->nOutputs * sizeof(_cmsInterpFn16));
258 Duped ->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16 ->ParamsCurveOut16, p16 ->nOutputs * sizeof(cmsInterpParams* ));
259
260 return Duped;
261 }
262
263
264 static
PrelinOpt16alloc(cmsContext ContextID,const cmsInterpParams * ColorMap,int nInputs,cmsToneCurve ** In,int nOutputs,cmsToneCurve ** Out)265 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
266 const cmsInterpParams* ColorMap,
267 int nInputs, cmsToneCurve** In,
268 int nOutputs, cmsToneCurve** Out )
269 {
270 int i;
271 Prelin16Data* p16 = _cmsMallocZero(ContextID, sizeof(Prelin16Data));
272 if (p16 == NULL) return NULL;
273
274 p16 ->nInputs = nInputs;
275 p16 -> nOutputs = nOutputs;
276
277
278 for (i=0; i < nInputs; i++) {
279
280 if (In == NULL) {
281 p16 -> ParamsCurveIn16[i] = NULL;
282 p16 -> EvalCurveIn16[i] = Eval16nop1D;
283
284 }
285 else {
286 p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
287 p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
288 }
289 }
290
291 p16 ->CLUTparams = ColorMap;
292 p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
293
294
295 p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
296 p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
297
298 for (i=0; i < nOutputs; i++) {
299
300 if (Out == NULL) {
301 p16 ->ParamsCurveOut16[i] = NULL;
302 p16 -> EvalCurveOut16[i] = Eval16nop1D;
303 }
304 else {
305
306 p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
307 p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
308 }
309 }
310
311 return p16;
312 }
313
314
315
316 // Resampling ---------------------------------------------------------------------------------
317
318 #define PRELINEARIZATION_POINTS 4096
319
320 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
321 // almost any transform. We use floating point precision and then convert from floating point to 16 bits.
322 static
XFormSampler16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register void * Cargo)323 int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
324 {
325 cmsPipeline* Lut = (cmsPipeline*) Cargo;
326 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
327 cmsUInt32Number i;
328
329 _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
330 _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
331
332 // From 16 bit to floating point
333 for (i=0; i < Lut ->InputChannels; i++)
334 InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
335
336 // Evaluate in floating point
337 cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
338
339 // Back to 16 bits representation
340 for (i=0; i < Lut ->OutputChannels; i++)
341 Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
342
343 // Always succeed
344 return TRUE;
345 }
346
347 // Try to see if the curves of a given MPE are linear
348 static
AllCurvesAreLinear(cmsStage * mpe)349 cmsBool AllCurvesAreLinear(cmsStage* mpe)
350 {
351 cmsToneCurve** Curves;
352 cmsUInt32Number i, n;
353
354 Curves = _cmsStageGetPtrToCurveSet(mpe);
355 if (Curves == NULL) return FALSE;
356
357 n = cmsStageOutputChannels(mpe);
358
359 for (i=0; i < n; i++) {
360 if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
361 }
362
363 return TRUE;
364 }
365
366 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
367 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
368 static
PatchLUT(cmsStage * CLUT,cmsUInt16Number At[],cmsUInt16Number Value[],int nChannelsOut,int nChannelsIn)369 cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
370 int nChannelsOut, int nChannelsIn)
371 {
372 _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
373 cmsInterpParams* p16 = Grid ->Params;
374 cmsFloat64Number px, py, pz, pw;
375 int x0, y0, z0, w0;
376 int i, index;
377
378 if (CLUT -> Type != cmsSigCLutElemType) {
379 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
380 return FALSE;
381 }
382
383 if (nChannelsIn != 1 && nChannelsIn != 3 && nChannelsIn != 4) {
384 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
385 return FALSE;
386 }
387 if (nChannelsIn == 4) {
388
389 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
390 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
391 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
392 pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
393
394 x0 = (int) floor(px);
395 y0 = (int) floor(py);
396 z0 = (int) floor(pz);
397 w0 = (int) floor(pw);
398
399 if (((px - x0) != 0) ||
400 ((py - y0) != 0) ||
401 ((pz - z0) != 0) ||
402 ((pw - w0) != 0)) return FALSE; // Not on exact node
403
404 index = p16 -> opta[3] * x0 +
405 p16 -> opta[2] * y0 +
406 p16 -> opta[1] * z0 +
407 p16 -> opta[0] * w0;
408 }
409 else
410 if (nChannelsIn == 3) {
411
412 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
413 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
414 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
415
416 x0 = (int) floor(px);
417 y0 = (int) floor(py);
418 z0 = (int) floor(pz);
419
420 if (((px - x0) != 0) ||
421 ((py - y0) != 0) ||
422 ((pz - z0) != 0)) return FALSE; // Not on exact node
423
424 index = p16 -> opta[2] * x0 +
425 p16 -> opta[1] * y0 +
426 p16 -> opta[0] * z0;
427 }
428 else
429 if (nChannelsIn == 1) {
430
431 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
432
433 x0 = (int) floor(px);
434
435 if (((px - x0) != 0)) return FALSE; // Not on exact node
436
437 index = p16 -> opta[0] * x0;
438 }
439 else {
440 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
441 return FALSE;
442 }
443
444 for (i=0; i < nChannelsOut; i++)
445 Grid -> Tab.T[index + i] = Value[i];
446
447 return TRUE;
448 }
449
450 // Auxiliar, to see if two values are equal or very different
451 static
WhitesAreEqual(int n,cmsUInt16Number White1[],cmsUInt16Number White2[])452 cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
453 {
454 int i;
455
456 for (i=0; i < n; i++) {
457
458 if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremly different that the fixup should be avoided
459 if (White1[i] != White2[i]) return FALSE;
460 }
461 return TRUE;
462 }
463
464
465 // Locate the node for the white point and fix it to pure white in order to avoid scum dot.
466 static
FixWhiteMisalignment(cmsPipeline * Lut,cmsColorSpaceSignature EntryColorSpace,cmsColorSpaceSignature ExitColorSpace)467 cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
468 {
469 cmsUInt16Number *WhitePointIn, *WhitePointOut;
470 cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
471 cmsUInt32Number i, nOuts, nIns;
472 cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
473
474 if (!_cmsEndPointsBySpace(EntryColorSpace,
475 &WhitePointIn, NULL, &nIns)) return FALSE;
476
477 if (!_cmsEndPointsBySpace(ExitColorSpace,
478 &WhitePointOut, NULL, &nOuts)) return FALSE;
479
480 // It needs to be fixed?
481 if (Lut ->InputChannels != nIns) return FALSE;
482 if (Lut ->OutputChannels != nOuts) return FALSE;
483
484 cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
485
486 if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
487
488 // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
489 if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
490 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
491 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
492 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
493 return FALSE;
494
495 // We need to interpolate white points of both, pre and post curves
496 if (PreLin) {
497
498 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
499
500 for (i=0; i < nIns; i++) {
501 WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
502 }
503 }
504 else {
505 for (i=0; i < nIns; i++)
506 WhiteIn[i] = WhitePointIn[i];
507 }
508
509 // If any post-linearization, we need to find how is represented white before the curve, do
510 // a reverse interpolation in this case.
511 if (PostLin) {
512
513 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
514
515 for (i=0; i < nOuts; i++) {
516
517 cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
518 if (InversePostLin == NULL) {
519 WhiteOut[i] = WhitePointOut[i];
520
521 } else {
522
523 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
524 cmsFreeToneCurve(InversePostLin);
525 }
526 }
527 }
528 else {
529 for (i=0; i < nOuts; i++)
530 WhiteOut[i] = WhitePointOut[i];
531 }
532
533 // Ok, proceed with patching. May fail and we don't care if it fails
534 PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
535
536 return TRUE;
537 }
538
539 // -----------------------------------------------------------------------------------------------------------------------------------------------
540 // This function creates simple LUT from complex ones. The generated LUT has an optional set of
541 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
542 // These curves have to exist in the original LUT in order to be used in the simplified output.
543 // Caller may also use the flags to allow this feature.
544 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
545 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
546 // -----------------------------------------------------------------------------------------------------------------------------------------------
547
548 static
OptimizeByResampling(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)549 cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
550 {
551 cmsPipeline* Src = NULL;
552 cmsPipeline* Dest = NULL;
553 cmsStage* mpe;
554 cmsStage* CLUT;
555 cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
556 int nGridPoints;
557 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
558 cmsStage *NewPreLin = NULL;
559 cmsStage *NewPostLin = NULL;
560 _cmsStageCLutData* DataCLUT;
561 cmsToneCurve** DataSetIn;
562 cmsToneCurve** DataSetOut;
563 Prelin16Data* p16;
564
565 // This is a loosy optimization! does not apply in floating-point cases
566 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
567
568 ColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
569 OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
570 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
571
572 // For empty LUTs, 2 points are enough
573 if (cmsPipelineStageCount(*Lut) == 0)
574 nGridPoints = 2;
575
576 Src = *Lut;
577
578 // Named color pipelines cannot be optimized either
579 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
580 mpe != NULL;
581 mpe = cmsStageNext(mpe)) {
582 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
583 }
584
585 // Allocate an empty LUT
586 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
587 if (!Dest) return FALSE;
588
589 // Prelinearization tables are kept unless indicated by flags
590 if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
591
592 // Get a pointer to the prelinearization element
593 cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
594
595 // Check if suitable
596 if (PreLin ->Type == cmsSigCurveSetElemType) {
597
598 // Maybe this is a linear tram, so we can avoid the whole stuff
599 if (!AllCurvesAreLinear(PreLin)) {
600
601 // All seems ok, proceed.
602 NewPreLin = cmsStageDup(PreLin);
603 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
604 goto Error;
605
606 // Remove prelinearization. Since we have duplicated the curve
607 // in destination LUT, the sampling shoud be applied after this stage.
608 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
609 }
610 }
611 }
612
613 // Allocate the CLUT
614 CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
615 if (CLUT == NULL) return FALSE;
616
617 // Add the CLUT to the destination LUT
618 if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
619 goto Error;
620 }
621
622 // Postlinearization tables are kept unless indicated by flags
623 if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
624
625 // Get a pointer to the postlinearization if present
626 cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
627
628 // Check if suitable
629 if (cmsStageType(PostLin) == cmsSigCurveSetElemType) {
630
631 // Maybe this is a linear tram, so we can avoid the whole stuff
632 if (!AllCurvesAreLinear(PostLin)) {
633
634 // All seems ok, proceed.
635 NewPostLin = cmsStageDup(PostLin);
636 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
637 goto Error;
638
639 // In destination LUT, the sampling shoud be applied after this stage.
640 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
641 }
642 }
643 }
644
645 // Now its time to do the sampling. We have to ignore pre/post linearization
646 // The source LUT whithout pre/post curves is passed as parameter.
647 if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
648 Error:
649 // Ops, something went wrong, Restore stages
650 if (KeepPreLin != NULL) {
651 if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
652 _cmsAssert(0); // This never happens
653 }
654 }
655 if (KeepPostLin != NULL) {
656 if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
657 _cmsAssert(0); // This never happens
658 }
659 }
660 cmsPipelineFree(Dest);
661 return FALSE;
662 }
663
664 // Done.
665
666 if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
667 if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
668 cmsPipelineFree(Src);
669
670 DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
671
672 if (NewPreLin == NULL) DataSetIn = NULL;
673 else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
674
675 if (NewPostLin == NULL) DataSetOut = NULL;
676 else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
677
678
679 if (DataSetIn == NULL && DataSetOut == NULL) {
680
681 _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
682 }
683 else {
684
685 p16 = PrelinOpt16alloc(Dest ->ContextID,
686 DataCLUT ->Params,
687 Dest ->InputChannels,
688 DataSetIn,
689 Dest ->OutputChannels,
690 DataSetOut);
691
692 _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
693 }
694
695
696 // Don't fix white on absolute colorimetric
697 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
698 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
699
700 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
701
702 FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
703 }
704
705 *Lut = Dest;
706 return TRUE;
707
708 cmsUNUSED_PARAMETER(Intent);
709 }
710
711
712 // -----------------------------------------------------------------------------------------------------------------------------------------------
713 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
714 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
715 // for RGB transforms. See the paper for more details
716 // -----------------------------------------------------------------------------------------------------------------------------------------------
717
718
719 // Normalize endpoints by slope limiting max and min. This assures endpoints as well.
720 // Descending curves are handled as well.
721 static
SlopeLimiting(cmsToneCurve * g)722 void SlopeLimiting(cmsToneCurve* g)
723 {
724 int BeginVal, EndVal;
725 int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
726 int AtEnd = g ->nEntries - AtBegin - 1; // And 98%
727 cmsFloat64Number Val, Slope, beta;
728 int i;
729
730 if (cmsIsToneCurveDescending(g)) {
731 BeginVal = 0xffff; EndVal = 0;
732 }
733 else {
734 BeginVal = 0; EndVal = 0xffff;
735 }
736
737 // Compute slope and offset for begin of curve
738 Val = g ->Table16[AtBegin];
739 Slope = (Val - BeginVal) / AtBegin;
740 beta = Val - Slope * AtBegin;
741
742 for (i=0; i < AtBegin; i++)
743 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
744
745 // Compute slope and offset for the end
746 Val = g ->Table16[AtEnd];
747 Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
748 beta = Val - Slope * AtEnd;
749
750 for (i = AtEnd; i < (int) g ->nEntries; i++)
751 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
752 }
753
754
755 // Precomputes tables for 8-bit on input devicelink.
756 static
PrelinOpt8alloc(cmsContext ContextID,const cmsInterpParams * p,cmsToneCurve * G[3])757 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
758 {
759 int i;
760 cmsUInt16Number Input[3];
761 cmsS15Fixed16Number v1, v2, v3;
762 Prelin8Data* p8;
763
764 p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
765 if (p8 == NULL) return NULL;
766
767 // Since this only works for 8 bit input, values comes always as x * 257,
768 // we can safely take msb byte (x << 8 + x)
769
770 for (i=0; i < 256; i++) {
771
772 if (G != NULL) {
773
774 // Get 16-bit representation
775 Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
776 Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
777 Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
778 }
779 else {
780 Input[0] = FROM_8_TO_16(i);
781 Input[1] = FROM_8_TO_16(i);
782 Input[2] = FROM_8_TO_16(i);
783 }
784
785
786 // Move to 0..1.0 in fixed domain
787 v1 = _cmsToFixedDomain(Input[0] * p -> Domain[0]);
788 v2 = _cmsToFixedDomain(Input[1] * p -> Domain[1]);
789 v3 = _cmsToFixedDomain(Input[2] * p -> Domain[2]);
790
791 // Store the precalculated table of nodes
792 p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
793 p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
794 p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
795
796 // Store the precalculated table of offsets
797 p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
798 p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
799 p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
800 }
801
802 p8 ->ContextID = ContextID;
803 p8 ->p = p;
804
805 return p8;
806 }
807
808 static
Prelin8free(cmsContext ContextID,void * ptr)809 void Prelin8free(cmsContext ContextID, void* ptr)
810 {
811 _cmsFree(ContextID, ptr);
812 }
813
814 static
Prelin8dup(cmsContext ContextID,const void * ptr)815 void* Prelin8dup(cmsContext ContextID, const void* ptr)
816 {
817 return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
818 }
819
820
821
822 // A optimized interpolation for 8-bit input.
823 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
824 static
PrelinEval8(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const void * D)825 void PrelinEval8(register const cmsUInt16Number Input[],
826 register cmsUInt16Number Output[],
827 register const void* D)
828 {
829
830 cmsUInt8Number r, g, b;
831 cmsS15Fixed16Number rx, ry, rz;
832 cmsS15Fixed16Number c0, c1, c2, c3, Rest;
833 int OutChan;
834 register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
835 Prelin8Data* p8 = (Prelin8Data*) D;
836 register const cmsInterpParams* p = p8 ->p;
837 int TotalOut = p -> nOutputs;
838 const cmsUInt16Number* LutTable = (const cmsUInt16Number*)p -> Table;
839
840 r = Input[0] >> 8;
841 g = Input[1] >> 8;
842 b = Input[2] >> 8;
843
844 X0 = X1 = p8->X0[r];
845 Y0 = Y1 = p8->Y0[g];
846 Z0 = Z1 = p8->Z0[b];
847
848 rx = p8 ->rx[r];
849 ry = p8 ->ry[g];
850 rz = p8 ->rz[b];
851
852 X1 = X0 + ((rx == 0) ? 0 : p ->opta[2]);
853 Y1 = Y0 + ((ry == 0) ? 0 : p ->opta[1]);
854 Z1 = Z0 + ((rz == 0) ? 0 : p ->opta[0]);
855
856
857 // These are the 6 Tetrahedral
858 for (OutChan=0; OutChan < TotalOut; OutChan++) {
859
860 c0 = DENS(X0, Y0, Z0);
861
862 if (rx >= ry && ry >= rz)
863 {
864 c1 = DENS(X1, Y0, Z0) - c0;
865 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
866 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
867 }
868 else
869 if (rx >= rz && rz >= ry)
870 {
871 c1 = DENS(X1, Y0, Z0) - c0;
872 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
873 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
874 }
875 else
876 if (rz >= rx && rx >= ry)
877 {
878 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
879 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
880 c3 = DENS(X0, Y0, Z1) - c0;
881 }
882 else
883 if (ry >= rx && rx >= rz)
884 {
885 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
886 c2 = DENS(X0, Y1, Z0) - c0;
887 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
888 }
889 else
890 if (ry >= rz && rz >= rx)
891 {
892 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
893 c2 = DENS(X0, Y1, Z0) - c0;
894 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
895 }
896 else
897 if (rz >= ry && ry >= rx)
898 {
899 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
900 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
901 c3 = DENS(X0, Y0, Z1) - c0;
902 }
903 else {
904 c1 = c2 = c3 = 0;
905 }
906
907
908 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
909 Output[OutChan] = (cmsUInt16Number)c0 + ((Rest + (Rest>>16))>>16);
910
911 }
912 }
913
914 #undef DENS
915
916
917 // Curves that contain wide empty areas are not optimizeable
918 static
IsDegenerated(const cmsToneCurve * g)919 cmsBool IsDegenerated(const cmsToneCurve* g)
920 {
921 int i, Zeros = 0, Poles = 0;
922 int nEntries = g ->nEntries;
923
924 for (i=0; i < nEntries; i++) {
925
926 if (g ->Table16[i] == 0x0000) Zeros++;
927 if (g ->Table16[i] == 0xffff) Poles++;
928 }
929
930 if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
931 if (Zeros > (nEntries / 4)) return TRUE; // Degenerated, mostly zeros
932 if (Poles > (nEntries / 4)) return TRUE; // Degenerated, mostly poles
933
934 return FALSE;
935 }
936
937 // --------------------------------------------------------------------------------------------------------------
938 // We need xput over here
939
940 static
OptimizeByComputingLinearization(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)941 cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
942 {
943 cmsPipeline* OriginalLut;
944 int nGridPoints;
945 cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
946 cmsUInt32Number t, i;
947 cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
948 cmsBool lIsSuitable, lIsLinear;
949 cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
950 cmsStage* OptimizedCLUTmpe;
951 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
952 cmsStage* OptimizedPrelinMpe;
953 cmsStage* mpe;
954 cmsToneCurve** OptimizedPrelinCurves;
955 _cmsStageCLutData* OptimizedPrelinCLUT;
956
957
958 // This is a loosy optimization! does not apply in floating-point cases
959 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
960
961 // Only on RGB
962 if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
963 if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
964
965
966 // On 16 bits, user has to specify the feature
967 if (!_cmsFormatterIs8bit(*InputFormat)) {
968 if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
969 }
970
971 OriginalLut = *Lut;
972
973 // Named color pipelines cannot be optimized either
974 for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
975 mpe != NULL;
976 mpe = cmsStageNext(mpe)) {
977 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
978 }
979
980 ColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
981 OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
982 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
983
984 // Empty gamma containers
985 memset(Trans, 0, sizeof(Trans));
986 memset(TransReverse, 0, sizeof(TransReverse));
987
988 for (t = 0; t < OriginalLut ->InputChannels; t++) {
989 Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
990 if (Trans[t] == NULL) goto Error;
991 }
992
993 // Populate the curves
994 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
995
996 v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
997
998 // Feed input with a gray ramp
999 for (t=0; t < OriginalLut ->InputChannels; t++)
1000 In[t] = v;
1001
1002 // Evaluate the gray value
1003 cmsPipelineEvalFloat(In, Out, OriginalLut);
1004
1005 // Store result in curve
1006 for (t=0; t < OriginalLut ->InputChannels; t++)
1007 Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1008 }
1009
1010 // Slope-limit the obtained curves
1011 for (t = 0; t < OriginalLut ->InputChannels; t++)
1012 SlopeLimiting(Trans[t]);
1013
1014 // Check for validity
1015 lIsSuitable = TRUE;
1016 lIsLinear = TRUE;
1017 for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1018
1019 // Exclude if already linear
1020 if (!cmsIsToneCurveLinear(Trans[t]))
1021 lIsLinear = FALSE;
1022
1023 // Exclude if non-monotonic
1024 if (!cmsIsToneCurveMonotonic(Trans[t]))
1025 lIsSuitable = FALSE;
1026
1027 if (IsDegenerated(Trans[t]))
1028 lIsSuitable = FALSE;
1029 }
1030
1031 // If it is not suitable, just quit
1032 if (!lIsSuitable) goto Error;
1033
1034 // Invert curves if possible
1035 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1036 TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1037 if (TransReverse[t] == NULL) goto Error;
1038 }
1039
1040 // Now inset the reversed curves at the begin of transform
1041 LutPlusCurves = cmsPipelineDup(OriginalLut);
1042 if (LutPlusCurves == NULL) goto Error;
1043
1044 if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1045 goto Error;
1046
1047 // Create the result LUT
1048 OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1049 if (OptimizedLUT == NULL) goto Error;
1050
1051 OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1052
1053 // Create and insert the curves at the beginning
1054 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1055 goto Error;
1056
1057 // Allocate the CLUT for result
1058 OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1059
1060 // Add the CLUT to the destination LUT
1061 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1062 goto Error;
1063
1064 // Resample the LUT
1065 if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1066
1067 // Free resources
1068 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1069
1070 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1071 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1072 }
1073
1074 cmsPipelineFree(LutPlusCurves);
1075
1076
1077 OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1078 OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1079
1080 // Set the evaluator if 8-bit
1081 if (_cmsFormatterIs8bit(*InputFormat)) {
1082
1083 Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1084 OptimizedPrelinCLUT ->Params,
1085 OptimizedPrelinCurves);
1086 if (p8 == NULL) return FALSE;
1087
1088 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1089
1090 }
1091 else
1092 {
1093 Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1094 OptimizedPrelinCLUT ->Params,
1095 3, OptimizedPrelinCurves, 3, NULL);
1096 if (p16 == NULL) return FALSE;
1097
1098 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1099
1100 }
1101
1102 // Don't fix white on absolute colorimetric
1103 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1104 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1105
1106 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1107
1108 if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1109
1110 return FALSE;
1111 }
1112 }
1113
1114 // And return the obtained LUT
1115
1116 cmsPipelineFree(OriginalLut);
1117 *Lut = OptimizedLUT;
1118 return TRUE;
1119
1120 Error:
1121
1122 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1123
1124 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1125 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1126 }
1127
1128 if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1129 if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1130
1131 return FALSE;
1132
1133 cmsUNUSED_PARAMETER(Intent);
1134 }
1135
1136
1137 // Curves optimizer ------------------------------------------------------------------------------------------------------------------
1138
1139 static
CurvesFree(cmsContext ContextID,void * ptr)1140 void CurvesFree(cmsContext ContextID, void* ptr)
1141 {
1142 Curves16Data* Data = (Curves16Data*) ptr;
1143 int i;
1144
1145 for (i=0; i < Data -> nCurves; i++) {
1146
1147 _cmsFree(ContextID, Data ->Curves[i]);
1148 }
1149
1150 _cmsFree(ContextID, Data ->Curves);
1151 _cmsFree(ContextID, ptr);
1152 }
1153
1154 static
CurvesDup(cmsContext ContextID,const void * ptr)1155 void* CurvesDup(cmsContext ContextID, const void* ptr)
1156 {
1157 Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1158 int i;
1159
1160 if (Data == NULL) return NULL;
1161
1162 Data ->Curves = (cmsUInt16Number**)_cmsDupMem(ContextID, Data ->Curves, Data ->nCurves * sizeof(cmsUInt16Number*));
1163
1164 for (i=0; i < Data -> nCurves; i++) {
1165 Data ->Curves[i] = (cmsUInt16Number*)_cmsDupMem(ContextID, Data ->Curves[i], Data -> nElements * sizeof(cmsUInt16Number));
1166 }
1167
1168 return (void*) Data;
1169 }
1170
1171 // Precomputes tables for 8-bit on input devicelink.
1172 static
CurvesAlloc(cmsContext ContextID,int nCurves,int nElements,cmsToneCurve ** G)1173 Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsToneCurve** G)
1174 {
1175 int i, j;
1176 Curves16Data* c16;
1177
1178 c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1179 if (c16 == NULL) return NULL;
1180
1181 c16 ->nCurves = nCurves;
1182 c16 ->nElements = nElements;
1183
1184 c16 ->Curves = (cmsUInt16Number**)_cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1185 if (c16 ->Curves == NULL) return NULL;
1186
1187 for (i=0; i < nCurves; i++) {
1188
1189 c16->Curves[i] = (cmsUInt16Number*)_cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1190
1191 if (c16->Curves[i] == NULL) {
1192
1193 for (j=0; j < i; j++) {
1194 _cmsFree(ContextID, c16->Curves[j]);
1195 }
1196 _cmsFree(ContextID, c16->Curves);
1197 _cmsFree(ContextID, c16);
1198 return NULL;
1199 }
1200
1201 if (nElements == 256) {
1202
1203 for (j=0; j < nElements; j++) {
1204
1205 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1206 }
1207 }
1208 else {
1209
1210 for (j=0; j < nElements; j++) {
1211 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1212 }
1213 }
1214 }
1215
1216 return c16;
1217 }
1218
1219 static
FastEvaluateCurves8(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1220 void FastEvaluateCurves8(register const cmsUInt16Number In[],
1221 register cmsUInt16Number Out[],
1222 register const void* D)
1223 {
1224 Curves16Data* Data = (Curves16Data*) D;
1225 cmsUInt8Number x;
1226 int i;
1227
1228 for (i=0; i < Data ->nCurves; i++) {
1229
1230 x = (In[i] >> 8);
1231 Out[i] = Data -> Curves[i][x];
1232 }
1233 }
1234
1235
1236 static
FastEvaluateCurves16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1237 void FastEvaluateCurves16(register const cmsUInt16Number In[],
1238 register cmsUInt16Number Out[],
1239 register const void* D)
1240 {
1241 Curves16Data* Data = (Curves16Data*) D;
1242 int i;
1243
1244 for (i=0; i < Data ->nCurves; i++) {
1245 Out[i] = Data -> Curves[i][In[i]];
1246 }
1247 }
1248
1249
1250 static
FastIdentity16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1251 void FastIdentity16(register const cmsUInt16Number In[],
1252 register cmsUInt16Number Out[],
1253 register const void* D)
1254 {
1255 cmsPipeline* Lut = (cmsPipeline*) D;
1256 cmsUInt32Number i;
1257
1258 for (i=0; i < Lut ->InputChannels; i++) {
1259 Out[i] = In[i];
1260 }
1261 }
1262
1263
1264 // If the target LUT holds only curves, the optimization procedure is to join all those
1265 // curves together. That only works on curves and does not work on matrices.
1266 static
OptimizeByJoiningCurves(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1267 cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1268 {
1269 cmsToneCurve** GammaTables = NULL;
1270 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1271 cmsUInt32Number i, j;
1272 cmsPipeline* Src = *Lut;
1273 cmsPipeline* Dest = NULL;
1274 cmsStage* mpe;
1275 cmsStage* ObtainedCurves = NULL;
1276
1277
1278 // This is a loosy optimization! does not apply in floating-point cases
1279 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1280
1281 // Only curves in this LUT?
1282 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1283 mpe != NULL;
1284 mpe = cmsStageNext(mpe)) {
1285 if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1286 }
1287
1288 // Allocate an empty LUT
1289 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1290 if (Dest == NULL) return FALSE;
1291
1292 // Create target curves
1293 GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1294 if (GammaTables == NULL) goto Error;
1295
1296 for (i=0; i < Src ->InputChannels; i++) {
1297 GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1298 if (GammaTables[i] == NULL) goto Error;
1299 }
1300
1301 // Compute 16 bit result by using floating point
1302 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1303
1304 for (j=0; j < Src ->InputChannels; j++)
1305 InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1306
1307 cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1308
1309 for (j=0; j < Src ->InputChannels; j++)
1310 GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1311 }
1312
1313 ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1314 if (ObtainedCurves == NULL) goto Error;
1315
1316 for (i=0; i < Src ->InputChannels; i++) {
1317 cmsFreeToneCurve(GammaTables[i]);
1318 GammaTables[i] = NULL;
1319 }
1320
1321 if (GammaTables != NULL) _cmsFree(Src ->ContextID, GammaTables);
1322
1323 // Maybe the curves are linear at the end
1324 if (!AllCurvesAreLinear(ObtainedCurves)) {
1325
1326 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1327 goto Error;
1328
1329 // If the curves are to be applied in 8 bits, we can save memory
1330 if (_cmsFormatterIs8bit(*InputFormat)) {
1331
1332 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data;
1333 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1334
1335 if (c16 == NULL) goto Error;
1336 *dwFlags |= cmsFLAGS_NOCACHE;
1337 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1338
1339 }
1340 else {
1341
1342 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1343 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1344
1345 if (c16 == NULL) goto Error;
1346 *dwFlags |= cmsFLAGS_NOCACHE;
1347 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1348 }
1349 }
1350 else {
1351
1352 // LUT optimizes to nothing. Set the identity LUT
1353 cmsStageFree(ObtainedCurves);
1354
1355 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1356 goto Error;
1357
1358 *dwFlags |= cmsFLAGS_NOCACHE;
1359 _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1360 }
1361
1362 // We are done.
1363 cmsPipelineFree(Src);
1364 *Lut = Dest;
1365 return TRUE;
1366
1367 Error:
1368
1369 if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1370 if (GammaTables != NULL) {
1371 for (i=0; i < Src ->InputChannels; i++) {
1372 if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1373 }
1374
1375 _cmsFree(Src ->ContextID, GammaTables);
1376 }
1377
1378 if (Dest != NULL) cmsPipelineFree(Dest);
1379 return FALSE;
1380
1381 cmsUNUSED_PARAMETER(Intent);
1382 cmsUNUSED_PARAMETER(InputFormat);
1383 cmsUNUSED_PARAMETER(OutputFormat);
1384 cmsUNUSED_PARAMETER(dwFlags);
1385 }
1386
1387 // -------------------------------------------------------------------------------------------------------------------------------------
1388 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1389
1390
1391 static
FreeMatShaper(cmsContext ContextID,void * Data)1392 void FreeMatShaper(cmsContext ContextID, void* Data)
1393 {
1394 if (Data != NULL) _cmsFree(ContextID, Data);
1395 }
1396
1397 static
DupMatShaper(cmsContext ContextID,const void * Data)1398 void* DupMatShaper(cmsContext ContextID, const void* Data)
1399 {
1400 return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1401 }
1402
1403
1404 // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1405 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1406 // in total about 50K, and the performance boost is huge!
1407 static
MatShaperEval16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1408 void MatShaperEval16(register const cmsUInt16Number In[],
1409 register cmsUInt16Number Out[],
1410 register const void* D)
1411 {
1412 MatShaper8Data* p = (MatShaper8Data*) D;
1413 cmsS1Fixed14Number l1, l2, l3, r, g, b;
1414 cmsUInt32Number ri, gi, bi;
1415
1416 // In this case (and only in this case!) we can use this simplification since
1417 // In[] is assured to come from a 8 bit number. (a << 8 | a)
1418 ri = In[0] & 0xFF;
1419 gi = In[1] & 0xFF;
1420 bi = In[2] & 0xFF;
1421
1422 // Across first shaper, which also converts to 1.14 fixed point
1423 r = p->Shaper1R[ri];
1424 g = p->Shaper1G[gi];
1425 b = p->Shaper1B[bi];
1426
1427 // Evaluate the matrix in 1.14 fixed point
1428 l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1429 l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1430 l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1431
1432 // Now we have to clip to 0..1.0 range
1433 ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1);
1434 gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2);
1435 bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3);
1436
1437 // And across second shaper,
1438 Out[0] = p->Shaper2R[ri];
1439 Out[1] = p->Shaper2G[gi];
1440 Out[2] = p->Shaper2B[bi];
1441
1442 }
1443
1444 // This table converts from 8 bits to 1.14 after applying the curve
1445 static
FillFirstShaper(cmsS1Fixed14Number * Table,cmsToneCurve * Curve)1446 void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1447 {
1448 int i;
1449 cmsFloat32Number R, y;
1450
1451 for (i=0; i < 256; i++) {
1452
1453 R = (cmsFloat32Number) (i / 255.0);
1454 y = cmsEvalToneCurveFloat(Curve, R);
1455
1456 Table[i] = DOUBLE_TO_1FIXED14(y);
1457 }
1458 }
1459
1460 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1461 static
FillSecondShaper(cmsUInt16Number * Table,cmsToneCurve * Curve,cmsBool Is8BitsOutput)1462 void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1463 {
1464 int i;
1465 cmsFloat32Number R, Val;
1466
1467 for (i=0; i < 16385; i++) {
1468
1469 R = (cmsFloat32Number) (i / 16384.0);
1470 Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
1471
1472 if (Is8BitsOutput) {
1473
1474 // If 8 bits output, we can optimize further by computing the / 257 part.
1475 // first we compute the resulting byte and then we store the byte times
1476 // 257. This quantization allows to round very quick by doing a >> 8, but
1477 // since the low byte is always equal to msb, we can do a & 0xff and this works!
1478 cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1479 cmsUInt8Number b = FROM_16_TO_8(w);
1480
1481 Table[i] = FROM_8_TO_16(b);
1482 }
1483 else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
1484 }
1485 }
1486
1487 // Compute the matrix-shaper structure
1488 static
SetMatShaper(cmsPipeline * Dest,cmsToneCurve * Curve1[3],cmsMAT3 * Mat,cmsVEC3 * Off,cmsToneCurve * Curve2[3],cmsUInt32Number * OutputFormat)1489 cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1490 {
1491 MatShaper8Data* p;
1492 int i, j;
1493 cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1494
1495 // Allocate a big chuck of memory to store precomputed tables
1496 p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1497 if (p == NULL) return FALSE;
1498
1499 p -> ContextID = Dest -> ContextID;
1500
1501 // Precompute tables
1502 FillFirstShaper(p ->Shaper1R, Curve1[0]);
1503 FillFirstShaper(p ->Shaper1G, Curve1[1]);
1504 FillFirstShaper(p ->Shaper1B, Curve1[2]);
1505
1506 FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1507 FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1508 FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1509
1510 // Convert matrix to nFixed14. Note that those values may take more than 16 bits as
1511 for (i=0; i < 3; i++) {
1512 for (j=0; j < 3; j++) {
1513 p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1514 }
1515 }
1516
1517 for (i=0; i < 3; i++) {
1518
1519 if (Off == NULL) {
1520 p ->Off[i] = 0;
1521 }
1522 else {
1523 p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1524 }
1525 }
1526
1527 // Mark as optimized for faster formatter
1528 if (Is8Bits)
1529 *OutputFormat |= OPTIMIZED_SH(1);
1530
1531 // Fill function pointers
1532 _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1533 return TRUE;
1534 }
1535
1536 // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1537 // TODO: Allow a third matrix for abs. colorimetric
1538 static
OptimizeMatrixShaper(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1539 cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1540 {
1541 cmsStage* Curve1, *Curve2;
1542 cmsStage* Matrix1, *Matrix2;
1543 _cmsStageMatrixData* Data1;
1544 _cmsStageMatrixData* Data2;
1545 cmsMAT3 res;
1546 cmsBool IdentityMat;
1547 cmsPipeline* Dest, *Src;
1548
1549 // Only works on RGB to RGB
1550 if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1551
1552 // Only works on 8 bit input
1553 if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1554
1555 // Seems suitable, proceed
1556 Src = *Lut;
1557
1558 // Check for shaper-matrix-matrix-shaper structure, that is what this optimizer stands for
1559 if (!cmsPipelineCheckAndRetreiveStages(Src, 4,
1560 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1561 &Curve1, &Matrix1, &Matrix2, &Curve2)) return FALSE;
1562
1563 // Get both matrices
1564 Data1 = (_cmsStageMatrixData*) cmsStageData(Matrix1);
1565 Data2 = (_cmsStageMatrixData*) cmsStageData(Matrix2);
1566
1567 // Input offset should be zero
1568 if (Data1 ->Offset != NULL) return FALSE;
1569
1570 // Multiply both matrices to get the result
1571 _cmsMAT3per(&res, (cmsMAT3*) Data2 ->Double, (cmsMAT3*) Data1 ->Double);
1572
1573 // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1574 IdentityMat = FALSE;
1575 if (_cmsMAT3isIdentity(&res) && Data2 ->Offset == NULL) {
1576
1577 // We can get rid of full matrix
1578 IdentityMat = TRUE;
1579 }
1580
1581 // Allocate an empty LUT
1582 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1583 if (!Dest) return FALSE;
1584
1585 // Assamble the new LUT
1586 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1587 goto Error;
1588
1589 if (!IdentityMat)
1590 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest ->ContextID, 3, 3, (const cmsFloat64Number*) &res, Data2 ->Offset)))
1591 goto Error;
1592 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1593 goto Error;
1594
1595 // If identity on matrix, we can further optimize the curves, so call the join curves routine
1596 if (IdentityMat) {
1597
1598 OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1599 }
1600 else {
1601 _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1602 _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1603
1604 // In this particular optimization, cach?does not help as it takes more time to deal with
1605 // the cach?that with the pixel handling
1606 *dwFlags |= cmsFLAGS_NOCACHE;
1607
1608 // Setup the optimizarion routines
1609 SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Data2 ->Offset, mpeC2->TheCurves, OutputFormat);
1610 }
1611
1612 cmsPipelineFree(Src);
1613 *Lut = Dest;
1614 return TRUE;
1615 Error:
1616 // Leave Src unchanged
1617 cmsPipelineFree(Dest);
1618 return FALSE;
1619 }
1620
1621
1622 // -------------------------------------------------------------------------------------------------------------------------------------
1623 // Optimization plug-ins
1624
1625 // List of optimizations
1626 typedef struct _cmsOptimizationCollection_st {
1627
1628 _cmsOPToptimizeFn OptimizePtr;
1629
1630 struct _cmsOptimizationCollection_st *Next;
1631
1632 } _cmsOptimizationCollection;
1633
1634
1635 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1636 static _cmsOptimizationCollection DefaultOptimization[] = {
1637
1638 { OptimizeByJoiningCurves, &DefaultOptimization[1] },
1639 { OptimizeMatrixShaper, &DefaultOptimization[2] },
1640 { OptimizeByComputingLinearization, &DefaultOptimization[3] },
1641 { OptimizeByResampling, NULL }
1642 };
1643
1644 // The linked list head
1645 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1646
1647
1648 // Duplicates the zone of memory used by the plug-in in the new context
1649 static
DupPluginOptimizationList(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1650 void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1651 const struct _cmsContext_struct* src)
1652 {
1653 _cmsOptimizationPluginChunkType newHead = { NULL };
1654 _cmsOptimizationCollection* entry;
1655 _cmsOptimizationCollection* Anterior = NULL;
1656 _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1657
1658 _cmsAssert(ctx != NULL);
1659 _cmsAssert(head != NULL);
1660
1661 // Walk the list copying all nodes
1662 for (entry = head->OptimizationCollection;
1663 entry != NULL;
1664 entry = entry ->Next) {
1665
1666 _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1667
1668 if (newEntry == NULL)
1669 return;
1670
1671 // We want to keep the linked list order, so this is a little bit tricky
1672 newEntry -> Next = NULL;
1673 if (Anterior)
1674 Anterior -> Next = newEntry;
1675
1676 Anterior = newEntry;
1677
1678 if (newHead.OptimizationCollection == NULL)
1679 newHead.OptimizationCollection = newEntry;
1680 }
1681
1682 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1683 }
1684
_cmsAllocOptimizationPluginChunk(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1685 void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1686 const struct _cmsContext_struct* src)
1687 {
1688 if (src != NULL) {
1689
1690 // Copy all linked list
1691 DupPluginOptimizationList(ctx, src);
1692 }
1693 else {
1694 static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1695 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1696 }
1697 }
1698
1699
1700 // Register new ways to optimize
_cmsRegisterOptimizationPlugin(cmsContext ContextID,cmsPluginBase * Data)1701 cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1702 {
1703 cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1704 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1705 _cmsOptimizationCollection* fl;
1706
1707 if (Data == NULL) {
1708
1709 ctx->OptimizationCollection = NULL;
1710 return TRUE;
1711 }
1712
1713 // Optimizer callback is required
1714 if (Plugin ->OptimizePtr == NULL) return FALSE;
1715
1716 fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1717 if (fl == NULL) return FALSE;
1718
1719 // Copy the parameters
1720 fl ->OptimizePtr = Plugin ->OptimizePtr;
1721
1722 // Keep linked list
1723 fl ->Next = ctx->OptimizationCollection;
1724
1725 // Set the head
1726 ctx ->OptimizationCollection = fl;
1727
1728 // All is ok
1729 return TRUE;
1730 }
1731
1732 // The entry point for LUT optimization
_cmsOptimizePipeline(cmsContext ContextID,cmsPipeline ** PtrLut,int Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1733 cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1734 cmsPipeline** PtrLut,
1735 int Intent,
1736 cmsUInt32Number* InputFormat,
1737 cmsUInt32Number* OutputFormat,
1738 cmsUInt32Number* dwFlags)
1739 {
1740 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1741 _cmsOptimizationCollection* Opts;
1742 cmsBool AnySuccess = FALSE;
1743
1744 // A CLUT is being asked, so force this specific optimization
1745 if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1746
1747 PreOptimize(*PtrLut);
1748 return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1749 }
1750
1751 // Anything to optimize?
1752 if ((*PtrLut) ->Elements == NULL) {
1753 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1754 return TRUE;
1755 }
1756
1757 // Try to get rid of identities and trivial conversions.
1758 AnySuccess = PreOptimize(*PtrLut);
1759
1760 // After removal do we end with an identity?
1761 if ((*PtrLut) ->Elements == NULL) {
1762 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1763 return TRUE;
1764 }
1765
1766 // Do not optimize, keep all precision
1767 if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1768 return FALSE;
1769
1770 // Try plug-in optimizations
1771 for (Opts = ctx->OptimizationCollection;
1772 Opts != NULL;
1773 Opts = Opts ->Next) {
1774
1775 // If one schema succeeded, we are done
1776 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1777
1778 return TRUE; // Optimized!
1779 }
1780 }
1781
1782 // Try built-in optimizations
1783 for (Opts = DefaultOptimization;
1784 Opts != NULL;
1785 Opts = Opts ->Next) {
1786
1787 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1788
1789 return TRUE;
1790 }
1791 }
1792
1793 // Only simple optimizations succeeded
1794 return AnySuccess;
1795 }
1796