1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                          License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
45 using namespace cv;
46 using namespace cv::detail;
47 using namespace cv::cuda;
48 
49 #ifdef HAVE_OPENCV_XFEATURES2D
50 #include "opencv2/xfeatures2d.hpp"
51 using xfeatures2d::SURF;
52 #endif
53 
54 namespace {
55 
56 struct DistIdxPair
57 {
operator <__anon0431e8210111::DistIdxPair58     bool operator<(const DistIdxPair &other) const { return dist < other.dist; }
59     double dist;
60     int idx;
61 };
62 
63 
64 struct MatchPairsBody : ParallelLoopBody
65 {
MatchPairsBody__anon0431e8210111::MatchPairsBody66     MatchPairsBody(FeaturesMatcher &_matcher, const std::vector<ImageFeatures> &_features,
67                    std::vector<MatchesInfo> &_pairwise_matches, std::vector<std::pair<int,int> > &_near_pairs)
68             : matcher(_matcher), features(_features),
69               pairwise_matches(_pairwise_matches), near_pairs(_near_pairs) {}
70 
operator ()__anon0431e8210111::MatchPairsBody71     void operator ()(const Range &r) const
72     {
73         const int num_images = static_cast<int>(features.size());
74         for (int i = r.start; i < r.end; ++i)
75         {
76             int from = near_pairs[i].first;
77             int to = near_pairs[i].second;
78             int pair_idx = from*num_images + to;
79 
80             matcher(features[from], features[to], pairwise_matches[pair_idx]);
81             pairwise_matches[pair_idx].src_img_idx = from;
82             pairwise_matches[pair_idx].dst_img_idx = to;
83 
84             size_t dual_pair_idx = to*num_images + from;
85 
86             pairwise_matches[dual_pair_idx] = pairwise_matches[pair_idx];
87             pairwise_matches[dual_pair_idx].src_img_idx = to;
88             pairwise_matches[dual_pair_idx].dst_img_idx = from;
89 
90             if (!pairwise_matches[pair_idx].H.empty())
91                 pairwise_matches[dual_pair_idx].H = pairwise_matches[pair_idx].H.inv();
92 
93             for (size_t j = 0; j < pairwise_matches[dual_pair_idx].matches.size(); ++j)
94                 std::swap(pairwise_matches[dual_pair_idx].matches[j].queryIdx,
95                           pairwise_matches[dual_pair_idx].matches[j].trainIdx);
96             LOG(".");
97         }
98     }
99 
100     FeaturesMatcher &matcher;
101     const std::vector<ImageFeatures> &features;
102     std::vector<MatchesInfo> &pairwise_matches;
103     std::vector<std::pair<int,int> > &near_pairs;
104 
105 private:
106     void operator =(const MatchPairsBody&);
107 };
108 
109 
110 //////////////////////////////////////////////////////////////////////////////
111 
112 typedef std::set<std::pair<int,int> > MatchesSet;
113 
114 // These two classes are aimed to find features matches only, not to
115 // estimate homography
116 
117 class CpuMatcher : public FeaturesMatcher
118 {
119 public:
CpuMatcher(float match_conf)120     CpuMatcher(float match_conf) : FeaturesMatcher(true), match_conf_(match_conf) {}
121     void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info);
122 
123 private:
124     float match_conf_;
125 };
126 
127 #ifdef HAVE_OPENCV_CUDAFEATURES2D
128 class GpuMatcher : public FeaturesMatcher
129 {
130 public:
GpuMatcher(float match_conf)131     GpuMatcher(float match_conf) : match_conf_(match_conf) {}
132     void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info);
133 
134     void collectGarbage();
135 
136 private:
137     float match_conf_;
138     GpuMat descriptors1_, descriptors2_;
139     GpuMat train_idx_, distance_, all_dist_;
140     std::vector< std::vector<DMatch> > pair_matches;
141 };
142 #endif
143 
144 
match(const ImageFeatures & features1,const ImageFeatures & features2,MatchesInfo & matches_info)145 void CpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info)
146 {
147     CV_Assert(features1.descriptors.type() == features2.descriptors.type());
148     CV_Assert(features2.descriptors.depth() == CV_8U || features2.descriptors.depth() == CV_32F);
149 
150 #ifdef HAVE_TEGRA_OPTIMIZATION
151     if (tegra::useTegra() && tegra::match2nearest(features1, features2, matches_info, match_conf_))
152         return;
153 #endif
154 
155     matches_info.matches.clear();
156 
157     Ptr<cv::DescriptorMatcher> matcher;
158 #if 0 // TODO check this
159     if (ocl::useOpenCL())
160     {
161         matcher = makePtr<BFMatcher>((int)NORM_L2);
162     }
163     else
164 #endif
165     {
166         Ptr<flann::IndexParams> indexParams = makePtr<flann::KDTreeIndexParams>();
167         Ptr<flann::SearchParams> searchParams = makePtr<flann::SearchParams>();
168 
169         if (features2.descriptors.depth() == CV_8U)
170         {
171             indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
172             searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH);
173         }
174 
175         matcher = makePtr<FlannBasedMatcher>(indexParams, searchParams);
176     }
177     std::vector< std::vector<DMatch> > pair_matches;
178     MatchesSet matches;
179 
180     // Find 1->2 matches
181     matcher->knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2);
182     for (size_t i = 0; i < pair_matches.size(); ++i)
183     {
184         if (pair_matches[i].size() < 2)
185             continue;
186         const DMatch& m0 = pair_matches[i][0];
187         const DMatch& m1 = pair_matches[i][1];
188         if (m0.distance < (1.f - match_conf_) * m1.distance)
189         {
190             matches_info.matches.push_back(m0);
191             matches.insert(std::make_pair(m0.queryIdx, m0.trainIdx));
192         }
193     }
194     LOG("\n1->2 matches: " << matches_info.matches.size() << endl);
195 
196     // Find 2->1 matches
197     pair_matches.clear();
198     matcher->knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2);
199     for (size_t i = 0; i < pair_matches.size(); ++i)
200     {
201         if (pair_matches[i].size() < 2)
202             continue;
203         const DMatch& m0 = pair_matches[i][0];
204         const DMatch& m1 = pair_matches[i][1];
205         if (m0.distance < (1.f - match_conf_) * m1.distance)
206             if (matches.find(std::make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
207                 matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
208     }
209     LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);
210 }
211 
212 #ifdef HAVE_OPENCV_CUDAFEATURES2D
match(const ImageFeatures & features1,const ImageFeatures & features2,MatchesInfo & matches_info)213 void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info)
214 {
215     matches_info.matches.clear();
216 
217     ensureSizeIsEnough(features1.descriptors.size(), features1.descriptors.type(), descriptors1_);
218     ensureSizeIsEnough(features2.descriptors.size(), features2.descriptors.type(), descriptors2_);
219 
220     descriptors1_.upload(features1.descriptors);
221     descriptors2_.upload(features2.descriptors);
222 
223     Ptr<cuda::DescriptorMatcher> matcher = cuda::DescriptorMatcher::createBFMatcher(NORM_L2);
224 
225     MatchesSet matches;
226 
227     // Find 1->2 matches
228     pair_matches.clear();
229     matcher->knnMatch(descriptors1_, descriptors2_, pair_matches, 2);
230     for (size_t i = 0; i < pair_matches.size(); ++i)
231     {
232         if (pair_matches[i].size() < 2)
233             continue;
234         const DMatch& m0 = pair_matches[i][0];
235         const DMatch& m1 = pair_matches[i][1];
236         if (m0.distance < (1.f - match_conf_) * m1.distance)
237         {
238             matches_info.matches.push_back(m0);
239             matches.insert(std::make_pair(m0.queryIdx, m0.trainIdx));
240         }
241     }
242 
243     // Find 2->1 matches
244     pair_matches.clear();
245     matcher->knnMatch(descriptors2_, descriptors1_, pair_matches, 2);
246     for (size_t i = 0; i < pair_matches.size(); ++i)
247     {
248         if (pair_matches[i].size() < 2)
249             continue;
250         const DMatch& m0 = pair_matches[i][0];
251         const DMatch& m1 = pair_matches[i][1];
252         if (m0.distance < (1.f - match_conf_) * m1.distance)
253             if (matches.find(std::make_pair(m0.trainIdx, m0.queryIdx)) == matches.end())
254                 matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance));
255     }
256 }
257 
collectGarbage()258 void GpuMatcher::collectGarbage()
259 {
260     descriptors1_.release();
261     descriptors2_.release();
262     train_idx_.release();
263     distance_.release();
264     all_dist_.release();
265     std::vector< std::vector<DMatch> >().swap(pair_matches);
266 }
267 #endif
268 
269 } // namespace
270 
271 
272 namespace cv {
273 namespace detail {
274 
operator ()(InputArray image,ImageFeatures & features)275 void FeaturesFinder::operator ()(InputArray  image, ImageFeatures &features)
276 {
277     find(image, features);
278     features.img_size = image.size();
279 }
280 
281 
operator ()(InputArray image,ImageFeatures & features,const std::vector<Rect> & rois)282 void FeaturesFinder::operator ()(InputArray image, ImageFeatures &features, const std::vector<Rect> &rois)
283 {
284     std::vector<ImageFeatures> roi_features(rois.size());
285     size_t total_kps_count = 0;
286     int total_descriptors_height = 0;
287 
288     for (size_t i = 0; i < rois.size(); ++i)
289     {
290         find(image.getUMat()(rois[i]), roi_features[i]);
291         total_kps_count += roi_features[i].keypoints.size();
292         total_descriptors_height += roi_features[i].descriptors.rows;
293     }
294 
295     features.img_size = image.size();
296     features.keypoints.resize(total_kps_count);
297     features.descriptors.create(total_descriptors_height,
298                                 roi_features[0].descriptors.cols,
299                                 roi_features[0].descriptors.type());
300 
301     int kp_idx = 0;
302     int descr_offset = 0;
303     for (size_t i = 0; i < rois.size(); ++i)
304     {
305         for (size_t j = 0; j < roi_features[i].keypoints.size(); ++j, ++kp_idx)
306         {
307             features.keypoints[kp_idx] = roi_features[i].keypoints[j];
308             features.keypoints[kp_idx].pt.x += (float)rois[i].x;
309             features.keypoints[kp_idx].pt.y += (float)rois[i].y;
310         }
311         UMat subdescr = features.descriptors.rowRange(
312                 descr_offset, descr_offset + roi_features[i].descriptors.rows);
313         roi_features[i].descriptors.copyTo(subdescr);
314         descr_offset += roi_features[i].descriptors.rows;
315     }
316 }
317 
318 
SurfFeaturesFinder(double hess_thresh,int num_octaves,int num_layers,int num_octaves_descr,int num_layers_descr)319 SurfFeaturesFinder::SurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers,
320                                        int num_octaves_descr, int num_layers_descr)
321 {
322 #ifdef HAVE_OPENCV_XFEATURES2D
323     if (num_octaves_descr == num_octaves && num_layers_descr == num_layers)
324     {
325         Ptr<SURF> surf_ = SURF::create();
326         if( !surf_ )
327             CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" );
328         surf_->setHessianThreshold(hess_thresh);
329         surf_->setNOctaves(num_octaves);
330         surf_->setNOctaveLayers(num_layers);
331         surf = surf_;
332     }
333     else
334     {
335         Ptr<SURF> sdetector_ = SURF::create();
336         Ptr<SURF> sextractor_ = SURF::create();
337 
338         if( !sdetector_ || !sextractor_ )
339             CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" );
340 
341         sdetector_->setHessianThreshold(hess_thresh);
342         sdetector_->setNOctaves(num_octaves);
343         sdetector_->setNOctaveLayers(num_layers);
344 
345         sextractor_->setNOctaves(num_octaves_descr);
346         sextractor_->setNOctaveLayers(num_layers_descr);
347 
348         detector_ = sdetector_;
349         extractor_ = sextractor_;
350     }
351 #else
352     (void)hess_thresh;
353     (void)num_octaves;
354     (void)num_layers;
355     (void)num_octaves_descr;
356     (void)num_layers_descr;
357     CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" );
358 #endif
359 }
360 
find(InputArray image,ImageFeatures & features)361 void SurfFeaturesFinder::find(InputArray image, ImageFeatures &features)
362 {
363     UMat gray_image;
364     CV_Assert((image.type() == CV_8UC3) || (image.type() == CV_8UC1));
365     if(image.type() == CV_8UC3)
366     {
367         cvtColor(image, gray_image, COLOR_BGR2GRAY);
368     }
369     else
370     {
371         gray_image = image.getUMat();
372     }
373     if (!surf)
374     {
375         detector_->detect(gray_image, features.keypoints);
376         extractor_->compute(gray_image, features.keypoints, features.descriptors);
377     }
378     else
379     {
380         UMat descriptors;
381         surf->detectAndCompute(gray_image, Mat(), features.keypoints, descriptors);
382         features.descriptors = descriptors.reshape(1, (int)features.keypoints.size());
383     }
384 }
385 
OrbFeaturesFinder(Size _grid_size,int n_features,float scaleFactor,int nlevels)386 OrbFeaturesFinder::OrbFeaturesFinder(Size _grid_size, int n_features, float scaleFactor, int nlevels)
387 {
388     grid_size = _grid_size;
389     orb = ORB::create(n_features * (99 + grid_size.area())/100/grid_size.area(), scaleFactor, nlevels);
390 }
391 
find(InputArray image,ImageFeatures & features)392 void OrbFeaturesFinder::find(InputArray image, ImageFeatures &features)
393 {
394     UMat gray_image;
395 
396     CV_Assert((image.type() == CV_8UC3) || (image.type() == CV_8UC4) || (image.type() == CV_8UC1));
397 
398     if (image.type() == CV_8UC3) {
399         cvtColor(image, gray_image, COLOR_BGR2GRAY);
400     } else if (image.type() == CV_8UC4) {
401         cvtColor(image, gray_image, COLOR_BGRA2GRAY);
402     } else if (image.type() == CV_8UC1) {
403         gray_image = image.getUMat();
404     } else {
405         CV_Error(Error::StsUnsupportedFormat, "");
406     }
407 
408     if (grid_size.area() == 1)
409         orb->detectAndCompute(gray_image, Mat(), features.keypoints, features.descriptors);
410     else
411     {
412         features.keypoints.clear();
413         features.descriptors.release();
414 
415         std::vector<KeyPoint> points;
416         Mat _descriptors;
417         UMat descriptors;
418 
419         for (int r = 0; r < grid_size.height; ++r)
420             for (int c = 0; c < grid_size.width; ++c)
421             {
422                 int xl = c * gray_image.cols / grid_size.width;
423                 int yl = r * gray_image.rows / grid_size.height;
424                 int xr = (c+1) * gray_image.cols / grid_size.width;
425                 int yr = (r+1) * gray_image.rows / grid_size.height;
426 
427                 // LOGLN("OrbFeaturesFinder::find: gray_image.empty=" << (gray_image.empty()?"true":"false") << ", "
428                 //     << " gray_image.size()=(" << gray_image.size().width << "x" << gray_image.size().height << "), "
429                 //     << " yl=" << yl << ", yr=" << yr << ", "
430                 //     << " xl=" << xl << ", xr=" << xr << ", gray_image.data=" << ((size_t)gray_image.data) << ", "
431                 //     << "gray_image.dims=" << gray_image.dims << "\n");
432 
433                 UMat gray_image_part=gray_image(Range(yl, yr), Range(xl, xr));
434                 // LOGLN("OrbFeaturesFinder::find: gray_image_part.empty=" << (gray_image_part.empty()?"true":"false") << ", "
435                 //     << " gray_image_part.size()=(" << gray_image_part.size().width << "x" << gray_image_part.size().height << "), "
436                 //     << " gray_image_part.dims=" << gray_image_part.dims << ", "
437                 //     << " gray_image_part.data=" << ((size_t)gray_image_part.data) << "\n");
438 
439                 orb->detectAndCompute(gray_image_part, UMat(), points, descriptors);
440 
441                 features.keypoints.reserve(features.keypoints.size() + points.size());
442                 for (std::vector<KeyPoint>::iterator kp = points.begin(); kp != points.end(); ++kp)
443                 {
444                     kp->pt.x += xl;
445                     kp->pt.y += yl;
446                     features.keypoints.push_back(*kp);
447                 }
448                 _descriptors.push_back(descriptors.getMat(ACCESS_READ));
449             }
450 
451         // TODO optimize copyTo()
452         //features.descriptors = _descriptors.getUMat(ACCESS_READ);
453         _descriptors.copyTo(features.descriptors);
454     }
455 }
456 
457 #ifdef HAVE_OPENCV_XFEATURES2D
SurfFeaturesFinderGpu(double hess_thresh,int num_octaves,int num_layers,int num_octaves_descr,int num_layers_descr)458 SurfFeaturesFinderGpu::SurfFeaturesFinderGpu(double hess_thresh, int num_octaves, int num_layers,
459                                              int num_octaves_descr, int num_layers_descr)
460 {
461     surf_.keypointsRatio = 0.1f;
462     surf_.hessianThreshold = hess_thresh;
463     surf_.extended = false;
464     num_octaves_ = num_octaves;
465     num_layers_ = num_layers;
466     num_octaves_descr_ = num_octaves_descr;
467     num_layers_descr_ = num_layers_descr;
468 }
469 
470 
find(InputArray image,ImageFeatures & features)471 void SurfFeaturesFinderGpu::find(InputArray image, ImageFeatures &features)
472 {
473     CV_Assert(image.depth() == CV_8U);
474 
475     ensureSizeIsEnough(image.size(), image.type(), image_);
476     image_.upload(image);
477 
478     ensureSizeIsEnough(image.size(), CV_8UC1, gray_image_);
479     cvtColor(image_, gray_image_, COLOR_BGR2GRAY);
480 
481     surf_.nOctaves = num_octaves_;
482     surf_.nOctaveLayers = num_layers_;
483     surf_.upright = false;
484     surf_(gray_image_, GpuMat(), keypoints_);
485 
486     surf_.nOctaves = num_octaves_descr_;
487     surf_.nOctaveLayers = num_layers_descr_;
488     surf_.upright = true;
489     surf_(gray_image_, GpuMat(), keypoints_, descriptors_, true);
490     surf_.downloadKeypoints(keypoints_, features.keypoints);
491 
492     descriptors_.download(features.descriptors);
493 }
494 
collectGarbage()495 void SurfFeaturesFinderGpu::collectGarbage()
496 {
497     surf_.releaseMemory();
498     image_.release();
499     gray_image_.release();
500     keypoints_.release();
501     descriptors_.release();
502 }
503 #endif
504 
505 
506 //////////////////////////////////////////////////////////////////////////////
507 
MatchesInfo()508 MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0), confidence(0) {}
509 
MatchesInfo(const MatchesInfo & other)510 MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; }
511 
operator =(const MatchesInfo & other)512 const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
513 {
514     src_img_idx = other.src_img_idx;
515     dst_img_idx = other.dst_img_idx;
516     matches = other.matches;
517     inliers_mask = other.inliers_mask;
518     num_inliers = other.num_inliers;
519     H = other.H.clone();
520     confidence = other.confidence;
521     return *this;
522 }
523 
524 
525 //////////////////////////////////////////////////////////////////////////////
526 
operator ()(const std::vector<ImageFeatures> & features,std::vector<MatchesInfo> & pairwise_matches,const UMat & mask)527 void FeaturesMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
528                                   const UMat &mask)
529 {
530     const int num_images = static_cast<int>(features.size());
531 
532     CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.cols == num_images && mask.rows));
533     Mat_<uchar> mask_(mask.getMat(ACCESS_READ));
534     if (mask_.empty())
535         mask_ = Mat::ones(num_images, num_images, CV_8U);
536 
537     std::vector<std::pair<int,int> > near_pairs;
538     for (int i = 0; i < num_images - 1; ++i)
539         for (int j = i + 1; j < num_images; ++j)
540             if (features[i].keypoints.size() > 0 && features[j].keypoints.size() > 0 && mask_(i, j))
541                 near_pairs.push_back(std::make_pair(i, j));
542 
543     pairwise_matches.resize(num_images * num_images);
544     MatchPairsBody body(*this, features, pairwise_matches, near_pairs);
545 
546     if (is_thread_safe_)
547         parallel_for_(Range(0, static_cast<int>(near_pairs.size())), body);
548     else
549         body(Range(0, static_cast<int>(near_pairs.size())));
550     LOGLN_CHAT("");
551 }
552 
553 
554 //////////////////////////////////////////////////////////////////////////////
555 
BestOf2NearestMatcher(bool try_use_gpu,float match_conf,int num_matches_thresh1,int num_matches_thresh2)556 BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
557 {
558     (void)try_use_gpu;
559 
560 #ifdef HAVE_OPENCV_CUDAFEATURES2D
561     if (try_use_gpu && getCudaEnabledDeviceCount() > 0)
562     {
563         impl_ = makePtr<GpuMatcher>(match_conf);
564     }
565     else
566 #endif
567     {
568         impl_ = makePtr<CpuMatcher>(match_conf);
569     }
570 
571     is_thread_safe_ = impl_->isThreadSafe();
572     num_matches_thresh1_ = num_matches_thresh1;
573     num_matches_thresh2_ = num_matches_thresh2;
574 }
575 
576 
match(const ImageFeatures & features1,const ImageFeatures & features2,MatchesInfo & matches_info)577 void BestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2,
578                                   MatchesInfo &matches_info)
579 {
580     (*impl_)(features1, features2, matches_info);
581 
582     // Check if it makes sense to find homography
583     if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_))
584         return;
585 
586     // Construct point-point correspondences for homography estimation
587     Mat src_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
588     Mat dst_points(1, static_cast<int>(matches_info.matches.size()), CV_32FC2);
589     for (size_t i = 0; i < matches_info.matches.size(); ++i)
590     {
591         const DMatch& m = matches_info.matches[i];
592 
593         Point2f p = features1.keypoints[m.queryIdx].pt;
594         p.x -= features1.img_size.width * 0.5f;
595         p.y -= features1.img_size.height * 0.5f;
596         src_points.at<Point2f>(0, static_cast<int>(i)) = p;
597 
598         p = features2.keypoints[m.trainIdx].pt;
599         p.x -= features2.img_size.width * 0.5f;
600         p.y -= features2.img_size.height * 0.5f;
601         dst_points.at<Point2f>(0, static_cast<int>(i)) = p;
602     }
603 
604     // Find pair-wise motion
605     matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, RANSAC);
606     if (matches_info.H.empty() || std::abs(determinant(matches_info.H)) < std::numeric_limits<double>::epsilon())
607         return;
608 
609     // Find number of inliers
610     matches_info.num_inliers = 0;
611     for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i)
612         if (matches_info.inliers_mask[i])
613             matches_info.num_inliers++;
614 
615     // These coeffs are from paper M. Brown and D. Lowe. "Automatic Panoramic Image Stitching
616     // using Invariant Features"
617     matches_info.confidence = matches_info.num_inliers / (8 + 0.3 * matches_info.matches.size());
618 
619     // Set zero confidence to remove matches between too close images, as they don't provide
620     // additional information anyway. The threshold was set experimentally.
621     matches_info.confidence = matches_info.confidence > 3. ? 0. : matches_info.confidence;
622 
623     // Check if we should try to refine motion
624     if (matches_info.num_inliers < num_matches_thresh2_)
625         return;
626 
627     // Construct point-point correspondences for inliers only
628     src_points.create(1, matches_info.num_inliers, CV_32FC2);
629     dst_points.create(1, matches_info.num_inliers, CV_32FC2);
630     int inlier_idx = 0;
631     for (size_t i = 0; i < matches_info.matches.size(); ++i)
632     {
633         if (!matches_info.inliers_mask[i])
634             continue;
635 
636         const DMatch& m = matches_info.matches[i];
637 
638         Point2f p = features1.keypoints[m.queryIdx].pt;
639         p.x -= features1.img_size.width * 0.5f;
640         p.y -= features1.img_size.height * 0.5f;
641         src_points.at<Point2f>(0, inlier_idx) = p;
642 
643         p = features2.keypoints[m.trainIdx].pt;
644         p.x -= features2.img_size.width * 0.5f;
645         p.y -= features2.img_size.height * 0.5f;
646         dst_points.at<Point2f>(0, inlier_idx) = p;
647 
648         inlier_idx++;
649     }
650 
651     // Rerun motion estimation on inliers only
652     matches_info.H = findHomography(src_points, dst_points, RANSAC);
653 }
654 
collectGarbage()655 void BestOf2NearestMatcher::collectGarbage()
656 {
657     impl_->collectGarbage();
658 }
659 
660 
BestOf2NearestRangeMatcher(int range_width,bool try_use_gpu,float match_conf,int num_matches_thresh1,int num_matches_thresh2)661 BestOf2NearestRangeMatcher::BestOf2NearestRangeMatcher(int range_width, bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2): BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh2)
662 {
663     range_width_ = range_width;
664 }
665 
666 
operator ()(const std::vector<ImageFeatures> & features,std::vector<MatchesInfo> & pairwise_matches,const UMat & mask)667 void BestOf2NearestRangeMatcher::operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
668                                   const UMat &mask)
669 {
670     const int num_images = static_cast<int>(features.size());
671 
672     CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.cols == num_images && mask.rows));
673     Mat_<uchar> mask_(mask.getMat(ACCESS_READ));
674     if (mask_.empty())
675         mask_ = Mat::ones(num_images, num_images, CV_8U);
676 
677     std::vector<std::pair<int,int> > near_pairs;
678     for (int i = 0; i < num_images - 1; ++i)
679         for (int j = i + 1; j < std::min(num_images, i + range_width_); ++j)
680             if (features[i].keypoints.size() > 0 && features[j].keypoints.size() > 0 && mask_(i, j))
681                 near_pairs.push_back(std::make_pair(i, j));
682 
683     pairwise_matches.resize(num_images * num_images);
684     MatchPairsBody body(*this, features, pairwise_matches, near_pairs);
685 
686     if (is_thread_safe_)
687         parallel_for_(Range(0, static_cast<int>(near_pairs.size())), body);
688     else
689         body(Range(0, static_cast<int>(near_pairs.size())));
690     LOGLN_CHAT("");
691 }
692 
693 
694 } // namespace detail
695 } // namespace cv
696