1 /* Xtensa-specific support for 32-bit ELF.
2    Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or
7    modify it under the terms of the GNU General Public License as
8    published by the Free Software Foundation; either version 3 of the
9    License, or (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful, but
12    WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 
24 #include <stdarg.h>
25 #include <strings.h>
26 
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33 
34 #define XTENSA_NO_NOP_REMOVAL 0
35 
36 /* Local helper functions.  */
37 
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41   (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43   (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45   (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46 
47 /* Local functions to handle Xtensa configurability.  */
48 
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64   (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66   (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68   (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70   (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73   (bfd_byte *, bfd_size_type, bfd_size_type);
74 
75 /* Functions for link-time code simplifications.  */
76 
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78   (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80   (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83 
84 /* Access to internal relocations, section contents and symbols.  */
85 
86 static Elf_Internal_Rela *retrieve_internal_relocs
87   (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94 
95 /* Miscellaneous utility functions.  */
96 
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101   (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 static asection *xtensa_get_property_section (asection *, const char *);
112 extern asection *xtensa_make_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114 
115 /* Other functions called directly by the linker.  */
116 
117 typedef void (*deps_callback_t)
118   (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120   (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121 
122 
123 /* Globally visible flag for choosing size optimization of NOP removal
124    instead of branch-target-aware minimization for NOP removal.
125    When nonzero, narrow all instructions and remove all NOPs possible
126    around longcall expansions.  */
127 
128 int elf32xtensa_size_opt;
129 
130 
131 /* The "new_section_hook" is used to set up a per-section
132    "xtensa_relax_info" data structure with additional information used
133    during relaxation.  */
134 
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136 
137 
138 /* The GNU tools do not easily allow extending interfaces to pass around
139    the pointer to the Xtensa ISA information, so instead we add a global
140    variable here (in BFD) that can be used by any of the tools that need
141    this information. */
142 
143 xtensa_isa xtensa_default_isa;
144 
145 
146 /* When this is true, relocations may have been modified to refer to
147    symbols from other input files.  The per-section list of "fix"
148    records needs to be checked when resolving relocations.  */
149 
150 static bfd_boolean relaxing_section = FALSE;
151 
152 /* When this is true, during final links, literals that cannot be
153    coalesced and their relocations may be moved to other sections.  */
154 
155 int elf32xtensa_no_literal_movement = 1;
156 
157 /* Rename one of the generic section flags to better document how it
158    is used here.  */
159 /* Whether relocations have been processed.  */
160 #define reloc_done sec_flg0
161 
162 static reloc_howto_type elf_howto_table[] =
163 {
164   HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
165 	 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
166 	 FALSE, 0, 0, FALSE),
167   HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 	 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 	 TRUE, 0xffffffff, 0xffffffff, FALSE),
170 
171   /* Replace a 32-bit value with a value from the runtime linker (only
172      used by linker-generated stub functions).  The r_addend value is
173      special: 1 means to substitute a pointer to the runtime linker's
174      dynamic resolver function; 2 means to substitute the link map for
175      the shared object.  */
176   HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
177 	 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178 
179   HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 	 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
181 	 FALSE, 0, 0xffffffff, FALSE),
182   HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 	 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
184 	 FALSE, 0, 0xffffffff, FALSE),
185   HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 	 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
187 	 FALSE, 0, 0xffffffff, FALSE),
188   HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 	 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
190 	 FALSE, 0, 0xffffffff, FALSE),
191 
192   EMPTY_HOWTO (7),
193 
194   /* Old relocations for backward compatibility.  */
195   HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 	 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
197   HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 	 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
199   HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 	 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201 
202   /* Assembly auto-expansion.  */
203   HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
204 	 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
205   /* Relax assembly auto-expansion.  */
206   HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
207 	 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208 
209   EMPTY_HOWTO (13),
210 
211   HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 	 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 	 FALSE, 0, 0xffffffff, TRUE),
214 
215   /* GNU extension to record C++ vtable hierarchy.  */
216   HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217          NULL, "R_XTENSA_GNU_VTINHERIT",
218 	 FALSE, 0, 0, FALSE),
219   /* GNU extension to record C++ vtable member usage.  */
220   HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221          _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
222 	 FALSE, 0, 0, FALSE),
223 
224   /* Relocations for supporting difference of symbols.  */
225   HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
226 	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
227   HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
228 	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
229   HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
230 	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
231 
232   /* General immediate operand relocations.  */
233   HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
235   HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
237   HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
239   HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
241   HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
243   HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
245   HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
247   HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
249   HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
251   HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
253   HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
255   HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
257   HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
259   HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
261   HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
263 
264   /* "Alternate" relocations.  The meaning of these is opcode-specific.  */
265   HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
267   HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
269   HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
271   HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
273   HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
275   HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
277   HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
279   HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
281   HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
283   HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
285   HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
287   HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
289   HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
291   HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
293   HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
295 
296   /* TLS relocations.  */
297   HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 	 FALSE, 0, 0xffffffff, FALSE),
300   HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 	 FALSE, 0, 0xffffffff, FALSE),
303   HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 	 FALSE, 0, 0xffffffff, FALSE),
306   HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 	 FALSE, 0, 0xffffffff, FALSE),
309   HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 	 FALSE, 0, 0, FALSE),
312   HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 	 FALSE, 0, 0, FALSE),
315   HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 	 FALSE, 0, 0, FALSE),
318 };
319 
320 #if DEBUG_GEN_RELOC
321 #define TRACE(str) \
322   fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323 #else
324 #define TRACE(str)
325 #endif
326 
327 static reloc_howto_type *
elf_xtensa_reloc_type_lookup(bfd * abfd ATTRIBUTE_UNUSED,bfd_reloc_code_real_type code)328 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 			      bfd_reloc_code_real_type code)
330 {
331   switch (code)
332     {
333     case BFD_RELOC_NONE:
334       TRACE ("BFD_RELOC_NONE");
335       return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336 
337     case BFD_RELOC_32:
338       TRACE ("BFD_RELOC_32");
339       return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340 
341     case BFD_RELOC_32_PCREL:
342       TRACE ("BFD_RELOC_32_PCREL");
343       return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344 
345     case BFD_RELOC_XTENSA_DIFF8:
346       TRACE ("BFD_RELOC_XTENSA_DIFF8");
347       return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348 
349     case BFD_RELOC_XTENSA_DIFF16:
350       TRACE ("BFD_RELOC_XTENSA_DIFF16");
351       return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352 
353     case BFD_RELOC_XTENSA_DIFF32:
354       TRACE ("BFD_RELOC_XTENSA_DIFF32");
355       return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356 
357     case BFD_RELOC_XTENSA_RTLD:
358       TRACE ("BFD_RELOC_XTENSA_RTLD");
359       return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360 
361     case BFD_RELOC_XTENSA_GLOB_DAT:
362       TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363       return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364 
365     case BFD_RELOC_XTENSA_JMP_SLOT:
366       TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367       return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368 
369     case BFD_RELOC_XTENSA_RELATIVE:
370       TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371       return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372 
373     case BFD_RELOC_XTENSA_PLT:
374       TRACE ("BFD_RELOC_XTENSA_PLT");
375       return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376 
377     case BFD_RELOC_XTENSA_OP0:
378       TRACE ("BFD_RELOC_XTENSA_OP0");
379       return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380 
381     case BFD_RELOC_XTENSA_OP1:
382       TRACE ("BFD_RELOC_XTENSA_OP1");
383       return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384 
385     case BFD_RELOC_XTENSA_OP2:
386       TRACE ("BFD_RELOC_XTENSA_OP2");
387       return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388 
389     case BFD_RELOC_XTENSA_ASM_EXPAND:
390       TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391       return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392 
393     case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394       TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395       return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396 
397     case BFD_RELOC_VTABLE_INHERIT:
398       TRACE ("BFD_RELOC_VTABLE_INHERIT");
399       return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400 
401     case BFD_RELOC_VTABLE_ENTRY:
402       TRACE ("BFD_RELOC_VTABLE_ENTRY");
403       return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404 
405     case BFD_RELOC_XTENSA_TLSDESC_FN:
406       TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407       return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408 
409     case BFD_RELOC_XTENSA_TLSDESC_ARG:
410       TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411       return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412 
413     case BFD_RELOC_XTENSA_TLS_DTPOFF:
414       TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415       return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416 
417     case BFD_RELOC_XTENSA_TLS_TPOFF:
418       TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419       return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420 
421     case BFD_RELOC_XTENSA_TLS_FUNC:
422       TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423       return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424 
425     case BFD_RELOC_XTENSA_TLS_ARG:
426       TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427       return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428 
429     case BFD_RELOC_XTENSA_TLS_CALL:
430       TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431       return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432 
433     default:
434       if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 	  && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 	{
437 	  unsigned n = (R_XTENSA_SLOT0_OP +
438 			(code - BFD_RELOC_XTENSA_SLOT0_OP));
439 	  return &elf_howto_table[n];
440 	}
441 
442       if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 	  && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 	{
445 	  unsigned n = (R_XTENSA_SLOT0_ALT +
446 			(code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 	  return &elf_howto_table[n];
448 	}
449 
450       break;
451     }
452 
453   TRACE ("Unknown");
454   return NULL;
455 }
456 
457 static reloc_howto_type *
elf_xtensa_reloc_name_lookup(bfd * abfd ATTRIBUTE_UNUSED,const char * r_name)458 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
459 			      const char *r_name)
460 {
461   unsigned int i;
462 
463   for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
464     if (elf_howto_table[i].name != NULL
465 	&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
466       return &elf_howto_table[i];
467 
468   return NULL;
469 }
470 
471 
472 /* Given an ELF "rela" relocation, find the corresponding howto and record
473    it in the BFD internal arelent representation of the relocation.  */
474 
475 static void
elf_xtensa_info_to_howto_rela(bfd * abfd ATTRIBUTE_UNUSED,arelent * cache_ptr,Elf_Internal_Rela * dst)476 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
477 			       arelent *cache_ptr,
478 			       Elf_Internal_Rela *dst)
479 {
480   unsigned int r_type = ELF32_R_TYPE (dst->r_info);
481 
482   BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
483   cache_ptr->howto = &elf_howto_table[r_type];
484 }
485 
486 
487 /* Functions for the Xtensa ELF linker.  */
488 
489 /* The name of the dynamic interpreter.  This is put in the .interp
490    section.  */
491 
492 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
493 
494 /* The size in bytes of an entry in the procedure linkage table.
495    (This does _not_ include the space for the literals associated with
496    the PLT entry.) */
497 
498 #define PLT_ENTRY_SIZE 16
499 
500 /* For _really_ large PLTs, we may need to alternate between literals
501    and code to keep the literals within the 256K range of the L32R
502    instructions in the code.  It's unlikely that anyone would ever need
503    such a big PLT, but an arbitrary limit on the PLT size would be bad.
504    Thus, we split the PLT into chunks.  Since there's very little
505    overhead (2 extra literals) for each chunk, the chunk size is kept
506    small so that the code for handling multiple chunks get used and
507    tested regularly.  With 254 entries, there are 1K of literals for
508    each chunk, and that seems like a nice round number.  */
509 
510 #define PLT_ENTRIES_PER_CHUNK 254
511 
512 /* PLT entries are actually used as stub functions for lazy symbol
513    resolution.  Once the symbol is resolved, the stub function is never
514    invoked.  Note: the 32-byte frame size used here cannot be changed
515    without a corresponding change in the runtime linker.  */
516 
517 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
518 {
519   0x6c, 0x10, 0x04,	/* entry sp, 32 */
520   0x18, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
521   0x1a, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
522   0x1b, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
523   0x0a, 0x80, 0x00,	/* jx    a8 */
524   0			/* unused */
525 };
526 
527 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
528 {
529   0x36, 0x41, 0x00,	/* entry sp, 32 */
530   0x81, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
531   0xa1, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
532   0xb1, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
533   0xa0, 0x08, 0x00,	/* jx    a8 */
534   0			/* unused */
535 };
536 
537 /* The size of the thread control block.  */
538 #define TCB_SIZE	8
539 
540 struct elf_xtensa_link_hash_entry
541 {
542   struct elf_link_hash_entry elf;
543 
544   bfd_signed_vma tlsfunc_refcount;
545 
546 #define GOT_UNKNOWN	0
547 #define GOT_NORMAL	1
548 #define GOT_TLS_GD	2	/* global or local dynamic */
549 #define GOT_TLS_IE	4	/* initial or local exec */
550 #define GOT_TLS_ANY	(GOT_TLS_GD | GOT_TLS_IE)
551   unsigned char tls_type;
552 };
553 
554 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
555 
556 struct elf_xtensa_obj_tdata
557 {
558   struct elf_obj_tdata root;
559 
560   /* tls_type for each local got entry.  */
561   char *local_got_tls_type;
562 
563   bfd_signed_vma *local_tlsfunc_refcounts;
564 };
565 
566 #define elf_xtensa_tdata(abfd) \
567   ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
568 
569 #define elf_xtensa_local_got_tls_type(abfd) \
570   (elf_xtensa_tdata (abfd)->local_got_tls_type)
571 
572 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
573   (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
574 
575 #define is_xtensa_elf(bfd) \
576   (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
577    && elf_tdata (bfd) != NULL \
578    && elf_object_id (bfd) == XTENSA_ELF_DATA)
579 
580 static bfd_boolean
elf_xtensa_mkobject(bfd * abfd)581 elf_xtensa_mkobject (bfd *abfd)
582 {
583   return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
584 				  XTENSA_ELF_DATA);
585 }
586 
587 /* Xtensa ELF linker hash table.  */
588 
589 struct elf_xtensa_link_hash_table
590 {
591   struct elf_link_hash_table elf;
592 
593   /* Short-cuts to get to dynamic linker sections.  */
594   asection *sgot;
595   asection *sgotplt;
596   asection *srelgot;
597   asection *splt;
598   asection *srelplt;
599   asection *sgotloc;
600   asection *spltlittbl;
601 
602   /* Total count of PLT relocations seen during check_relocs.
603      The actual PLT code must be split into multiple sections and all
604      the sections have to be created before size_dynamic_sections,
605      where we figure out the exact number of PLT entries that will be
606      needed.  It is OK if this count is an overestimate, e.g., some
607      relocations may be removed by GC.  */
608   int plt_reloc_count;
609 
610   struct elf_xtensa_link_hash_entry *tlsbase;
611 };
612 
613 /* Get the Xtensa ELF linker hash table from a link_info structure.  */
614 
615 #define elf_xtensa_hash_table(p) \
616   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
617   == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
618 
619 /* Create an entry in an Xtensa ELF linker hash table.  */
620 
621 static struct bfd_hash_entry *
elf_xtensa_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)622 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
623 			      struct bfd_hash_table *table,
624 			      const char *string)
625 {
626   /* Allocate the structure if it has not already been allocated by a
627      subclass.  */
628   if (entry == NULL)
629     {
630       entry = bfd_hash_allocate (table,
631 				 sizeof (struct elf_xtensa_link_hash_entry));
632       if (entry == NULL)
633 	return entry;
634     }
635 
636   /* Call the allocation method of the superclass.  */
637   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
638   if (entry != NULL)
639     {
640       struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
641       eh->tlsfunc_refcount = 0;
642       eh->tls_type = GOT_UNKNOWN;
643     }
644 
645   return entry;
646 }
647 
648 /* Create an Xtensa ELF linker hash table.  */
649 
650 static struct bfd_link_hash_table *
elf_xtensa_link_hash_table_create(bfd * abfd)651 elf_xtensa_link_hash_table_create (bfd *abfd)
652 {
653   struct elf_link_hash_entry *tlsbase;
654   struct elf_xtensa_link_hash_table *ret;
655   bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
656 
657   ret = bfd_zmalloc (amt);
658   if (ret == NULL)
659     return NULL;
660 
661   if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
662 				      elf_xtensa_link_hash_newfunc,
663 				      sizeof (struct elf_xtensa_link_hash_entry),
664 				      XTENSA_ELF_DATA))
665     {
666       free (ret);
667       return NULL;
668     }
669 
670   /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
671      for it later.  */
672   tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
673 				  TRUE, FALSE, FALSE);
674   tlsbase->root.type = bfd_link_hash_new;
675   tlsbase->root.u.undef.abfd = NULL;
676   tlsbase->non_elf = 0;
677   ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
678   ret->tlsbase->tls_type = GOT_UNKNOWN;
679 
680   return &ret->elf.root;
681 }
682 
683 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
684 
685 static void
elf_xtensa_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * dir,struct elf_link_hash_entry * ind)686 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
687 				 struct elf_link_hash_entry *dir,
688 				 struct elf_link_hash_entry *ind)
689 {
690   struct elf_xtensa_link_hash_entry *edir, *eind;
691 
692   edir = elf_xtensa_hash_entry (dir);
693   eind = elf_xtensa_hash_entry (ind);
694 
695   if (ind->root.type == bfd_link_hash_indirect)
696     {
697       edir->tlsfunc_refcount += eind->tlsfunc_refcount;
698       eind->tlsfunc_refcount = 0;
699 
700       if (dir->got.refcount <= 0)
701 	{
702 	  edir->tls_type = eind->tls_type;
703 	  eind->tls_type = GOT_UNKNOWN;
704 	}
705     }
706 
707   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
708 }
709 
710 static inline bfd_boolean
elf_xtensa_dynamic_symbol_p(struct elf_link_hash_entry * h,struct bfd_link_info * info)711 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
712 			     struct bfd_link_info *info)
713 {
714   /* Check if we should do dynamic things to this symbol.  The
715      "ignore_protected" argument need not be set, because Xtensa code
716      does not require special handling of STV_PROTECTED to make function
717      pointer comparisons work properly.  The PLT addresses are never
718      used for function pointers.  */
719 
720   return _bfd_elf_dynamic_symbol_p (h, info, 0);
721 }
722 
723 
724 static int
property_table_compare(const void * ap,const void * bp)725 property_table_compare (const void *ap, const void *bp)
726 {
727   const property_table_entry *a = (const property_table_entry *) ap;
728   const property_table_entry *b = (const property_table_entry *) bp;
729 
730   if (a->address == b->address)
731     {
732       if (a->size != b->size)
733 	return (a->size - b->size);
734 
735       if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
736 	return ((b->flags & XTENSA_PROP_ALIGN)
737 		- (a->flags & XTENSA_PROP_ALIGN));
738 
739       if ((a->flags & XTENSA_PROP_ALIGN)
740 	  && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
741 	      != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
742 	return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
743 		- GET_XTENSA_PROP_ALIGNMENT (b->flags));
744 
745       if ((a->flags & XTENSA_PROP_UNREACHABLE)
746 	  != (b->flags & XTENSA_PROP_UNREACHABLE))
747 	return ((b->flags & XTENSA_PROP_UNREACHABLE)
748 		- (a->flags & XTENSA_PROP_UNREACHABLE));
749 
750       return (a->flags - b->flags);
751     }
752 
753   return (a->address - b->address);
754 }
755 
756 
757 static int
property_table_matches(const void * ap,const void * bp)758 property_table_matches (const void *ap, const void *bp)
759 {
760   const property_table_entry *a = (const property_table_entry *) ap;
761   const property_table_entry *b = (const property_table_entry *) bp;
762 
763   /* Check if one entry overlaps with the other.  */
764   if ((b->address >= a->address && b->address < (a->address + a->size))
765       || (a->address >= b->address && a->address < (b->address + b->size)))
766     return 0;
767 
768   return (a->address - b->address);
769 }
770 
771 
772 /* Get the literal table or property table entries for the given
773    section.  Sets TABLE_P and returns the number of entries.  On
774    error, returns a negative value.  */
775 
776 static int
xtensa_read_table_entries(bfd * abfd,asection * section,property_table_entry ** table_p,const char * sec_name,bfd_boolean output_addr)777 xtensa_read_table_entries (bfd *abfd,
778 			   asection *section,
779 			   property_table_entry **table_p,
780 			   const char *sec_name,
781 			   bfd_boolean output_addr)
782 {
783   asection *table_section;
784   bfd_size_type table_size = 0;
785   bfd_byte *table_data;
786   property_table_entry *blocks;
787   int blk, block_count;
788   bfd_size_type num_records;
789   Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
790   bfd_vma section_addr, off;
791   flagword predef_flags;
792   bfd_size_type table_entry_size, section_limit;
793 
794   if (!section
795       || !(section->flags & SEC_ALLOC)
796       || (section->flags & SEC_DEBUGGING))
797     {
798       *table_p = NULL;
799       return 0;
800     }
801 
802   table_section = xtensa_get_property_section (section, sec_name);
803   if (table_section)
804     table_size = table_section->size;
805 
806   if (table_size == 0)
807     {
808       *table_p = NULL;
809       return 0;
810     }
811 
812   predef_flags = xtensa_get_property_predef_flags (table_section);
813   table_entry_size = 12;
814   if (predef_flags)
815     table_entry_size -= 4;
816 
817   num_records = table_size / table_entry_size;
818   table_data = retrieve_contents (abfd, table_section, TRUE);
819   blocks = (property_table_entry *)
820     bfd_malloc (num_records * sizeof (property_table_entry));
821   block_count = 0;
822 
823   if (output_addr)
824     section_addr = section->output_section->vma + section->output_offset;
825   else
826     section_addr = section->vma;
827 
828   internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
829   if (internal_relocs && !table_section->reloc_done)
830     {
831       qsort (internal_relocs, table_section->reloc_count,
832 	     sizeof (Elf_Internal_Rela), internal_reloc_compare);
833       irel = internal_relocs;
834     }
835   else
836     irel = NULL;
837 
838   section_limit = bfd_get_section_limit (abfd, section);
839   rel_end = internal_relocs + table_section->reloc_count;
840 
841   for (off = 0; off < table_size; off += table_entry_size)
842     {
843       bfd_vma address = bfd_get_32 (abfd, table_data + off);
844 
845       /* Skip any relocations before the current offset.  This should help
846 	 avoid confusion caused by unexpected relocations for the preceding
847 	 table entry.  */
848       while (irel &&
849 	     (irel->r_offset < off
850 	      || (irel->r_offset == off
851 		  && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
852 	{
853 	  irel += 1;
854 	  if (irel >= rel_end)
855 	    irel = 0;
856 	}
857 
858       if (irel && irel->r_offset == off)
859 	{
860 	  bfd_vma sym_off;
861 	  unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
862 	  BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
863 
864 	  if (get_elf_r_symndx_section (abfd, r_symndx) != section)
865 	    continue;
866 
867 	  sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
868 	  BFD_ASSERT (sym_off == 0);
869 	  address += (section_addr + sym_off + irel->r_addend);
870 	}
871       else
872 	{
873 	  if (address < section_addr
874 	      || address >= section_addr + section_limit)
875 	    continue;
876 	}
877 
878       blocks[block_count].address = address;
879       blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
880       if (predef_flags)
881 	blocks[block_count].flags = predef_flags;
882       else
883 	blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
884       block_count++;
885     }
886 
887   release_contents (table_section, table_data);
888   release_internal_relocs (table_section, internal_relocs);
889 
890   if (block_count > 0)
891     {
892       /* Now sort them into address order for easy reference.  */
893       qsort (blocks, block_count, sizeof (property_table_entry),
894 	     property_table_compare);
895 
896       /* Check that the table contents are valid.  Problems may occur,
897          for example, if an unrelocated object file is stripped.  */
898       for (blk = 1; blk < block_count; blk++)
899 	{
900 	  /* The only circumstance where two entries may legitimately
901 	     have the same address is when one of them is a zero-size
902 	     placeholder to mark a place where fill can be inserted.
903 	     The zero-size entry should come first.  */
904 	  if (blocks[blk - 1].address == blocks[blk].address &&
905 	      blocks[blk - 1].size != 0)
906 	    {
907 	      (*_bfd_error_handler) (_("%B(%A): invalid property table"),
908 				     abfd, section);
909 	      bfd_set_error (bfd_error_bad_value);
910 	      free (blocks);
911 	      return -1;
912 	    }
913 	}
914     }
915 
916   *table_p = blocks;
917   return block_count;
918 }
919 
920 
921 static property_table_entry *
elf_xtensa_find_property_entry(property_table_entry * property_table,int property_table_size,bfd_vma addr)922 elf_xtensa_find_property_entry (property_table_entry *property_table,
923 				int property_table_size,
924 				bfd_vma addr)
925 {
926   property_table_entry entry;
927   property_table_entry *rv;
928 
929   if (property_table_size == 0)
930     return NULL;
931 
932   entry.address = addr;
933   entry.size = 1;
934   entry.flags = 0;
935 
936   rv = bsearch (&entry, property_table, property_table_size,
937 		sizeof (property_table_entry), property_table_matches);
938   return rv;
939 }
940 
941 
942 static bfd_boolean
elf_xtensa_in_literal_pool(property_table_entry * lit_table,int lit_table_size,bfd_vma addr)943 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
944 			    int lit_table_size,
945 			    bfd_vma addr)
946 {
947   if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
948     return TRUE;
949 
950   return FALSE;
951 }
952 
953 
954 /* Look through the relocs for a section during the first phase, and
955    calculate needed space in the dynamic reloc sections.  */
956 
957 static bfd_boolean
elf_xtensa_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)958 elf_xtensa_check_relocs (bfd *abfd,
959 			 struct bfd_link_info *info,
960 			 asection *sec,
961 			 const Elf_Internal_Rela *relocs)
962 {
963   struct elf_xtensa_link_hash_table *htab;
964   Elf_Internal_Shdr *symtab_hdr;
965   struct elf_link_hash_entry **sym_hashes;
966   const Elf_Internal_Rela *rel;
967   const Elf_Internal_Rela *rel_end;
968 
969   if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
970     return TRUE;
971 
972   BFD_ASSERT (is_xtensa_elf (abfd));
973 
974   htab = elf_xtensa_hash_table (info);
975   if (htab == NULL)
976     return FALSE;
977 
978   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
979   sym_hashes = elf_sym_hashes (abfd);
980 
981   rel_end = relocs + sec->reloc_count;
982   for (rel = relocs; rel < rel_end; rel++)
983     {
984       unsigned int r_type;
985       unsigned long r_symndx;
986       struct elf_link_hash_entry *h = NULL;
987       struct elf_xtensa_link_hash_entry *eh;
988       int tls_type, old_tls_type;
989       bfd_boolean is_got = FALSE;
990       bfd_boolean is_plt = FALSE;
991       bfd_boolean is_tlsfunc = FALSE;
992 
993       r_symndx = ELF32_R_SYM (rel->r_info);
994       r_type = ELF32_R_TYPE (rel->r_info);
995 
996       if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
997 	{
998 	  (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
999 				 abfd, r_symndx);
1000 	  return FALSE;
1001 	}
1002 
1003       if (r_symndx >= symtab_hdr->sh_info)
1004 	{
1005 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1006 	  while (h->root.type == bfd_link_hash_indirect
1007 		 || h->root.type == bfd_link_hash_warning)
1008 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1009 
1010 	  /* PR15323, ref flags aren't set for references in the same
1011 	     object.  */
1012 	  h->root.non_ir_ref = 1;
1013 	}
1014       eh = elf_xtensa_hash_entry (h);
1015 
1016       switch (r_type)
1017 	{
1018 	case R_XTENSA_TLSDESC_FN:
1019 	  if (info->shared)
1020 	    {
1021 	      tls_type = GOT_TLS_GD;
1022 	      is_got = TRUE;
1023 	      is_tlsfunc = TRUE;
1024 	    }
1025 	  else
1026 	    tls_type = GOT_TLS_IE;
1027 	  break;
1028 
1029 	case R_XTENSA_TLSDESC_ARG:
1030 	  if (info->shared)
1031 	    {
1032 	      tls_type = GOT_TLS_GD;
1033 	      is_got = TRUE;
1034 	    }
1035 	  else
1036 	    {
1037 	      tls_type = GOT_TLS_IE;
1038 	      if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1039 		is_got = TRUE;
1040 	    }
1041 	  break;
1042 
1043 	case R_XTENSA_TLS_DTPOFF:
1044 	  if (info->shared)
1045 	    tls_type = GOT_TLS_GD;
1046 	  else
1047 	    tls_type = GOT_TLS_IE;
1048 	  break;
1049 
1050 	case R_XTENSA_TLS_TPOFF:
1051 	  tls_type = GOT_TLS_IE;
1052 	  if (info->shared)
1053 	    info->flags |= DF_STATIC_TLS;
1054 	  if (info->shared || h)
1055 	    is_got = TRUE;
1056 	  break;
1057 
1058 	case R_XTENSA_32:
1059 	  tls_type = GOT_NORMAL;
1060 	  is_got = TRUE;
1061 	  break;
1062 
1063 	case R_XTENSA_PLT:
1064 	  tls_type = GOT_NORMAL;
1065 	  is_plt = TRUE;
1066 	  break;
1067 
1068 	case R_XTENSA_GNU_VTINHERIT:
1069 	  /* This relocation describes the C++ object vtable hierarchy.
1070 	     Reconstruct it for later use during GC.  */
1071 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1072 	    return FALSE;
1073 	  continue;
1074 
1075 	case R_XTENSA_GNU_VTENTRY:
1076 	  /* This relocation describes which C++ vtable entries are actually
1077 	     used.  Record for later use during GC.  */
1078 	  BFD_ASSERT (h != NULL);
1079 	  if (h != NULL
1080 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1081 	    return FALSE;
1082 	  continue;
1083 
1084 	default:
1085 	  /* Nothing to do for any other relocations.  */
1086 	  continue;
1087 	}
1088 
1089       if (h)
1090 	{
1091 	  if (is_plt)
1092 	    {
1093 	      if (h->plt.refcount <= 0)
1094 		{
1095 		  h->needs_plt = 1;
1096 		  h->plt.refcount = 1;
1097 		}
1098 	      else
1099 		h->plt.refcount += 1;
1100 
1101 	      /* Keep track of the total PLT relocation count even if we
1102 		 don't yet know whether the dynamic sections will be
1103 		 created.  */
1104 	      htab->plt_reloc_count += 1;
1105 
1106 	      if (elf_hash_table (info)->dynamic_sections_created)
1107 		{
1108 		  if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1109 		    return FALSE;
1110 		}
1111 	    }
1112 	  else if (is_got)
1113 	    {
1114 	      if (h->got.refcount <= 0)
1115 		h->got.refcount = 1;
1116 	      else
1117 		h->got.refcount += 1;
1118 	    }
1119 
1120 	  if (is_tlsfunc)
1121 	    eh->tlsfunc_refcount += 1;
1122 
1123 	  old_tls_type = eh->tls_type;
1124 	}
1125       else
1126 	{
1127 	  /* Allocate storage the first time.  */
1128 	  if (elf_local_got_refcounts (abfd) == NULL)
1129 	    {
1130 	      bfd_size_type size = symtab_hdr->sh_info;
1131 	      void *mem;
1132 
1133 	      mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1134 	      if (mem == NULL)
1135 		return FALSE;
1136 	      elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1137 
1138 	      mem = bfd_zalloc (abfd, size);
1139 	      if (mem == NULL)
1140 		return FALSE;
1141 	      elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1142 
1143 	      mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1144 	      if (mem == NULL)
1145 		return FALSE;
1146 	      elf_xtensa_local_tlsfunc_refcounts (abfd)
1147 		= (bfd_signed_vma *) mem;
1148 	    }
1149 
1150 	  /* This is a global offset table entry for a local symbol.  */
1151 	  if (is_got || is_plt)
1152 	    elf_local_got_refcounts (abfd) [r_symndx] += 1;
1153 
1154 	  if (is_tlsfunc)
1155 	    elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1156 
1157 	  old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1158 	}
1159 
1160       if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1161 	tls_type |= old_tls_type;
1162       /* If a TLS symbol is accessed using IE at least once,
1163 	 there is no point to use a dynamic model for it.  */
1164       else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1165 	       && ((old_tls_type & GOT_TLS_GD) == 0
1166 		   || (tls_type & GOT_TLS_IE) == 0))
1167 	{
1168 	  if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1169 	    tls_type = old_tls_type;
1170 	  else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1171 	    tls_type |= old_tls_type;
1172 	  else
1173 	    {
1174 	      (*_bfd_error_handler)
1175 		(_("%B: `%s' accessed both as normal and thread local symbol"),
1176 		 abfd,
1177 		 h ? h->root.root.string : "<local>");
1178 	      return FALSE;
1179 	    }
1180 	}
1181 
1182       if (old_tls_type != tls_type)
1183 	{
1184 	  if (eh)
1185 	    eh->tls_type = tls_type;
1186 	  else
1187 	    elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1188 	}
1189     }
1190 
1191   return TRUE;
1192 }
1193 
1194 
1195 static void
elf_xtensa_make_sym_local(struct bfd_link_info * info,struct elf_link_hash_entry * h)1196 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1197                            struct elf_link_hash_entry *h)
1198 {
1199   if (info->shared)
1200     {
1201       if (h->plt.refcount > 0)
1202         {
1203 	  /* For shared objects, there's no need for PLT entries for local
1204 	     symbols (use RELATIVE relocs instead of JMP_SLOT relocs).  */
1205           if (h->got.refcount < 0)
1206             h->got.refcount = 0;
1207           h->got.refcount += h->plt.refcount;
1208           h->plt.refcount = 0;
1209         }
1210     }
1211   else
1212     {
1213       /* Don't need any dynamic relocations at all.  */
1214       h->plt.refcount = 0;
1215       h->got.refcount = 0;
1216     }
1217 }
1218 
1219 
1220 static void
elf_xtensa_hide_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h,bfd_boolean force_local)1221 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1222                         struct elf_link_hash_entry *h,
1223                         bfd_boolean force_local)
1224 {
1225   /* For a shared link, move the plt refcount to the got refcount to leave
1226      space for RELATIVE relocs.  */
1227   elf_xtensa_make_sym_local (info, h);
1228 
1229   _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1230 }
1231 
1232 
1233 /* Return the section that should be marked against GC for a given
1234    relocation.  */
1235 
1236 static asection *
elf_xtensa_gc_mark_hook(asection * sec,struct bfd_link_info * info,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)1237 elf_xtensa_gc_mark_hook (asection *sec,
1238 			 struct bfd_link_info *info,
1239 			 Elf_Internal_Rela *rel,
1240 			 struct elf_link_hash_entry *h,
1241 			 Elf_Internal_Sym *sym)
1242 {
1243   /* Property sections are marked "KEEP" in the linker scripts, but they
1244      should not cause other sections to be marked.  (This approach relies
1245      on elf_xtensa_discard_info to remove property table entries that
1246      describe discarded sections.  Alternatively, it might be more
1247      efficient to avoid using "KEEP" in the linker scripts and instead use
1248      the gc_mark_extra_sections hook to mark only the property sections
1249      that describe marked sections.  That alternative does not work well
1250      with the current property table sections, which do not correspond
1251      one-to-one with the sections they describe, but that should be fixed
1252      someday.) */
1253   if (xtensa_is_property_section (sec))
1254     return NULL;
1255 
1256   if (h != NULL)
1257     switch (ELF32_R_TYPE (rel->r_info))
1258       {
1259       case R_XTENSA_GNU_VTINHERIT:
1260       case R_XTENSA_GNU_VTENTRY:
1261 	return NULL;
1262       }
1263 
1264   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1265 }
1266 
1267 
1268 /* Update the GOT & PLT entry reference counts
1269    for the section being removed.  */
1270 
1271 static bfd_boolean
elf_xtensa_gc_sweep_hook(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)1272 elf_xtensa_gc_sweep_hook (bfd *abfd,
1273 			  struct bfd_link_info *info,
1274 			  asection *sec,
1275 			  const Elf_Internal_Rela *relocs)
1276 {
1277   Elf_Internal_Shdr *symtab_hdr;
1278   struct elf_link_hash_entry **sym_hashes;
1279   const Elf_Internal_Rela *rel, *relend;
1280   struct elf_xtensa_link_hash_table *htab;
1281 
1282   htab = elf_xtensa_hash_table (info);
1283   if (htab == NULL)
1284     return FALSE;
1285 
1286   if (info->relocatable)
1287     return TRUE;
1288 
1289   if ((sec->flags & SEC_ALLOC) == 0)
1290     return TRUE;
1291 
1292   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1293   sym_hashes = elf_sym_hashes (abfd);
1294 
1295   relend = relocs + sec->reloc_count;
1296   for (rel = relocs; rel < relend; rel++)
1297     {
1298       unsigned long r_symndx;
1299       unsigned int r_type;
1300       struct elf_link_hash_entry *h = NULL;
1301       struct elf_xtensa_link_hash_entry *eh;
1302       bfd_boolean is_got = FALSE;
1303       bfd_boolean is_plt = FALSE;
1304       bfd_boolean is_tlsfunc = FALSE;
1305 
1306       r_symndx = ELF32_R_SYM (rel->r_info);
1307       if (r_symndx >= symtab_hdr->sh_info)
1308 	{
1309 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1310 	  while (h->root.type == bfd_link_hash_indirect
1311 		 || h->root.type == bfd_link_hash_warning)
1312 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1313 	}
1314       eh = elf_xtensa_hash_entry (h);
1315 
1316       r_type = ELF32_R_TYPE (rel->r_info);
1317       switch (r_type)
1318 	{
1319 	case R_XTENSA_TLSDESC_FN:
1320 	  if (info->shared)
1321 	    {
1322 	      is_got = TRUE;
1323 	      is_tlsfunc = TRUE;
1324 	    }
1325 	  break;
1326 
1327 	case R_XTENSA_TLSDESC_ARG:
1328 	  if (info->shared)
1329 	    is_got = TRUE;
1330 	  else
1331 	    {
1332 	      if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1333 		is_got = TRUE;
1334 	    }
1335 	  break;
1336 
1337 	case R_XTENSA_TLS_TPOFF:
1338 	  if (info->shared || h)
1339 	    is_got = TRUE;
1340 	  break;
1341 
1342 	case R_XTENSA_32:
1343 	  is_got = TRUE;
1344 	  break;
1345 
1346 	case R_XTENSA_PLT:
1347 	  is_plt = TRUE;
1348 	  break;
1349 
1350 	default:
1351 	  continue;
1352 	}
1353 
1354       if (h)
1355 	{
1356 	  if (is_plt)
1357 	    {
1358 	      if (h->plt.refcount > 0)
1359 		h->plt.refcount--;
1360 	    }
1361 	  else if (is_got)
1362 	    {
1363 	      if (h->got.refcount > 0)
1364 		h->got.refcount--;
1365 	    }
1366 	  if (is_tlsfunc)
1367 	    {
1368 	      if (eh->tlsfunc_refcount > 0)
1369 		eh->tlsfunc_refcount--;
1370 	    }
1371 	}
1372       else
1373 	{
1374 	  if (is_got || is_plt)
1375 	    {
1376 	      bfd_signed_vma *got_refcount
1377 		= &elf_local_got_refcounts (abfd) [r_symndx];
1378 	      if (*got_refcount > 0)
1379 		*got_refcount -= 1;
1380 	    }
1381 	  if (is_tlsfunc)
1382 	    {
1383 	      bfd_signed_vma *tlsfunc_refcount
1384 		= &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1385 	      if (*tlsfunc_refcount > 0)
1386 		*tlsfunc_refcount -= 1;
1387 	    }
1388 	}
1389     }
1390 
1391   return TRUE;
1392 }
1393 
1394 
1395 /* Create all the dynamic sections.  */
1396 
1397 static bfd_boolean
elf_xtensa_create_dynamic_sections(bfd * dynobj,struct bfd_link_info * info)1398 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1399 {
1400   struct elf_xtensa_link_hash_table *htab;
1401   flagword flags, noalloc_flags;
1402 
1403   htab = elf_xtensa_hash_table (info);
1404   if (htab == NULL)
1405     return FALSE;
1406 
1407   /* First do all the standard stuff.  */
1408   if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1409     return FALSE;
1410   htab->splt = bfd_get_linker_section (dynobj, ".plt");
1411   htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1412   htab->sgot = bfd_get_linker_section (dynobj, ".got");
1413   htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1414   htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1415 
1416   /* Create any extra PLT sections in case check_relocs has already
1417      been called on all the non-dynamic input files.  */
1418   if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1419     return FALSE;
1420 
1421   noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1422 		   | SEC_LINKER_CREATED | SEC_READONLY);
1423   flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1424 
1425   /* Mark the ".got.plt" section READONLY.  */
1426   if (htab->sgotplt == NULL
1427       || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1428     return FALSE;
1429 
1430   /* Create ".got.loc" (literal tables for use by dynamic linker).  */
1431   htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1432 						      flags);
1433   if (htab->sgotloc == NULL
1434       || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1435     return FALSE;
1436 
1437   /* Create ".xt.lit.plt" (literal table for ".got.plt*").  */
1438   htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1439 							 noalloc_flags);
1440   if (htab->spltlittbl == NULL
1441       || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1442     return FALSE;
1443 
1444   return TRUE;
1445 }
1446 
1447 
1448 static bfd_boolean
add_extra_plt_sections(struct bfd_link_info * info,int count)1449 add_extra_plt_sections (struct bfd_link_info *info, int count)
1450 {
1451   bfd *dynobj = elf_hash_table (info)->dynobj;
1452   int chunk;
1453 
1454   /* Iterate over all chunks except 0 which uses the standard ".plt" and
1455      ".got.plt" sections.  */
1456   for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1457     {
1458       char *sname;
1459       flagword flags;
1460       asection *s;
1461 
1462       /* Stop when we find a section has already been created.  */
1463       if (elf_xtensa_get_plt_section (info, chunk))
1464 	break;
1465 
1466       flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1467 	       | SEC_LINKER_CREATED | SEC_READONLY);
1468 
1469       sname = (char *) bfd_malloc (10);
1470       sprintf (sname, ".plt.%u", chunk);
1471       s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1472       if (s == NULL
1473 	  || ! bfd_set_section_alignment (dynobj, s, 2))
1474 	return FALSE;
1475 
1476       sname = (char *) bfd_malloc (14);
1477       sprintf (sname, ".got.plt.%u", chunk);
1478       s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1479       if (s == NULL
1480 	  || ! bfd_set_section_alignment (dynobj, s, 2))
1481 	return FALSE;
1482     }
1483 
1484   return TRUE;
1485 }
1486 
1487 
1488 /* Adjust a symbol defined by a dynamic object and referenced by a
1489    regular object.  The current definition is in some section of the
1490    dynamic object, but we're not including those sections.  We have to
1491    change the definition to something the rest of the link can
1492    understand.  */
1493 
1494 static bfd_boolean
elf_xtensa_adjust_dynamic_symbol(struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf_link_hash_entry * h)1495 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1496 				  struct elf_link_hash_entry *h)
1497 {
1498   /* If this is a weak symbol, and there is a real definition, the
1499      processor independent code will have arranged for us to see the
1500      real definition first, and we can just use the same value.  */
1501   if (h->u.weakdef)
1502     {
1503       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1504 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
1505       h->root.u.def.section = h->u.weakdef->root.u.def.section;
1506       h->root.u.def.value = h->u.weakdef->root.u.def.value;
1507       return TRUE;
1508     }
1509 
1510   /* This is a reference to a symbol defined by a dynamic object.  The
1511      reference must go through the GOT, so there's no need for COPY relocs,
1512      .dynbss, etc.  */
1513 
1514   return TRUE;
1515 }
1516 
1517 
1518 static bfd_boolean
elf_xtensa_allocate_dynrelocs(struct elf_link_hash_entry * h,void * arg)1519 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1520 {
1521   struct bfd_link_info *info;
1522   struct elf_xtensa_link_hash_table *htab;
1523   struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1524 
1525   if (h->root.type == bfd_link_hash_indirect)
1526     return TRUE;
1527 
1528   info = (struct bfd_link_info *) arg;
1529   htab = elf_xtensa_hash_table (info);
1530   if (htab == NULL)
1531     return FALSE;
1532 
1533   /* If we saw any use of an IE model for this symbol, we can then optimize
1534      away GOT entries for any TLSDESC_FN relocs.  */
1535   if ((eh->tls_type & GOT_TLS_IE) != 0)
1536     {
1537       BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1538       h->got.refcount -= eh->tlsfunc_refcount;
1539     }
1540 
1541   if (! elf_xtensa_dynamic_symbol_p (h, info))
1542     elf_xtensa_make_sym_local (info, h);
1543 
1544   if (h->plt.refcount > 0)
1545     htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1546 
1547   if (h->got.refcount > 0)
1548     htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1549 
1550   return TRUE;
1551 }
1552 
1553 
1554 static void
elf_xtensa_allocate_local_got_size(struct bfd_link_info * info)1555 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1556 {
1557   struct elf_xtensa_link_hash_table *htab;
1558   bfd *i;
1559 
1560   htab = elf_xtensa_hash_table (info);
1561   if (htab == NULL)
1562     return;
1563 
1564   for (i = info->input_bfds; i; i = i->link.next)
1565     {
1566       bfd_signed_vma *local_got_refcounts;
1567       bfd_size_type j, cnt;
1568       Elf_Internal_Shdr *symtab_hdr;
1569 
1570       local_got_refcounts = elf_local_got_refcounts (i);
1571       if (!local_got_refcounts)
1572 	continue;
1573 
1574       symtab_hdr = &elf_tdata (i)->symtab_hdr;
1575       cnt = symtab_hdr->sh_info;
1576 
1577       for (j = 0; j < cnt; ++j)
1578 	{
1579 	  /* If we saw any use of an IE model for this symbol, we can
1580 	     then optimize away GOT entries for any TLSDESC_FN relocs.  */
1581 	  if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1582 	    {
1583 	      bfd_signed_vma *tlsfunc_refcount
1584 		= &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1585 	      BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1586 	      local_got_refcounts[j] -= *tlsfunc_refcount;
1587 	    }
1588 
1589 	  if (local_got_refcounts[j] > 0)
1590 	    htab->srelgot->size += (local_got_refcounts[j]
1591 				    * sizeof (Elf32_External_Rela));
1592 	}
1593     }
1594 }
1595 
1596 
1597 /* Set the sizes of the dynamic sections.  */
1598 
1599 static bfd_boolean
elf_xtensa_size_dynamic_sections(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)1600 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1601 				  struct bfd_link_info *info)
1602 {
1603   struct elf_xtensa_link_hash_table *htab;
1604   bfd *dynobj, *abfd;
1605   asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1606   bfd_boolean relplt, relgot;
1607   int plt_entries, plt_chunks, chunk;
1608 
1609   plt_entries = 0;
1610   plt_chunks = 0;
1611 
1612   htab = elf_xtensa_hash_table (info);
1613   if (htab == NULL)
1614     return FALSE;
1615 
1616   dynobj = elf_hash_table (info)->dynobj;
1617   if (dynobj == NULL)
1618     abort ();
1619   srelgot = htab->srelgot;
1620   srelplt = htab->srelplt;
1621 
1622   if (elf_hash_table (info)->dynamic_sections_created)
1623     {
1624       BFD_ASSERT (htab->srelgot != NULL
1625 		  && htab->srelplt != NULL
1626 		  && htab->sgot != NULL
1627 		  && htab->spltlittbl != NULL
1628 		  && htab->sgotloc != NULL);
1629 
1630       /* Set the contents of the .interp section to the interpreter.  */
1631       if (info->executable)
1632 	{
1633 	  s = bfd_get_linker_section (dynobj, ".interp");
1634 	  if (s == NULL)
1635 	    abort ();
1636 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1637 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1638 	}
1639 
1640       /* Allocate room for one word in ".got".  */
1641       htab->sgot->size = 4;
1642 
1643       /* Allocate space in ".rela.got" for literals that reference global
1644 	 symbols and space in ".rela.plt" for literals that have PLT
1645 	 entries.  */
1646       elf_link_hash_traverse (elf_hash_table (info),
1647 			      elf_xtensa_allocate_dynrelocs,
1648 			      (void *) info);
1649 
1650       /* If we are generating a shared object, we also need space in
1651 	 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1652 	 reference local symbols.  */
1653       if (info->shared)
1654 	elf_xtensa_allocate_local_got_size (info);
1655 
1656       /* Allocate space in ".plt" to match the size of ".rela.plt".  For
1657 	 each PLT entry, we need the PLT code plus a 4-byte literal.
1658 	 For each chunk of ".plt", we also need two more 4-byte
1659 	 literals, two corresponding entries in ".rela.got", and an
1660 	 8-byte entry in ".xt.lit.plt".  */
1661       spltlittbl = htab->spltlittbl;
1662       plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1663       plt_chunks =
1664 	(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1665 
1666       /* Iterate over all the PLT chunks, including any extra sections
1667 	 created earlier because the initial count of PLT relocations
1668 	 was an overestimate.  */
1669       for (chunk = 0;
1670 	   (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1671 	   chunk++)
1672 	{
1673 	  int chunk_entries;
1674 
1675 	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1676 	  BFD_ASSERT (sgotplt != NULL);
1677 
1678 	  if (chunk < plt_chunks - 1)
1679 	    chunk_entries = PLT_ENTRIES_PER_CHUNK;
1680 	  else if (chunk == plt_chunks - 1)
1681 	    chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1682 	  else
1683 	    chunk_entries = 0;
1684 
1685 	  if (chunk_entries != 0)
1686 	    {
1687 	      sgotplt->size = 4 * (chunk_entries + 2);
1688 	      splt->size = PLT_ENTRY_SIZE * chunk_entries;
1689 	      srelgot->size += 2 * sizeof (Elf32_External_Rela);
1690 	      spltlittbl->size += 8;
1691 	    }
1692 	  else
1693 	    {
1694 	      sgotplt->size = 0;
1695 	      splt->size = 0;
1696 	    }
1697 	}
1698 
1699       /* Allocate space in ".got.loc" to match the total size of all the
1700 	 literal tables.  */
1701       sgotloc = htab->sgotloc;
1702       sgotloc->size = spltlittbl->size;
1703       for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1704 	{
1705 	  if (abfd->flags & DYNAMIC)
1706 	    continue;
1707 	  for (s = abfd->sections; s != NULL; s = s->next)
1708 	    {
1709 	      if (! discarded_section (s)
1710 		  && xtensa_is_littable_section (s)
1711 		  && s != spltlittbl)
1712 		sgotloc->size += s->size;
1713 	    }
1714 	}
1715     }
1716 
1717   /* Allocate memory for dynamic sections.  */
1718   relplt = FALSE;
1719   relgot = FALSE;
1720   for (s = dynobj->sections; s != NULL; s = s->next)
1721     {
1722       const char *name;
1723 
1724       if ((s->flags & SEC_LINKER_CREATED) == 0)
1725 	continue;
1726 
1727       /* It's OK to base decisions on the section name, because none
1728 	 of the dynobj section names depend upon the input files.  */
1729       name = bfd_get_section_name (dynobj, s);
1730 
1731       if (CONST_STRNEQ (name, ".rela"))
1732 	{
1733 	  if (s->size != 0)
1734 	    {
1735 	      if (strcmp (name, ".rela.plt") == 0)
1736 		relplt = TRUE;
1737 	      else if (strcmp (name, ".rela.got") == 0)
1738 		relgot = TRUE;
1739 
1740 	      /* We use the reloc_count field as a counter if we need
1741 		 to copy relocs into the output file.  */
1742 	      s->reloc_count = 0;
1743 	    }
1744 	}
1745       else if (! CONST_STRNEQ (name, ".plt.")
1746 	       && ! CONST_STRNEQ (name, ".got.plt.")
1747 	       && strcmp (name, ".got") != 0
1748 	       && strcmp (name, ".plt") != 0
1749 	       && strcmp (name, ".got.plt") != 0
1750 	       && strcmp (name, ".xt.lit.plt") != 0
1751 	       && strcmp (name, ".got.loc") != 0)
1752 	{
1753 	  /* It's not one of our sections, so don't allocate space.  */
1754 	  continue;
1755 	}
1756 
1757       if (s->size == 0)
1758 	{
1759 	  /* If we don't need this section, strip it from the output
1760 	     file.  We must create the ".plt*" and ".got.plt*"
1761 	     sections in create_dynamic_sections and/or check_relocs
1762 	     based on a conservative estimate of the PLT relocation
1763 	     count, because the sections must be created before the
1764 	     linker maps input sections to output sections.  The
1765 	     linker does that before size_dynamic_sections, where we
1766 	     compute the exact size of the PLT, so there may be more
1767 	     of these sections than are actually needed.  */
1768 	  s->flags |= SEC_EXCLUDE;
1769 	}
1770       else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1771 	{
1772 	  /* Allocate memory for the section contents.  */
1773 	  s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1774 	  if (s->contents == NULL)
1775 	    return FALSE;
1776 	}
1777     }
1778 
1779   if (elf_hash_table (info)->dynamic_sections_created)
1780     {
1781       /* Add the special XTENSA_RTLD relocations now.  The offsets won't be
1782 	 known until finish_dynamic_sections, but we need to get the relocs
1783 	 in place before they are sorted.  */
1784       for (chunk = 0; chunk < plt_chunks; chunk++)
1785 	{
1786 	  Elf_Internal_Rela irela;
1787 	  bfd_byte *loc;
1788 
1789 	  irela.r_offset = 0;
1790 	  irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1791 	  irela.r_addend = 0;
1792 
1793 	  loc = (srelgot->contents
1794 		 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1795 	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1796 	  bfd_elf32_swap_reloca_out (output_bfd, &irela,
1797 				     loc + sizeof (Elf32_External_Rela));
1798 	  srelgot->reloc_count += 2;
1799 	}
1800 
1801       /* Add some entries to the .dynamic section.  We fill in the
1802 	 values later, in elf_xtensa_finish_dynamic_sections, but we
1803 	 must add the entries now so that we get the correct size for
1804 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1805 	 dynamic linker and used by the debugger.  */
1806 #define add_dynamic_entry(TAG, VAL) \
1807   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1808 
1809       if (info->executable)
1810 	{
1811 	  if (!add_dynamic_entry (DT_DEBUG, 0))
1812 	    return FALSE;
1813 	}
1814 
1815       if (relplt)
1816 	{
1817 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1818 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1819 	      || !add_dynamic_entry (DT_JMPREL, 0))
1820 	    return FALSE;
1821 	}
1822 
1823       if (relgot)
1824 	{
1825 	  if (!add_dynamic_entry (DT_RELA, 0)
1826 	      || !add_dynamic_entry (DT_RELASZ, 0)
1827 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1828 	    return FALSE;
1829 	}
1830 
1831       if (!add_dynamic_entry (DT_PLTGOT, 0)
1832 	  || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1833 	  || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1834 	return FALSE;
1835     }
1836 #undef add_dynamic_entry
1837 
1838   return TRUE;
1839 }
1840 
1841 static bfd_boolean
elf_xtensa_always_size_sections(bfd * output_bfd,struct bfd_link_info * info)1842 elf_xtensa_always_size_sections (bfd *output_bfd,
1843 				 struct bfd_link_info *info)
1844 {
1845   struct elf_xtensa_link_hash_table *htab;
1846   asection *tls_sec;
1847 
1848   htab = elf_xtensa_hash_table (info);
1849   if (htab == NULL)
1850     return FALSE;
1851 
1852   tls_sec = htab->elf.tls_sec;
1853 
1854   if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1855     {
1856       struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1857       struct bfd_link_hash_entry *bh = &tlsbase->root;
1858       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1859 
1860       tlsbase->type = STT_TLS;
1861       if (!(_bfd_generic_link_add_one_symbol
1862 	    (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1863 	     tls_sec, 0, NULL, FALSE,
1864 	     bed->collect, &bh)))
1865 	return FALSE;
1866       tlsbase->def_regular = 1;
1867       tlsbase->other = STV_HIDDEN;
1868       (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1869     }
1870 
1871   return TRUE;
1872 }
1873 
1874 
1875 /* Return the base VMA address which should be subtracted from real addresses
1876    when resolving @dtpoff relocation.
1877    This is PT_TLS segment p_vaddr.  */
1878 
1879 static bfd_vma
dtpoff_base(struct bfd_link_info * info)1880 dtpoff_base (struct bfd_link_info *info)
1881 {
1882   /* If tls_sec is NULL, we should have signalled an error already.  */
1883   if (elf_hash_table (info)->tls_sec == NULL)
1884     return 0;
1885   return elf_hash_table (info)->tls_sec->vma;
1886 }
1887 
1888 /* Return the relocation value for @tpoff relocation
1889    if STT_TLS virtual address is ADDRESS.  */
1890 
1891 static bfd_vma
tpoff(struct bfd_link_info * info,bfd_vma address)1892 tpoff (struct bfd_link_info *info, bfd_vma address)
1893 {
1894   struct elf_link_hash_table *htab = elf_hash_table (info);
1895   bfd_vma base;
1896 
1897   /* If tls_sec is NULL, we should have signalled an error already.  */
1898   if (htab->tls_sec == NULL)
1899     return 0;
1900   base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1901   return address - htab->tls_sec->vma + base;
1902 }
1903 
1904 /* Perform the specified relocation.  The instruction at (contents + address)
1905    is modified to set one operand to represent the value in "relocation".  The
1906    operand position is determined by the relocation type recorded in the
1907    howto.  */
1908 
1909 #define CALL_SEGMENT_BITS (30)
1910 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1911 
1912 static bfd_reloc_status_type
elf_xtensa_do_reloc(reloc_howto_type * howto,bfd * abfd,asection * input_section,bfd_vma relocation,bfd_byte * contents,bfd_vma address,bfd_boolean is_weak_undef,char ** error_message)1913 elf_xtensa_do_reloc (reloc_howto_type *howto,
1914 		     bfd *abfd,
1915 		     asection *input_section,
1916 		     bfd_vma relocation,
1917 		     bfd_byte *contents,
1918 		     bfd_vma address,
1919 		     bfd_boolean is_weak_undef,
1920 		     char **error_message)
1921 {
1922   xtensa_format fmt;
1923   xtensa_opcode opcode;
1924   xtensa_isa isa = xtensa_default_isa;
1925   static xtensa_insnbuf ibuff = NULL;
1926   static xtensa_insnbuf sbuff = NULL;
1927   bfd_vma self_address;
1928   bfd_size_type input_size;
1929   int opnd, slot;
1930   uint32 newval;
1931 
1932   if (!ibuff)
1933     {
1934       ibuff = xtensa_insnbuf_alloc (isa);
1935       sbuff = xtensa_insnbuf_alloc (isa);
1936     }
1937 
1938   input_size = bfd_get_section_limit (abfd, input_section);
1939 
1940   /* Calculate the PC address for this instruction.  */
1941   self_address = (input_section->output_section->vma
1942 		  + input_section->output_offset
1943 		  + address);
1944 
1945   switch (howto->type)
1946     {
1947     case R_XTENSA_NONE:
1948     case R_XTENSA_DIFF8:
1949     case R_XTENSA_DIFF16:
1950     case R_XTENSA_DIFF32:
1951     case R_XTENSA_TLS_FUNC:
1952     case R_XTENSA_TLS_ARG:
1953     case R_XTENSA_TLS_CALL:
1954       return bfd_reloc_ok;
1955 
1956     case R_XTENSA_ASM_EXPAND:
1957       if (!is_weak_undef)
1958 	{
1959 	  /* Check for windowed CALL across a 1GB boundary.  */
1960 	  opcode = get_expanded_call_opcode (contents + address,
1961 					     input_size - address, 0);
1962 	  if (is_windowed_call_opcode (opcode))
1963 	    {
1964 	      if ((self_address >> CALL_SEGMENT_BITS)
1965 		  != (relocation >> CALL_SEGMENT_BITS))
1966 		{
1967 		  *error_message = "windowed longcall crosses 1GB boundary; "
1968 		    "return may fail";
1969 		  return bfd_reloc_dangerous;
1970 		}
1971 	    }
1972 	}
1973       return bfd_reloc_ok;
1974 
1975     case R_XTENSA_ASM_SIMPLIFY:
1976       {
1977         /* Convert the L32R/CALLX to CALL.  */
1978 	bfd_reloc_status_type retval =
1979 	  elf_xtensa_do_asm_simplify (contents, address, input_size,
1980 				      error_message);
1981 	if (retval != bfd_reloc_ok)
1982 	  return bfd_reloc_dangerous;
1983 
1984 	/* The CALL needs to be relocated.  Continue below for that part.  */
1985 	address += 3;
1986 	self_address += 3;
1987 	howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1988       }
1989       break;
1990 
1991     case R_XTENSA_32:
1992       {
1993 	bfd_vma x;
1994 	x = bfd_get_32 (abfd, contents + address);
1995 	x = x + relocation;
1996 	bfd_put_32 (abfd, x, contents + address);
1997       }
1998       return bfd_reloc_ok;
1999 
2000     case R_XTENSA_32_PCREL:
2001       bfd_put_32 (abfd, relocation - self_address, contents + address);
2002       return bfd_reloc_ok;
2003 
2004     case R_XTENSA_PLT:
2005     case R_XTENSA_TLSDESC_FN:
2006     case R_XTENSA_TLSDESC_ARG:
2007     case R_XTENSA_TLS_DTPOFF:
2008     case R_XTENSA_TLS_TPOFF:
2009       bfd_put_32 (abfd, relocation, contents + address);
2010       return bfd_reloc_ok;
2011     }
2012 
2013   /* Only instruction slot-specific relocations handled below.... */
2014   slot = get_relocation_slot (howto->type);
2015   if (slot == XTENSA_UNDEFINED)
2016     {
2017       *error_message = "unexpected relocation";
2018       return bfd_reloc_dangerous;
2019     }
2020 
2021   /* Read the instruction into a buffer and decode the opcode.  */
2022   xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2023 			     input_size - address);
2024   fmt = xtensa_format_decode (isa, ibuff);
2025   if (fmt == XTENSA_UNDEFINED)
2026     {
2027       *error_message = "cannot decode instruction format";
2028       return bfd_reloc_dangerous;
2029     }
2030 
2031   xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2032 
2033   opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2034   if (opcode == XTENSA_UNDEFINED)
2035     {
2036       *error_message = "cannot decode instruction opcode";
2037       return bfd_reloc_dangerous;
2038     }
2039 
2040   /* Check for opcode-specific "alternate" relocations.  */
2041   if (is_alt_relocation (howto->type))
2042     {
2043       if (opcode == get_l32r_opcode ())
2044 	{
2045 	  /* Handle the special-case of non-PC-relative L32R instructions.  */
2046 	  bfd *output_bfd = input_section->output_section->owner;
2047 	  asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2048 	  if (!lit4_sec)
2049 	    {
2050 	      *error_message = "relocation references missing .lit4 section";
2051 	      return bfd_reloc_dangerous;
2052 	    }
2053 	  self_address = ((lit4_sec->vma & ~0xfff)
2054 			  + 0x40000 - 3); /* -3 to compensate for do_reloc */
2055 	  newval = relocation;
2056 	  opnd = 1;
2057 	}
2058       else if (opcode == get_const16_opcode ())
2059 	{
2060 	  /* ALT used for high 16 bits.  */
2061 	  newval = relocation >> 16;
2062 	  opnd = 1;
2063 	}
2064       else
2065 	{
2066 	  /* No other "alternate" relocations currently defined.  */
2067 	  *error_message = "unexpected relocation";
2068 	  return bfd_reloc_dangerous;
2069 	}
2070     }
2071   else /* Not an "alternate" relocation.... */
2072     {
2073       if (opcode == get_const16_opcode ())
2074 	{
2075 	  newval = relocation & 0xffff;
2076 	  opnd = 1;
2077 	}
2078       else
2079 	{
2080 	  /* ...normal PC-relative relocation.... */
2081 
2082 	  /* Determine which operand is being relocated.  */
2083 	  opnd = get_relocation_opnd (opcode, howto->type);
2084 	  if (opnd == XTENSA_UNDEFINED)
2085 	    {
2086 	      *error_message = "unexpected relocation";
2087 	      return bfd_reloc_dangerous;
2088 	    }
2089 
2090 	  if (!howto->pc_relative)
2091 	    {
2092 	      *error_message = "expected PC-relative relocation";
2093 	      return bfd_reloc_dangerous;
2094 	    }
2095 
2096 	  newval = relocation;
2097 	}
2098     }
2099 
2100   /* Apply the relocation.  */
2101   if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2102       || xtensa_operand_encode (isa, opcode, opnd, &newval)
2103       || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2104 				   sbuff, newval))
2105     {
2106       const char *opname = xtensa_opcode_name (isa, opcode);
2107       const char *msg;
2108 
2109       msg = "cannot encode";
2110       if (is_direct_call_opcode (opcode))
2111 	{
2112 	  if ((relocation & 0x3) != 0)
2113 	    msg = "misaligned call target";
2114 	  else
2115 	    msg = "call target out of range";
2116 	}
2117       else if (opcode == get_l32r_opcode ())
2118 	{
2119 	  if ((relocation & 0x3) != 0)
2120 	    msg = "misaligned literal target";
2121 	  else if (is_alt_relocation (howto->type))
2122 	    msg = "literal target out of range (too many literals)";
2123 	  else if (self_address > relocation)
2124 	    msg = "literal target out of range (try using text-section-literals)";
2125 	  else
2126 	    msg = "literal placed after use";
2127 	}
2128 
2129       *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2130       return bfd_reloc_dangerous;
2131     }
2132 
2133   /* Check for calls across 1GB boundaries.  */
2134   if (is_direct_call_opcode (opcode)
2135       && is_windowed_call_opcode (opcode))
2136     {
2137       if ((self_address >> CALL_SEGMENT_BITS)
2138 	  != (relocation >> CALL_SEGMENT_BITS))
2139 	{
2140 	  *error_message =
2141 	    "windowed call crosses 1GB boundary; return may fail";
2142 	  return bfd_reloc_dangerous;
2143 	}
2144     }
2145 
2146   /* Write the modified instruction back out of the buffer.  */
2147   xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2148   xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2149 			   input_size - address);
2150   return bfd_reloc_ok;
2151 }
2152 
2153 
2154 static char *
vsprint_msg(const char * origmsg,const char * fmt,int arglen,...)2155 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2156 {
2157   /* To reduce the size of the memory leak,
2158      we only use a single message buffer.  */
2159   static bfd_size_type alloc_size = 0;
2160   static char *message = NULL;
2161   bfd_size_type orig_len, len = 0;
2162   bfd_boolean is_append;
2163   va_list ap;
2164 
2165   va_start (ap, arglen);
2166 
2167   is_append = (origmsg == message);
2168 
2169   orig_len = strlen (origmsg);
2170   len = orig_len + strlen (fmt) + arglen + 20;
2171   if (len > alloc_size)
2172     {
2173       message = (char *) bfd_realloc_or_free (message, len);
2174       alloc_size = len;
2175     }
2176   if (message != NULL)
2177     {
2178       if (!is_append)
2179 	memcpy (message, origmsg, orig_len);
2180       vsprintf (message + orig_len, fmt, ap);
2181     }
2182   va_end (ap);
2183   return message;
2184 }
2185 
2186 
2187 /* This function is registered as the "special_function" in the
2188    Xtensa howto for handling simplify operations.
2189    bfd_perform_relocation / bfd_install_relocation use it to
2190    perform (install) the specified relocation.  Since this replaces the code
2191    in bfd_perform_relocation, it is basically an Xtensa-specific,
2192    stripped-down version of bfd_perform_relocation.  */
2193 
2194 static bfd_reloc_status_type
bfd_elf_xtensa_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)2195 bfd_elf_xtensa_reloc (bfd *abfd,
2196 		      arelent *reloc_entry,
2197 		      asymbol *symbol,
2198 		      void *data,
2199 		      asection *input_section,
2200 		      bfd *output_bfd,
2201 		      char **error_message)
2202 {
2203   bfd_vma relocation;
2204   bfd_reloc_status_type flag;
2205   bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2206   bfd_vma output_base = 0;
2207   reloc_howto_type *howto = reloc_entry->howto;
2208   asection *reloc_target_output_section;
2209   bfd_boolean is_weak_undef;
2210 
2211   if (!xtensa_default_isa)
2212     xtensa_default_isa = xtensa_isa_init (0, 0);
2213 
2214   /* ELF relocs are against symbols.  If we are producing relocatable
2215      output, and the reloc is against an external symbol, the resulting
2216      reloc will also be against the same symbol.  In such a case, we
2217      don't want to change anything about the way the reloc is handled,
2218      since it will all be done at final link time.  This test is similar
2219      to what bfd_elf_generic_reloc does except that it lets relocs with
2220      howto->partial_inplace go through even if the addend is non-zero.
2221      (The real problem is that partial_inplace is set for XTENSA_32
2222      relocs to begin with, but that's a long story and there's little we
2223      can do about it now....)  */
2224 
2225   if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2226     {
2227       reloc_entry->address += input_section->output_offset;
2228       return bfd_reloc_ok;
2229     }
2230 
2231   /* Is the address of the relocation really within the section?  */
2232   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2233     return bfd_reloc_outofrange;
2234 
2235   /* Work out which section the relocation is targeted at and the
2236      initial relocation command value.  */
2237 
2238   /* Get symbol value.  (Common symbols are special.)  */
2239   if (bfd_is_com_section (symbol->section))
2240     relocation = 0;
2241   else
2242     relocation = symbol->value;
2243 
2244   reloc_target_output_section = symbol->section->output_section;
2245 
2246   /* Convert input-section-relative symbol value to absolute.  */
2247   if ((output_bfd && !howto->partial_inplace)
2248       || reloc_target_output_section == NULL)
2249     output_base = 0;
2250   else
2251     output_base = reloc_target_output_section->vma;
2252 
2253   relocation += output_base + symbol->section->output_offset;
2254 
2255   /* Add in supplied addend.  */
2256   relocation += reloc_entry->addend;
2257 
2258   /* Here the variable relocation holds the final address of the
2259      symbol we are relocating against, plus any addend.  */
2260   if (output_bfd)
2261     {
2262       if (!howto->partial_inplace)
2263 	{
2264 	  /* This is a partial relocation, and we want to apply the relocation
2265 	     to the reloc entry rather than the raw data.  Everything except
2266 	     relocations against section symbols has already been handled
2267 	     above.  */
2268 
2269 	  BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2270 	  reloc_entry->addend = relocation;
2271 	  reloc_entry->address += input_section->output_offset;
2272 	  return bfd_reloc_ok;
2273 	}
2274       else
2275 	{
2276 	  reloc_entry->address += input_section->output_offset;
2277 	  reloc_entry->addend = 0;
2278 	}
2279     }
2280 
2281   is_weak_undef = (bfd_is_und_section (symbol->section)
2282 		   && (symbol->flags & BSF_WEAK) != 0);
2283   flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2284 			      (bfd_byte *) data, (bfd_vma) octets,
2285 			      is_weak_undef, error_message);
2286 
2287   if (flag == bfd_reloc_dangerous)
2288     {
2289       /* Add the symbol name to the error message.  */
2290       if (! *error_message)
2291 	*error_message = "";
2292       *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2293 				    strlen (symbol->name) + 17,
2294 				    symbol->name,
2295 				    (unsigned long) reloc_entry->addend);
2296     }
2297 
2298   return flag;
2299 }
2300 
2301 
2302 /* Set up an entry in the procedure linkage table.  */
2303 
2304 static bfd_vma
elf_xtensa_create_plt_entry(struct bfd_link_info * info,bfd * output_bfd,unsigned reloc_index)2305 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2306 			     bfd *output_bfd,
2307 			     unsigned reloc_index)
2308 {
2309   asection *splt, *sgotplt;
2310   bfd_vma plt_base, got_base;
2311   bfd_vma code_offset, lit_offset;
2312   int chunk;
2313 
2314   chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2315   splt = elf_xtensa_get_plt_section (info, chunk);
2316   sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2317   BFD_ASSERT (splt != NULL && sgotplt != NULL);
2318 
2319   plt_base = splt->output_section->vma + splt->output_offset;
2320   got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2321 
2322   lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2323   code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2324 
2325   /* Fill in the literal entry.  This is the offset of the dynamic
2326      relocation entry.  */
2327   bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2328 	      sgotplt->contents + lit_offset);
2329 
2330   /* Fill in the entry in the procedure linkage table.  */
2331   memcpy (splt->contents + code_offset,
2332 	  (bfd_big_endian (output_bfd)
2333 	   ? elf_xtensa_be_plt_entry
2334 	   : elf_xtensa_le_plt_entry),
2335 	  PLT_ENTRY_SIZE);
2336   bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2337 				       plt_base + code_offset + 3),
2338 	      splt->contents + code_offset + 4);
2339   bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2340 				       plt_base + code_offset + 6),
2341 	      splt->contents + code_offset + 7);
2342   bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2343 				       plt_base + code_offset + 9),
2344 	      splt->contents + code_offset + 10);
2345 
2346   return plt_base + code_offset;
2347 }
2348 
2349 
2350 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2351 
2352 static bfd_boolean
replace_tls_insn(Elf_Internal_Rela * rel,bfd * abfd,asection * input_section,bfd_byte * contents,bfd_boolean is_ld_model,char ** error_message)2353 replace_tls_insn (Elf_Internal_Rela *rel,
2354 		  bfd *abfd,
2355 		  asection *input_section,
2356 		  bfd_byte *contents,
2357 		  bfd_boolean is_ld_model,
2358 		  char **error_message)
2359 {
2360   static xtensa_insnbuf ibuff = NULL;
2361   static xtensa_insnbuf sbuff = NULL;
2362   xtensa_isa isa = xtensa_default_isa;
2363   xtensa_format fmt;
2364   xtensa_opcode old_op, new_op;
2365   bfd_size_type input_size;
2366   int r_type;
2367   unsigned dest_reg, src_reg;
2368 
2369   if (ibuff == NULL)
2370     {
2371       ibuff = xtensa_insnbuf_alloc (isa);
2372       sbuff = xtensa_insnbuf_alloc (isa);
2373     }
2374 
2375   input_size = bfd_get_section_limit (abfd, input_section);
2376 
2377   /* Read the instruction into a buffer and decode the opcode.  */
2378   xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2379 			     input_size - rel->r_offset);
2380   fmt = xtensa_format_decode (isa, ibuff);
2381   if (fmt == XTENSA_UNDEFINED)
2382     {
2383       *error_message = "cannot decode instruction format";
2384       return FALSE;
2385     }
2386 
2387   BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2388   xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2389 
2390   old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2391   if (old_op == XTENSA_UNDEFINED)
2392     {
2393       *error_message = "cannot decode instruction opcode";
2394       return FALSE;
2395     }
2396 
2397   r_type = ELF32_R_TYPE (rel->r_info);
2398   switch (r_type)
2399     {
2400     case R_XTENSA_TLS_FUNC:
2401     case R_XTENSA_TLS_ARG:
2402       if (old_op != get_l32r_opcode ()
2403 	  || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2404 				       sbuff, &dest_reg) != 0)
2405 	{
2406 	  *error_message = "cannot extract L32R destination for TLS access";
2407 	  return FALSE;
2408 	}
2409       break;
2410 
2411     case R_XTENSA_TLS_CALL:
2412       if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2413 	  || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2414 				       sbuff, &src_reg) != 0)
2415 	{
2416 	  *error_message = "cannot extract CALLXn operands for TLS access";
2417 	  return FALSE;
2418 	}
2419       break;
2420 
2421     default:
2422       abort ();
2423     }
2424 
2425   if (is_ld_model)
2426     {
2427       switch (r_type)
2428 	{
2429 	case R_XTENSA_TLS_FUNC:
2430 	case R_XTENSA_TLS_ARG:
2431 	  /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2432 	     versions of Xtensa).  */
2433 	  new_op = xtensa_opcode_lookup (isa, "nop");
2434 	  if (new_op == XTENSA_UNDEFINED)
2435 	    {
2436 	      new_op = xtensa_opcode_lookup (isa, "or");
2437 	      if (new_op == XTENSA_UNDEFINED
2438 		  || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2439 		  || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2440 					       sbuff, 1) != 0
2441 		  || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2442 					       sbuff, 1) != 0
2443 		  || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2444 					       sbuff, 1) != 0)
2445 		{
2446 		  *error_message = "cannot encode OR for TLS access";
2447 		  return FALSE;
2448 		}
2449 	    }
2450 	  else
2451 	    {
2452 	      if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2453 		{
2454 		  *error_message = "cannot encode NOP for TLS access";
2455 		  return FALSE;
2456 		}
2457 	    }
2458 	  break;
2459 
2460 	case R_XTENSA_TLS_CALL:
2461 	  /* Read THREADPTR into the CALLX's return value register.  */
2462 	  new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2463 	  if (new_op == XTENSA_UNDEFINED
2464 	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2465 	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2466 					   sbuff, dest_reg + 2) != 0)
2467 	    {
2468 	      *error_message = "cannot encode RUR.THREADPTR for TLS access";
2469 	      return FALSE;
2470 	    }
2471 	  break;
2472 	}
2473     }
2474   else
2475     {
2476       switch (r_type)
2477 	{
2478 	case R_XTENSA_TLS_FUNC:
2479 	  new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2480 	  if (new_op == XTENSA_UNDEFINED
2481 	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2482 	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2483 					   sbuff, dest_reg) != 0)
2484 	    {
2485 	      *error_message = "cannot encode RUR.THREADPTR for TLS access";
2486 	      return FALSE;
2487 	    }
2488 	  break;
2489 
2490 	case R_XTENSA_TLS_ARG:
2491 	  /* Nothing to do.  Keep the original L32R instruction.  */
2492 	  return TRUE;
2493 
2494 	case R_XTENSA_TLS_CALL:
2495 	  /* Add the CALLX's src register (holding the THREADPTR value)
2496 	     to the first argument register (holding the offset) and put
2497 	     the result in the CALLX's return value register.  */
2498 	  new_op = xtensa_opcode_lookup (isa, "add");
2499 	  if (new_op == XTENSA_UNDEFINED
2500 	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2501 	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2502 					   sbuff, dest_reg + 2) != 0
2503 	      || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2504 					   sbuff, dest_reg + 2) != 0
2505 	      || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2506 					   sbuff, src_reg) != 0)
2507 	    {
2508 	      *error_message = "cannot encode ADD for TLS access";
2509 	      return FALSE;
2510 	    }
2511 	  break;
2512 	}
2513     }
2514 
2515   xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2516   xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2517                            input_size - rel->r_offset);
2518 
2519   return TRUE;
2520 }
2521 
2522 
2523 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2524   ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2525    || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2526    || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2527    || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2528    || (R_TYPE) == R_XTENSA_TLS_FUNC \
2529    || (R_TYPE) == R_XTENSA_TLS_ARG \
2530    || (R_TYPE) == R_XTENSA_TLS_CALL)
2531 
2532 /* Relocate an Xtensa ELF section.  This is invoked by the linker for
2533    both relocatable and final links.  */
2534 
2535 static bfd_boolean
elf_xtensa_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)2536 elf_xtensa_relocate_section (bfd *output_bfd,
2537 			     struct bfd_link_info *info,
2538 			     bfd *input_bfd,
2539 			     asection *input_section,
2540 			     bfd_byte *contents,
2541 			     Elf_Internal_Rela *relocs,
2542 			     Elf_Internal_Sym *local_syms,
2543 			     asection **local_sections)
2544 {
2545   struct elf_xtensa_link_hash_table *htab;
2546   Elf_Internal_Shdr *symtab_hdr;
2547   Elf_Internal_Rela *rel;
2548   Elf_Internal_Rela *relend;
2549   struct elf_link_hash_entry **sym_hashes;
2550   property_table_entry *lit_table = 0;
2551   int ltblsize = 0;
2552   char *local_got_tls_types;
2553   char *error_message = NULL;
2554   bfd_size_type input_size;
2555   int tls_type;
2556 
2557   if (!xtensa_default_isa)
2558     xtensa_default_isa = xtensa_isa_init (0, 0);
2559 
2560   BFD_ASSERT (is_xtensa_elf (input_bfd));
2561 
2562   htab = elf_xtensa_hash_table (info);
2563   if (htab == NULL)
2564     return FALSE;
2565 
2566   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2567   sym_hashes = elf_sym_hashes (input_bfd);
2568   local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2569 
2570   if (elf_hash_table (info)->dynamic_sections_created)
2571     {
2572       ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2573 					    &lit_table, XTENSA_LIT_SEC_NAME,
2574 					    TRUE);
2575       if (ltblsize < 0)
2576 	return FALSE;
2577     }
2578 
2579   input_size = bfd_get_section_limit (input_bfd, input_section);
2580 
2581   rel = relocs;
2582   relend = relocs + input_section->reloc_count;
2583   for (; rel < relend; rel++)
2584     {
2585       int r_type;
2586       reloc_howto_type *howto;
2587       unsigned long r_symndx;
2588       struct elf_link_hash_entry *h;
2589       Elf_Internal_Sym *sym;
2590       char sym_type;
2591       const char *name;
2592       asection *sec;
2593       bfd_vma relocation;
2594       bfd_reloc_status_type r;
2595       bfd_boolean is_weak_undef;
2596       bfd_boolean unresolved_reloc;
2597       bfd_boolean warned;
2598       bfd_boolean dynamic_symbol;
2599 
2600       r_type = ELF32_R_TYPE (rel->r_info);
2601       if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2602 	  || r_type == (int) R_XTENSA_GNU_VTENTRY)
2603 	continue;
2604 
2605       if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2606 	{
2607 	  bfd_set_error (bfd_error_bad_value);
2608 	  return FALSE;
2609 	}
2610       howto = &elf_howto_table[r_type];
2611 
2612       r_symndx = ELF32_R_SYM (rel->r_info);
2613 
2614       h = NULL;
2615       sym = NULL;
2616       sec = NULL;
2617       is_weak_undef = FALSE;
2618       unresolved_reloc = FALSE;
2619       warned = FALSE;
2620 
2621       if (howto->partial_inplace && !info->relocatable)
2622 	{
2623 	  /* Because R_XTENSA_32 was made partial_inplace to fix some
2624 	     problems with DWARF info in partial links, there may be
2625 	     an addend stored in the contents.  Take it out of there
2626 	     and move it back into the addend field of the reloc.  */
2627 	  rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2628 	  bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2629 	}
2630 
2631       if (r_symndx < symtab_hdr->sh_info)
2632 	{
2633 	  sym = local_syms + r_symndx;
2634 	  sym_type = ELF32_ST_TYPE (sym->st_info);
2635 	  sec = local_sections[r_symndx];
2636 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2637 	}
2638       else
2639 	{
2640 	  bfd_boolean ignored;
2641 
2642 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2643 				   r_symndx, symtab_hdr, sym_hashes,
2644 				   h, sec, relocation,
2645 				   unresolved_reloc, warned, ignored);
2646 
2647 	  if (relocation == 0
2648 	      && !unresolved_reloc
2649 	      && h->root.type == bfd_link_hash_undefweak)
2650 	    is_weak_undef = TRUE;
2651 
2652 	  sym_type = h->type;
2653 	}
2654 
2655       if (sec != NULL && discarded_section (sec))
2656 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2657 					 rel, 1, relend, howto, 0, contents);
2658 
2659       if (info->relocatable)
2660 	{
2661 	  bfd_vma dest_addr;
2662 	  asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2663 
2664 	  /* This is a relocatable link.
2665 	     1) If the reloc is against a section symbol, adjust
2666 	     according to the output section.
2667 	     2) If there is a new target for this relocation,
2668 	     the new target will be in the same output section.
2669 	     We adjust the relocation by the output section
2670 	     difference.  */
2671 
2672 	  if (relaxing_section)
2673 	    {
2674 	      /* Check if this references a section in another input file.  */
2675 	      if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2676 						contents))
2677 		return FALSE;
2678 	    }
2679 
2680 	  dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2681 	    + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2682 
2683 	  if (r_type == R_XTENSA_ASM_SIMPLIFY)
2684 	    {
2685 	      error_message = NULL;
2686 	      /* Convert ASM_SIMPLIFY into the simpler relocation
2687 		 so that they never escape a relaxing link.  */
2688 	      r = contract_asm_expansion (contents, input_size, rel,
2689 					  &error_message);
2690 	      if (r != bfd_reloc_ok)
2691 		{
2692 		  if (!((*info->callbacks->reloc_dangerous)
2693 			(info, error_message, input_bfd, input_section,
2694 			 rel->r_offset)))
2695 		    return FALSE;
2696 		}
2697 	      r_type = ELF32_R_TYPE (rel->r_info);
2698 	    }
2699 
2700 	  /* This is a relocatable link, so we don't have to change
2701 	     anything unless the reloc is against a section symbol,
2702 	     in which case we have to adjust according to where the
2703 	     section symbol winds up in the output section.  */
2704 	  if (r_symndx < symtab_hdr->sh_info)
2705 	    {
2706 	      sym = local_syms + r_symndx;
2707 	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2708 		{
2709 		  sec = local_sections[r_symndx];
2710 		  rel->r_addend += sec->output_offset + sym->st_value;
2711 		}
2712 	    }
2713 
2714 	  /* If there is an addend with a partial_inplace howto,
2715 	     then move the addend to the contents.  This is a hack
2716 	     to work around problems with DWARF in relocatable links
2717 	     with some previous version of BFD.  Now we can't easily get
2718 	     rid of the hack without breaking backward compatibility.... */
2719 	  r = bfd_reloc_ok;
2720 	  howto = &elf_howto_table[r_type];
2721 	  if (howto->partial_inplace && rel->r_addend)
2722 	    {
2723 	      r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2724 				       rel->r_addend, contents,
2725 				       rel->r_offset, FALSE,
2726 				       &error_message);
2727 	      rel->r_addend = 0;
2728 	    }
2729 	  else
2730 	    {
2731 	      /* Put the correct bits in the target instruction, even
2732 		 though the relocation will still be present in the output
2733 		 file.  This makes disassembly clearer, as well as
2734 		 allowing loadable kernel modules to work without needing
2735 		 relocations on anything other than calls and l32r's.  */
2736 
2737 	      /* If it is not in the same section, there is nothing we can do.  */
2738 	      if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2739 		  sym_sec->output_section == input_section->output_section)
2740 		{
2741 		  r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2742 					   dest_addr, contents,
2743 					   rel->r_offset, FALSE,
2744 					   &error_message);
2745 		}
2746 	    }
2747 	  if (r != bfd_reloc_ok)
2748 	    {
2749 	      if (!((*info->callbacks->reloc_dangerous)
2750 		    (info, error_message, input_bfd, input_section,
2751 		     rel->r_offset)))
2752 		return FALSE;
2753 	    }
2754 
2755 	  /* Done with work for relocatable link; continue with next reloc.  */
2756 	  continue;
2757 	}
2758 
2759       /* This is a final link.  */
2760 
2761       if (relaxing_section)
2762 	{
2763 	  /* Check if this references a section in another input file.  */
2764 	  do_fix_for_final_link (rel, input_bfd, input_section, contents,
2765 				 &relocation);
2766 	}
2767 
2768       /* Sanity check the address.  */
2769       if (rel->r_offset >= input_size
2770 	  && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2771 	{
2772 	  (*_bfd_error_handler)
2773 	    (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2774 	     input_bfd, input_section, rel->r_offset, input_size);
2775 	  bfd_set_error (bfd_error_bad_value);
2776 	  return FALSE;
2777 	}
2778 
2779       if (h != NULL)
2780 	name = h->root.root.string;
2781       else
2782 	{
2783 	  name = (bfd_elf_string_from_elf_section
2784 		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
2785 	  if (name == NULL || *name == '\0')
2786 	    name = bfd_section_name (input_bfd, sec);
2787 	}
2788 
2789       if (r_symndx != STN_UNDEF
2790 	  && r_type != R_XTENSA_NONE
2791 	  && (h == NULL
2792 	      || h->root.type == bfd_link_hash_defined
2793 	      || h->root.type == bfd_link_hash_defweak)
2794 	  && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2795 	{
2796 	  (*_bfd_error_handler)
2797 	    ((sym_type == STT_TLS
2798 	      ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2799 	      : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2800 	     input_bfd,
2801 	     input_section,
2802 	     (long) rel->r_offset,
2803 	     howto->name,
2804 	     name);
2805 	}
2806 
2807       dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2808 
2809       tls_type = GOT_UNKNOWN;
2810       if (h)
2811 	tls_type = elf_xtensa_hash_entry (h)->tls_type;
2812       else if (local_got_tls_types)
2813 	tls_type = local_got_tls_types [r_symndx];
2814 
2815       switch (r_type)
2816 	{
2817 	case R_XTENSA_32:
2818 	case R_XTENSA_PLT:
2819 	  if (elf_hash_table (info)->dynamic_sections_created
2820 	      && (input_section->flags & SEC_ALLOC) != 0
2821 	      && (dynamic_symbol || info->shared))
2822 	    {
2823 	      Elf_Internal_Rela outrel;
2824 	      bfd_byte *loc;
2825 	      asection *srel;
2826 
2827 	      if (dynamic_symbol && r_type == R_XTENSA_PLT)
2828 		srel = htab->srelplt;
2829 	      else
2830 		srel = htab->srelgot;
2831 
2832 	      BFD_ASSERT (srel != NULL);
2833 
2834 	      outrel.r_offset =
2835 		_bfd_elf_section_offset (output_bfd, info,
2836 					 input_section, rel->r_offset);
2837 
2838 	      if ((outrel.r_offset | 1) == (bfd_vma) -1)
2839 		memset (&outrel, 0, sizeof outrel);
2840 	      else
2841 		{
2842 		  outrel.r_offset += (input_section->output_section->vma
2843 				      + input_section->output_offset);
2844 
2845 		  /* Complain if the relocation is in a read-only section
2846 		     and not in a literal pool.  */
2847 		  if ((input_section->flags & SEC_READONLY) != 0
2848 		      && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2849 						      outrel.r_offset))
2850 		    {
2851 		      error_message =
2852 			_("dynamic relocation in read-only section");
2853 		      if (!((*info->callbacks->reloc_dangerous)
2854 			    (info, error_message, input_bfd, input_section,
2855 			     rel->r_offset)))
2856 			return FALSE;
2857 		    }
2858 
2859 		  if (dynamic_symbol)
2860 		    {
2861 		      outrel.r_addend = rel->r_addend;
2862 		      rel->r_addend = 0;
2863 
2864 		      if (r_type == R_XTENSA_32)
2865 			{
2866 			  outrel.r_info =
2867 			    ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2868 			  relocation = 0;
2869 			}
2870 		      else /* r_type == R_XTENSA_PLT */
2871 			{
2872 			  outrel.r_info =
2873 			    ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2874 
2875 			  /* Create the PLT entry and set the initial
2876 			     contents of the literal entry to the address of
2877 			     the PLT entry.  */
2878 			  relocation =
2879 			    elf_xtensa_create_plt_entry (info, output_bfd,
2880 							 srel->reloc_count);
2881 			}
2882 		      unresolved_reloc = FALSE;
2883 		    }
2884 		  else
2885 		    {
2886 		      /* Generate a RELATIVE relocation.  */
2887 		      outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2888 		      outrel.r_addend = 0;
2889 		    }
2890 		}
2891 
2892 	      loc = (srel->contents
2893 		     + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2894 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2895 	      BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2896 			  <= srel->size);
2897 	    }
2898 	  else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2899 	    {
2900 	      /* This should only happen for non-PIC code, which is not
2901 		 supposed to be used on systems with dynamic linking.
2902 		 Just ignore these relocations.  */
2903 	      continue;
2904 	    }
2905 	  break;
2906 
2907 	case R_XTENSA_TLS_TPOFF:
2908 	  /* Switch to LE model for local symbols in an executable.  */
2909 	  if (! info->shared && ! dynamic_symbol)
2910 	    {
2911 	      relocation = tpoff (info, relocation);
2912 	      break;
2913 	    }
2914 	  /* fall through */
2915 
2916 	case R_XTENSA_TLSDESC_FN:
2917 	case R_XTENSA_TLSDESC_ARG:
2918 	  {
2919 	    if (r_type == R_XTENSA_TLSDESC_FN)
2920 	      {
2921 		if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2922 		  r_type = R_XTENSA_NONE;
2923 	      }
2924 	    else if (r_type == R_XTENSA_TLSDESC_ARG)
2925 	      {
2926 		if (info->shared)
2927 		  {
2928 		    if ((tls_type & GOT_TLS_IE) != 0)
2929 		      r_type = R_XTENSA_TLS_TPOFF;
2930 		  }
2931 		else
2932 		  {
2933 		    r_type = R_XTENSA_TLS_TPOFF;
2934 		    if (! dynamic_symbol)
2935 		      {
2936 			relocation = tpoff (info, relocation);
2937 			break;
2938 		      }
2939 		  }
2940 	      }
2941 
2942 	    if (r_type == R_XTENSA_NONE)
2943 	      /* Nothing to do here; skip to the next reloc.  */
2944 	      continue;
2945 
2946 	    if (! elf_hash_table (info)->dynamic_sections_created)
2947 	      {
2948 		error_message =
2949 		  _("TLS relocation invalid without dynamic sections");
2950 		if (!((*info->callbacks->reloc_dangerous)
2951 		      (info, error_message, input_bfd, input_section,
2952 		       rel->r_offset)))
2953 		  return FALSE;
2954 	      }
2955 	    else
2956 	      {
2957 		Elf_Internal_Rela outrel;
2958 		bfd_byte *loc;
2959 		asection *srel = htab->srelgot;
2960 		int indx;
2961 
2962 		outrel.r_offset = (input_section->output_section->vma
2963 				   + input_section->output_offset
2964 				   + rel->r_offset);
2965 
2966 		/* Complain if the relocation is in a read-only section
2967 		   and not in a literal pool.  */
2968 		if ((input_section->flags & SEC_READONLY) != 0
2969 		    && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2970 						     outrel.r_offset))
2971 		  {
2972 		    error_message =
2973 		      _("dynamic relocation in read-only section");
2974 		    if (!((*info->callbacks->reloc_dangerous)
2975 			  (info, error_message, input_bfd, input_section,
2976 			   rel->r_offset)))
2977 		      return FALSE;
2978 		  }
2979 
2980 		indx = h && h->dynindx != -1 ? h->dynindx : 0;
2981 		if (indx == 0)
2982 		  outrel.r_addend = relocation - dtpoff_base (info);
2983 		else
2984 		  outrel.r_addend = 0;
2985 		rel->r_addend = 0;
2986 
2987 		outrel.r_info = ELF32_R_INFO (indx, r_type);
2988 		relocation = 0;
2989 		unresolved_reloc = FALSE;
2990 
2991 		BFD_ASSERT (srel);
2992 		loc = (srel->contents
2993 		       + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2994 		bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2995 		BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2996 			    <= srel->size);
2997 	      }
2998 	  }
2999 	  break;
3000 
3001 	case R_XTENSA_TLS_DTPOFF:
3002 	  if (! info->shared)
3003 	    /* Switch from LD model to LE model.  */
3004 	    relocation = tpoff (info, relocation);
3005 	  else
3006 	    relocation -= dtpoff_base (info);
3007 	  break;
3008 
3009 	case R_XTENSA_TLS_FUNC:
3010 	case R_XTENSA_TLS_ARG:
3011 	case R_XTENSA_TLS_CALL:
3012 	  /* Check if optimizing to IE or LE model.  */
3013 	  if ((tls_type & GOT_TLS_IE) != 0)
3014 	    {
3015 	      bfd_boolean is_ld_model =
3016 		(h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3017 	      if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3018 				      is_ld_model, &error_message))
3019 		{
3020 		  if (!((*info->callbacks->reloc_dangerous)
3021 			(info, error_message, input_bfd, input_section,
3022 			 rel->r_offset)))
3023 		    return FALSE;
3024 		}
3025 
3026 	      if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3027 		{
3028 		  /* Skip subsequent relocations on the same instruction.  */
3029 		  while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3030 		    rel++;
3031 		}
3032 	    }
3033 	  continue;
3034 
3035 	default:
3036 	  if (elf_hash_table (info)->dynamic_sections_created
3037 	      && dynamic_symbol && (is_operand_relocation (r_type)
3038 				    || r_type == R_XTENSA_32_PCREL))
3039 	    {
3040 	      error_message =
3041 		vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3042 			     strlen (name) + 2, name);
3043 	      if (!((*info->callbacks->reloc_dangerous)
3044 		    (info, error_message, input_bfd, input_section,
3045 		     rel->r_offset)))
3046 		return FALSE;
3047 	      continue;
3048 	    }
3049 	  break;
3050 	}
3051 
3052       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3053 	 because such sections are not SEC_ALLOC and thus ld.so will
3054 	 not process them.  */
3055       if (unresolved_reloc
3056 	  && !((input_section->flags & SEC_DEBUGGING) != 0
3057 	       && h->def_dynamic)
3058 	  && _bfd_elf_section_offset (output_bfd, info, input_section,
3059 				      rel->r_offset) != (bfd_vma) -1)
3060 	{
3061 	  (*_bfd_error_handler)
3062 	    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3063 	     input_bfd,
3064 	     input_section,
3065 	     (long) rel->r_offset,
3066 	     howto->name,
3067 	     name);
3068 	  return FALSE;
3069 	}
3070 
3071       /* TLS optimizations may have changed r_type; update "howto".  */
3072       howto = &elf_howto_table[r_type];
3073 
3074       /* There's no point in calling bfd_perform_relocation here.
3075 	 Just go directly to our "special function".  */
3076       r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3077 			       relocation + rel->r_addend,
3078 			       contents, rel->r_offset, is_weak_undef,
3079 			       &error_message);
3080 
3081       if (r != bfd_reloc_ok && !warned)
3082 	{
3083 	  BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3084 	  BFD_ASSERT (error_message != NULL);
3085 
3086 	  if (rel->r_addend == 0)
3087 	    error_message = vsprint_msg (error_message, ": %s",
3088 					 strlen (name) + 2, name);
3089 	  else
3090 	    error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3091 					 strlen (name) + 22,
3092 					 name, (int) rel->r_addend);
3093 
3094 	  if (!((*info->callbacks->reloc_dangerous)
3095 		(info, error_message, input_bfd, input_section,
3096 		 rel->r_offset)))
3097 	    return FALSE;
3098 	}
3099     }
3100 
3101   if (lit_table)
3102     free (lit_table);
3103 
3104   input_section->reloc_done = TRUE;
3105 
3106   return TRUE;
3107 }
3108 
3109 
3110 /* Finish up dynamic symbol handling.  There's not much to do here since
3111    the PLT and GOT entries are all set up by relocate_section.  */
3112 
3113 static bfd_boolean
elf_xtensa_finish_dynamic_symbol(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)3114 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3115 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3116 				  struct elf_link_hash_entry *h,
3117 				  Elf_Internal_Sym *sym)
3118 {
3119   if (h->needs_plt && !h->def_regular)
3120     {
3121       /* Mark the symbol as undefined, rather than as defined in
3122 	 the .plt section.  Leave the value alone.  */
3123       sym->st_shndx = SHN_UNDEF;
3124       /* If the symbol is weak, we do need to clear the value.
3125 	 Otherwise, the PLT entry would provide a definition for
3126 	 the symbol even if the symbol wasn't defined anywhere,
3127 	 and so the symbol would never be NULL.  */
3128       if (!h->ref_regular_nonweak)
3129 	sym->st_value = 0;
3130     }
3131 
3132   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
3133   if (h == elf_hash_table (info)->hdynamic
3134       || h == elf_hash_table (info)->hgot)
3135     sym->st_shndx = SHN_ABS;
3136 
3137   return TRUE;
3138 }
3139 
3140 
3141 /* Combine adjacent literal table entries in the output.  Adjacent
3142    entries within each input section may have been removed during
3143    relaxation, but we repeat the process here, even though it's too late
3144    to shrink the output section, because it's important to minimize the
3145    number of literal table entries to reduce the start-up work for the
3146    runtime linker.  Returns the number of remaining table entries or -1
3147    on error.  */
3148 
3149 static int
elf_xtensa_combine_prop_entries(bfd * output_bfd,asection * sxtlit,asection * sgotloc)3150 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3151 				 asection *sxtlit,
3152 				 asection *sgotloc)
3153 {
3154   bfd_byte *contents;
3155   property_table_entry *table;
3156   bfd_size_type section_size, sgotloc_size;
3157   bfd_vma offset;
3158   int n, m, num;
3159 
3160   section_size = sxtlit->size;
3161   BFD_ASSERT (section_size % 8 == 0);
3162   num = section_size / 8;
3163 
3164   sgotloc_size = sgotloc->size;
3165   if (sgotloc_size != section_size)
3166     {
3167       (*_bfd_error_handler)
3168 	(_("internal inconsistency in size of .got.loc section"));
3169       return -1;
3170     }
3171 
3172   table = bfd_malloc (num * sizeof (property_table_entry));
3173   if (table == 0)
3174     return -1;
3175 
3176   /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3177      propagates to the output section, where it doesn't really apply and
3178      where it breaks the following call to bfd_malloc_and_get_section.  */
3179   sxtlit->flags &= ~SEC_IN_MEMORY;
3180 
3181   if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3182     {
3183       if (contents != 0)
3184 	free (contents);
3185       free (table);
3186       return -1;
3187     }
3188 
3189   /* There should never be any relocations left at this point, so this
3190      is quite a bit easier than what is done during relaxation.  */
3191 
3192   /* Copy the raw contents into a property table array and sort it.  */
3193   offset = 0;
3194   for (n = 0; n < num; n++)
3195     {
3196       table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3197       table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3198       offset += 8;
3199     }
3200   qsort (table, num, sizeof (property_table_entry), property_table_compare);
3201 
3202   for (n = 0; n < num; n++)
3203     {
3204       bfd_boolean remove_entry = FALSE;
3205 
3206       if (table[n].size == 0)
3207 	remove_entry = TRUE;
3208       else if (n > 0
3209 	       && (table[n-1].address + table[n-1].size == table[n].address))
3210 	{
3211 	  table[n-1].size += table[n].size;
3212 	  remove_entry = TRUE;
3213 	}
3214 
3215       if (remove_entry)
3216 	{
3217 	  for (m = n; m < num - 1; m++)
3218 	    {
3219 	      table[m].address = table[m+1].address;
3220 	      table[m].size = table[m+1].size;
3221 	    }
3222 
3223 	  n--;
3224 	  num--;
3225 	}
3226     }
3227 
3228   /* Copy the data back to the raw contents.  */
3229   offset = 0;
3230   for (n = 0; n < num; n++)
3231     {
3232       bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3233       bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3234       offset += 8;
3235     }
3236 
3237   /* Clear the removed bytes.  */
3238   if ((bfd_size_type) (num * 8) < section_size)
3239     memset (&contents[num * 8], 0, section_size - num * 8);
3240 
3241   if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3242 				  section_size))
3243     return -1;
3244 
3245   /* Copy the contents to ".got.loc".  */
3246   memcpy (sgotloc->contents, contents, section_size);
3247 
3248   free (contents);
3249   free (table);
3250   return num;
3251 }
3252 
3253 
3254 /* Finish up the dynamic sections.  */
3255 
3256 static bfd_boolean
elf_xtensa_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)3257 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3258 				    struct bfd_link_info *info)
3259 {
3260   struct elf_xtensa_link_hash_table *htab;
3261   bfd *dynobj;
3262   asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3263   Elf32_External_Dyn *dyncon, *dynconend;
3264   int num_xtlit_entries = 0;
3265 
3266   if (! elf_hash_table (info)->dynamic_sections_created)
3267     return TRUE;
3268 
3269   htab = elf_xtensa_hash_table (info);
3270   if (htab == NULL)
3271     return FALSE;
3272 
3273   dynobj = elf_hash_table (info)->dynobj;
3274   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3275   BFD_ASSERT (sdyn != NULL);
3276 
3277   /* Set the first entry in the global offset table to the address of
3278      the dynamic section.  */
3279   sgot = htab->sgot;
3280   if (sgot)
3281     {
3282       BFD_ASSERT (sgot->size == 4);
3283       if (sdyn == NULL)
3284 	bfd_put_32 (output_bfd, 0, sgot->contents);
3285       else
3286 	bfd_put_32 (output_bfd,
3287 		    sdyn->output_section->vma + sdyn->output_offset,
3288 		    sgot->contents);
3289     }
3290 
3291   srelplt = htab->srelplt;
3292   if (srelplt && srelplt->size != 0)
3293     {
3294       asection *sgotplt, *srelgot, *spltlittbl;
3295       int chunk, plt_chunks, plt_entries;
3296       Elf_Internal_Rela irela;
3297       bfd_byte *loc;
3298       unsigned rtld_reloc;
3299 
3300       srelgot = htab->srelgot;
3301       spltlittbl = htab->spltlittbl;
3302       BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3303 
3304       /* Find the first XTENSA_RTLD relocation.  Presumably the rest
3305 	 of them follow immediately after....  */
3306       for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3307 	{
3308 	  loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3309 	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3310 	  if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3311 	    break;
3312 	}
3313       BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3314 
3315       plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3316       plt_chunks =
3317 	(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3318 
3319       for (chunk = 0; chunk < plt_chunks; chunk++)
3320 	{
3321 	  int chunk_entries = 0;
3322 
3323 	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3324 	  BFD_ASSERT (sgotplt != NULL);
3325 
3326 	  /* Emit special RTLD relocations for the first two entries in
3327 	     each chunk of the .got.plt section.  */
3328 
3329 	  loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3330 	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3331 	  BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3332 	  irela.r_offset = (sgotplt->output_section->vma
3333 			    + sgotplt->output_offset);
3334 	  irela.r_addend = 1; /* tell rtld to set value to resolver function */
3335 	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3336 	  rtld_reloc += 1;
3337 	  BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3338 
3339 	  /* Next literal immediately follows the first.  */
3340 	  loc += sizeof (Elf32_External_Rela);
3341 	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3342 	  BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3343 	  irela.r_offset = (sgotplt->output_section->vma
3344 			    + sgotplt->output_offset + 4);
3345 	  /* Tell rtld to set value to object's link map.  */
3346 	  irela.r_addend = 2;
3347 	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3348 	  rtld_reloc += 1;
3349 	  BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3350 
3351 	  /* Fill in the literal table.  */
3352 	  if (chunk < plt_chunks - 1)
3353 	    chunk_entries = PLT_ENTRIES_PER_CHUNK;
3354 	  else
3355 	    chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3356 
3357 	  BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3358 	  bfd_put_32 (output_bfd,
3359 		      sgotplt->output_section->vma + sgotplt->output_offset,
3360 		      spltlittbl->contents + (chunk * 8) + 0);
3361 	  bfd_put_32 (output_bfd,
3362 		      8 + (chunk_entries * 4),
3363 		      spltlittbl->contents + (chunk * 8) + 4);
3364 	}
3365 
3366       /* All the dynamic relocations have been emitted at this point.
3367 	 Make sure the relocation sections are the correct size.  */
3368       if (srelgot->size != (sizeof (Elf32_External_Rela)
3369 			    * srelgot->reloc_count)
3370 	  || srelplt->size != (sizeof (Elf32_External_Rela)
3371 			       * srelplt->reloc_count))
3372 	abort ();
3373 
3374      /* The .xt.lit.plt section has just been modified.  This must
3375 	happen before the code below which combines adjacent literal
3376 	table entries, and the .xt.lit.plt contents have to be forced to
3377 	the output here.  */
3378       if (! bfd_set_section_contents (output_bfd,
3379 				      spltlittbl->output_section,
3380 				      spltlittbl->contents,
3381 				      spltlittbl->output_offset,
3382 				      spltlittbl->size))
3383 	return FALSE;
3384       /* Clear SEC_HAS_CONTENTS so the contents won't be output again.  */
3385       spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3386     }
3387 
3388   /* Combine adjacent literal table entries.  */
3389   BFD_ASSERT (! info->relocatable);
3390   sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3391   sgotloc = htab->sgotloc;
3392   BFD_ASSERT (sgotloc);
3393   if (sxtlit)
3394     {
3395       num_xtlit_entries =
3396 	elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3397       if (num_xtlit_entries < 0)
3398 	return FALSE;
3399     }
3400 
3401   dyncon = (Elf32_External_Dyn *) sdyn->contents;
3402   dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3403   for (; dyncon < dynconend; dyncon++)
3404     {
3405       Elf_Internal_Dyn dyn;
3406 
3407       bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3408 
3409       switch (dyn.d_tag)
3410 	{
3411 	default:
3412 	  break;
3413 
3414 	case DT_XTENSA_GOT_LOC_SZ:
3415 	  dyn.d_un.d_val = num_xtlit_entries;
3416 	  break;
3417 
3418 	case DT_XTENSA_GOT_LOC_OFF:
3419 	  dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3420 	  break;
3421 
3422 	case DT_PLTGOT:
3423 	  dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3424 	  break;
3425 
3426 	case DT_JMPREL:
3427 	  dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3428 	  break;
3429 
3430 	case DT_PLTRELSZ:
3431 	  dyn.d_un.d_val = htab->srelplt->output_section->size;
3432 	  break;
3433 
3434 	case DT_RELASZ:
3435 	  /* Adjust RELASZ to not include JMPREL.  This matches what
3436 	     glibc expects and what is done for several other ELF
3437 	     targets (e.g., i386, alpha), but the "correct" behavior
3438 	     seems to be unresolved.  Since the linker script arranges
3439 	     for .rela.plt to follow all other relocation sections, we
3440 	     don't have to worry about changing the DT_RELA entry.  */
3441 	  if (htab->srelplt)
3442 	    dyn.d_un.d_val -= htab->srelplt->output_section->size;
3443 	  break;
3444 	}
3445 
3446       bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3447     }
3448 
3449   return TRUE;
3450 }
3451 
3452 
3453 /* Functions for dealing with the e_flags field.  */
3454 
3455 /* Merge backend specific data from an object file to the output
3456    object file when linking.  */
3457 
3458 static bfd_boolean
elf_xtensa_merge_private_bfd_data(bfd * ibfd,bfd * obfd)3459 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3460 {
3461   unsigned out_mach, in_mach;
3462   flagword out_flag, in_flag;
3463 
3464   /* Check if we have the same endianness.  */
3465   if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3466     return FALSE;
3467 
3468   /* Don't even pretend to support mixed-format linking.  */
3469   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3470       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3471     return FALSE;
3472 
3473   out_flag = elf_elfheader (obfd)->e_flags;
3474   in_flag = elf_elfheader (ibfd)->e_flags;
3475 
3476   out_mach = out_flag & EF_XTENSA_MACH;
3477   in_mach = in_flag & EF_XTENSA_MACH;
3478   if (out_mach != in_mach)
3479     {
3480       (*_bfd_error_handler)
3481 	(_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3482 	 ibfd, out_mach, in_mach);
3483       bfd_set_error (bfd_error_wrong_format);
3484       return FALSE;
3485     }
3486 
3487   if (! elf_flags_init (obfd))
3488     {
3489       elf_flags_init (obfd) = TRUE;
3490       elf_elfheader (obfd)->e_flags = in_flag;
3491 
3492       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3493 	  && bfd_get_arch_info (obfd)->the_default)
3494 	return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3495 				  bfd_get_mach (ibfd));
3496 
3497       return TRUE;
3498     }
3499 
3500   if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3501     elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3502 
3503   if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3504     elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3505 
3506   return TRUE;
3507 }
3508 
3509 
3510 static bfd_boolean
elf_xtensa_set_private_flags(bfd * abfd,flagword flags)3511 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3512 {
3513   BFD_ASSERT (!elf_flags_init (abfd)
3514 	      || elf_elfheader (abfd)->e_flags == flags);
3515 
3516   elf_elfheader (abfd)->e_flags |= flags;
3517   elf_flags_init (abfd) = TRUE;
3518 
3519   return TRUE;
3520 }
3521 
3522 
3523 static bfd_boolean
elf_xtensa_print_private_bfd_data(bfd * abfd,void * farg)3524 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3525 {
3526   FILE *f = (FILE *) farg;
3527   flagword e_flags = elf_elfheader (abfd)->e_flags;
3528 
3529   fprintf (f, "\nXtensa header:\n");
3530   if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3531     fprintf (f, "\nMachine     = Base\n");
3532   else
3533     fprintf (f, "\nMachine Id  = 0x%x\n", e_flags & EF_XTENSA_MACH);
3534 
3535   fprintf (f, "Insn tables = %s\n",
3536 	   (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3537 
3538   fprintf (f, "Literal tables = %s\n",
3539 	   (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3540 
3541   return _bfd_elf_print_private_bfd_data (abfd, farg);
3542 }
3543 
3544 
3545 /* Set the right machine number for an Xtensa ELF file.  */
3546 
3547 static bfd_boolean
elf_xtensa_object_p(bfd * abfd)3548 elf_xtensa_object_p (bfd *abfd)
3549 {
3550   int mach;
3551   unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3552 
3553   switch (arch)
3554     {
3555     case E_XTENSA_MACH:
3556       mach = bfd_mach_xtensa;
3557       break;
3558     default:
3559       return FALSE;
3560     }
3561 
3562   (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3563   return TRUE;
3564 }
3565 
3566 
3567 /* The final processing done just before writing out an Xtensa ELF object
3568    file.  This gets the Xtensa architecture right based on the machine
3569    number.  */
3570 
3571 static void
elf_xtensa_final_write_processing(bfd * abfd,bfd_boolean linker ATTRIBUTE_UNUSED)3572 elf_xtensa_final_write_processing (bfd *abfd,
3573 				   bfd_boolean linker ATTRIBUTE_UNUSED)
3574 {
3575   int mach;
3576   unsigned long val;
3577 
3578   switch (mach = bfd_get_mach (abfd))
3579     {
3580     case bfd_mach_xtensa:
3581       val = E_XTENSA_MACH;
3582       break;
3583     default:
3584       return;
3585     }
3586 
3587   elf_elfheader (abfd)->e_flags &=  (~ EF_XTENSA_MACH);
3588   elf_elfheader (abfd)->e_flags |= val;
3589 }
3590 
3591 
3592 static enum elf_reloc_type_class
elf_xtensa_reloc_type_class(const struct bfd_link_info * info ATTRIBUTE_UNUSED,const asection * rel_sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * rela)3593 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3594 			     const asection *rel_sec ATTRIBUTE_UNUSED,
3595 			     const Elf_Internal_Rela *rela)
3596 {
3597   switch ((int) ELF32_R_TYPE (rela->r_info))
3598     {
3599     case R_XTENSA_RELATIVE:
3600       return reloc_class_relative;
3601     case R_XTENSA_JMP_SLOT:
3602       return reloc_class_plt;
3603     default:
3604       return reloc_class_normal;
3605     }
3606 }
3607 
3608 
3609 static bfd_boolean
elf_xtensa_discard_info_for_section(bfd * abfd,struct elf_reloc_cookie * cookie,struct bfd_link_info * info,asection * sec)3610 elf_xtensa_discard_info_for_section (bfd *abfd,
3611 				     struct elf_reloc_cookie *cookie,
3612 				     struct bfd_link_info *info,
3613 				     asection *sec)
3614 {
3615   bfd_byte *contents;
3616   bfd_vma offset, actual_offset;
3617   bfd_size_type removed_bytes = 0;
3618   bfd_size_type entry_size;
3619 
3620   if (sec->output_section
3621       && bfd_is_abs_section (sec->output_section))
3622     return FALSE;
3623 
3624   if (xtensa_is_proptable_section (sec))
3625     entry_size = 12;
3626   else
3627     entry_size = 8;
3628 
3629   if (sec->size == 0 || sec->size % entry_size != 0)
3630     return FALSE;
3631 
3632   contents = retrieve_contents (abfd, sec, info->keep_memory);
3633   if (!contents)
3634     return FALSE;
3635 
3636   cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3637   if (!cookie->rels)
3638     {
3639       release_contents (sec, contents);
3640       return FALSE;
3641     }
3642 
3643   /* Sort the relocations.  They should already be in order when
3644      relaxation is enabled, but it might not be.  */
3645   qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3646 	 internal_reloc_compare);
3647 
3648   cookie->rel = cookie->rels;
3649   cookie->relend = cookie->rels + sec->reloc_count;
3650 
3651   for (offset = 0; offset < sec->size; offset += entry_size)
3652     {
3653       actual_offset = offset - removed_bytes;
3654 
3655       /* The ...symbol_deleted_p function will skip over relocs but it
3656 	 won't adjust their offsets, so do that here.  */
3657       while (cookie->rel < cookie->relend
3658 	     && cookie->rel->r_offset < offset)
3659 	{
3660 	  cookie->rel->r_offset -= removed_bytes;
3661 	  cookie->rel++;
3662 	}
3663 
3664       while (cookie->rel < cookie->relend
3665 	     && cookie->rel->r_offset == offset)
3666 	{
3667 	  if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3668 	    {
3669 	      /* Remove the table entry.  (If the reloc type is NONE, then
3670 		 the entry has already been merged with another and deleted
3671 		 during relaxation.)  */
3672 	      if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3673 		{
3674 		  /* Shift the contents up.  */
3675 		  if (offset + entry_size < sec->size)
3676 		    memmove (&contents[actual_offset],
3677 			     &contents[actual_offset + entry_size],
3678 			     sec->size - offset - entry_size);
3679 		  removed_bytes += entry_size;
3680 		}
3681 
3682 	      /* Remove this relocation.  */
3683 	      cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3684 	    }
3685 
3686 	  /* Adjust the relocation offset for previous removals.  This
3687 	     should not be done before calling ...symbol_deleted_p
3688 	     because it might mess up the offset comparisons there.
3689 	     Make sure the offset doesn't underflow in the case where
3690 	     the first entry is removed.  */
3691 	  if (cookie->rel->r_offset >= removed_bytes)
3692 	    cookie->rel->r_offset -= removed_bytes;
3693 	  else
3694 	    cookie->rel->r_offset = 0;
3695 
3696 	  cookie->rel++;
3697 	}
3698     }
3699 
3700   if (removed_bytes != 0)
3701     {
3702       /* Adjust any remaining relocs (shouldn't be any).  */
3703       for (; cookie->rel < cookie->relend; cookie->rel++)
3704 	{
3705 	  if (cookie->rel->r_offset >= removed_bytes)
3706 	    cookie->rel->r_offset -= removed_bytes;
3707 	  else
3708 	    cookie->rel->r_offset = 0;
3709 	}
3710 
3711       /* Clear the removed bytes.  */
3712       memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3713 
3714       pin_contents (sec, contents);
3715       pin_internal_relocs (sec, cookie->rels);
3716 
3717       /* Shrink size.  */
3718       if (sec->rawsize == 0)
3719 	sec->rawsize = sec->size;
3720       sec->size -= removed_bytes;
3721 
3722       if (xtensa_is_littable_section (sec))
3723 	{
3724 	  asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3725 	  if (sgotloc)
3726 	    sgotloc->size -= removed_bytes;
3727 	}
3728     }
3729   else
3730     {
3731       release_contents (sec, contents);
3732       release_internal_relocs (sec, cookie->rels);
3733     }
3734 
3735   return (removed_bytes != 0);
3736 }
3737 
3738 
3739 static bfd_boolean
elf_xtensa_discard_info(bfd * abfd,struct elf_reloc_cookie * cookie,struct bfd_link_info * info)3740 elf_xtensa_discard_info (bfd *abfd,
3741 			 struct elf_reloc_cookie *cookie,
3742 			 struct bfd_link_info *info)
3743 {
3744   asection *sec;
3745   bfd_boolean changed = FALSE;
3746 
3747   for (sec = abfd->sections; sec != NULL; sec = sec->next)
3748     {
3749       if (xtensa_is_property_section (sec))
3750 	{
3751 	  if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3752 	    changed = TRUE;
3753 	}
3754     }
3755 
3756   return changed;
3757 }
3758 
3759 
3760 static bfd_boolean
elf_xtensa_ignore_discarded_relocs(asection * sec)3761 elf_xtensa_ignore_discarded_relocs (asection *sec)
3762 {
3763   return xtensa_is_property_section (sec);
3764 }
3765 
3766 
3767 static unsigned int
elf_xtensa_action_discarded(asection * sec)3768 elf_xtensa_action_discarded (asection *sec)
3769 {
3770   if (strcmp (".xt_except_table", sec->name) == 0)
3771     return 0;
3772 
3773   if (strcmp (".xt_except_desc", sec->name) == 0)
3774     return 0;
3775 
3776   return _bfd_elf_default_action_discarded (sec);
3777 }
3778 
3779 
3780 /* Support for core dump NOTE sections.  */
3781 
3782 static bfd_boolean
elf_xtensa_grok_prstatus(bfd * abfd,Elf_Internal_Note * note)3783 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3784 {
3785   int offset;
3786   unsigned int size;
3787 
3788   /* The size for Xtensa is variable, so don't try to recognize the format
3789      based on the size.  Just assume this is GNU/Linux.  */
3790 
3791   /* pr_cursig */
3792   elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3793 
3794   /* pr_pid */
3795   elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3796 
3797   /* pr_reg */
3798   offset = 72;
3799   size = note->descsz - offset - 4;
3800 
3801   /* Make a ".reg/999" section.  */
3802   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3803 					  size, note->descpos + offset);
3804 }
3805 
3806 
3807 static bfd_boolean
elf_xtensa_grok_psinfo(bfd * abfd,Elf_Internal_Note * note)3808 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3809 {
3810   switch (note->descsz)
3811     {
3812       default:
3813 	return FALSE;
3814 
3815       case 128:		/* GNU/Linux elf_prpsinfo */
3816 	elf_tdata (abfd)->core->program
3817 	 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3818 	elf_tdata (abfd)->core->command
3819 	 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3820     }
3821 
3822   /* Note that for some reason, a spurious space is tacked
3823      onto the end of the args in some (at least one anyway)
3824      implementations, so strip it off if it exists.  */
3825 
3826   {
3827     char *command = elf_tdata (abfd)->core->command;
3828     int n = strlen (command);
3829 
3830     if (0 < n && command[n - 1] == ' ')
3831       command[n - 1] = '\0';
3832   }
3833 
3834   return TRUE;
3835 }
3836 
3837 
3838 /* Generic Xtensa configurability stuff.  */
3839 
3840 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3841 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3842 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3843 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3844 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3845 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3846 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3847 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3848 
3849 static void
init_call_opcodes(void)3850 init_call_opcodes (void)
3851 {
3852   if (callx0_op == XTENSA_UNDEFINED)
3853     {
3854       callx0_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3855       callx4_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3856       callx8_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3857       callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3858       call0_op   = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3859       call4_op   = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3860       call8_op   = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3861       call12_op  = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3862     }
3863 }
3864 
3865 
3866 static bfd_boolean
is_indirect_call_opcode(xtensa_opcode opcode)3867 is_indirect_call_opcode (xtensa_opcode opcode)
3868 {
3869   init_call_opcodes ();
3870   return (opcode == callx0_op
3871 	  || opcode == callx4_op
3872 	  || opcode == callx8_op
3873 	  || opcode == callx12_op);
3874 }
3875 
3876 
3877 static bfd_boolean
is_direct_call_opcode(xtensa_opcode opcode)3878 is_direct_call_opcode (xtensa_opcode opcode)
3879 {
3880   init_call_opcodes ();
3881   return (opcode == call0_op
3882 	  || opcode == call4_op
3883 	  || opcode == call8_op
3884 	  || opcode == call12_op);
3885 }
3886 
3887 
3888 static bfd_boolean
is_windowed_call_opcode(xtensa_opcode opcode)3889 is_windowed_call_opcode (xtensa_opcode opcode)
3890 {
3891   init_call_opcodes ();
3892   return (opcode == call4_op
3893 	  || opcode == call8_op
3894 	  || opcode == call12_op
3895 	  || opcode == callx4_op
3896 	  || opcode == callx8_op
3897 	  || opcode == callx12_op);
3898 }
3899 
3900 
3901 static bfd_boolean
get_indirect_call_dest_reg(xtensa_opcode opcode,unsigned * pdst)3902 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3903 {
3904   unsigned dst = (unsigned) -1;
3905 
3906   init_call_opcodes ();
3907   if (opcode == callx0_op)
3908     dst = 0;
3909   else if (opcode == callx4_op)
3910     dst = 4;
3911   else if (opcode == callx8_op)
3912     dst = 8;
3913   else if (opcode == callx12_op)
3914     dst = 12;
3915 
3916   if (dst == (unsigned) -1)
3917     return FALSE;
3918 
3919   *pdst = dst;
3920   return TRUE;
3921 }
3922 
3923 
3924 static xtensa_opcode
get_const16_opcode(void)3925 get_const16_opcode (void)
3926 {
3927   static bfd_boolean done_lookup = FALSE;
3928   static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3929   if (!done_lookup)
3930     {
3931       const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3932       done_lookup = TRUE;
3933     }
3934   return const16_opcode;
3935 }
3936 
3937 
3938 static xtensa_opcode
get_l32r_opcode(void)3939 get_l32r_opcode (void)
3940 {
3941   static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3942   static bfd_boolean done_lookup = FALSE;
3943 
3944   if (!done_lookup)
3945     {
3946       l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3947       done_lookup = TRUE;
3948     }
3949   return l32r_opcode;
3950 }
3951 
3952 
3953 static bfd_vma
l32r_offset(bfd_vma addr,bfd_vma pc)3954 l32r_offset (bfd_vma addr, bfd_vma pc)
3955 {
3956   bfd_vma offset;
3957 
3958   offset = addr - ((pc+3) & -4);
3959   BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3960   offset = (signed int) offset >> 2;
3961   BFD_ASSERT ((signed int) offset >> 16 == -1);
3962   return offset;
3963 }
3964 
3965 
3966 static int
get_relocation_opnd(xtensa_opcode opcode,int r_type)3967 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3968 {
3969   xtensa_isa isa = xtensa_default_isa;
3970   int last_immed, last_opnd, opi;
3971 
3972   if (opcode == XTENSA_UNDEFINED)
3973     return XTENSA_UNDEFINED;
3974 
3975   /* Find the last visible PC-relative immediate operand for the opcode.
3976      If there are no PC-relative immediates, then choose the last visible
3977      immediate; otherwise, fail and return XTENSA_UNDEFINED.  */
3978   last_immed = XTENSA_UNDEFINED;
3979   last_opnd = xtensa_opcode_num_operands (isa, opcode);
3980   for (opi = last_opnd - 1; opi >= 0; opi--)
3981     {
3982       if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3983 	continue;
3984       if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3985 	{
3986 	  last_immed = opi;
3987 	  break;
3988 	}
3989       if (last_immed == XTENSA_UNDEFINED
3990 	  && xtensa_operand_is_register (isa, opcode, opi) == 0)
3991 	last_immed = opi;
3992     }
3993   if (last_immed < 0)
3994     return XTENSA_UNDEFINED;
3995 
3996   /* If the operand number was specified in an old-style relocation,
3997      check for consistency with the operand computed above.  */
3998   if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3999     {
4000       int reloc_opnd = r_type - R_XTENSA_OP0;
4001       if (reloc_opnd != last_immed)
4002 	return XTENSA_UNDEFINED;
4003     }
4004 
4005   return last_immed;
4006 }
4007 
4008 
4009 int
get_relocation_slot(int r_type)4010 get_relocation_slot (int r_type)
4011 {
4012   switch (r_type)
4013     {
4014     case R_XTENSA_OP0:
4015     case R_XTENSA_OP1:
4016     case R_XTENSA_OP2:
4017       return 0;
4018 
4019     default:
4020       if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4021 	return r_type - R_XTENSA_SLOT0_OP;
4022       if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4023 	return r_type - R_XTENSA_SLOT0_ALT;
4024       break;
4025     }
4026 
4027   return XTENSA_UNDEFINED;
4028 }
4029 
4030 
4031 /* Get the opcode for a relocation.  */
4032 
4033 static xtensa_opcode
get_relocation_opcode(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * irel)4034 get_relocation_opcode (bfd *abfd,
4035 		       asection *sec,
4036 		       bfd_byte *contents,
4037 		       Elf_Internal_Rela *irel)
4038 {
4039   static xtensa_insnbuf ibuff = NULL;
4040   static xtensa_insnbuf sbuff = NULL;
4041   xtensa_isa isa = xtensa_default_isa;
4042   xtensa_format fmt;
4043   int slot;
4044 
4045   if (contents == NULL)
4046     return XTENSA_UNDEFINED;
4047 
4048   if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4049     return XTENSA_UNDEFINED;
4050 
4051   if (ibuff == NULL)
4052     {
4053       ibuff = xtensa_insnbuf_alloc (isa);
4054       sbuff = xtensa_insnbuf_alloc (isa);
4055     }
4056 
4057   /* Decode the instruction.  */
4058   xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4059 			     sec->size - irel->r_offset);
4060   fmt = xtensa_format_decode (isa, ibuff);
4061   slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4062   if (slot == XTENSA_UNDEFINED)
4063     return XTENSA_UNDEFINED;
4064   xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4065   return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4066 }
4067 
4068 
4069 bfd_boolean
is_l32r_relocation(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * irel)4070 is_l32r_relocation (bfd *abfd,
4071 		    asection *sec,
4072 		    bfd_byte *contents,
4073 		    Elf_Internal_Rela *irel)
4074 {
4075   xtensa_opcode opcode;
4076   if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4077     return FALSE;
4078   opcode = get_relocation_opcode (abfd, sec, contents, irel);
4079   return (opcode == get_l32r_opcode ());
4080 }
4081 
4082 
4083 static bfd_size_type
get_asm_simplify_size(bfd_byte * contents,bfd_size_type content_len,bfd_size_type offset)4084 get_asm_simplify_size (bfd_byte *contents,
4085 		       bfd_size_type content_len,
4086 		       bfd_size_type offset)
4087 {
4088   bfd_size_type insnlen, size = 0;
4089 
4090   /* Decode the size of the next two instructions.  */
4091   insnlen = insn_decode_len (contents, content_len, offset);
4092   if (insnlen == 0)
4093     return 0;
4094 
4095   size += insnlen;
4096 
4097   insnlen = insn_decode_len (contents, content_len, offset + size);
4098   if (insnlen == 0)
4099     return 0;
4100 
4101   size += insnlen;
4102   return size;
4103 }
4104 
4105 
4106 bfd_boolean
is_alt_relocation(int r_type)4107 is_alt_relocation (int r_type)
4108 {
4109   return (r_type >= R_XTENSA_SLOT0_ALT
4110 	  && r_type <= R_XTENSA_SLOT14_ALT);
4111 }
4112 
4113 
4114 bfd_boolean
is_operand_relocation(int r_type)4115 is_operand_relocation (int r_type)
4116 {
4117   switch (r_type)
4118     {
4119     case R_XTENSA_OP0:
4120     case R_XTENSA_OP1:
4121     case R_XTENSA_OP2:
4122       return TRUE;
4123 
4124     default:
4125       if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4126 	return TRUE;
4127       if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4128 	return TRUE;
4129       break;
4130     }
4131 
4132   return FALSE;
4133 }
4134 
4135 
4136 #define MIN_INSN_LENGTH 2
4137 
4138 /* Return 0 if it fails to decode.  */
4139 
4140 bfd_size_type
insn_decode_len(bfd_byte * contents,bfd_size_type content_len,bfd_size_type offset)4141 insn_decode_len (bfd_byte *contents,
4142 		 bfd_size_type content_len,
4143 		 bfd_size_type offset)
4144 {
4145   int insn_len;
4146   xtensa_isa isa = xtensa_default_isa;
4147   xtensa_format fmt;
4148   static xtensa_insnbuf ibuff = NULL;
4149 
4150   if (offset + MIN_INSN_LENGTH > content_len)
4151     return 0;
4152 
4153   if (ibuff == NULL)
4154     ibuff = xtensa_insnbuf_alloc (isa);
4155   xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4156 			     content_len - offset);
4157   fmt = xtensa_format_decode (isa, ibuff);
4158   if (fmt == XTENSA_UNDEFINED)
4159     return 0;
4160   insn_len = xtensa_format_length (isa, fmt);
4161   if (insn_len ==  XTENSA_UNDEFINED)
4162     return 0;
4163   return insn_len;
4164 }
4165 
4166 
4167 /* Decode the opcode for a single slot instruction.
4168    Return 0 if it fails to decode or the instruction is multi-slot.  */
4169 
4170 xtensa_opcode
insn_decode_opcode(bfd_byte * contents,bfd_size_type content_len,bfd_size_type offset,int slot)4171 insn_decode_opcode (bfd_byte *contents,
4172 		    bfd_size_type content_len,
4173 		    bfd_size_type offset,
4174 		    int slot)
4175 {
4176   xtensa_isa isa = xtensa_default_isa;
4177   xtensa_format fmt;
4178   static xtensa_insnbuf insnbuf = NULL;
4179   static xtensa_insnbuf slotbuf = NULL;
4180 
4181   if (offset + MIN_INSN_LENGTH > content_len)
4182     return XTENSA_UNDEFINED;
4183 
4184   if (insnbuf == NULL)
4185     {
4186       insnbuf = xtensa_insnbuf_alloc (isa);
4187       slotbuf = xtensa_insnbuf_alloc (isa);
4188     }
4189 
4190   xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4191 			     content_len - offset);
4192   fmt = xtensa_format_decode (isa, insnbuf);
4193   if (fmt == XTENSA_UNDEFINED)
4194     return XTENSA_UNDEFINED;
4195 
4196   if (slot >= xtensa_format_num_slots (isa, fmt))
4197     return XTENSA_UNDEFINED;
4198 
4199   xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4200   return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4201 }
4202 
4203 
4204 /* The offset is the offset in the contents.
4205    The address is the address of that offset.  */
4206 
4207 static bfd_boolean
check_branch_target_aligned(bfd_byte * contents,bfd_size_type content_length,bfd_vma offset,bfd_vma address)4208 check_branch_target_aligned (bfd_byte *contents,
4209 			     bfd_size_type content_length,
4210 			     bfd_vma offset,
4211 			     bfd_vma address)
4212 {
4213   bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4214   if (insn_len == 0)
4215     return FALSE;
4216   return check_branch_target_aligned_address (address, insn_len);
4217 }
4218 
4219 
4220 static bfd_boolean
check_loop_aligned(bfd_byte * contents,bfd_size_type content_length,bfd_vma offset,bfd_vma address)4221 check_loop_aligned (bfd_byte *contents,
4222 		    bfd_size_type content_length,
4223 		    bfd_vma offset,
4224 		    bfd_vma address)
4225 {
4226   bfd_size_type loop_len, insn_len;
4227   xtensa_opcode opcode;
4228 
4229   opcode = insn_decode_opcode (contents, content_length, offset, 0);
4230   if (opcode == XTENSA_UNDEFINED
4231       || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4232     {
4233       BFD_ASSERT (FALSE);
4234       return FALSE;
4235     }
4236 
4237   loop_len = insn_decode_len (contents, content_length, offset);
4238   insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4239   if (loop_len == 0 || insn_len == 0)
4240     {
4241       BFD_ASSERT (FALSE);
4242       return FALSE;
4243     }
4244 
4245   return check_branch_target_aligned_address (address + loop_len, insn_len);
4246 }
4247 
4248 
4249 static bfd_boolean
check_branch_target_aligned_address(bfd_vma addr,int len)4250 check_branch_target_aligned_address (bfd_vma addr, int len)
4251 {
4252   if (len == 8)
4253     return (addr % 8 == 0);
4254   return ((addr >> 2) == ((addr + len - 1) >> 2));
4255 }
4256 
4257 
4258 /* Instruction widening and narrowing.  */
4259 
4260 /* When FLIX is available we need to access certain instructions only
4261    when they are 16-bit or 24-bit instructions.  This table caches
4262    information about such instructions by walking through all the
4263    opcodes and finding the smallest single-slot format into which each
4264    can be encoded.  */
4265 
4266 static xtensa_format *op_single_fmt_table = NULL;
4267 
4268 
4269 static void
init_op_single_format_table(void)4270 init_op_single_format_table (void)
4271 {
4272   xtensa_isa isa = xtensa_default_isa;
4273   xtensa_insnbuf ibuf;
4274   xtensa_opcode opcode;
4275   xtensa_format fmt;
4276   int num_opcodes;
4277 
4278   if (op_single_fmt_table)
4279     return;
4280 
4281   ibuf = xtensa_insnbuf_alloc (isa);
4282   num_opcodes = xtensa_isa_num_opcodes (isa);
4283 
4284   op_single_fmt_table = (xtensa_format *)
4285     bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4286   for (opcode = 0; opcode < num_opcodes; opcode++)
4287     {
4288       op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4289       for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4290 	{
4291 	  if (xtensa_format_num_slots (isa, fmt) == 1
4292 	      && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4293 	    {
4294 	      xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4295 	      int fmt_length = xtensa_format_length (isa, fmt);
4296 	      if (old_fmt == XTENSA_UNDEFINED
4297 		  || fmt_length < xtensa_format_length (isa, old_fmt))
4298 		op_single_fmt_table[opcode] = fmt;
4299 	    }
4300 	}
4301     }
4302   xtensa_insnbuf_free (isa, ibuf);
4303 }
4304 
4305 
4306 static xtensa_format
get_single_format(xtensa_opcode opcode)4307 get_single_format (xtensa_opcode opcode)
4308 {
4309   init_op_single_format_table ();
4310   return op_single_fmt_table[opcode];
4311 }
4312 
4313 
4314 /* For the set of narrowable instructions we do NOT include the
4315    narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4316    involved during linker relaxation that may require these to
4317    re-expand in some conditions.  Also, the narrowing "or" -> mov.n
4318    requires special case code to ensure it only works when op1 == op2.  */
4319 
4320 struct string_pair
4321 {
4322   const char *wide;
4323   const char *narrow;
4324 };
4325 
4326 struct string_pair narrowable[] =
4327 {
4328   { "add", "add.n" },
4329   { "addi", "addi.n" },
4330   { "addmi", "addi.n" },
4331   { "l32i", "l32i.n" },
4332   { "movi", "movi.n" },
4333   { "ret", "ret.n" },
4334   { "retw", "retw.n" },
4335   { "s32i", "s32i.n" },
4336   { "or", "mov.n" } /* special case only when op1 == op2 */
4337 };
4338 
4339 struct string_pair widenable[] =
4340 {
4341   { "add", "add.n" },
4342   { "addi", "addi.n" },
4343   { "addmi", "addi.n" },
4344   { "beqz", "beqz.n" },
4345   { "bnez", "bnez.n" },
4346   { "l32i", "l32i.n" },
4347   { "movi", "movi.n" },
4348   { "ret", "ret.n" },
4349   { "retw", "retw.n" },
4350   { "s32i", "s32i.n" },
4351   { "or", "mov.n" } /* special case only when op1 == op2 */
4352 };
4353 
4354 
4355 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4356    3-byte instruction to a 2-byte "density" instruction.  If it is valid,
4357    return the instruction buffer holding the narrow instruction.  Otherwise,
4358    return 0.  The set of valid narrowing are specified by a string table
4359    but require some special case operand checks in some cases.  */
4360 
4361 static xtensa_insnbuf
can_narrow_instruction(xtensa_insnbuf slotbuf,xtensa_format fmt,xtensa_opcode opcode)4362 can_narrow_instruction (xtensa_insnbuf slotbuf,
4363 			xtensa_format fmt,
4364 			xtensa_opcode opcode)
4365 {
4366   xtensa_isa isa = xtensa_default_isa;
4367   xtensa_format o_fmt;
4368   unsigned opi;
4369 
4370   static xtensa_insnbuf o_insnbuf = NULL;
4371   static xtensa_insnbuf o_slotbuf = NULL;
4372 
4373   if (o_insnbuf == NULL)
4374     {
4375       o_insnbuf = xtensa_insnbuf_alloc (isa);
4376       o_slotbuf = xtensa_insnbuf_alloc (isa);
4377     }
4378 
4379   for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4380     {
4381       bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4382 
4383       if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4384 	{
4385 	  uint32 value, newval;
4386 	  int i, operand_count, o_operand_count;
4387 	  xtensa_opcode o_opcode;
4388 
4389 	  /* Address does not matter in this case.  We might need to
4390 	     fix it to handle branches/jumps.  */
4391 	  bfd_vma self_address = 0;
4392 
4393 	  o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4394 	  if (o_opcode == XTENSA_UNDEFINED)
4395 	    return 0;
4396 	  o_fmt = get_single_format (o_opcode);
4397 	  if (o_fmt == XTENSA_UNDEFINED)
4398 	    return 0;
4399 
4400 	  if (xtensa_format_length (isa, fmt) != 3
4401 	      || xtensa_format_length (isa, o_fmt) != 2)
4402 	    return 0;
4403 
4404 	  xtensa_format_encode (isa, o_fmt, o_insnbuf);
4405 	  operand_count = xtensa_opcode_num_operands (isa, opcode);
4406 	  o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4407 
4408 	  if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4409 	    return 0;
4410 
4411 	  if (!is_or)
4412 	    {
4413 	      if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4414 		return 0;
4415 	    }
4416 	  else
4417 	    {
4418 	      uint32 rawval0, rawval1, rawval2;
4419 
4420 	      if (o_operand_count + 1 != operand_count
4421 		  || xtensa_operand_get_field (isa, opcode, 0,
4422 					       fmt, 0, slotbuf, &rawval0) != 0
4423 		  || xtensa_operand_get_field (isa, opcode, 1,
4424 					       fmt, 0, slotbuf, &rawval1) != 0
4425 		  || xtensa_operand_get_field (isa, opcode, 2,
4426 					       fmt, 0, slotbuf, &rawval2) != 0
4427 		  || rawval1 != rawval2
4428 		  || rawval0 == rawval1 /* it is a nop */)
4429 		return 0;
4430 	    }
4431 
4432 	  for (i = 0; i < o_operand_count; ++i)
4433 	    {
4434 	      if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4435 					    slotbuf, &value)
4436 		  || xtensa_operand_decode (isa, opcode, i, &value))
4437 		return 0;
4438 
4439 	      /* PC-relative branches need adjustment, but
4440 		 the PC-rel operand will always have a relocation.  */
4441 	      newval = value;
4442 	      if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4443 					   self_address)
4444 		  || xtensa_operand_encode (isa, o_opcode, i, &newval)
4445 		  || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4446 					       o_slotbuf, newval))
4447 		return 0;
4448 	    }
4449 
4450 	  if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4451 	    return 0;
4452 
4453 	  return o_insnbuf;
4454 	}
4455     }
4456   return 0;
4457 }
4458 
4459 
4460 /* Attempt to narrow an instruction.  If the narrowing is valid, perform
4461    the action in-place directly into the contents and return TRUE.  Otherwise,
4462    the return value is FALSE and the contents are not modified.  */
4463 
4464 static bfd_boolean
narrow_instruction(bfd_byte * contents,bfd_size_type content_length,bfd_size_type offset)4465 narrow_instruction (bfd_byte *contents,
4466 		    bfd_size_type content_length,
4467 		    bfd_size_type offset)
4468 {
4469   xtensa_opcode opcode;
4470   bfd_size_type insn_len;
4471   xtensa_isa isa = xtensa_default_isa;
4472   xtensa_format fmt;
4473   xtensa_insnbuf o_insnbuf;
4474 
4475   static xtensa_insnbuf insnbuf = NULL;
4476   static xtensa_insnbuf slotbuf = NULL;
4477 
4478   if (insnbuf == NULL)
4479     {
4480       insnbuf = xtensa_insnbuf_alloc (isa);
4481       slotbuf = xtensa_insnbuf_alloc (isa);
4482     }
4483 
4484   BFD_ASSERT (offset < content_length);
4485 
4486   if (content_length < 2)
4487     return FALSE;
4488 
4489   /* We will hand-code a few of these for a little while.
4490      These have all been specified in the assembler aleady.  */
4491   xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4492 			     content_length - offset);
4493   fmt = xtensa_format_decode (isa, insnbuf);
4494   if (xtensa_format_num_slots (isa, fmt) != 1)
4495     return FALSE;
4496 
4497   if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4498     return FALSE;
4499 
4500   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4501   if (opcode == XTENSA_UNDEFINED)
4502     return FALSE;
4503   insn_len = xtensa_format_length (isa, fmt);
4504   if (insn_len > content_length)
4505     return FALSE;
4506 
4507   o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4508   if (o_insnbuf)
4509     {
4510       xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4511 			       content_length - offset);
4512       return TRUE;
4513     }
4514 
4515   return FALSE;
4516 }
4517 
4518 
4519 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4520    "density" instruction to a standard 3-byte instruction.  If it is valid,
4521    return the instruction buffer holding the wide instruction.  Otherwise,
4522    return 0.  The set of valid widenings are specified by a string table
4523    but require some special case operand checks in some cases.  */
4524 
4525 static xtensa_insnbuf
can_widen_instruction(xtensa_insnbuf slotbuf,xtensa_format fmt,xtensa_opcode opcode)4526 can_widen_instruction (xtensa_insnbuf slotbuf,
4527 		       xtensa_format fmt,
4528 		       xtensa_opcode opcode)
4529 {
4530   xtensa_isa isa = xtensa_default_isa;
4531   xtensa_format o_fmt;
4532   unsigned opi;
4533 
4534   static xtensa_insnbuf o_insnbuf = NULL;
4535   static xtensa_insnbuf o_slotbuf = NULL;
4536 
4537   if (o_insnbuf == NULL)
4538     {
4539       o_insnbuf = xtensa_insnbuf_alloc (isa);
4540       o_slotbuf = xtensa_insnbuf_alloc (isa);
4541     }
4542 
4543   for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4544     {
4545       bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4546       bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4547 			       || strcmp ("bnez", widenable[opi].wide) == 0);
4548 
4549       if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4550 	{
4551 	  uint32 value, newval;
4552 	  int i, operand_count, o_operand_count, check_operand_count;
4553 	  xtensa_opcode o_opcode;
4554 
4555 	  /* Address does not matter in this case.  We might need to fix it
4556 	     to handle branches/jumps.  */
4557 	  bfd_vma self_address = 0;
4558 
4559 	  o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4560 	  if (o_opcode == XTENSA_UNDEFINED)
4561 	    return 0;
4562 	  o_fmt = get_single_format (o_opcode);
4563 	  if (o_fmt == XTENSA_UNDEFINED)
4564 	    return 0;
4565 
4566 	  if (xtensa_format_length (isa, fmt) != 2
4567 	      || xtensa_format_length (isa, o_fmt) != 3)
4568 	    return 0;
4569 
4570 	  xtensa_format_encode (isa, o_fmt, o_insnbuf);
4571 	  operand_count = xtensa_opcode_num_operands (isa, opcode);
4572 	  o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4573 	  check_operand_count = o_operand_count;
4574 
4575 	  if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4576 	    return 0;
4577 
4578 	  if (!is_or)
4579 	    {
4580 	      if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4581 		return 0;
4582 	    }
4583 	  else
4584 	    {
4585 	      uint32 rawval0, rawval1;
4586 
4587 	      if (o_operand_count != operand_count + 1
4588 		  || xtensa_operand_get_field (isa, opcode, 0,
4589 					       fmt, 0, slotbuf, &rawval0) != 0
4590 		  || xtensa_operand_get_field (isa, opcode, 1,
4591 					       fmt, 0, slotbuf, &rawval1) != 0
4592 		  || rawval0 == rawval1 /* it is a nop */)
4593 		return 0;
4594 	    }
4595 	  if (is_branch)
4596 	    check_operand_count--;
4597 
4598 	  for (i = 0; i < check_operand_count; i++)
4599 	    {
4600 	      int new_i = i;
4601 	      if (is_or && i == o_operand_count - 1)
4602 		new_i = i - 1;
4603 	      if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4604 					    slotbuf, &value)
4605 		  || xtensa_operand_decode (isa, opcode, new_i, &value))
4606 		return 0;
4607 
4608 	      /* PC-relative branches need adjustment, but
4609 		 the PC-rel operand will always have a relocation.  */
4610 	      newval = value;
4611 	      if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4612 					   self_address)
4613 		  || xtensa_operand_encode (isa, o_opcode, i, &newval)
4614 		  || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4615 					       o_slotbuf, newval))
4616 		return 0;
4617 	    }
4618 
4619 	  if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4620 	    return 0;
4621 
4622 	  return o_insnbuf;
4623 	}
4624     }
4625   return 0;
4626 }
4627 
4628 
4629 /* Attempt to widen an instruction.  If the widening is valid, perform
4630    the action in-place directly into the contents and return TRUE.  Otherwise,
4631    the return value is FALSE and the contents are not modified.  */
4632 
4633 static bfd_boolean
widen_instruction(bfd_byte * contents,bfd_size_type content_length,bfd_size_type offset)4634 widen_instruction (bfd_byte *contents,
4635 		   bfd_size_type content_length,
4636 		   bfd_size_type offset)
4637 {
4638   xtensa_opcode opcode;
4639   bfd_size_type insn_len;
4640   xtensa_isa isa = xtensa_default_isa;
4641   xtensa_format fmt;
4642   xtensa_insnbuf o_insnbuf;
4643 
4644   static xtensa_insnbuf insnbuf = NULL;
4645   static xtensa_insnbuf slotbuf = NULL;
4646 
4647   if (insnbuf == NULL)
4648     {
4649       insnbuf = xtensa_insnbuf_alloc (isa);
4650       slotbuf = xtensa_insnbuf_alloc (isa);
4651     }
4652 
4653   BFD_ASSERT (offset < content_length);
4654 
4655   if (content_length < 2)
4656     return FALSE;
4657 
4658   /* We will hand-code a few of these for a little while.
4659      These have all been specified in the assembler aleady.  */
4660   xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4661 			     content_length - offset);
4662   fmt = xtensa_format_decode (isa, insnbuf);
4663   if (xtensa_format_num_slots (isa, fmt) != 1)
4664     return FALSE;
4665 
4666   if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4667     return FALSE;
4668 
4669   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4670   if (opcode == XTENSA_UNDEFINED)
4671     return FALSE;
4672   insn_len = xtensa_format_length (isa, fmt);
4673   if (insn_len > content_length)
4674     return FALSE;
4675 
4676   o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4677   if (o_insnbuf)
4678     {
4679       xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4680 			       content_length - offset);
4681       return TRUE;
4682     }
4683   return FALSE;
4684 }
4685 
4686 
4687 /* Code for transforming CALLs at link-time.  */
4688 
4689 static bfd_reloc_status_type
elf_xtensa_do_asm_simplify(bfd_byte * contents,bfd_vma address,bfd_vma content_length,char ** error_message)4690 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4691 			    bfd_vma address,
4692 			    bfd_vma content_length,
4693 			    char **error_message)
4694 {
4695   static xtensa_insnbuf insnbuf = NULL;
4696   static xtensa_insnbuf slotbuf = NULL;
4697   xtensa_format core_format = XTENSA_UNDEFINED;
4698   xtensa_opcode opcode;
4699   xtensa_opcode direct_call_opcode;
4700   xtensa_isa isa = xtensa_default_isa;
4701   bfd_byte *chbuf = contents + address;
4702   int opn;
4703 
4704   if (insnbuf == NULL)
4705     {
4706       insnbuf = xtensa_insnbuf_alloc (isa);
4707       slotbuf = xtensa_insnbuf_alloc (isa);
4708     }
4709 
4710   if (content_length < address)
4711     {
4712       *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4713       return bfd_reloc_other;
4714     }
4715 
4716   opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4717   direct_call_opcode = swap_callx_for_call_opcode (opcode);
4718   if (direct_call_opcode == XTENSA_UNDEFINED)
4719     {
4720       *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4721       return bfd_reloc_other;
4722     }
4723 
4724   /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset.  */
4725   core_format = xtensa_format_lookup (isa, "x24");
4726   opcode = xtensa_opcode_lookup (isa, "or");
4727   xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4728   for (opn = 0; opn < 3; opn++)
4729     {
4730       uint32 regno = 1;
4731       xtensa_operand_encode (isa, opcode, opn, &regno);
4732       xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4733 				slotbuf, regno);
4734     }
4735   xtensa_format_encode (isa, core_format, insnbuf);
4736   xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4737   xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4738 
4739   /* Assemble a CALL ("callN 0") into the 3 byte offset.  */
4740   xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4741   xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4742 
4743   xtensa_format_encode (isa, core_format, insnbuf);
4744   xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4745   xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4746 			   content_length - address - 3);
4747 
4748   return bfd_reloc_ok;
4749 }
4750 
4751 
4752 static bfd_reloc_status_type
contract_asm_expansion(bfd_byte * contents,bfd_vma content_length,Elf_Internal_Rela * irel,char ** error_message)4753 contract_asm_expansion (bfd_byte *contents,
4754 			bfd_vma content_length,
4755 			Elf_Internal_Rela *irel,
4756 			char **error_message)
4757 {
4758   bfd_reloc_status_type retval =
4759     elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4760 				error_message);
4761 
4762   if (retval != bfd_reloc_ok)
4763     return bfd_reloc_dangerous;
4764 
4765   /* Update the irel->r_offset field so that the right immediate and
4766      the right instruction are modified during the relocation.  */
4767   irel->r_offset += 3;
4768   irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4769   return bfd_reloc_ok;
4770 }
4771 
4772 
4773 static xtensa_opcode
swap_callx_for_call_opcode(xtensa_opcode opcode)4774 swap_callx_for_call_opcode (xtensa_opcode opcode)
4775 {
4776   init_call_opcodes ();
4777 
4778   if (opcode == callx0_op) return call0_op;
4779   if (opcode == callx4_op) return call4_op;
4780   if (opcode == callx8_op) return call8_op;
4781   if (opcode == callx12_op) return call12_op;
4782 
4783   /* Return XTENSA_UNDEFINED if the opcode is not an indirect call.  */
4784   return XTENSA_UNDEFINED;
4785 }
4786 
4787 
4788 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4789    CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4790    If not, return XTENSA_UNDEFINED.  */
4791 
4792 #define L32R_TARGET_REG_OPERAND 0
4793 #define CONST16_TARGET_REG_OPERAND 0
4794 #define CALLN_SOURCE_OPERAND 0
4795 
4796 static xtensa_opcode
get_expanded_call_opcode(bfd_byte * buf,int bufsize,bfd_boolean * p_uses_l32r)4797 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4798 {
4799   static xtensa_insnbuf insnbuf = NULL;
4800   static xtensa_insnbuf slotbuf = NULL;
4801   xtensa_format fmt;
4802   xtensa_opcode opcode;
4803   xtensa_isa isa = xtensa_default_isa;
4804   uint32 regno, const16_regno, call_regno;
4805   int offset = 0;
4806 
4807   if (insnbuf == NULL)
4808     {
4809       insnbuf = xtensa_insnbuf_alloc (isa);
4810       slotbuf = xtensa_insnbuf_alloc (isa);
4811     }
4812 
4813   xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4814   fmt = xtensa_format_decode (isa, insnbuf);
4815   if (fmt == XTENSA_UNDEFINED
4816       || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4817     return XTENSA_UNDEFINED;
4818 
4819   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4820   if (opcode == XTENSA_UNDEFINED)
4821     return XTENSA_UNDEFINED;
4822 
4823   if (opcode == get_l32r_opcode ())
4824     {
4825       if (p_uses_l32r)
4826 	*p_uses_l32r = TRUE;
4827       if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4828 				    fmt, 0, slotbuf, &regno)
4829 	  || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4830 				    &regno))
4831 	return XTENSA_UNDEFINED;
4832     }
4833   else if (opcode == get_const16_opcode ())
4834     {
4835       if (p_uses_l32r)
4836 	*p_uses_l32r = FALSE;
4837       if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4838 				    fmt, 0, slotbuf, &regno)
4839 	  || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4840 				    &regno))
4841 	return XTENSA_UNDEFINED;
4842 
4843       /* Check that the next instruction is also CONST16.  */
4844       offset += xtensa_format_length (isa, fmt);
4845       xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4846       fmt = xtensa_format_decode (isa, insnbuf);
4847       if (fmt == XTENSA_UNDEFINED
4848 	  || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4849 	return XTENSA_UNDEFINED;
4850       opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4851       if (opcode != get_const16_opcode ())
4852 	return XTENSA_UNDEFINED;
4853 
4854       if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4855 				    fmt, 0, slotbuf, &const16_regno)
4856 	  || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4857 				    &const16_regno)
4858 	  || const16_regno != regno)
4859 	return XTENSA_UNDEFINED;
4860     }
4861   else
4862     return XTENSA_UNDEFINED;
4863 
4864   /* Next instruction should be an CALLXn with operand 0 == regno.  */
4865   offset += xtensa_format_length (isa, fmt);
4866   xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4867   fmt = xtensa_format_decode (isa, insnbuf);
4868   if (fmt == XTENSA_UNDEFINED
4869       || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4870     return XTENSA_UNDEFINED;
4871   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4872   if (opcode == XTENSA_UNDEFINED
4873       || !is_indirect_call_opcode (opcode))
4874     return XTENSA_UNDEFINED;
4875 
4876   if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4877 				fmt, 0, slotbuf, &call_regno)
4878       || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4879 				&call_regno))
4880     return XTENSA_UNDEFINED;
4881 
4882   if (call_regno != regno)
4883     return XTENSA_UNDEFINED;
4884 
4885   return opcode;
4886 }
4887 
4888 
4889 /* Data structures used during relaxation.  */
4890 
4891 /* r_reloc: relocation values.  */
4892 
4893 /* Through the relaxation process, we need to keep track of the values
4894    that will result from evaluating relocations.  The standard ELF
4895    relocation structure is not sufficient for this purpose because we're
4896    operating on multiple input files at once, so we need to know which
4897    input file a relocation refers to.  The r_reloc structure thus
4898    records both the input file (bfd) and ELF relocation.
4899 
4900    For efficiency, an r_reloc also contains a "target_offset" field to
4901    cache the target-section-relative offset value that is represented by
4902    the relocation.
4903 
4904    The r_reloc also contains a virtual offset that allows multiple
4905    inserted literals to be placed at the same "address" with
4906    different offsets.  */
4907 
4908 typedef struct r_reloc_struct r_reloc;
4909 
4910 struct r_reloc_struct
4911 {
4912   bfd *abfd;
4913   Elf_Internal_Rela rela;
4914   bfd_vma target_offset;
4915   bfd_vma virtual_offset;
4916 };
4917 
4918 
4919 /* The r_reloc structure is included by value in literal_value, but not
4920    every literal_value has an associated relocation -- some are simple
4921    constants.  In such cases, we set all the fields in the r_reloc
4922    struct to zero.  The r_reloc_is_const function should be used to
4923    detect this case.  */
4924 
4925 static bfd_boolean
r_reloc_is_const(const r_reloc * r_rel)4926 r_reloc_is_const (const r_reloc *r_rel)
4927 {
4928   return (r_rel->abfd == NULL);
4929 }
4930 
4931 
4932 static bfd_vma
r_reloc_get_target_offset(const r_reloc * r_rel)4933 r_reloc_get_target_offset (const r_reloc *r_rel)
4934 {
4935   bfd_vma target_offset;
4936   unsigned long r_symndx;
4937 
4938   BFD_ASSERT (!r_reloc_is_const (r_rel));
4939   r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4940   target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4941   return (target_offset + r_rel->rela.r_addend);
4942 }
4943 
4944 
4945 static struct elf_link_hash_entry *
r_reloc_get_hash_entry(const r_reloc * r_rel)4946 r_reloc_get_hash_entry (const r_reloc *r_rel)
4947 {
4948   unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4949   return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4950 }
4951 
4952 
4953 static asection *
r_reloc_get_section(const r_reloc * r_rel)4954 r_reloc_get_section (const r_reloc *r_rel)
4955 {
4956   unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4957   return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4958 }
4959 
4960 
4961 static bfd_boolean
r_reloc_is_defined(const r_reloc * r_rel)4962 r_reloc_is_defined (const r_reloc *r_rel)
4963 {
4964   asection *sec;
4965   if (r_rel == NULL)
4966     return FALSE;
4967 
4968   sec = r_reloc_get_section (r_rel);
4969   if (sec == bfd_abs_section_ptr
4970       || sec == bfd_com_section_ptr
4971       || sec == bfd_und_section_ptr)
4972     return FALSE;
4973   return TRUE;
4974 }
4975 
4976 
4977 static void
r_reloc_init(r_reloc * r_rel,bfd * abfd,Elf_Internal_Rela * irel,bfd_byte * contents,bfd_size_type content_length)4978 r_reloc_init (r_reloc *r_rel,
4979 	      bfd *abfd,
4980 	      Elf_Internal_Rela *irel,
4981 	      bfd_byte *contents,
4982 	      bfd_size_type content_length)
4983 {
4984   int r_type;
4985   reloc_howto_type *howto;
4986 
4987   if (irel)
4988     {
4989       r_rel->rela = *irel;
4990       r_rel->abfd = abfd;
4991       r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4992       r_rel->virtual_offset = 0;
4993       r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4994       howto = &elf_howto_table[r_type];
4995       if (howto->partial_inplace)
4996 	{
4997 	  bfd_vma inplace_val;
4998 	  BFD_ASSERT (r_rel->rela.r_offset < content_length);
4999 
5000 	  inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5001 	  r_rel->target_offset += inplace_val;
5002 	}
5003     }
5004   else
5005     memset (r_rel, 0, sizeof (r_reloc));
5006 }
5007 
5008 
5009 #if DEBUG
5010 
5011 static void
print_r_reloc(FILE * fp,const r_reloc * r_rel)5012 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5013 {
5014   if (r_reloc_is_defined (r_rel))
5015     {
5016       asection *sec = r_reloc_get_section (r_rel);
5017       fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5018     }
5019   else if (r_reloc_get_hash_entry (r_rel))
5020     fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5021   else
5022     fprintf (fp, " ?? + ");
5023 
5024   fprintf_vma (fp, r_rel->target_offset);
5025   if (r_rel->virtual_offset)
5026     {
5027       fprintf (fp, " + ");
5028       fprintf_vma (fp, r_rel->virtual_offset);
5029     }
5030 
5031   fprintf (fp, ")");
5032 }
5033 
5034 #endif /* DEBUG */
5035 
5036 
5037 /* source_reloc: relocations that reference literals.  */
5038 
5039 /* To determine whether literals can be coalesced, we need to first
5040    record all the relocations that reference the literals.  The
5041    source_reloc structure below is used for this purpose.  The
5042    source_reloc entries are kept in a per-literal-section array, sorted
5043    by offset within the literal section (i.e., target offset).
5044 
5045    The source_sec and r_rel.rela.r_offset fields identify the source of
5046    the relocation.  The r_rel field records the relocation value, i.e.,
5047    the offset of the literal being referenced.  The opnd field is needed
5048    to determine the range of the immediate field to which the relocation
5049    applies, so we can determine whether another literal with the same
5050    value is within range.  The is_null field is true when the relocation
5051    is being removed (e.g., when an L32R is being removed due to a CALLX
5052    that is converted to a direct CALL).  */
5053 
5054 typedef struct source_reloc_struct source_reloc;
5055 
5056 struct source_reloc_struct
5057 {
5058   asection *source_sec;
5059   r_reloc r_rel;
5060   xtensa_opcode opcode;
5061   int opnd;
5062   bfd_boolean is_null;
5063   bfd_boolean is_abs_literal;
5064 };
5065 
5066 
5067 static void
init_source_reloc(source_reloc * reloc,asection * source_sec,const r_reloc * r_rel,xtensa_opcode opcode,int opnd,bfd_boolean is_abs_literal)5068 init_source_reloc (source_reloc *reloc,
5069 		   asection *source_sec,
5070 		   const r_reloc *r_rel,
5071 		   xtensa_opcode opcode,
5072 		   int opnd,
5073 		   bfd_boolean is_abs_literal)
5074 {
5075   reloc->source_sec = source_sec;
5076   reloc->r_rel = *r_rel;
5077   reloc->opcode = opcode;
5078   reloc->opnd = opnd;
5079   reloc->is_null = FALSE;
5080   reloc->is_abs_literal = is_abs_literal;
5081 }
5082 
5083 
5084 /* Find the source_reloc for a particular source offset and relocation
5085    type.  Note that the array is sorted by _target_ offset, so this is
5086    just a linear search.  */
5087 
5088 static source_reloc *
find_source_reloc(source_reloc * src_relocs,int src_count,asection * sec,Elf_Internal_Rela * irel)5089 find_source_reloc (source_reloc *src_relocs,
5090 		   int src_count,
5091 		   asection *sec,
5092 		   Elf_Internal_Rela *irel)
5093 {
5094   int i;
5095 
5096   for (i = 0; i < src_count; i++)
5097     {
5098       if (src_relocs[i].source_sec == sec
5099 	  && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5100 	  && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5101 	      == ELF32_R_TYPE (irel->r_info)))
5102 	return &src_relocs[i];
5103     }
5104 
5105   return NULL;
5106 }
5107 
5108 
5109 static int
source_reloc_compare(const void * ap,const void * bp)5110 source_reloc_compare (const void *ap, const void *bp)
5111 {
5112   const source_reloc *a = (const source_reloc *) ap;
5113   const source_reloc *b = (const source_reloc *) bp;
5114 
5115   if (a->r_rel.target_offset != b->r_rel.target_offset)
5116     return (a->r_rel.target_offset - b->r_rel.target_offset);
5117 
5118   /* We don't need to sort on these criteria for correctness,
5119      but enforcing a more strict ordering prevents unstable qsort
5120      from behaving differently with different implementations.
5121      Without the code below we get correct but different results
5122      on Solaris 2.7 and 2.8.  We would like to always produce the
5123      same results no matter the host. */
5124 
5125   if ((!a->is_null) - (!b->is_null))
5126     return ((!a->is_null) - (!b->is_null));
5127   return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5128 }
5129 
5130 
5131 /* Literal values and value hash tables.  */
5132 
5133 /* Literals with the same value can be coalesced.  The literal_value
5134    structure records the value of a literal: the "r_rel" field holds the
5135    information from the relocation on the literal (if there is one) and
5136    the "value" field holds the contents of the literal word itself.
5137 
5138    The value_map structure records a literal value along with the
5139    location of a literal holding that value.  The value_map hash table
5140    is indexed by the literal value, so that we can quickly check if a
5141    particular literal value has been seen before and is thus a candidate
5142    for coalescing.  */
5143 
5144 typedef struct literal_value_struct literal_value;
5145 typedef struct value_map_struct value_map;
5146 typedef struct value_map_hash_table_struct value_map_hash_table;
5147 
5148 struct literal_value_struct
5149 {
5150   r_reloc r_rel;
5151   unsigned long value;
5152   bfd_boolean is_abs_literal;
5153 };
5154 
5155 struct value_map_struct
5156 {
5157   literal_value val;			/* The literal value.  */
5158   r_reloc loc;				/* Location of the literal.  */
5159   value_map *next;
5160 };
5161 
5162 struct value_map_hash_table_struct
5163 {
5164   unsigned bucket_count;
5165   value_map **buckets;
5166   unsigned count;
5167   bfd_boolean has_last_loc;
5168   r_reloc last_loc;
5169 };
5170 
5171 
5172 static void
init_literal_value(literal_value * lit,const r_reloc * r_rel,unsigned long value,bfd_boolean is_abs_literal)5173 init_literal_value (literal_value *lit,
5174 		    const r_reloc *r_rel,
5175 		    unsigned long value,
5176 		    bfd_boolean is_abs_literal)
5177 {
5178   lit->r_rel = *r_rel;
5179   lit->value = value;
5180   lit->is_abs_literal = is_abs_literal;
5181 }
5182 
5183 
5184 static bfd_boolean
literal_value_equal(const literal_value * src1,const literal_value * src2,bfd_boolean final_static_link)5185 literal_value_equal (const literal_value *src1,
5186 		     const literal_value *src2,
5187 		     bfd_boolean final_static_link)
5188 {
5189   struct elf_link_hash_entry *h1, *h2;
5190 
5191   if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5192     return FALSE;
5193 
5194   if (r_reloc_is_const (&src1->r_rel))
5195     return (src1->value == src2->value);
5196 
5197   if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5198       != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5199     return FALSE;
5200 
5201   if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5202     return FALSE;
5203 
5204   if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5205     return FALSE;
5206 
5207   if (src1->value != src2->value)
5208     return FALSE;
5209 
5210   /* Now check for the same section (if defined) or the same elf_hash
5211      (if undefined or weak).  */
5212   h1 = r_reloc_get_hash_entry (&src1->r_rel);
5213   h2 = r_reloc_get_hash_entry (&src2->r_rel);
5214   if (r_reloc_is_defined (&src1->r_rel)
5215       && (final_static_link
5216 	  || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5217 	      && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5218     {
5219       if (r_reloc_get_section (&src1->r_rel)
5220 	  != r_reloc_get_section (&src2->r_rel))
5221 	return FALSE;
5222     }
5223   else
5224     {
5225       /* Require that the hash entries (i.e., symbols) be identical.  */
5226       if (h1 != h2 || h1 == 0)
5227 	return FALSE;
5228     }
5229 
5230   if (src1->is_abs_literal != src2->is_abs_literal)
5231     return FALSE;
5232 
5233   return TRUE;
5234 }
5235 
5236 
5237 /* Must be power of 2.  */
5238 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5239 
5240 static value_map_hash_table *
value_map_hash_table_init(void)5241 value_map_hash_table_init (void)
5242 {
5243   value_map_hash_table *values;
5244 
5245   values = (value_map_hash_table *)
5246     bfd_zmalloc (sizeof (value_map_hash_table));
5247   values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5248   values->count = 0;
5249   values->buckets = (value_map **)
5250     bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5251   if (values->buckets == NULL)
5252     {
5253       free (values);
5254       return NULL;
5255     }
5256   values->has_last_loc = FALSE;
5257 
5258   return values;
5259 }
5260 
5261 
5262 static void
value_map_hash_table_delete(value_map_hash_table * table)5263 value_map_hash_table_delete (value_map_hash_table *table)
5264 {
5265   free (table->buckets);
5266   free (table);
5267 }
5268 
5269 
5270 static unsigned
hash_bfd_vma(bfd_vma val)5271 hash_bfd_vma (bfd_vma val)
5272 {
5273   return (val >> 2) + (val >> 10);
5274 }
5275 
5276 
5277 static unsigned
literal_value_hash(const literal_value * src)5278 literal_value_hash (const literal_value *src)
5279 {
5280   unsigned hash_val;
5281 
5282   hash_val = hash_bfd_vma (src->value);
5283   if (!r_reloc_is_const (&src->r_rel))
5284     {
5285       void *sec_or_hash;
5286 
5287       hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5288       hash_val += hash_bfd_vma (src->r_rel.target_offset);
5289       hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5290 
5291       /* Now check for the same section and the same elf_hash.  */
5292       if (r_reloc_is_defined (&src->r_rel))
5293 	sec_or_hash = r_reloc_get_section (&src->r_rel);
5294       else
5295 	sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5296       hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5297     }
5298   return hash_val;
5299 }
5300 
5301 
5302 /* Check if the specified literal_value has been seen before.  */
5303 
5304 static value_map *
value_map_get_cached_value(value_map_hash_table * map,const literal_value * val,bfd_boolean final_static_link)5305 value_map_get_cached_value (value_map_hash_table *map,
5306 			    const literal_value *val,
5307 			    bfd_boolean final_static_link)
5308 {
5309   value_map *map_e;
5310   value_map *bucket;
5311   unsigned idx;
5312 
5313   idx = literal_value_hash (val);
5314   idx = idx & (map->bucket_count - 1);
5315   bucket = map->buckets[idx];
5316   for (map_e = bucket; map_e; map_e = map_e->next)
5317     {
5318       if (literal_value_equal (&map_e->val, val, final_static_link))
5319 	return map_e;
5320     }
5321   return NULL;
5322 }
5323 
5324 
5325 /* Record a new literal value.  It is illegal to call this if VALUE
5326    already has an entry here.  */
5327 
5328 static value_map *
add_value_map(value_map_hash_table * map,const literal_value * val,const r_reloc * loc,bfd_boolean final_static_link)5329 add_value_map (value_map_hash_table *map,
5330 	       const literal_value *val,
5331 	       const r_reloc *loc,
5332 	       bfd_boolean final_static_link)
5333 {
5334   value_map **bucket_p;
5335   unsigned idx;
5336 
5337   value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5338   if (val_e == NULL)
5339     {
5340       bfd_set_error (bfd_error_no_memory);
5341       return NULL;
5342     }
5343 
5344   BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5345   val_e->val = *val;
5346   val_e->loc = *loc;
5347 
5348   idx = literal_value_hash (val);
5349   idx = idx & (map->bucket_count - 1);
5350   bucket_p = &map->buckets[idx];
5351 
5352   val_e->next = *bucket_p;
5353   *bucket_p = val_e;
5354   map->count++;
5355   /* FIXME: Consider resizing the hash table if we get too many entries.  */
5356 
5357   return val_e;
5358 }
5359 
5360 
5361 /* Lists of text actions (ta_) for narrowing, widening, longcall
5362    conversion, space fill, code & literal removal, etc.  */
5363 
5364 /* The following text actions are generated:
5365 
5366    "ta_remove_insn"         remove an instruction or instructions
5367    "ta_remove_longcall"     convert longcall to call
5368    "ta_convert_longcall"    convert longcall to nop/call
5369    "ta_narrow_insn"         narrow a wide instruction
5370    "ta_widen"               widen a narrow instruction
5371    "ta_fill"                add fill or remove fill
5372       removed < 0 is a fill; branches to the fill address will be
5373 	changed to address + fill size (e.g., address - removed)
5374       removed >= 0 branches to the fill address will stay unchanged
5375    "ta_remove_literal"      remove a literal; this action is
5376 			    indicated when a literal is removed
5377                             or replaced.
5378    "ta_add_literal"         insert a new literal; this action is
5379                             indicated when a literal has been moved.
5380                             It may use a virtual_offset because
5381 			    multiple literals can be placed at the
5382                             same location.
5383 
5384    For each of these text actions, we also record the number of bytes
5385    removed by performing the text action.  In the case of a "ta_widen"
5386    or a "ta_fill" that adds space, the removed_bytes will be negative.  */
5387 
5388 typedef struct text_action_struct text_action;
5389 typedef struct text_action_list_struct text_action_list;
5390 typedef enum text_action_enum_t text_action_t;
5391 
5392 enum text_action_enum_t
5393 {
5394   ta_none,
5395   ta_remove_insn,        /* removed = -size */
5396   ta_remove_longcall,    /* removed = -size */
5397   ta_convert_longcall,   /* removed = 0 */
5398   ta_narrow_insn,        /* removed = -1 */
5399   ta_widen_insn,         /* removed = +1 */
5400   ta_fill,               /* removed = +size */
5401   ta_remove_literal,
5402   ta_add_literal
5403 };
5404 
5405 
5406 /* Structure for a text action record.  */
5407 struct text_action_struct
5408 {
5409   text_action_t action;
5410   asection *sec;	/* Optional */
5411   bfd_vma offset;
5412   bfd_vma virtual_offset;  /* Zero except for adding literals.  */
5413   int removed_bytes;
5414   literal_value value;	/* Only valid when adding literals.  */
5415 
5416   text_action *next;
5417 };
5418 
5419 
5420 /* List of all of the actions taken on a text section.  */
5421 struct text_action_list_struct
5422 {
5423   text_action *head;
5424 };
5425 
5426 
5427 static text_action *
find_fill_action(text_action_list * l,asection * sec,bfd_vma offset)5428 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5429 {
5430   text_action **m_p;
5431 
5432   /* It is not necessary to fill at the end of a section.  */
5433   if (sec->size == offset)
5434     return NULL;
5435 
5436   for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5437     {
5438       text_action *t = *m_p;
5439       /* When the action is another fill at the same address,
5440 	 just increase the size.  */
5441       if (t->offset == offset && t->action == ta_fill)
5442 	return t;
5443     }
5444   return NULL;
5445 }
5446 
5447 
5448 static int
compute_removed_action_diff(const text_action * ta,asection * sec,bfd_vma offset,int removed,int removable_space)5449 compute_removed_action_diff (const text_action *ta,
5450 			     asection *sec,
5451 			     bfd_vma offset,
5452 			     int removed,
5453 			     int removable_space)
5454 {
5455   int new_removed;
5456   int current_removed = 0;
5457 
5458   if (ta)
5459     current_removed = ta->removed_bytes;
5460 
5461   BFD_ASSERT (ta == NULL || ta->offset == offset);
5462   BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5463 
5464   /* It is not necessary to fill at the end of a section.  Clean this up.  */
5465   if (sec->size == offset)
5466     new_removed = removable_space - 0;
5467   else
5468     {
5469       int space;
5470       int added = -removed - current_removed;
5471       /* Ignore multiples of the section alignment.  */
5472       added = ((1 << sec->alignment_power) - 1) & added;
5473       new_removed = (-added);
5474 
5475       /* Modify for removable.  */
5476       space = removable_space - new_removed;
5477       new_removed = (removable_space
5478 		     - (((1 << sec->alignment_power) - 1) & space));
5479     }
5480   return (new_removed - current_removed);
5481 }
5482 
5483 
5484 static void
adjust_fill_action(text_action * ta,int fill_diff)5485 adjust_fill_action (text_action *ta, int fill_diff)
5486 {
5487   ta->removed_bytes += fill_diff;
5488 }
5489 
5490 
5491 /* Add a modification action to the text.  For the case of adding or
5492    removing space, modify any current fill and assume that
5493    "unreachable_space" bytes can be freely contracted.  Note that a
5494    negative removed value is a fill.  */
5495 
5496 static void
text_action_add(text_action_list * l,text_action_t action,asection * sec,bfd_vma offset,int removed)5497 text_action_add (text_action_list *l,
5498 		 text_action_t action,
5499 		 asection *sec,
5500 		 bfd_vma offset,
5501 		 int removed)
5502 {
5503   text_action **m_p;
5504   text_action *ta;
5505 
5506   /* It is not necessary to fill at the end of a section.  */
5507   if (action == ta_fill && sec->size == offset)
5508     return;
5509 
5510   /* It is not necessary to fill 0 bytes.  */
5511   if (action == ta_fill && removed == 0)
5512     return;
5513 
5514   for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5515     {
5516       text_action *t = *m_p;
5517 
5518       if (action == ta_fill)
5519 	{
5520 	  /* When the action is another fill at the same address,
5521 	     just increase the size.  */
5522 	  if (t->offset == offset && t->action == ta_fill)
5523 	    {
5524 	      t->removed_bytes += removed;
5525 	      return;
5526 	    }
5527 	  /* Fills need to happen before widens so that we don't
5528 	     insert fill bytes into the instruction stream.  */
5529 	  if (t->offset == offset && t->action == ta_widen_insn)
5530 	    break;
5531 	}
5532     }
5533 
5534   /* Create a new record and fill it up.  */
5535   ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5536   ta->action = action;
5537   ta->sec = sec;
5538   ta->offset = offset;
5539   ta->removed_bytes = removed;
5540   ta->next = (*m_p);
5541   *m_p = ta;
5542 }
5543 
5544 
5545 static void
text_action_add_literal(text_action_list * l,text_action_t action,const r_reloc * loc,const literal_value * value,int removed)5546 text_action_add_literal (text_action_list *l,
5547 			 text_action_t action,
5548 			 const r_reloc *loc,
5549 			 const literal_value *value,
5550 			 int removed)
5551 {
5552   text_action **m_p;
5553   text_action *ta;
5554   asection *sec = r_reloc_get_section (loc);
5555   bfd_vma offset = loc->target_offset;
5556   bfd_vma virtual_offset = loc->virtual_offset;
5557 
5558   BFD_ASSERT (action == ta_add_literal);
5559 
5560   for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5561     {
5562       if ((*m_p)->offset > offset
5563 	  && ((*m_p)->offset != offset
5564 	      || (*m_p)->virtual_offset > virtual_offset))
5565 	break;
5566     }
5567 
5568   /* Create a new record and fill it up.  */
5569   ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5570   ta->action = action;
5571   ta->sec = sec;
5572   ta->offset = offset;
5573   ta->virtual_offset = virtual_offset;
5574   ta->value = *value;
5575   ta->removed_bytes = removed;
5576   ta->next = (*m_p);
5577   *m_p = ta;
5578 }
5579 
5580 
5581 /* Find the total offset adjustment for the relaxations specified by
5582    text_actions, beginning from a particular starting action.  This is
5583    typically used from offset_with_removed_text to search an entire list of
5584    actions, but it may also be called directly when adjusting adjacent offsets
5585    so that each search may begin where the previous one left off.  */
5586 
5587 static int
removed_by_actions(text_action ** p_start_action,bfd_vma offset,bfd_boolean before_fill)5588 removed_by_actions (text_action **p_start_action,
5589 		    bfd_vma offset,
5590 		    bfd_boolean before_fill)
5591 {
5592   text_action *r;
5593   int removed = 0;
5594 
5595   r = *p_start_action;
5596   while (r)
5597     {
5598       if (r->offset > offset)
5599 	break;
5600 
5601       if (r->offset == offset
5602 	  && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5603 	break;
5604 
5605       removed += r->removed_bytes;
5606 
5607       r = r->next;
5608     }
5609 
5610   *p_start_action = r;
5611   return removed;
5612 }
5613 
5614 
5615 static bfd_vma
offset_with_removed_text(text_action_list * action_list,bfd_vma offset)5616 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5617 {
5618   text_action *r = action_list->head;
5619   return offset - removed_by_actions (&r, offset, FALSE);
5620 }
5621 
5622 
5623 static unsigned
action_list_count(text_action_list * action_list)5624 action_list_count (text_action_list *action_list)
5625 {
5626   text_action *r = action_list->head;
5627   unsigned count = 0;
5628   for (r = action_list->head; r != NULL; r = r->next)
5629     {
5630       count++;
5631     }
5632   return count;
5633 }
5634 
5635 
5636 /* The find_insn_action routine will only find non-fill actions.  */
5637 
5638 static text_action *
find_insn_action(text_action_list * action_list,bfd_vma offset)5639 find_insn_action (text_action_list *action_list, bfd_vma offset)
5640 {
5641   text_action *t;
5642   for (t = action_list->head; t; t = t->next)
5643     {
5644       if (t->offset == offset)
5645 	{
5646 	  switch (t->action)
5647 	    {
5648 	    case ta_none:
5649 	    case ta_fill:
5650 	      break;
5651 	    case ta_remove_insn:
5652 	    case ta_remove_longcall:
5653 	    case ta_convert_longcall:
5654 	    case ta_narrow_insn:
5655 	    case ta_widen_insn:
5656 	      return t;
5657 	    case ta_remove_literal:
5658 	    case ta_add_literal:
5659 	      BFD_ASSERT (0);
5660 	      break;
5661 	    }
5662 	}
5663     }
5664   return NULL;
5665 }
5666 
5667 
5668 #if DEBUG
5669 
5670 static void
print_action_list(FILE * fp,text_action_list * action_list)5671 print_action_list (FILE *fp, text_action_list *action_list)
5672 {
5673   text_action *r;
5674 
5675   fprintf (fp, "Text Action\n");
5676   for (r = action_list->head; r != NULL; r = r->next)
5677     {
5678       const char *t = "unknown";
5679       switch (r->action)
5680 	{
5681 	case ta_remove_insn:
5682 	  t = "remove_insn"; break;
5683 	case ta_remove_longcall:
5684 	  t = "remove_longcall"; break;
5685 	case ta_convert_longcall:
5686 	  t = "convert_longcall"; break;
5687 	case ta_narrow_insn:
5688 	  t = "narrow_insn"; break;
5689 	case ta_widen_insn:
5690 	  t = "widen_insn"; break;
5691 	case ta_fill:
5692 	  t = "fill"; break;
5693 	case ta_none:
5694 	  t = "none"; break;
5695 	case ta_remove_literal:
5696 	  t = "remove_literal"; break;
5697 	case ta_add_literal:
5698 	  t = "add_literal"; break;
5699 	}
5700 
5701       fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5702 	       r->sec->owner->filename,
5703 	       r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5704     }
5705 }
5706 
5707 #endif /* DEBUG */
5708 
5709 
5710 /* Lists of literals being coalesced or removed.  */
5711 
5712 /* In the usual case, the literal identified by "from" is being
5713    coalesced with another literal identified by "to".  If the literal is
5714    unused and is being removed altogether, "to.abfd" will be NULL.
5715    The removed_literal entries are kept on a per-section list, sorted
5716    by the "from" offset field.  */
5717 
5718 typedef struct removed_literal_struct removed_literal;
5719 typedef struct removed_literal_list_struct removed_literal_list;
5720 
5721 struct removed_literal_struct
5722 {
5723   r_reloc from;
5724   r_reloc to;
5725   removed_literal *next;
5726 };
5727 
5728 struct removed_literal_list_struct
5729 {
5730   removed_literal *head;
5731   removed_literal *tail;
5732 };
5733 
5734 
5735 /* Record that the literal at "from" is being removed.  If "to" is not
5736    NULL, the "from" literal is being coalesced with the "to" literal.  */
5737 
5738 static void
add_removed_literal(removed_literal_list * removed_list,const r_reloc * from,const r_reloc * to)5739 add_removed_literal (removed_literal_list *removed_list,
5740 		     const r_reloc *from,
5741 		     const r_reloc *to)
5742 {
5743   removed_literal *r, *new_r, *next_r;
5744 
5745   new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5746 
5747   new_r->from = *from;
5748   if (to)
5749     new_r->to = *to;
5750   else
5751     new_r->to.abfd = NULL;
5752   new_r->next = NULL;
5753 
5754   r = removed_list->head;
5755   if (r == NULL)
5756     {
5757       removed_list->head = new_r;
5758       removed_list->tail = new_r;
5759     }
5760   /* Special check for common case of append.  */
5761   else if (removed_list->tail->from.target_offset < from->target_offset)
5762     {
5763       removed_list->tail->next = new_r;
5764       removed_list->tail = new_r;
5765     }
5766   else
5767     {
5768       while (r->from.target_offset < from->target_offset && r->next)
5769 	{
5770 	  r = r->next;
5771 	}
5772       next_r = r->next;
5773       r->next = new_r;
5774       new_r->next = next_r;
5775       if (next_r == NULL)
5776 	removed_list->tail = new_r;
5777     }
5778 }
5779 
5780 
5781 /* Check if the list of removed literals contains an entry for the
5782    given address.  Return the entry if found.  */
5783 
5784 static removed_literal *
find_removed_literal(removed_literal_list * removed_list,bfd_vma addr)5785 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5786 {
5787   removed_literal *r = removed_list->head;
5788   while (r && r->from.target_offset < addr)
5789     r = r->next;
5790   if (r && r->from.target_offset == addr)
5791     return r;
5792   return NULL;
5793 }
5794 
5795 
5796 #if DEBUG
5797 
5798 static void
print_removed_literals(FILE * fp,removed_literal_list * removed_list)5799 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5800 {
5801   removed_literal *r;
5802   r = removed_list->head;
5803   if (r)
5804     fprintf (fp, "Removed Literals\n");
5805   for (; r != NULL; r = r->next)
5806     {
5807       print_r_reloc (fp, &r->from);
5808       fprintf (fp, " => ");
5809       if (r->to.abfd == NULL)
5810 	fprintf (fp, "REMOVED");
5811       else
5812 	print_r_reloc (fp, &r->to);
5813       fprintf (fp, "\n");
5814     }
5815 }
5816 
5817 #endif /* DEBUG */
5818 
5819 
5820 /* Per-section data for relaxation.  */
5821 
5822 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5823 
5824 struct xtensa_relax_info_struct
5825 {
5826   bfd_boolean is_relaxable_literal_section;
5827   bfd_boolean is_relaxable_asm_section;
5828   int visited;				/* Number of times visited.  */
5829 
5830   source_reloc *src_relocs;		/* Array[src_count].  */
5831   int src_count;
5832   int src_next;				/* Next src_relocs entry to assign.  */
5833 
5834   removed_literal_list removed_list;
5835   text_action_list action_list;
5836 
5837   reloc_bfd_fix *fix_list;
5838   reloc_bfd_fix *fix_array;
5839   unsigned fix_array_count;
5840 
5841   /* Support for expanding the reloc array that is stored
5842      in the section structure.  If the relocations have been
5843      reallocated, the newly allocated relocations will be referenced
5844      here along with the actual size allocated.  The relocation
5845      count will always be found in the section structure.  */
5846   Elf_Internal_Rela *allocated_relocs;
5847   unsigned relocs_count;
5848   unsigned allocated_relocs_count;
5849 };
5850 
5851 struct elf_xtensa_section_data
5852 {
5853   struct bfd_elf_section_data elf;
5854   xtensa_relax_info relax_info;
5855 };
5856 
5857 
5858 static bfd_boolean
elf_xtensa_new_section_hook(bfd * abfd,asection * sec)5859 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5860 {
5861   if (!sec->used_by_bfd)
5862     {
5863       struct elf_xtensa_section_data *sdata;
5864       bfd_size_type amt = sizeof (*sdata);
5865 
5866       sdata = bfd_zalloc (abfd, amt);
5867       if (sdata == NULL)
5868 	return FALSE;
5869       sec->used_by_bfd = sdata;
5870     }
5871 
5872   return _bfd_elf_new_section_hook (abfd, sec);
5873 }
5874 
5875 
5876 static xtensa_relax_info *
get_xtensa_relax_info(asection * sec)5877 get_xtensa_relax_info (asection *sec)
5878 {
5879   struct elf_xtensa_section_data *section_data;
5880 
5881   /* No info available if no section or if it is an output section.  */
5882   if (!sec || sec == sec->output_section)
5883     return NULL;
5884 
5885   section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5886   return &section_data->relax_info;
5887 }
5888 
5889 
5890 static void
init_xtensa_relax_info(asection * sec)5891 init_xtensa_relax_info (asection *sec)
5892 {
5893   xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5894 
5895   relax_info->is_relaxable_literal_section = FALSE;
5896   relax_info->is_relaxable_asm_section = FALSE;
5897   relax_info->visited = 0;
5898 
5899   relax_info->src_relocs = NULL;
5900   relax_info->src_count = 0;
5901   relax_info->src_next = 0;
5902 
5903   relax_info->removed_list.head = NULL;
5904   relax_info->removed_list.tail = NULL;
5905 
5906   relax_info->action_list.head = NULL;
5907 
5908   relax_info->fix_list = NULL;
5909   relax_info->fix_array = NULL;
5910   relax_info->fix_array_count = 0;
5911 
5912   relax_info->allocated_relocs = NULL;
5913   relax_info->relocs_count = 0;
5914   relax_info->allocated_relocs_count = 0;
5915 }
5916 
5917 
5918 /* Coalescing literals may require a relocation to refer to a section in
5919    a different input file, but the standard relocation information
5920    cannot express that.  Instead, the reloc_bfd_fix structures are used
5921    to "fix" the relocations that refer to sections in other input files.
5922    These structures are kept on per-section lists.  The "src_type" field
5923    records the relocation type in case there are multiple relocations on
5924    the same location.  FIXME: This is ugly; an alternative might be to
5925    add new symbols with the "owner" field to some other input file.  */
5926 
5927 struct reloc_bfd_fix_struct
5928 {
5929   asection *src_sec;
5930   bfd_vma src_offset;
5931   unsigned src_type;			/* Relocation type.  */
5932 
5933   asection *target_sec;
5934   bfd_vma target_offset;
5935   bfd_boolean translated;
5936 
5937   reloc_bfd_fix *next;
5938 };
5939 
5940 
5941 static reloc_bfd_fix *
reloc_bfd_fix_init(asection * src_sec,bfd_vma src_offset,unsigned src_type,asection * target_sec,bfd_vma target_offset,bfd_boolean translated)5942 reloc_bfd_fix_init (asection *src_sec,
5943 		    bfd_vma src_offset,
5944 		    unsigned src_type,
5945 		    asection *target_sec,
5946 		    bfd_vma target_offset,
5947 		    bfd_boolean translated)
5948 {
5949   reloc_bfd_fix *fix;
5950 
5951   fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5952   fix->src_sec = src_sec;
5953   fix->src_offset = src_offset;
5954   fix->src_type = src_type;
5955   fix->target_sec = target_sec;
5956   fix->target_offset = target_offset;
5957   fix->translated = translated;
5958 
5959   return fix;
5960 }
5961 
5962 
5963 static void
add_fix(asection * src_sec,reloc_bfd_fix * fix)5964 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5965 {
5966   xtensa_relax_info *relax_info;
5967 
5968   relax_info = get_xtensa_relax_info (src_sec);
5969   fix->next = relax_info->fix_list;
5970   relax_info->fix_list = fix;
5971 }
5972 
5973 
5974 static int
fix_compare(const void * ap,const void * bp)5975 fix_compare (const void *ap, const void *bp)
5976 {
5977   const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5978   const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5979 
5980   if (a->src_offset != b->src_offset)
5981     return (a->src_offset - b->src_offset);
5982   return (a->src_type - b->src_type);
5983 }
5984 
5985 
5986 static void
cache_fix_array(asection * sec)5987 cache_fix_array (asection *sec)
5988 {
5989   unsigned i, count = 0;
5990   reloc_bfd_fix *r;
5991   xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5992 
5993   if (relax_info == NULL)
5994     return;
5995   if (relax_info->fix_list == NULL)
5996     return;
5997 
5998   for (r = relax_info->fix_list; r != NULL; r = r->next)
5999     count++;
6000 
6001   relax_info->fix_array =
6002     (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6003   relax_info->fix_array_count = count;
6004 
6005   r = relax_info->fix_list;
6006   for (i = 0; i < count; i++, r = r->next)
6007     {
6008       relax_info->fix_array[count - 1 - i] = *r;
6009       relax_info->fix_array[count - 1 - i].next = NULL;
6010     }
6011 
6012   qsort (relax_info->fix_array, relax_info->fix_array_count,
6013 	 sizeof (reloc_bfd_fix), fix_compare);
6014 }
6015 
6016 
6017 static reloc_bfd_fix *
get_bfd_fix(asection * sec,bfd_vma offset,unsigned type)6018 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6019 {
6020   xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6021   reloc_bfd_fix *rv;
6022   reloc_bfd_fix key;
6023 
6024   if (relax_info == NULL)
6025     return NULL;
6026   if (relax_info->fix_list == NULL)
6027     return NULL;
6028 
6029   if (relax_info->fix_array == NULL)
6030     cache_fix_array (sec);
6031 
6032   key.src_offset = offset;
6033   key.src_type = type;
6034   rv = bsearch (&key, relax_info->fix_array,  relax_info->fix_array_count,
6035 		sizeof (reloc_bfd_fix), fix_compare);
6036   return rv;
6037 }
6038 
6039 
6040 /* Section caching.  */
6041 
6042 typedef struct section_cache_struct section_cache_t;
6043 
6044 struct section_cache_struct
6045 {
6046   asection *sec;
6047 
6048   bfd_byte *contents;		/* Cache of the section contents.  */
6049   bfd_size_type content_length;
6050 
6051   property_table_entry *ptbl;	/* Cache of the section property table.  */
6052   unsigned pte_count;
6053 
6054   Elf_Internal_Rela *relocs;	/* Cache of the section relocations.  */
6055   unsigned reloc_count;
6056 };
6057 
6058 
6059 static void
init_section_cache(section_cache_t * sec_cache)6060 init_section_cache (section_cache_t *sec_cache)
6061 {
6062   memset (sec_cache, 0, sizeof (*sec_cache));
6063 }
6064 
6065 
6066 static void
free_section_cache(section_cache_t * sec_cache)6067 free_section_cache (section_cache_t *sec_cache)
6068 {
6069   if (sec_cache->sec)
6070     {
6071       release_contents (sec_cache->sec, sec_cache->contents);
6072       release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6073       if (sec_cache->ptbl)
6074 	free (sec_cache->ptbl);
6075     }
6076 }
6077 
6078 
6079 static bfd_boolean
section_cache_section(section_cache_t * sec_cache,asection * sec,struct bfd_link_info * link_info)6080 section_cache_section (section_cache_t *sec_cache,
6081 		       asection *sec,
6082 		       struct bfd_link_info *link_info)
6083 {
6084   bfd *abfd;
6085   property_table_entry *prop_table = NULL;
6086   int ptblsize = 0;
6087   bfd_byte *contents = NULL;
6088   Elf_Internal_Rela *internal_relocs = NULL;
6089   bfd_size_type sec_size;
6090 
6091   if (sec == NULL)
6092     return FALSE;
6093   if (sec == sec_cache->sec)
6094     return TRUE;
6095 
6096   abfd = sec->owner;
6097   sec_size = bfd_get_section_limit (abfd, sec);
6098 
6099   /* Get the contents.  */
6100   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6101   if (contents == NULL && sec_size != 0)
6102     goto err;
6103 
6104   /* Get the relocations.  */
6105   internal_relocs = retrieve_internal_relocs (abfd, sec,
6106 					      link_info->keep_memory);
6107 
6108   /* Get the entry table.  */
6109   ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6110 					XTENSA_PROP_SEC_NAME, FALSE);
6111   if (ptblsize < 0)
6112     goto err;
6113 
6114   /* Fill in the new section cache.  */
6115   free_section_cache (sec_cache);
6116   init_section_cache (sec_cache);
6117 
6118   sec_cache->sec = sec;
6119   sec_cache->contents = contents;
6120   sec_cache->content_length = sec_size;
6121   sec_cache->relocs = internal_relocs;
6122   sec_cache->reloc_count = sec->reloc_count;
6123   sec_cache->pte_count = ptblsize;
6124   sec_cache->ptbl = prop_table;
6125 
6126   return TRUE;
6127 
6128  err:
6129   release_contents (sec, contents);
6130   release_internal_relocs (sec, internal_relocs);
6131   if (prop_table)
6132     free (prop_table);
6133   return FALSE;
6134 }
6135 
6136 
6137 /* Extended basic blocks.  */
6138 
6139 /* An ebb_struct represents an Extended Basic Block.  Within this
6140    range, we guarantee that all instructions are decodable, the
6141    property table entries are contiguous, and no property table
6142    specifies a segment that cannot have instructions moved.  This
6143    structure contains caches of the contents, property table and
6144    relocations for the specified section for easy use.  The range is
6145    specified by ranges of indices for the byte offset, property table
6146    offsets and relocation offsets.  These must be consistent.  */
6147 
6148 typedef struct ebb_struct ebb_t;
6149 
6150 struct ebb_struct
6151 {
6152   asection *sec;
6153 
6154   bfd_byte *contents;		/* Cache of the section contents.  */
6155   bfd_size_type content_length;
6156 
6157   property_table_entry *ptbl;	/* Cache of the section property table.  */
6158   unsigned pte_count;
6159 
6160   Elf_Internal_Rela *relocs;	/* Cache of the section relocations.  */
6161   unsigned reloc_count;
6162 
6163   bfd_vma start_offset;		/* Offset in section.  */
6164   unsigned start_ptbl_idx;	/* Offset in the property table.  */
6165   unsigned start_reloc_idx;	/* Offset in the relocations.  */
6166 
6167   bfd_vma end_offset;
6168   unsigned end_ptbl_idx;
6169   unsigned end_reloc_idx;
6170 
6171   bfd_boolean ends_section;	/* Is this the last ebb in a section?  */
6172 
6173   /* The unreachable property table at the end of this set of blocks;
6174      NULL if the end is not an unreachable block.  */
6175   property_table_entry *ends_unreachable;
6176 };
6177 
6178 
6179 enum ebb_target_enum
6180 {
6181   EBB_NO_ALIGN = 0,
6182   EBB_DESIRE_TGT_ALIGN,
6183   EBB_REQUIRE_TGT_ALIGN,
6184   EBB_REQUIRE_LOOP_ALIGN,
6185   EBB_REQUIRE_ALIGN
6186 };
6187 
6188 
6189 /* proposed_action_struct is similar to the text_action_struct except
6190    that is represents a potential transformation, not one that will
6191    occur.  We build a list of these for an extended basic block
6192    and use them to compute the actual actions desired.  We must be
6193    careful that the entire set of actual actions we perform do not
6194    break any relocations that would fit if the actions were not
6195    performed.  */
6196 
6197 typedef struct proposed_action_struct proposed_action;
6198 
6199 struct proposed_action_struct
6200 {
6201   enum ebb_target_enum align_type; /* for the target alignment */
6202   bfd_vma alignment_pow;
6203   text_action_t action;
6204   bfd_vma offset;
6205   int removed_bytes;
6206   bfd_boolean do_action; /* If false, then we will not perform the action.  */
6207 };
6208 
6209 
6210 /* The ebb_constraint_struct keeps a set of proposed actions for an
6211    extended basic block.   */
6212 
6213 typedef struct ebb_constraint_struct ebb_constraint;
6214 
6215 struct ebb_constraint_struct
6216 {
6217   ebb_t ebb;
6218   bfd_boolean start_movable;
6219 
6220   /* Bytes of extra space at the beginning if movable.  */
6221   int start_extra_space;
6222 
6223   enum ebb_target_enum start_align;
6224 
6225   bfd_boolean end_movable;
6226 
6227   /* Bytes of extra space at the end if movable.  */
6228   int end_extra_space;
6229 
6230   unsigned action_count;
6231   unsigned action_allocated;
6232 
6233   /* Array of proposed actions.  */
6234   proposed_action *actions;
6235 
6236   /* Action alignments -- one for each proposed action.  */
6237   enum ebb_target_enum *action_aligns;
6238 };
6239 
6240 
6241 static void
init_ebb_constraint(ebb_constraint * c)6242 init_ebb_constraint (ebb_constraint *c)
6243 {
6244   memset (c, 0, sizeof (ebb_constraint));
6245 }
6246 
6247 
6248 static void
free_ebb_constraint(ebb_constraint * c)6249 free_ebb_constraint (ebb_constraint *c)
6250 {
6251   if (c->actions)
6252     free (c->actions);
6253 }
6254 
6255 
6256 static void
init_ebb(ebb_t * ebb,asection * sec,bfd_byte * contents,bfd_size_type content_length,property_table_entry * prop_table,unsigned ptblsize,Elf_Internal_Rela * internal_relocs,unsigned reloc_count)6257 init_ebb (ebb_t *ebb,
6258 	  asection *sec,
6259 	  bfd_byte *contents,
6260 	  bfd_size_type content_length,
6261 	  property_table_entry *prop_table,
6262 	  unsigned ptblsize,
6263 	  Elf_Internal_Rela *internal_relocs,
6264 	  unsigned reloc_count)
6265 {
6266   memset (ebb, 0, sizeof (ebb_t));
6267   ebb->sec = sec;
6268   ebb->contents = contents;
6269   ebb->content_length = content_length;
6270   ebb->ptbl = prop_table;
6271   ebb->pte_count = ptblsize;
6272   ebb->relocs = internal_relocs;
6273   ebb->reloc_count = reloc_count;
6274   ebb->start_offset = 0;
6275   ebb->end_offset = ebb->content_length - 1;
6276   ebb->start_ptbl_idx = 0;
6277   ebb->end_ptbl_idx = ptblsize;
6278   ebb->start_reloc_idx = 0;
6279   ebb->end_reloc_idx = reloc_count;
6280 }
6281 
6282 
6283 /* Extend the ebb to all decodable contiguous sections.  The algorithm
6284    for building a basic block around an instruction is to push it
6285    forward until we hit the end of a section, an unreachable block or
6286    a block that cannot be transformed.  Then we push it backwards
6287    searching for similar conditions.  */
6288 
6289 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6290 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6291 static bfd_size_type insn_block_decodable_len
6292   (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6293 
6294 static bfd_boolean
extend_ebb_bounds(ebb_t * ebb)6295 extend_ebb_bounds (ebb_t *ebb)
6296 {
6297   if (!extend_ebb_bounds_forward (ebb))
6298     return FALSE;
6299   if (!extend_ebb_bounds_backward (ebb))
6300     return FALSE;
6301   return TRUE;
6302 }
6303 
6304 
6305 static bfd_boolean
extend_ebb_bounds_forward(ebb_t * ebb)6306 extend_ebb_bounds_forward (ebb_t *ebb)
6307 {
6308   property_table_entry *the_entry, *new_entry;
6309 
6310   the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6311 
6312   /* Stop when (1) we cannot decode an instruction, (2) we are at
6313      the end of the property tables, (3) we hit a non-contiguous property
6314      table entry, (4) we hit a NO_TRANSFORM region.  */
6315 
6316   while (1)
6317     {
6318       bfd_vma entry_end;
6319       bfd_size_type insn_block_len;
6320 
6321       entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6322       insn_block_len =
6323 	insn_block_decodable_len (ebb->contents, ebb->content_length,
6324 				  ebb->end_offset,
6325 				  entry_end - ebb->end_offset);
6326       if (insn_block_len != (entry_end - ebb->end_offset))
6327 	{
6328 	  (*_bfd_error_handler)
6329 	    (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6330 	     ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6331 	  return FALSE;
6332 	}
6333       ebb->end_offset += insn_block_len;
6334 
6335       if (ebb->end_offset == ebb->sec->size)
6336 	ebb->ends_section = TRUE;
6337 
6338       /* Update the reloc counter.  */
6339       while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6340 	     && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6341 		 < ebb->end_offset))
6342 	{
6343 	  ebb->end_reloc_idx++;
6344 	}
6345 
6346       if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6347 	return TRUE;
6348 
6349       new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6350       if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6351 	  || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6352 	  || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6353 	break;
6354 
6355       if (the_entry->address + the_entry->size != new_entry->address)
6356 	break;
6357 
6358       the_entry = new_entry;
6359       ebb->end_ptbl_idx++;
6360     }
6361 
6362   /* Quick check for an unreachable or end of file just at the end.  */
6363   if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6364     {
6365       if (ebb->end_offset == ebb->content_length)
6366 	ebb->ends_section = TRUE;
6367     }
6368   else
6369     {
6370       new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6371       if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6372 	  && the_entry->address + the_entry->size == new_entry->address)
6373 	ebb->ends_unreachable = new_entry;
6374     }
6375 
6376   /* Any other ending requires exact alignment.  */
6377   return TRUE;
6378 }
6379 
6380 
6381 static bfd_boolean
extend_ebb_bounds_backward(ebb_t * ebb)6382 extend_ebb_bounds_backward (ebb_t *ebb)
6383 {
6384   property_table_entry *the_entry, *new_entry;
6385 
6386   the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6387 
6388   /* Stop when (1) we cannot decode the instructions in the current entry.
6389      (2) we are at the beginning of the property tables, (3) we hit a
6390      non-contiguous property table entry, (4) we hit a NO_TRANSFORM region.  */
6391 
6392   while (1)
6393     {
6394       bfd_vma block_begin;
6395       bfd_size_type insn_block_len;
6396 
6397       block_begin = the_entry->address - ebb->sec->vma;
6398       insn_block_len =
6399 	insn_block_decodable_len (ebb->contents, ebb->content_length,
6400 				  block_begin,
6401 				  ebb->start_offset - block_begin);
6402       if (insn_block_len != ebb->start_offset - block_begin)
6403 	{
6404 	  (*_bfd_error_handler)
6405 	    (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6406 	     ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6407 	  return FALSE;
6408 	}
6409       ebb->start_offset -= insn_block_len;
6410 
6411       /* Update the reloc counter.  */
6412       while (ebb->start_reloc_idx > 0
6413 	     && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6414 		 >= ebb->start_offset))
6415 	{
6416 	  ebb->start_reloc_idx--;
6417 	}
6418 
6419       if (ebb->start_ptbl_idx == 0)
6420 	return TRUE;
6421 
6422       new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6423       if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6424 	  || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6425 	  || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6426 	return TRUE;
6427       if (new_entry->address + new_entry->size != the_entry->address)
6428 	return TRUE;
6429 
6430       the_entry = new_entry;
6431       ebb->start_ptbl_idx--;
6432     }
6433   return TRUE;
6434 }
6435 
6436 
6437 static bfd_size_type
insn_block_decodable_len(bfd_byte * contents,bfd_size_type content_len,bfd_vma block_offset,bfd_size_type block_len)6438 insn_block_decodable_len (bfd_byte *contents,
6439 			  bfd_size_type content_len,
6440 			  bfd_vma block_offset,
6441 			  bfd_size_type block_len)
6442 {
6443   bfd_vma offset = block_offset;
6444 
6445   while (offset < block_offset + block_len)
6446     {
6447       bfd_size_type insn_len = 0;
6448 
6449       insn_len = insn_decode_len (contents, content_len, offset);
6450       if (insn_len == 0)
6451 	return (offset - block_offset);
6452       offset += insn_len;
6453     }
6454   return (offset - block_offset);
6455 }
6456 
6457 
6458 static void
ebb_propose_action(ebb_constraint * c,enum ebb_target_enum align_type,bfd_vma alignment_pow,text_action_t action,bfd_vma offset,int removed_bytes,bfd_boolean do_action)6459 ebb_propose_action (ebb_constraint *c,
6460 		    enum ebb_target_enum align_type,
6461 		    bfd_vma alignment_pow,
6462 		    text_action_t action,
6463 		    bfd_vma offset,
6464 		    int removed_bytes,
6465 		    bfd_boolean do_action)
6466 {
6467   proposed_action *act;
6468 
6469   if (c->action_allocated <= c->action_count)
6470     {
6471       unsigned new_allocated, i;
6472       proposed_action *new_actions;
6473 
6474       new_allocated = (c->action_count + 2) * 2;
6475       new_actions = (proposed_action *)
6476 	bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6477 
6478       for (i = 0; i < c->action_count; i++)
6479 	new_actions[i] = c->actions[i];
6480       if (c->actions)
6481 	free (c->actions);
6482       c->actions = new_actions;
6483       c->action_allocated = new_allocated;
6484     }
6485 
6486   act = &c->actions[c->action_count];
6487   act->align_type = align_type;
6488   act->alignment_pow = alignment_pow;
6489   act->action = action;
6490   act->offset = offset;
6491   act->removed_bytes = removed_bytes;
6492   act->do_action = do_action;
6493 
6494   c->action_count++;
6495 }
6496 
6497 
6498 /* Access to internal relocations, section contents and symbols.  */
6499 
6500 /* During relaxation, we need to modify relocations, section contents,
6501    and symbol definitions, and we need to keep the original values from
6502    being reloaded from the input files, i.e., we need to "pin" the
6503    modified values in memory.  We also want to continue to observe the
6504    setting of the "keep-memory" flag.  The following functions wrap the
6505    standard BFD functions to take care of this for us.  */
6506 
6507 static Elf_Internal_Rela *
retrieve_internal_relocs(bfd * abfd,asection * sec,bfd_boolean keep_memory)6508 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6509 {
6510   Elf_Internal_Rela *internal_relocs;
6511 
6512   if ((sec->flags & SEC_LINKER_CREATED) != 0)
6513     return NULL;
6514 
6515   internal_relocs = elf_section_data (sec)->relocs;
6516   if (internal_relocs == NULL)
6517     internal_relocs = (_bfd_elf_link_read_relocs
6518 		       (abfd, sec, NULL, NULL, keep_memory));
6519   return internal_relocs;
6520 }
6521 
6522 
6523 static void
pin_internal_relocs(asection * sec,Elf_Internal_Rela * internal_relocs)6524 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6525 {
6526   elf_section_data (sec)->relocs = internal_relocs;
6527 }
6528 
6529 
6530 static void
release_internal_relocs(asection * sec,Elf_Internal_Rela * internal_relocs)6531 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6532 {
6533   if (internal_relocs
6534       && elf_section_data (sec)->relocs != internal_relocs)
6535     free (internal_relocs);
6536 }
6537 
6538 
6539 static bfd_byte *
retrieve_contents(bfd * abfd,asection * sec,bfd_boolean keep_memory)6540 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6541 {
6542   bfd_byte *contents;
6543   bfd_size_type sec_size;
6544 
6545   sec_size = bfd_get_section_limit (abfd, sec);
6546   contents = elf_section_data (sec)->this_hdr.contents;
6547 
6548   if (contents == NULL && sec_size != 0)
6549     {
6550       if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6551 	{
6552 	  if (contents)
6553 	    free (contents);
6554 	  return NULL;
6555 	}
6556       if (keep_memory)
6557 	elf_section_data (sec)->this_hdr.contents = contents;
6558     }
6559   return contents;
6560 }
6561 
6562 
6563 static void
pin_contents(asection * sec,bfd_byte * contents)6564 pin_contents (asection *sec, bfd_byte *contents)
6565 {
6566   elf_section_data (sec)->this_hdr.contents = contents;
6567 }
6568 
6569 
6570 static void
release_contents(asection * sec,bfd_byte * contents)6571 release_contents (asection *sec, bfd_byte *contents)
6572 {
6573   if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6574     free (contents);
6575 }
6576 
6577 
6578 static Elf_Internal_Sym *
retrieve_local_syms(bfd * input_bfd)6579 retrieve_local_syms (bfd *input_bfd)
6580 {
6581   Elf_Internal_Shdr *symtab_hdr;
6582   Elf_Internal_Sym *isymbuf;
6583   size_t locsymcount;
6584 
6585   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6586   locsymcount = symtab_hdr->sh_info;
6587 
6588   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6589   if (isymbuf == NULL && locsymcount != 0)
6590     isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6591 				    NULL, NULL, NULL);
6592 
6593   /* Save the symbols for this input file so they won't be read again.  */
6594   if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6595     symtab_hdr->contents = (unsigned char *) isymbuf;
6596 
6597   return isymbuf;
6598 }
6599 
6600 
6601 /* Code for link-time relaxation.  */
6602 
6603 /* Initialization for relaxation: */
6604 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6605 static bfd_boolean find_relaxable_sections
6606   (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6607 static bfd_boolean collect_source_relocs
6608   (bfd *, asection *, struct bfd_link_info *);
6609 static bfd_boolean is_resolvable_asm_expansion
6610   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6611    bfd_boolean *);
6612 static Elf_Internal_Rela *find_associated_l32r_irel
6613   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6614 static bfd_boolean compute_text_actions
6615   (bfd *, asection *, struct bfd_link_info *);
6616 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6617 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6618 static bfd_boolean check_section_ebb_pcrels_fit
6619   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
6620    const xtensa_opcode *);
6621 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6622 static void text_action_add_proposed
6623   (text_action_list *, const ebb_constraint *, asection *);
6624 static int compute_fill_extra_space (property_table_entry *);
6625 
6626 /* First pass: */
6627 static bfd_boolean compute_removed_literals
6628   (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6629 static Elf_Internal_Rela *get_irel_at_offset
6630   (asection *, Elf_Internal_Rela *, bfd_vma);
6631 static bfd_boolean is_removable_literal
6632   (const source_reloc *, int, const source_reloc *, int, asection *,
6633    property_table_entry *, int);
6634 static bfd_boolean remove_dead_literal
6635   (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6636    Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6637 static bfd_boolean identify_literal_placement
6638   (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6639    value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6640    source_reloc *, property_table_entry *, int, section_cache_t *,
6641    bfd_boolean);
6642 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6643 static bfd_boolean coalesce_shared_literal
6644   (asection *, source_reloc *, property_table_entry *, int, value_map *);
6645 static bfd_boolean move_shared_literal
6646   (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6647    int, const r_reloc *, const literal_value *, section_cache_t *);
6648 
6649 /* Second pass: */
6650 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6651 static bfd_boolean translate_section_fixes (asection *);
6652 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6653 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6654 static void shrink_dynamic_reloc_sections
6655   (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6656 static bfd_boolean move_literal
6657   (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6658    xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6659 static bfd_boolean relax_property_section
6660   (bfd *, asection *, struct bfd_link_info *);
6661 
6662 /* Third pass: */
6663 static bfd_boolean relax_section_symbols (bfd *, asection *);
6664 
6665 
6666 static bfd_boolean
elf_xtensa_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * again)6667 elf_xtensa_relax_section (bfd *abfd,
6668 			  asection *sec,
6669 			  struct bfd_link_info *link_info,
6670 			  bfd_boolean *again)
6671 {
6672   static value_map_hash_table *values = NULL;
6673   static bfd_boolean relocations_analyzed = FALSE;
6674   xtensa_relax_info *relax_info;
6675 
6676   if (!relocations_analyzed)
6677     {
6678       /* Do some overall initialization for relaxation.  */
6679       values = value_map_hash_table_init ();
6680       if (values == NULL)
6681 	return FALSE;
6682       relaxing_section = TRUE;
6683       if (!analyze_relocations (link_info))
6684 	return FALSE;
6685       relocations_analyzed = TRUE;
6686     }
6687   *again = FALSE;
6688 
6689   /* Don't mess with linker-created sections.  */
6690   if ((sec->flags & SEC_LINKER_CREATED) != 0)
6691     return TRUE;
6692 
6693   relax_info = get_xtensa_relax_info (sec);
6694   BFD_ASSERT (relax_info != NULL);
6695 
6696   switch (relax_info->visited)
6697     {
6698     case 0:
6699       /* Note: It would be nice to fold this pass into
6700 	 analyze_relocations, but it is important for this step that the
6701 	 sections be examined in link order.  */
6702       if (!compute_removed_literals (abfd, sec, link_info, values))
6703 	return FALSE;
6704       *again = TRUE;
6705       break;
6706 
6707     case 1:
6708       if (values)
6709 	value_map_hash_table_delete (values);
6710       values = NULL;
6711       if (!relax_section (abfd, sec, link_info))
6712 	return FALSE;
6713       *again = TRUE;
6714       break;
6715 
6716     case 2:
6717       if (!relax_section_symbols (abfd, sec))
6718 	return FALSE;
6719       break;
6720     }
6721 
6722   relax_info->visited++;
6723   return TRUE;
6724 }
6725 
6726 
6727 /* Initialization for relaxation.  */
6728 
6729 /* This function is called once at the start of relaxation.  It scans
6730    all the input sections and marks the ones that are relaxable (i.e.,
6731    literal sections with L32R relocations against them), and then
6732    collects source_reloc information for all the relocations against
6733    those relaxable sections.  During this process, it also detects
6734    longcalls, i.e., calls relaxed by the assembler into indirect
6735    calls, that can be optimized back into direct calls.  Within each
6736    extended basic block (ebb) containing an optimized longcall, it
6737    computes a set of "text actions" that can be performed to remove
6738    the L32R associated with the longcall while optionally preserving
6739    branch target alignments.  */
6740 
6741 static bfd_boolean
analyze_relocations(struct bfd_link_info * link_info)6742 analyze_relocations (struct bfd_link_info *link_info)
6743 {
6744   bfd *abfd;
6745   asection *sec;
6746   bfd_boolean is_relaxable = FALSE;
6747 
6748   /* Initialize the per-section relaxation info.  */
6749   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6750     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6751       {
6752 	init_xtensa_relax_info (sec);
6753       }
6754 
6755   /* Mark relaxable sections (and count relocations against each one).  */
6756   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6757     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6758       {
6759 	if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6760 	  return FALSE;
6761       }
6762 
6763   /* Bail out if there are no relaxable sections.  */
6764   if (!is_relaxable)
6765     return TRUE;
6766 
6767   /* Allocate space for source_relocs.  */
6768   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6769     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6770       {
6771 	xtensa_relax_info *relax_info;
6772 
6773 	relax_info = get_xtensa_relax_info (sec);
6774 	if (relax_info->is_relaxable_literal_section
6775 	    || relax_info->is_relaxable_asm_section)
6776 	  {
6777 	    relax_info->src_relocs = (source_reloc *)
6778 	      bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6779 	  }
6780 	else
6781 	  relax_info->src_count = 0;
6782       }
6783 
6784   /* Collect info on relocations against each relaxable section.  */
6785   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6786     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6787       {
6788 	if (!collect_source_relocs (abfd, sec, link_info))
6789 	  return FALSE;
6790       }
6791 
6792   /* Compute the text actions.  */
6793   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6794     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6795       {
6796 	if (!compute_text_actions (abfd, sec, link_info))
6797 	  return FALSE;
6798       }
6799 
6800   return TRUE;
6801 }
6802 
6803 
6804 /* Find all the sections that might be relaxed.  The motivation for
6805    this pass is that collect_source_relocs() needs to record _all_ the
6806    relocations that target each relaxable section.  That is expensive
6807    and unnecessary unless the target section is actually going to be
6808    relaxed.  This pass identifies all such sections by checking if
6809    they have L32Rs pointing to them.  In the process, the total number
6810    of relocations targeting each section is also counted so that we
6811    know how much space to allocate for source_relocs against each
6812    relaxable literal section.  */
6813 
6814 static bfd_boolean
find_relaxable_sections(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * is_relaxable_p)6815 find_relaxable_sections (bfd *abfd,
6816 			 asection *sec,
6817 			 struct bfd_link_info *link_info,
6818 			 bfd_boolean *is_relaxable_p)
6819 {
6820   Elf_Internal_Rela *internal_relocs;
6821   bfd_byte *contents;
6822   bfd_boolean ok = TRUE;
6823   unsigned i;
6824   xtensa_relax_info *source_relax_info;
6825   bfd_boolean is_l32r_reloc;
6826 
6827   internal_relocs = retrieve_internal_relocs (abfd, sec,
6828 					      link_info->keep_memory);
6829   if (internal_relocs == NULL)
6830     return ok;
6831 
6832   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6833   if (contents == NULL && sec->size != 0)
6834     {
6835       ok = FALSE;
6836       goto error_return;
6837     }
6838 
6839   source_relax_info = get_xtensa_relax_info (sec);
6840   for (i = 0; i < sec->reloc_count; i++)
6841     {
6842       Elf_Internal_Rela *irel = &internal_relocs[i];
6843       r_reloc r_rel;
6844       asection *target_sec;
6845       xtensa_relax_info *target_relax_info;
6846 
6847       /* If this section has not already been marked as "relaxable", and
6848 	 if it contains any ASM_EXPAND relocations (marking expanded
6849 	 longcalls) that can be optimized into direct calls, then mark
6850 	 the section as "relaxable".  */
6851       if (source_relax_info
6852 	  && !source_relax_info->is_relaxable_asm_section
6853 	  && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6854 	{
6855 	  bfd_boolean is_reachable = FALSE;
6856 	  if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6857 					   link_info, &is_reachable)
6858 	      && is_reachable)
6859 	    {
6860 	      source_relax_info->is_relaxable_asm_section = TRUE;
6861 	      *is_relaxable_p = TRUE;
6862 	    }
6863 	}
6864 
6865       r_reloc_init (&r_rel, abfd, irel, contents,
6866 		    bfd_get_section_limit (abfd, sec));
6867 
6868       target_sec = r_reloc_get_section (&r_rel);
6869       target_relax_info = get_xtensa_relax_info (target_sec);
6870       if (!target_relax_info)
6871 	continue;
6872 
6873       /* Count PC-relative operand relocations against the target section.
6874          Note: The conditions tested here must match the conditions under
6875 	 which init_source_reloc is called in collect_source_relocs().  */
6876       is_l32r_reloc = FALSE;
6877       if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6878 	{
6879 	  xtensa_opcode opcode =
6880 	    get_relocation_opcode (abfd, sec, contents, irel);
6881 	  if (opcode != XTENSA_UNDEFINED)
6882 	    {
6883 	      is_l32r_reloc = (opcode == get_l32r_opcode ());
6884 	      if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6885 		  || is_l32r_reloc)
6886 		target_relax_info->src_count++;
6887 	    }
6888 	}
6889 
6890       if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6891 	{
6892 	  /* Mark the target section as relaxable.  */
6893 	  target_relax_info->is_relaxable_literal_section = TRUE;
6894 	  *is_relaxable_p = TRUE;
6895 	}
6896     }
6897 
6898  error_return:
6899   release_contents (sec, contents);
6900   release_internal_relocs (sec, internal_relocs);
6901   return ok;
6902 }
6903 
6904 
6905 /* Record _all_ the relocations that point to relaxable sections, and
6906    get rid of ASM_EXPAND relocs by either converting them to
6907    ASM_SIMPLIFY or by removing them.  */
6908 
6909 static bfd_boolean
collect_source_relocs(bfd * abfd,asection * sec,struct bfd_link_info * link_info)6910 collect_source_relocs (bfd *abfd,
6911 		       asection *sec,
6912 		       struct bfd_link_info *link_info)
6913 {
6914   Elf_Internal_Rela *internal_relocs;
6915   bfd_byte *contents;
6916   bfd_boolean ok = TRUE;
6917   unsigned i;
6918   bfd_size_type sec_size;
6919 
6920   internal_relocs = retrieve_internal_relocs (abfd, sec,
6921 					      link_info->keep_memory);
6922   if (internal_relocs == NULL)
6923     return ok;
6924 
6925   sec_size = bfd_get_section_limit (abfd, sec);
6926   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6927   if (contents == NULL && sec_size != 0)
6928     {
6929       ok = FALSE;
6930       goto error_return;
6931     }
6932 
6933   /* Record relocations against relaxable literal sections.  */
6934   for (i = 0; i < sec->reloc_count; i++)
6935     {
6936       Elf_Internal_Rela *irel = &internal_relocs[i];
6937       r_reloc r_rel;
6938       asection *target_sec;
6939       xtensa_relax_info *target_relax_info;
6940 
6941       r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6942 
6943       target_sec = r_reloc_get_section (&r_rel);
6944       target_relax_info = get_xtensa_relax_info (target_sec);
6945 
6946       if (target_relax_info
6947 	  && (target_relax_info->is_relaxable_literal_section
6948 	      || target_relax_info->is_relaxable_asm_section))
6949 	{
6950 	  xtensa_opcode opcode = XTENSA_UNDEFINED;
6951 	  int opnd = -1;
6952 	  bfd_boolean is_abs_literal = FALSE;
6953 
6954 	  if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6955 	    {
6956 	      /* None of the current alternate relocs are PC-relative,
6957 		 and only PC-relative relocs matter here.  However, we
6958 		 still need to record the opcode for literal
6959 		 coalescing.  */
6960 	      opcode = get_relocation_opcode (abfd, sec, contents, irel);
6961 	      if (opcode == get_l32r_opcode ())
6962 		{
6963 		  is_abs_literal = TRUE;
6964 		  opnd = 1;
6965 		}
6966 	      else
6967 		opcode = XTENSA_UNDEFINED;
6968 	    }
6969 	  else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6970 	    {
6971 	      opcode = get_relocation_opcode (abfd, sec, contents, irel);
6972 	      opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6973 	    }
6974 
6975 	  if (opcode != XTENSA_UNDEFINED)
6976 	    {
6977 	      int src_next = target_relax_info->src_next++;
6978 	      source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6979 
6980 	      init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6981 				 is_abs_literal);
6982 	    }
6983 	}
6984     }
6985 
6986   /* Now get rid of ASM_EXPAND relocations.  At this point, the
6987      src_relocs array for the target literal section may still be
6988      incomplete, but it must at least contain the entries for the L32R
6989      relocations associated with ASM_EXPANDs because they were just
6990      added in the preceding loop over the relocations.  */
6991 
6992   for (i = 0; i < sec->reloc_count; i++)
6993     {
6994       Elf_Internal_Rela *irel = &internal_relocs[i];
6995       bfd_boolean is_reachable;
6996 
6997       if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6998 					&is_reachable))
6999 	continue;
7000 
7001       if (is_reachable)
7002 	{
7003 	  Elf_Internal_Rela *l32r_irel;
7004 	  r_reloc r_rel;
7005 	  asection *target_sec;
7006 	  xtensa_relax_info *target_relax_info;
7007 
7008 	  /* Mark the source_reloc for the L32R so that it will be
7009 	     removed in compute_removed_literals(), along with the
7010 	     associated literal.  */
7011 	  l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7012 						 irel, internal_relocs);
7013 	  if (l32r_irel == NULL)
7014 	    continue;
7015 
7016 	  r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7017 
7018 	  target_sec = r_reloc_get_section (&r_rel);
7019 	  target_relax_info = get_xtensa_relax_info (target_sec);
7020 
7021 	  if (target_relax_info
7022 	      && (target_relax_info->is_relaxable_literal_section
7023 		  || target_relax_info->is_relaxable_asm_section))
7024 	    {
7025 	      source_reloc *s_reloc;
7026 
7027 	      /* Search the source_relocs for the entry corresponding to
7028 		 the l32r_irel.  Note: The src_relocs array is not yet
7029 		 sorted, but it wouldn't matter anyway because we're
7030 		 searching by source offset instead of target offset.  */
7031 	      s_reloc = find_source_reloc (target_relax_info->src_relocs,
7032 					   target_relax_info->src_next,
7033 					   sec, l32r_irel);
7034 	      BFD_ASSERT (s_reloc);
7035 	      s_reloc->is_null = TRUE;
7036 	    }
7037 
7038 	  /* Convert this reloc to ASM_SIMPLIFY.  */
7039 	  irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7040 				       R_XTENSA_ASM_SIMPLIFY);
7041 	  l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7042 
7043 	  pin_internal_relocs (sec, internal_relocs);
7044 	}
7045       else
7046 	{
7047 	  /* It is resolvable but doesn't reach.  We resolve now
7048 	     by eliminating the relocation -- the call will remain
7049 	     expanded into L32R/CALLX.  */
7050 	  irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7051 	  pin_internal_relocs (sec, internal_relocs);
7052 	}
7053     }
7054 
7055  error_return:
7056   release_contents (sec, contents);
7057   release_internal_relocs (sec, internal_relocs);
7058   return ok;
7059 }
7060 
7061 
7062 /* Return TRUE if the asm expansion can be resolved.  Generally it can
7063    be resolved on a final link or when a partial link locates it in the
7064    same section as the target.  Set "is_reachable" flag if the target of
7065    the call is within the range of a direct call, given the current VMA
7066    for this section and the target section.  */
7067 
7068 bfd_boolean
is_resolvable_asm_expansion(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * irel,struct bfd_link_info * link_info,bfd_boolean * is_reachable_p)7069 is_resolvable_asm_expansion (bfd *abfd,
7070 			     asection *sec,
7071 			     bfd_byte *contents,
7072 			     Elf_Internal_Rela *irel,
7073 			     struct bfd_link_info *link_info,
7074 			     bfd_boolean *is_reachable_p)
7075 {
7076   asection *target_sec;
7077   bfd_vma target_offset;
7078   r_reloc r_rel;
7079   xtensa_opcode opcode, direct_call_opcode;
7080   bfd_vma self_address;
7081   bfd_vma dest_address;
7082   bfd_boolean uses_l32r;
7083   bfd_size_type sec_size;
7084 
7085   *is_reachable_p = FALSE;
7086 
7087   if (contents == NULL)
7088     return FALSE;
7089 
7090   if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7091     return FALSE;
7092 
7093   sec_size = bfd_get_section_limit (abfd, sec);
7094   opcode = get_expanded_call_opcode (contents + irel->r_offset,
7095 				     sec_size - irel->r_offset, &uses_l32r);
7096   /* Optimization of longcalls that use CONST16 is not yet implemented.  */
7097   if (!uses_l32r)
7098     return FALSE;
7099 
7100   direct_call_opcode = swap_callx_for_call_opcode (opcode);
7101   if (direct_call_opcode == XTENSA_UNDEFINED)
7102     return FALSE;
7103 
7104   /* Check and see that the target resolves.  */
7105   r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7106   if (!r_reloc_is_defined (&r_rel))
7107     return FALSE;
7108 
7109   target_sec = r_reloc_get_section (&r_rel);
7110   target_offset = r_rel.target_offset;
7111 
7112   /* If the target is in a shared library, then it doesn't reach.  This
7113      isn't supposed to come up because the compiler should never generate
7114      non-PIC calls on systems that use shared libraries, but the linker
7115      shouldn't crash regardless.  */
7116   if (!target_sec->output_section)
7117     return FALSE;
7118 
7119   /* For relocatable sections, we can only simplify when the output
7120      section of the target is the same as the output section of the
7121      source.  */
7122   if (link_info->relocatable
7123       && (target_sec->output_section != sec->output_section
7124 	  || is_reloc_sym_weak (abfd, irel)))
7125     return FALSE;
7126 
7127   if (target_sec->output_section != sec->output_section)
7128     {
7129       /* If the two sections are sufficiently far away that relaxation
7130 	 might take the call out of range, we can't simplify.  For
7131 	 example, a positive displacement call into another memory
7132 	 could get moved to a lower address due to literal removal,
7133 	 but the destination won't move, and so the displacment might
7134 	 get larger.
7135 
7136 	 If the displacement is negative, assume the destination could
7137 	 move as far back as the start of the output section.  The
7138 	 self_address will be at least as far into the output section
7139 	 as it is prior to relaxation.
7140 
7141 	 If the displacement is postive, assume the destination will be in
7142 	 it's pre-relaxed location (because relaxation only makes sections
7143 	 smaller).  The self_address could go all the way to the beginning
7144 	 of the output section.  */
7145 
7146       dest_address = target_sec->output_section->vma;
7147       self_address = sec->output_section->vma;
7148 
7149       if (sec->output_section->vma > target_sec->output_section->vma)
7150 	self_address += sec->output_offset + irel->r_offset + 3;
7151       else
7152 	dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7153       /* Call targets should be four-byte aligned.  */
7154       dest_address = (dest_address + 3) & ~3;
7155     }
7156   else
7157     {
7158 
7159       self_address = (sec->output_section->vma
7160 		      + sec->output_offset + irel->r_offset + 3);
7161       dest_address = (target_sec->output_section->vma
7162 		      + target_sec->output_offset + target_offset);
7163     }
7164 
7165   *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7166 				      self_address, dest_address);
7167 
7168   if ((self_address >> CALL_SEGMENT_BITS) !=
7169       (dest_address >> CALL_SEGMENT_BITS))
7170     return FALSE;
7171 
7172   return TRUE;
7173 }
7174 
7175 
7176 static Elf_Internal_Rela *
find_associated_l32r_irel(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * other_irel,Elf_Internal_Rela * internal_relocs)7177 find_associated_l32r_irel (bfd *abfd,
7178 			   asection *sec,
7179 			   bfd_byte *contents,
7180 			   Elf_Internal_Rela *other_irel,
7181 			   Elf_Internal_Rela *internal_relocs)
7182 {
7183   unsigned i;
7184 
7185   for (i = 0; i < sec->reloc_count; i++)
7186     {
7187       Elf_Internal_Rela *irel = &internal_relocs[i];
7188 
7189       if (irel == other_irel)
7190 	continue;
7191       if (irel->r_offset != other_irel->r_offset)
7192 	continue;
7193       if (is_l32r_relocation (abfd, sec, contents, irel))
7194 	return irel;
7195     }
7196 
7197   return NULL;
7198 }
7199 
7200 
7201 static xtensa_opcode *
build_reloc_opcodes(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * internal_relocs)7202 build_reloc_opcodes (bfd *abfd,
7203 		     asection *sec,
7204 		     bfd_byte *contents,
7205 		     Elf_Internal_Rela *internal_relocs)
7206 {
7207   unsigned i;
7208   xtensa_opcode *reloc_opcodes =
7209     (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7210   for (i = 0; i < sec->reloc_count; i++)
7211     {
7212       Elf_Internal_Rela *irel = &internal_relocs[i];
7213       reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7214     }
7215   return reloc_opcodes;
7216 }
7217 
7218 
7219 /* The compute_text_actions function will build a list of potential
7220    transformation actions for code in the extended basic block of each
7221    longcall that is optimized to a direct call.  From this list we
7222    generate a set of actions to actually perform that optimizes for
7223    space and, if not using size_opt, maintains branch target
7224    alignments.
7225 
7226    These actions to be performed are placed on a per-section list.
7227    The actual changes are performed by relax_section() in the second
7228    pass.  */
7229 
7230 bfd_boolean
compute_text_actions(bfd * abfd,asection * sec,struct bfd_link_info * link_info)7231 compute_text_actions (bfd *abfd,
7232 		      asection *sec,
7233 		      struct bfd_link_info *link_info)
7234 {
7235   xtensa_opcode *reloc_opcodes = NULL;
7236   xtensa_relax_info *relax_info;
7237   bfd_byte *contents;
7238   Elf_Internal_Rela *internal_relocs;
7239   bfd_boolean ok = TRUE;
7240   unsigned i;
7241   property_table_entry *prop_table = 0;
7242   int ptblsize = 0;
7243   bfd_size_type sec_size;
7244 
7245   relax_info = get_xtensa_relax_info (sec);
7246   BFD_ASSERT (relax_info);
7247   BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7248 
7249   /* Do nothing if the section contains no optimized longcalls.  */
7250   if (!relax_info->is_relaxable_asm_section)
7251     return ok;
7252 
7253   internal_relocs = retrieve_internal_relocs (abfd, sec,
7254 					      link_info->keep_memory);
7255 
7256   if (internal_relocs)
7257     qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7258 	   internal_reloc_compare);
7259 
7260   sec_size = bfd_get_section_limit (abfd, sec);
7261   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7262   if (contents == NULL && sec_size != 0)
7263     {
7264       ok = FALSE;
7265       goto error_return;
7266     }
7267 
7268   ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7269 					XTENSA_PROP_SEC_NAME, FALSE);
7270   if (ptblsize < 0)
7271     {
7272       ok = FALSE;
7273       goto error_return;
7274     }
7275 
7276   for (i = 0; i < sec->reloc_count; i++)
7277     {
7278       Elf_Internal_Rela *irel = &internal_relocs[i];
7279       bfd_vma r_offset;
7280       property_table_entry *the_entry;
7281       int ptbl_idx;
7282       ebb_t *ebb;
7283       ebb_constraint ebb_table;
7284       bfd_size_type simplify_size;
7285 
7286       if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7287 	continue;
7288       r_offset = irel->r_offset;
7289 
7290       simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7291       if (simplify_size == 0)
7292 	{
7293 	  (*_bfd_error_handler)
7294 	    (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7295 	     sec->owner, sec, r_offset);
7296 	  continue;
7297 	}
7298 
7299       /* If the instruction table is not around, then don't do this
7300 	 relaxation.  */
7301       the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7302 						  sec->vma + irel->r_offset);
7303       if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7304 	{
7305 	  text_action_add (&relax_info->action_list,
7306 			   ta_convert_longcall, sec, r_offset,
7307 			   0);
7308 	  continue;
7309 	}
7310 
7311       /* If the next longcall happens to be at the same address as an
7312 	 unreachable section of size 0, then skip forward.  */
7313       ptbl_idx = the_entry - prop_table;
7314       while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7315 	     && the_entry->size == 0
7316 	     && ptbl_idx + 1 < ptblsize
7317 	     && (prop_table[ptbl_idx + 1].address
7318 		 == prop_table[ptbl_idx].address))
7319 	{
7320 	  ptbl_idx++;
7321 	  the_entry++;
7322 	}
7323 
7324       if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7325 	  /* NO_REORDER is OK */
7326 	continue;
7327 
7328       init_ebb_constraint (&ebb_table);
7329       ebb = &ebb_table.ebb;
7330       init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7331 		internal_relocs, sec->reloc_count);
7332       ebb->start_offset = r_offset + simplify_size;
7333       ebb->end_offset = r_offset + simplify_size;
7334       ebb->start_ptbl_idx = ptbl_idx;
7335       ebb->end_ptbl_idx = ptbl_idx;
7336       ebb->start_reloc_idx = i;
7337       ebb->end_reloc_idx = i;
7338 
7339       /* Precompute the opcode for each relocation.  */
7340       if (reloc_opcodes == NULL)
7341 	reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
7342 					     internal_relocs);
7343 
7344       if (!extend_ebb_bounds (ebb)
7345 	  || !compute_ebb_proposed_actions (&ebb_table)
7346 	  || !compute_ebb_actions (&ebb_table)
7347 	  || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7348 					    internal_relocs, &ebb_table,
7349 					    reloc_opcodes)
7350 	  || !check_section_ebb_reduces (&ebb_table))
7351 	{
7352 	  /* If anything goes wrong or we get unlucky and something does
7353 	     not fit, with our plan because of expansion between
7354 	     critical branches, just convert to a NOP.  */
7355 
7356 	  text_action_add (&relax_info->action_list,
7357 			   ta_convert_longcall, sec, r_offset, 0);
7358 	  i = ebb_table.ebb.end_reloc_idx;
7359 	  free_ebb_constraint (&ebb_table);
7360 	  continue;
7361 	}
7362 
7363       text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7364 
7365       /* Update the index so we do not go looking at the relocations
7366 	 we have already processed.  */
7367       i = ebb_table.ebb.end_reloc_idx;
7368       free_ebb_constraint (&ebb_table);
7369     }
7370 
7371 #if DEBUG
7372   if (relax_info->action_list.head)
7373     print_action_list (stderr, &relax_info->action_list);
7374 #endif
7375 
7376 error_return:
7377   release_contents (sec, contents);
7378   release_internal_relocs (sec, internal_relocs);
7379   if (prop_table)
7380     free (prop_table);
7381   if (reloc_opcodes)
7382     free (reloc_opcodes);
7383 
7384   return ok;
7385 }
7386 
7387 
7388 /* Do not widen an instruction if it is preceeded by a
7389    loop opcode.  It might cause misalignment.  */
7390 
7391 static bfd_boolean
prev_instr_is_a_loop(bfd_byte * contents,bfd_size_type content_length,bfd_size_type offset)7392 prev_instr_is_a_loop (bfd_byte *contents,
7393 		      bfd_size_type content_length,
7394 		      bfd_size_type offset)
7395 {
7396   xtensa_opcode prev_opcode;
7397 
7398   if (offset < 3)
7399     return FALSE;
7400   prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7401   return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7402 }
7403 
7404 
7405 /* Find all of the possible actions for an extended basic block.  */
7406 
7407 bfd_boolean
compute_ebb_proposed_actions(ebb_constraint * ebb_table)7408 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7409 {
7410   const ebb_t *ebb = &ebb_table->ebb;
7411   unsigned rel_idx = ebb->start_reloc_idx;
7412   property_table_entry *entry, *start_entry, *end_entry;
7413   bfd_vma offset = 0;
7414   xtensa_isa isa = xtensa_default_isa;
7415   xtensa_format fmt;
7416   static xtensa_insnbuf insnbuf = NULL;
7417   static xtensa_insnbuf slotbuf = NULL;
7418 
7419   if (insnbuf == NULL)
7420     {
7421       insnbuf = xtensa_insnbuf_alloc (isa);
7422       slotbuf = xtensa_insnbuf_alloc (isa);
7423     }
7424 
7425   start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7426   end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7427 
7428   for (entry = start_entry; entry <= end_entry; entry++)
7429     {
7430       bfd_vma start_offset, end_offset;
7431       bfd_size_type insn_len;
7432 
7433       start_offset = entry->address - ebb->sec->vma;
7434       end_offset = entry->address + entry->size - ebb->sec->vma;
7435 
7436       if (entry == start_entry)
7437 	start_offset = ebb->start_offset;
7438       if (entry == end_entry)
7439 	end_offset = ebb->end_offset;
7440       offset = start_offset;
7441 
7442       if (offset == entry->address - ebb->sec->vma
7443 	  && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7444 	{
7445 	  enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7446 	  BFD_ASSERT (offset != end_offset);
7447 	  if (offset == end_offset)
7448 	    return FALSE;
7449 
7450 	  insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7451 				      offset);
7452 	  if (insn_len == 0)
7453 	    goto decode_error;
7454 
7455 	  if (check_branch_target_aligned_address (offset, insn_len))
7456 	    align_type = EBB_REQUIRE_TGT_ALIGN;
7457 
7458 	  ebb_propose_action (ebb_table, align_type, 0,
7459 			      ta_none, offset, 0, TRUE);
7460 	}
7461 
7462       while (offset != end_offset)
7463 	{
7464 	  Elf_Internal_Rela *irel;
7465 	  xtensa_opcode opcode;
7466 
7467 	  while (rel_idx < ebb->end_reloc_idx
7468 		 && (ebb->relocs[rel_idx].r_offset < offset
7469 		     || (ebb->relocs[rel_idx].r_offset == offset
7470 			 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7471 			     != R_XTENSA_ASM_SIMPLIFY))))
7472 	    rel_idx++;
7473 
7474 	  /* Check for longcall.  */
7475 	  irel = &ebb->relocs[rel_idx];
7476 	  if (irel->r_offset == offset
7477 	      && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7478 	    {
7479 	      bfd_size_type simplify_size;
7480 
7481 	      simplify_size = get_asm_simplify_size (ebb->contents,
7482 						     ebb->content_length,
7483 						     irel->r_offset);
7484 	      if (simplify_size == 0)
7485 		goto decode_error;
7486 
7487 	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7488 				  ta_convert_longcall, offset, 0, TRUE);
7489 
7490 	      offset += simplify_size;
7491 	      continue;
7492 	    }
7493 
7494 	  if (offset + MIN_INSN_LENGTH > ebb->content_length)
7495 	    goto decode_error;
7496 	  xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7497 				     ebb->content_length - offset);
7498 	  fmt = xtensa_format_decode (isa, insnbuf);
7499 	  if (fmt == XTENSA_UNDEFINED)
7500 	    goto decode_error;
7501 	  insn_len = xtensa_format_length (isa, fmt);
7502 	  if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7503 	    goto decode_error;
7504 
7505 	  if (xtensa_format_num_slots (isa, fmt) != 1)
7506 	    {
7507 	      offset += insn_len;
7508 	      continue;
7509 	    }
7510 
7511 	  xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7512 	  opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7513 	  if (opcode == XTENSA_UNDEFINED)
7514 	    goto decode_error;
7515 
7516 	  if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7517 	      && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7518 	      && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7519 	    {
7520 	      /* Add an instruction narrow action.  */
7521 	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7522 				  ta_narrow_insn, offset, 0, FALSE);
7523 	    }
7524 	  else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7525 		   && can_widen_instruction (slotbuf, fmt, opcode) != 0
7526 		   && ! prev_instr_is_a_loop (ebb->contents,
7527 					      ebb->content_length, offset))
7528 	    {
7529 	      /* Add an instruction widen action.  */
7530 	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7531 				  ta_widen_insn, offset, 0, FALSE);
7532 	    }
7533 	  else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7534 	    {
7535 	      /* Check for branch targets.  */
7536 	      ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7537 				  ta_none, offset, 0, TRUE);
7538 	    }
7539 
7540 	  offset += insn_len;
7541 	}
7542     }
7543 
7544   if (ebb->ends_unreachable)
7545     {
7546       ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7547 			  ta_fill, ebb->end_offset, 0, TRUE);
7548     }
7549 
7550   return TRUE;
7551 
7552  decode_error:
7553   (*_bfd_error_handler)
7554     (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7555      ebb->sec->owner, ebb->sec, offset);
7556   return FALSE;
7557 }
7558 
7559 
7560 /* After all of the information has collected about the
7561    transformations possible in an EBB, compute the appropriate actions
7562    here in compute_ebb_actions.  We still must check later to make
7563    sure that the actions do not break any relocations.  The algorithm
7564    used here is pretty greedy.  Basically, it removes as many no-ops
7565    as possible so that the end of the EBB has the same alignment
7566    characteristics as the original.  First, it uses narrowing, then
7567    fill space at the end of the EBB, and finally widenings.  If that
7568    does not work, it tries again with one fewer no-op removed.  The
7569    optimization will only be performed if all of the branch targets
7570    that were aligned before transformation are also aligned after the
7571    transformation.
7572 
7573    When the size_opt flag is set, ignore the branch target alignments,
7574    narrow all wide instructions, and remove all no-ops unless the end
7575    of the EBB prevents it.  */
7576 
7577 bfd_boolean
compute_ebb_actions(ebb_constraint * ebb_table)7578 compute_ebb_actions (ebb_constraint *ebb_table)
7579 {
7580   unsigned i = 0;
7581   unsigned j;
7582   int removed_bytes = 0;
7583   ebb_t *ebb = &ebb_table->ebb;
7584   unsigned seg_idx_start = 0;
7585   unsigned seg_idx_end = 0;
7586 
7587   /* We perform this like the assembler relaxation algorithm: Start by
7588      assuming all instructions are narrow and all no-ops removed; then
7589      walk through....  */
7590 
7591   /* For each segment of this that has a solid constraint, check to
7592      see if there are any combinations that will keep the constraint.
7593      If so, use it.  */
7594   for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7595     {
7596       bfd_boolean requires_text_end_align = FALSE;
7597       unsigned longcall_count = 0;
7598       unsigned longcall_convert_count = 0;
7599       unsigned narrowable_count = 0;
7600       unsigned narrowable_convert_count = 0;
7601       unsigned widenable_count = 0;
7602       unsigned widenable_convert_count = 0;
7603 
7604       proposed_action *action = NULL;
7605       int align = (1 << ebb_table->ebb.sec->alignment_power);
7606 
7607       seg_idx_start = seg_idx_end;
7608 
7609       for (i = seg_idx_start; i < ebb_table->action_count; i++)
7610 	{
7611 	  action = &ebb_table->actions[i];
7612 	  if (action->action == ta_convert_longcall)
7613 	    longcall_count++;
7614 	  if (action->action == ta_narrow_insn)
7615 	    narrowable_count++;
7616 	  if (action->action == ta_widen_insn)
7617 	    widenable_count++;
7618 	  if (action->action == ta_fill)
7619 	    break;
7620 	  if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7621 	    break;
7622 	  if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7623 	      && !elf32xtensa_size_opt)
7624 	    break;
7625 	}
7626       seg_idx_end = i;
7627 
7628       if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7629 	requires_text_end_align = TRUE;
7630 
7631       if (elf32xtensa_size_opt && !requires_text_end_align
7632 	  && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7633 	  && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7634 	{
7635 	  longcall_convert_count = longcall_count;
7636 	  narrowable_convert_count = narrowable_count;
7637 	  widenable_convert_count = 0;
7638 	}
7639       else
7640 	{
7641 	  /* There is a constraint.  Convert the max number of longcalls.  */
7642 	  narrowable_convert_count = 0;
7643 	  longcall_convert_count = 0;
7644 	  widenable_convert_count = 0;
7645 
7646 	  for (j = 0; j < longcall_count; j++)
7647 	    {
7648 	      int removed = (longcall_count - j) * 3 & (align - 1);
7649 	      unsigned desire_narrow = (align - removed) & (align - 1);
7650 	      unsigned desire_widen = removed;
7651 	      if (desire_narrow <= narrowable_count)
7652 		{
7653 		  narrowable_convert_count = desire_narrow;
7654 		  narrowable_convert_count +=
7655 		    (align * ((narrowable_count - narrowable_convert_count)
7656 			      / align));
7657 		  longcall_convert_count = (longcall_count - j);
7658 		  widenable_convert_count = 0;
7659 		  break;
7660 		}
7661 	      if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7662 		{
7663 		  narrowable_convert_count = 0;
7664 		  longcall_convert_count = longcall_count - j;
7665 		  widenable_convert_count = desire_widen;
7666 		  break;
7667 		}
7668 	    }
7669 	}
7670 
7671       /* Now the number of conversions are saved.  Do them.  */
7672       for (i = seg_idx_start; i < seg_idx_end; i++)
7673 	{
7674 	  action = &ebb_table->actions[i];
7675 	  switch (action->action)
7676 	    {
7677 	    case ta_convert_longcall:
7678 	      if (longcall_convert_count != 0)
7679 		{
7680 		  action->action = ta_remove_longcall;
7681 		  action->do_action = TRUE;
7682 		  action->removed_bytes += 3;
7683 		  longcall_convert_count--;
7684 		}
7685 	      break;
7686 	    case ta_narrow_insn:
7687 	      if (narrowable_convert_count != 0)
7688 		{
7689 		  action->do_action = TRUE;
7690 		  action->removed_bytes += 1;
7691 		  narrowable_convert_count--;
7692 		}
7693 	      break;
7694 	    case ta_widen_insn:
7695 	      if (widenable_convert_count != 0)
7696 		{
7697 		  action->do_action = TRUE;
7698 		  action->removed_bytes -= 1;
7699 		  widenable_convert_count--;
7700 		}
7701 	      break;
7702 	    default:
7703 	      break;
7704 	    }
7705 	}
7706     }
7707 
7708   /* Now we move on to some local opts.  Try to remove each of the
7709      remaining longcalls.  */
7710 
7711   if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7712     {
7713       removed_bytes = 0;
7714       for (i = 0; i < ebb_table->action_count; i++)
7715 	{
7716 	  int old_removed_bytes = removed_bytes;
7717 	  proposed_action *action = &ebb_table->actions[i];
7718 
7719 	  if (action->do_action && action->action == ta_convert_longcall)
7720 	    {
7721 	      bfd_boolean bad_alignment = FALSE;
7722 	      removed_bytes += 3;
7723 	      for (j = i + 1; j < ebb_table->action_count; j++)
7724 		{
7725 		  proposed_action *new_action = &ebb_table->actions[j];
7726 		  bfd_vma offset = new_action->offset;
7727 		  if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7728 		    {
7729 		      if (!check_branch_target_aligned
7730 			  (ebb_table->ebb.contents,
7731 			   ebb_table->ebb.content_length,
7732 			   offset, offset - removed_bytes))
7733 			{
7734 			  bad_alignment = TRUE;
7735 			  break;
7736 			}
7737 		    }
7738 		  if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7739 		    {
7740 		      if (!check_loop_aligned (ebb_table->ebb.contents,
7741 					       ebb_table->ebb.content_length,
7742 					       offset,
7743 					       offset - removed_bytes))
7744 			{
7745 			  bad_alignment = TRUE;
7746 			  break;
7747 			}
7748 		    }
7749 		  if (new_action->action == ta_narrow_insn
7750 		      && !new_action->do_action
7751 		      && ebb_table->ebb.sec->alignment_power == 2)
7752 		    {
7753 		      /* Narrow an instruction and we are done.  */
7754 		      new_action->do_action = TRUE;
7755 		      new_action->removed_bytes += 1;
7756 		      bad_alignment = FALSE;
7757 		      break;
7758 		    }
7759 		  if (new_action->action == ta_widen_insn
7760 		      && new_action->do_action
7761 		      && ebb_table->ebb.sec->alignment_power == 2)
7762 		    {
7763 		      /* Narrow an instruction and we are done.  */
7764 		      new_action->do_action = FALSE;
7765 		      new_action->removed_bytes += 1;
7766 		      bad_alignment = FALSE;
7767 		      break;
7768 		    }
7769 		  if (new_action->do_action)
7770 		    removed_bytes += new_action->removed_bytes;
7771 		}
7772 	      if (!bad_alignment)
7773 		{
7774 		  action->removed_bytes += 3;
7775 		  action->action = ta_remove_longcall;
7776 		  action->do_action = TRUE;
7777 		}
7778 	    }
7779 	  removed_bytes = old_removed_bytes;
7780 	  if (action->do_action)
7781 	    removed_bytes += action->removed_bytes;
7782 	}
7783     }
7784 
7785   removed_bytes = 0;
7786   for (i = 0; i < ebb_table->action_count; ++i)
7787     {
7788       proposed_action *action = &ebb_table->actions[i];
7789       if (action->do_action)
7790 	removed_bytes += action->removed_bytes;
7791     }
7792 
7793   if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
7794       && ebb->ends_unreachable)
7795     {
7796       proposed_action *action;
7797       int br;
7798       int extra_space;
7799 
7800       BFD_ASSERT (ebb_table->action_count != 0);
7801       action = &ebb_table->actions[ebb_table->action_count - 1];
7802       BFD_ASSERT (action->action == ta_fill);
7803       BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
7804 
7805       extra_space = compute_fill_extra_space (ebb->ends_unreachable);
7806       br = action->removed_bytes + removed_bytes + extra_space;
7807       br = br & ((1 << ebb->sec->alignment_power ) - 1);
7808 
7809       action->removed_bytes = extra_space - br;
7810     }
7811   return TRUE;
7812 }
7813 
7814 
7815 /* The xlate_map is a sorted array of address mappings designed to
7816    answer the offset_with_removed_text() query with a binary search instead
7817    of a linear search through the section's action_list.  */
7818 
7819 typedef struct xlate_map_entry xlate_map_entry_t;
7820 typedef struct xlate_map xlate_map_t;
7821 
7822 struct xlate_map_entry
7823 {
7824   unsigned orig_address;
7825   unsigned new_address;
7826   unsigned size;
7827 };
7828 
7829 struct xlate_map
7830 {
7831   unsigned entry_count;
7832   xlate_map_entry_t *entry;
7833 };
7834 
7835 
7836 static int
xlate_compare(const void * a_v,const void * b_v)7837 xlate_compare (const void *a_v, const void *b_v)
7838 {
7839   const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7840   const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7841   if (a->orig_address < b->orig_address)
7842     return -1;
7843   if (a->orig_address > (b->orig_address + b->size - 1))
7844     return 1;
7845   return 0;
7846 }
7847 
7848 
7849 static bfd_vma
xlate_offset_with_removed_text(const xlate_map_t * map,text_action_list * action_list,bfd_vma offset)7850 xlate_offset_with_removed_text (const xlate_map_t *map,
7851 				text_action_list *action_list,
7852 				bfd_vma offset)
7853 {
7854   void *r;
7855   xlate_map_entry_t *e;
7856 
7857   if (map == NULL)
7858     return offset_with_removed_text (action_list, offset);
7859 
7860   if (map->entry_count == 0)
7861     return offset;
7862 
7863   r = bsearch (&offset, map->entry, map->entry_count,
7864 	       sizeof (xlate_map_entry_t), &xlate_compare);
7865   e = (xlate_map_entry_t *) r;
7866 
7867   BFD_ASSERT (e != NULL);
7868   if (e == NULL)
7869     return offset;
7870   return e->new_address - e->orig_address + offset;
7871 }
7872 
7873 
7874 /* Build a binary searchable offset translation map from a section's
7875    action list.  */
7876 
7877 static xlate_map_t *
build_xlate_map(asection * sec,xtensa_relax_info * relax_info)7878 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7879 {
7880   xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7881   text_action_list *action_list = &relax_info->action_list;
7882   unsigned num_actions = 0;
7883   text_action *r;
7884   int removed;
7885   xlate_map_entry_t *current_entry;
7886 
7887   if (map == NULL)
7888     return NULL;
7889 
7890   num_actions = action_list_count (action_list);
7891   map->entry = (xlate_map_entry_t *)
7892     bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7893   if (map->entry == NULL)
7894     {
7895       free (map);
7896       return NULL;
7897     }
7898   map->entry_count = 0;
7899 
7900   removed = 0;
7901   current_entry = &map->entry[0];
7902 
7903   current_entry->orig_address = 0;
7904   current_entry->new_address = 0;
7905   current_entry->size = 0;
7906 
7907   for (r = action_list->head; r != NULL; r = r->next)
7908     {
7909       unsigned orig_size = 0;
7910       switch (r->action)
7911 	{
7912 	case ta_none:
7913 	case ta_remove_insn:
7914 	case ta_convert_longcall:
7915 	case ta_remove_literal:
7916 	case ta_add_literal:
7917 	  break;
7918 	case ta_remove_longcall:
7919 	  orig_size = 6;
7920 	  break;
7921 	case ta_narrow_insn:
7922 	  orig_size = 3;
7923 	  break;
7924 	case ta_widen_insn:
7925 	  orig_size = 2;
7926 	  break;
7927 	case ta_fill:
7928 	  break;
7929 	}
7930       current_entry->size =
7931 	r->offset + orig_size - current_entry->orig_address;
7932       if (current_entry->size != 0)
7933 	{
7934 	  current_entry++;
7935 	  map->entry_count++;
7936 	}
7937       current_entry->orig_address = r->offset + orig_size;
7938       removed += r->removed_bytes;
7939       current_entry->new_address = r->offset + orig_size - removed;
7940       current_entry->size = 0;
7941     }
7942 
7943   current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7944 			 - current_entry->orig_address);
7945   if (current_entry->size != 0)
7946     map->entry_count++;
7947 
7948   return map;
7949 }
7950 
7951 
7952 /* Free an offset translation map.  */
7953 
7954 static void
free_xlate_map(xlate_map_t * map)7955 free_xlate_map (xlate_map_t *map)
7956 {
7957   if (map && map->entry)
7958     free (map->entry);
7959   if (map)
7960     free (map);
7961 }
7962 
7963 
7964 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7965    relocations in a section will fit if a proposed set of actions
7966    are performed.  */
7967 
7968 static bfd_boolean
check_section_ebb_pcrels_fit(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * internal_relocs,const ebb_constraint * constraint,const xtensa_opcode * reloc_opcodes)7969 check_section_ebb_pcrels_fit (bfd *abfd,
7970 			      asection *sec,
7971 			      bfd_byte *contents,
7972 			      Elf_Internal_Rela *internal_relocs,
7973 			      const ebb_constraint *constraint,
7974 			      const xtensa_opcode *reloc_opcodes)
7975 {
7976   unsigned i, j;
7977   Elf_Internal_Rela *irel;
7978   xlate_map_t *xmap = NULL;
7979   bfd_boolean ok = TRUE;
7980   xtensa_relax_info *relax_info;
7981 
7982   relax_info = get_xtensa_relax_info (sec);
7983 
7984   if (relax_info && sec->reloc_count > 100)
7985     {
7986       xmap = build_xlate_map (sec, relax_info);
7987       /* NULL indicates out of memory, but the slow version
7988 	 can still be used.  */
7989     }
7990 
7991   for (i = 0; i < sec->reloc_count; i++)
7992     {
7993       r_reloc r_rel;
7994       bfd_vma orig_self_offset, orig_target_offset;
7995       bfd_vma self_offset, target_offset;
7996       int r_type;
7997       reloc_howto_type *howto;
7998       int self_removed_bytes, target_removed_bytes;
7999 
8000       irel = &internal_relocs[i];
8001       r_type = ELF32_R_TYPE (irel->r_info);
8002 
8003       howto = &elf_howto_table[r_type];
8004       /* We maintain the required invariant: PC-relative relocations
8005 	 that fit before linking must fit after linking.  Thus we only
8006 	 need to deal with relocations to the same section that are
8007 	 PC-relative.  */
8008       if (r_type == R_XTENSA_ASM_SIMPLIFY
8009 	  || r_type == R_XTENSA_32_PCREL
8010 	  || !howto->pc_relative)
8011 	continue;
8012 
8013       r_reloc_init (&r_rel, abfd, irel, contents,
8014 		    bfd_get_section_limit (abfd, sec));
8015 
8016       if (r_reloc_get_section (&r_rel) != sec)
8017 	continue;
8018 
8019       orig_self_offset = irel->r_offset;
8020       orig_target_offset = r_rel.target_offset;
8021 
8022       self_offset = orig_self_offset;
8023       target_offset = orig_target_offset;
8024 
8025       if (relax_info)
8026 	{
8027 	  self_offset =
8028 	    xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8029 					    orig_self_offset);
8030 	  target_offset =
8031 	    xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8032 					    orig_target_offset);
8033 	}
8034 
8035       self_removed_bytes = 0;
8036       target_removed_bytes = 0;
8037 
8038       for (j = 0; j < constraint->action_count; ++j)
8039 	{
8040 	  proposed_action *action = &constraint->actions[j];
8041 	  bfd_vma offset = action->offset;
8042 	  int removed_bytes = action->removed_bytes;
8043 	  if (offset < orig_self_offset
8044 	      || (offset == orig_self_offset && action->action == ta_fill
8045 		  && action->removed_bytes < 0))
8046 	    self_removed_bytes += removed_bytes;
8047 	  if (offset < orig_target_offset
8048 	      || (offset == orig_target_offset && action->action == ta_fill
8049 		  && action->removed_bytes < 0))
8050 	    target_removed_bytes += removed_bytes;
8051 	}
8052       self_offset -= self_removed_bytes;
8053       target_offset -= target_removed_bytes;
8054 
8055       /* Try to encode it.  Get the operand and check.  */
8056       if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8057 	{
8058 	  /* None of the current alternate relocs are PC-relative,
8059 	     and only PC-relative relocs matter here.  */
8060 	}
8061       else
8062 	{
8063 	  xtensa_opcode opcode;
8064 	  int opnum;
8065 
8066 	  if (reloc_opcodes)
8067 	    opcode = reloc_opcodes[i];
8068 	  else
8069 	    opcode = get_relocation_opcode (abfd, sec, contents, irel);
8070 	  if (opcode == XTENSA_UNDEFINED)
8071 	    {
8072 	      ok = FALSE;
8073 	      break;
8074 	    }
8075 
8076 	  opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8077 	  if (opnum == XTENSA_UNDEFINED)
8078 	    {
8079 	      ok = FALSE;
8080 	      break;
8081 	    }
8082 
8083 	  if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8084 	    {
8085 	      ok = FALSE;
8086 	      break;
8087 	    }
8088 	}
8089     }
8090 
8091   if (xmap)
8092     free_xlate_map (xmap);
8093 
8094   return ok;
8095 }
8096 
8097 
8098 static bfd_boolean
check_section_ebb_reduces(const ebb_constraint * constraint)8099 check_section_ebb_reduces (const ebb_constraint *constraint)
8100 {
8101   int removed = 0;
8102   unsigned i;
8103 
8104   for (i = 0; i < constraint->action_count; i++)
8105     {
8106       const proposed_action *action = &constraint->actions[i];
8107       if (action->do_action)
8108 	removed += action->removed_bytes;
8109     }
8110   if (removed < 0)
8111     return FALSE;
8112 
8113   return TRUE;
8114 }
8115 
8116 
8117 void
text_action_add_proposed(text_action_list * l,const ebb_constraint * ebb_table,asection * sec)8118 text_action_add_proposed (text_action_list *l,
8119 			  const ebb_constraint *ebb_table,
8120 			  asection *sec)
8121 {
8122   unsigned i;
8123 
8124   for (i = 0; i < ebb_table->action_count; i++)
8125     {
8126       proposed_action *action = &ebb_table->actions[i];
8127 
8128       if (!action->do_action)
8129 	continue;
8130       switch (action->action)
8131 	{
8132 	case ta_remove_insn:
8133 	case ta_remove_longcall:
8134 	case ta_convert_longcall:
8135 	case ta_narrow_insn:
8136 	case ta_widen_insn:
8137 	case ta_fill:
8138 	case ta_remove_literal:
8139 	  text_action_add (l, action->action, sec, action->offset,
8140 			   action->removed_bytes);
8141 	  break;
8142 	case ta_none:
8143 	  break;
8144 	default:
8145 	  BFD_ASSERT (0);
8146 	  break;
8147 	}
8148     }
8149 }
8150 
8151 
8152 int
compute_fill_extra_space(property_table_entry * entry)8153 compute_fill_extra_space (property_table_entry *entry)
8154 {
8155   int fill_extra_space;
8156 
8157   if (!entry)
8158     return 0;
8159 
8160   if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8161     return 0;
8162 
8163   fill_extra_space = entry->size;
8164   if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8165     {
8166       /* Fill bytes for alignment:
8167 	 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8168       int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8169       int nsm = (1 << pow) - 1;
8170       bfd_vma addr = entry->address + entry->size;
8171       bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8172       fill_extra_space += align_fill;
8173     }
8174   return fill_extra_space;
8175 }
8176 
8177 
8178 /* First relaxation pass.  */
8179 
8180 /* If the section contains relaxable literals, check each literal to
8181    see if it has the same value as another literal that has already
8182    been seen, either in the current section or a previous one.  If so,
8183    add an entry to the per-section list of removed literals.  The
8184    actual changes are deferred until the next pass.  */
8185 
8186 static bfd_boolean
compute_removed_literals(bfd * abfd,asection * sec,struct bfd_link_info * link_info,value_map_hash_table * values)8187 compute_removed_literals (bfd *abfd,
8188 			  asection *sec,
8189 			  struct bfd_link_info *link_info,
8190 			  value_map_hash_table *values)
8191 {
8192   xtensa_relax_info *relax_info;
8193   bfd_byte *contents;
8194   Elf_Internal_Rela *internal_relocs;
8195   source_reloc *src_relocs, *rel;
8196   bfd_boolean ok = TRUE;
8197   property_table_entry *prop_table = NULL;
8198   int ptblsize;
8199   int i, prev_i;
8200   bfd_boolean last_loc_is_prev = FALSE;
8201   bfd_vma last_target_offset = 0;
8202   section_cache_t target_sec_cache;
8203   bfd_size_type sec_size;
8204 
8205   init_section_cache (&target_sec_cache);
8206 
8207   /* Do nothing if it is not a relaxable literal section.  */
8208   relax_info = get_xtensa_relax_info (sec);
8209   BFD_ASSERT (relax_info);
8210   if (!relax_info->is_relaxable_literal_section)
8211     return ok;
8212 
8213   internal_relocs = retrieve_internal_relocs (abfd, sec,
8214 					      link_info->keep_memory);
8215 
8216   sec_size = bfd_get_section_limit (abfd, sec);
8217   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8218   if (contents == NULL && sec_size != 0)
8219     {
8220       ok = FALSE;
8221       goto error_return;
8222     }
8223 
8224   /* Sort the source_relocs by target offset.  */
8225   src_relocs = relax_info->src_relocs;
8226   qsort (src_relocs, relax_info->src_count,
8227 	 sizeof (source_reloc), source_reloc_compare);
8228   qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8229 	 internal_reloc_compare);
8230 
8231   ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8232 					XTENSA_PROP_SEC_NAME, FALSE);
8233   if (ptblsize < 0)
8234     {
8235       ok = FALSE;
8236       goto error_return;
8237     }
8238 
8239   prev_i = -1;
8240   for (i = 0; i < relax_info->src_count; i++)
8241     {
8242       Elf_Internal_Rela *irel = NULL;
8243 
8244       rel = &src_relocs[i];
8245       if (get_l32r_opcode () != rel->opcode)
8246 	continue;
8247       irel = get_irel_at_offset (sec, internal_relocs,
8248 				 rel->r_rel.target_offset);
8249 
8250       /* If the relocation on this is not a simple R_XTENSA_32 or
8251 	 R_XTENSA_PLT then do not consider it.  This may happen when
8252 	 the difference of two symbols is used in a literal.  */
8253       if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8254 		   && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8255 	continue;
8256 
8257       /* If the target_offset for this relocation is the same as the
8258 	 previous relocation, then we've already considered whether the
8259 	 literal can be coalesced.  Skip to the next one....  */
8260       if (i != 0 && prev_i != -1
8261 	  && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8262 	continue;
8263       prev_i = i;
8264 
8265       if (last_loc_is_prev &&
8266 	  last_target_offset + 4 != rel->r_rel.target_offset)
8267 	last_loc_is_prev = FALSE;
8268 
8269       /* Check if the relocation was from an L32R that is being removed
8270 	 because a CALLX was converted to a direct CALL, and check if
8271 	 there are no other relocations to the literal.  */
8272       if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8273 				sec, prop_table, ptblsize))
8274 	{
8275 	  if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8276 				    irel, rel, prop_table, ptblsize))
8277 	    {
8278 	      ok = FALSE;
8279 	      goto error_return;
8280 	    }
8281 	  last_target_offset = rel->r_rel.target_offset;
8282 	  continue;
8283 	}
8284 
8285       if (!identify_literal_placement (abfd, sec, contents, link_info,
8286 				       values,
8287 				       &last_loc_is_prev, irel,
8288 				       relax_info->src_count - i, rel,
8289 				       prop_table, ptblsize,
8290 				       &target_sec_cache, rel->is_abs_literal))
8291 	{
8292 	  ok = FALSE;
8293 	  goto error_return;
8294 	}
8295       last_target_offset = rel->r_rel.target_offset;
8296     }
8297 
8298 #if DEBUG
8299   print_removed_literals (stderr, &relax_info->removed_list);
8300   print_action_list (stderr, &relax_info->action_list);
8301 #endif /* DEBUG */
8302 
8303 error_return:
8304   if (prop_table)
8305     free (prop_table);
8306   free_section_cache (&target_sec_cache);
8307 
8308   release_contents (sec, contents);
8309   release_internal_relocs (sec, internal_relocs);
8310   return ok;
8311 }
8312 
8313 
8314 static Elf_Internal_Rela *
get_irel_at_offset(asection * sec,Elf_Internal_Rela * internal_relocs,bfd_vma offset)8315 get_irel_at_offset (asection *sec,
8316 		    Elf_Internal_Rela *internal_relocs,
8317 		    bfd_vma offset)
8318 {
8319   unsigned i;
8320   Elf_Internal_Rela *irel;
8321   unsigned r_type;
8322   Elf_Internal_Rela key;
8323 
8324   if (!internal_relocs)
8325     return NULL;
8326 
8327   key.r_offset = offset;
8328   irel = bsearch (&key, internal_relocs, sec->reloc_count,
8329 		  sizeof (Elf_Internal_Rela), internal_reloc_matches);
8330   if (!irel)
8331     return NULL;
8332 
8333   /* bsearch does not guarantee which will be returned if there are
8334      multiple matches.  We need the first that is not an alignment.  */
8335   i = irel - internal_relocs;
8336   while (i > 0)
8337     {
8338       if (internal_relocs[i-1].r_offset != offset)
8339 	break;
8340       i--;
8341     }
8342   for ( ; i < sec->reloc_count; i++)
8343     {
8344       irel = &internal_relocs[i];
8345       r_type = ELF32_R_TYPE (irel->r_info);
8346       if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8347 	return irel;
8348     }
8349 
8350   return NULL;
8351 }
8352 
8353 
8354 bfd_boolean
is_removable_literal(const source_reloc * rel,int i,const source_reloc * src_relocs,int src_count,asection * sec,property_table_entry * prop_table,int ptblsize)8355 is_removable_literal (const source_reloc *rel,
8356 		      int i,
8357 		      const source_reloc *src_relocs,
8358 		      int src_count,
8359 		      asection *sec,
8360 		      property_table_entry *prop_table,
8361 		      int ptblsize)
8362 {
8363   const source_reloc *curr_rel;
8364   property_table_entry *entry;
8365 
8366   if (!rel->is_null)
8367     return FALSE;
8368 
8369   entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8370 					  sec->vma + rel->r_rel.target_offset);
8371   if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8372     return FALSE;
8373 
8374   for (++i; i < src_count; ++i)
8375     {
8376       curr_rel = &src_relocs[i];
8377       /* If all others have the same target offset....  */
8378       if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8379 	return TRUE;
8380 
8381       if (!curr_rel->is_null
8382 	  && !xtensa_is_property_section (curr_rel->source_sec)
8383 	  && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8384 	return FALSE;
8385     }
8386   return TRUE;
8387 }
8388 
8389 
8390 bfd_boolean
remove_dead_literal(bfd * abfd,asection * sec,struct bfd_link_info * link_info,Elf_Internal_Rela * internal_relocs,Elf_Internal_Rela * irel,source_reloc * rel,property_table_entry * prop_table,int ptblsize)8391 remove_dead_literal (bfd *abfd,
8392 		     asection *sec,
8393 		     struct bfd_link_info *link_info,
8394 		     Elf_Internal_Rela *internal_relocs,
8395 		     Elf_Internal_Rela *irel,
8396 		     source_reloc *rel,
8397 		     property_table_entry *prop_table,
8398 		     int ptblsize)
8399 {
8400   property_table_entry *entry;
8401   xtensa_relax_info *relax_info;
8402 
8403   relax_info = get_xtensa_relax_info (sec);
8404   if (!relax_info)
8405     return FALSE;
8406 
8407   entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8408 					  sec->vma + rel->r_rel.target_offset);
8409 
8410   /* Mark the unused literal so that it will be removed.  */
8411   add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8412 
8413   text_action_add (&relax_info->action_list,
8414 		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8415 
8416   /* If the section is 4-byte aligned, do not add fill.  */
8417   if (sec->alignment_power > 2)
8418     {
8419       int fill_extra_space;
8420       bfd_vma entry_sec_offset;
8421       text_action *fa;
8422       property_table_entry *the_add_entry;
8423       int removed_diff;
8424 
8425       if (entry)
8426 	entry_sec_offset = entry->address - sec->vma + entry->size;
8427       else
8428 	entry_sec_offset = rel->r_rel.target_offset + 4;
8429 
8430       /* If the literal range is at the end of the section,
8431 	 do not add fill.  */
8432       the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8433 						      entry_sec_offset);
8434       fill_extra_space = compute_fill_extra_space (the_add_entry);
8435 
8436       fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8437       removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8438 						  -4, fill_extra_space);
8439       if (fa)
8440 	adjust_fill_action (fa, removed_diff);
8441       else
8442 	text_action_add (&relax_info->action_list,
8443 			 ta_fill, sec, entry_sec_offset, removed_diff);
8444     }
8445 
8446   /* Zero out the relocation on this literal location.  */
8447   if (irel)
8448     {
8449       if (elf_hash_table (link_info)->dynamic_sections_created)
8450 	shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8451 
8452       irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8453       pin_internal_relocs (sec, internal_relocs);
8454     }
8455 
8456   /* Do not modify "last_loc_is_prev".  */
8457   return TRUE;
8458 }
8459 
8460 
8461 bfd_boolean
identify_literal_placement(bfd * abfd,asection * sec,bfd_byte * contents,struct bfd_link_info * link_info,value_map_hash_table * values,bfd_boolean * last_loc_is_prev_p,Elf_Internal_Rela * irel,int remaining_src_rels,source_reloc * rel,property_table_entry * prop_table,int ptblsize,section_cache_t * target_sec_cache,bfd_boolean is_abs_literal)8462 identify_literal_placement (bfd *abfd,
8463 			    asection *sec,
8464 			    bfd_byte *contents,
8465 			    struct bfd_link_info *link_info,
8466 			    value_map_hash_table *values,
8467 			    bfd_boolean *last_loc_is_prev_p,
8468 			    Elf_Internal_Rela *irel,
8469 			    int remaining_src_rels,
8470 			    source_reloc *rel,
8471 			    property_table_entry *prop_table,
8472 			    int ptblsize,
8473 			    section_cache_t *target_sec_cache,
8474 			    bfd_boolean is_abs_literal)
8475 {
8476   literal_value val;
8477   value_map *val_map;
8478   xtensa_relax_info *relax_info;
8479   bfd_boolean literal_placed = FALSE;
8480   r_reloc r_rel;
8481   unsigned long value;
8482   bfd_boolean final_static_link;
8483   bfd_size_type sec_size;
8484 
8485   relax_info = get_xtensa_relax_info (sec);
8486   if (!relax_info)
8487     return FALSE;
8488 
8489   sec_size = bfd_get_section_limit (abfd, sec);
8490 
8491   final_static_link =
8492     (!link_info->relocatable
8493      && !elf_hash_table (link_info)->dynamic_sections_created);
8494 
8495   /* The placement algorithm first checks to see if the literal is
8496      already in the value map.  If so and the value map is reachable
8497      from all uses, then the literal is moved to that location.  If
8498      not, then we identify the last location where a fresh literal was
8499      placed.  If the literal can be safely moved there, then we do so.
8500      If not, then we assume that the literal is not to move and leave
8501      the literal where it is, marking it as the last literal
8502      location.  */
8503 
8504   /* Find the literal value.  */
8505   value = 0;
8506   r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8507   if (!irel)
8508     {
8509       BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8510       value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8511     }
8512   init_literal_value (&val, &r_rel, value, is_abs_literal);
8513 
8514   /* Check if we've seen another literal with the same value that
8515      is in the same output section.  */
8516   val_map = value_map_get_cached_value (values, &val, final_static_link);
8517 
8518   if (val_map
8519       && (r_reloc_get_section (&val_map->loc)->output_section
8520 	  == sec->output_section)
8521       && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8522       && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8523     {
8524       /* No change to last_loc_is_prev.  */
8525       literal_placed = TRUE;
8526     }
8527 
8528   /* For relocatable links, do not try to move literals.  To do it
8529      correctly might increase the number of relocations in an input
8530      section making the default relocatable linking fail.  */
8531   if (!link_info->relocatable && !literal_placed
8532       && values->has_last_loc && !(*last_loc_is_prev_p))
8533     {
8534       asection *target_sec = r_reloc_get_section (&values->last_loc);
8535       if (target_sec && target_sec->output_section == sec->output_section)
8536 	{
8537 	  /* Increment the virtual offset.  */
8538 	  r_reloc try_loc = values->last_loc;
8539 	  try_loc.virtual_offset += 4;
8540 
8541 	  /* There is a last loc that was in the same output section.  */
8542 	  if (relocations_reach (rel, remaining_src_rels, &try_loc)
8543 	      && move_shared_literal (sec, link_info, rel,
8544 				      prop_table, ptblsize,
8545 				      &try_loc, &val, target_sec_cache))
8546 	    {
8547 	      values->last_loc.virtual_offset += 4;
8548 	      literal_placed = TRUE;
8549 	      if (!val_map)
8550 		val_map = add_value_map (values, &val, &try_loc,
8551 					 final_static_link);
8552 	      else
8553 		val_map->loc = try_loc;
8554 	    }
8555 	}
8556     }
8557 
8558   if (!literal_placed)
8559     {
8560       /* Nothing worked, leave the literal alone but update the last loc.  */
8561       values->has_last_loc = TRUE;
8562       values->last_loc = rel->r_rel;
8563       if (!val_map)
8564 	val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8565       else
8566 	val_map->loc = rel->r_rel;
8567       *last_loc_is_prev_p = TRUE;
8568     }
8569 
8570   return TRUE;
8571 }
8572 
8573 
8574 /* Check if the original relocations (presumably on L32R instructions)
8575    identified by reloc[0..N] can be changed to reference the literal
8576    identified by r_rel.  If r_rel is out of range for any of the
8577    original relocations, then we don't want to coalesce the original
8578    literal with the one at r_rel.  We only check reloc[0..N], where the
8579    offsets are all the same as for reloc[0] (i.e., they're all
8580    referencing the same literal) and where N is also bounded by the
8581    number of remaining entries in the "reloc" array.  The "reloc" array
8582    is sorted by target offset so we know all the entries for the same
8583    literal will be contiguous.  */
8584 
8585 static bfd_boolean
relocations_reach(source_reloc * reloc,int remaining_relocs,const r_reloc * r_rel)8586 relocations_reach (source_reloc *reloc,
8587 		   int remaining_relocs,
8588 		   const r_reloc *r_rel)
8589 {
8590   bfd_vma from_offset, source_address, dest_address;
8591   asection *sec;
8592   int i;
8593 
8594   if (!r_reloc_is_defined (r_rel))
8595     return FALSE;
8596 
8597   sec = r_reloc_get_section (r_rel);
8598   from_offset = reloc[0].r_rel.target_offset;
8599 
8600   for (i = 0; i < remaining_relocs; i++)
8601     {
8602       if (reloc[i].r_rel.target_offset != from_offset)
8603 	break;
8604 
8605       /* Ignore relocations that have been removed.  */
8606       if (reloc[i].is_null)
8607 	continue;
8608 
8609       /* The original and new output section for these must be the same
8610          in order to coalesce.  */
8611       if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8612 	  != sec->output_section)
8613 	return FALSE;
8614 
8615       /* Absolute literals in the same output section can always be
8616 	 combined.  */
8617       if (reloc[i].is_abs_literal)
8618 	continue;
8619 
8620       /* A literal with no PC-relative relocations can be moved anywhere.  */
8621       if (reloc[i].opnd != -1)
8622 	{
8623 	  /* Otherwise, check to see that it fits.  */
8624 	  source_address = (reloc[i].source_sec->output_section->vma
8625 			    + reloc[i].source_sec->output_offset
8626 			    + reloc[i].r_rel.rela.r_offset);
8627 	  dest_address = (sec->output_section->vma
8628 			  + sec->output_offset
8629 			  + r_rel->target_offset);
8630 
8631 	  if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8632 				 source_address, dest_address))
8633 	    return FALSE;
8634 	}
8635     }
8636 
8637   return TRUE;
8638 }
8639 
8640 
8641 /* Move a literal to another literal location because it is
8642    the same as the other literal value.  */
8643 
8644 static bfd_boolean
coalesce_shared_literal(asection * sec,source_reloc * rel,property_table_entry * prop_table,int ptblsize,value_map * val_map)8645 coalesce_shared_literal (asection *sec,
8646 			 source_reloc *rel,
8647 			 property_table_entry *prop_table,
8648 			 int ptblsize,
8649 			 value_map *val_map)
8650 {
8651   property_table_entry *entry;
8652   text_action *fa;
8653   property_table_entry *the_add_entry;
8654   int removed_diff;
8655   xtensa_relax_info *relax_info;
8656 
8657   relax_info = get_xtensa_relax_info (sec);
8658   if (!relax_info)
8659     return FALSE;
8660 
8661   entry = elf_xtensa_find_property_entry
8662     (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8663   if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8664     return TRUE;
8665 
8666   /* Mark that the literal will be coalesced.  */
8667   add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8668 
8669   text_action_add (&relax_info->action_list,
8670 		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8671 
8672   /* If the section is 4-byte aligned, do not add fill.  */
8673   if (sec->alignment_power > 2)
8674     {
8675       int fill_extra_space;
8676       bfd_vma entry_sec_offset;
8677 
8678       if (entry)
8679 	entry_sec_offset = entry->address - sec->vma + entry->size;
8680       else
8681 	entry_sec_offset = rel->r_rel.target_offset + 4;
8682 
8683       /* If the literal range is at the end of the section,
8684 	 do not add fill.  */
8685       fill_extra_space = 0;
8686       the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8687 						      entry_sec_offset);
8688       if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8689 	fill_extra_space = the_add_entry->size;
8690 
8691       fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8692       removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8693 						  -4, fill_extra_space);
8694       if (fa)
8695 	adjust_fill_action (fa, removed_diff);
8696       else
8697 	text_action_add (&relax_info->action_list,
8698 			 ta_fill, sec, entry_sec_offset, removed_diff);
8699     }
8700 
8701   return TRUE;
8702 }
8703 
8704 
8705 /* Move a literal to another location.  This may actually increase the
8706    total amount of space used because of alignments so we need to do
8707    this carefully.  Also, it may make a branch go out of range.  */
8708 
8709 static bfd_boolean
move_shared_literal(asection * sec,struct bfd_link_info * link_info,source_reloc * rel,property_table_entry * prop_table,int ptblsize,const r_reloc * target_loc,const literal_value * lit_value,section_cache_t * target_sec_cache)8710 move_shared_literal (asection *sec,
8711 		     struct bfd_link_info *link_info,
8712 		     source_reloc *rel,
8713 		     property_table_entry *prop_table,
8714 		     int ptblsize,
8715 		     const r_reloc *target_loc,
8716 		     const literal_value *lit_value,
8717 		     section_cache_t *target_sec_cache)
8718 {
8719   property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8720   text_action *fa, *target_fa;
8721   int removed_diff;
8722   xtensa_relax_info *relax_info, *target_relax_info;
8723   asection *target_sec;
8724   ebb_t *ebb;
8725   ebb_constraint ebb_table;
8726   bfd_boolean relocs_fit;
8727 
8728   /* If this routine always returns FALSE, the literals that cannot be
8729      coalesced will not be moved.  */
8730   if (elf32xtensa_no_literal_movement)
8731     return FALSE;
8732 
8733   relax_info = get_xtensa_relax_info (sec);
8734   if (!relax_info)
8735     return FALSE;
8736 
8737   target_sec = r_reloc_get_section (target_loc);
8738   target_relax_info = get_xtensa_relax_info (target_sec);
8739 
8740   /* Literals to undefined sections may not be moved because they
8741      must report an error.  */
8742   if (bfd_is_und_section (target_sec))
8743     return FALSE;
8744 
8745   src_entry = elf_xtensa_find_property_entry
8746     (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8747 
8748   if (!section_cache_section (target_sec_cache, target_sec, link_info))
8749     return FALSE;
8750 
8751   target_entry = elf_xtensa_find_property_entry
8752     (target_sec_cache->ptbl, target_sec_cache->pte_count,
8753      target_sec->vma + target_loc->target_offset);
8754 
8755   if (!target_entry)
8756     return FALSE;
8757 
8758   /* Make sure that we have not broken any branches.  */
8759   relocs_fit = FALSE;
8760 
8761   init_ebb_constraint (&ebb_table);
8762   ebb = &ebb_table.ebb;
8763   init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
8764 	    target_sec_cache->content_length,
8765 	    target_sec_cache->ptbl, target_sec_cache->pte_count,
8766 	    target_sec_cache->relocs, target_sec_cache->reloc_count);
8767 
8768   /* Propose to add 4 bytes + worst-case alignment size increase to
8769      destination.  */
8770   ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
8771 		      ta_fill, target_loc->target_offset,
8772 		      -4 - (1 << target_sec->alignment_power), TRUE);
8773 
8774   /* Check all of the PC-relative relocations to make sure they still fit.  */
8775   relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
8776 					     target_sec_cache->contents,
8777 					     target_sec_cache->relocs,
8778 					     &ebb_table, NULL);
8779 
8780   if (!relocs_fit)
8781     return FALSE;
8782 
8783   text_action_add_literal (&target_relax_info->action_list,
8784 			   ta_add_literal, target_loc, lit_value, -4);
8785 
8786   if (target_sec->alignment_power > 2 && target_entry != src_entry)
8787     {
8788       /* May need to add or remove some fill to maintain alignment.  */
8789       int fill_extra_space;
8790       bfd_vma entry_sec_offset;
8791 
8792       entry_sec_offset =
8793 	target_entry->address - target_sec->vma + target_entry->size;
8794 
8795       /* If the literal range is at the end of the section,
8796 	 do not add fill.  */
8797       fill_extra_space = 0;
8798       the_add_entry =
8799 	elf_xtensa_find_property_entry (target_sec_cache->ptbl,
8800 					target_sec_cache->pte_count,
8801 					entry_sec_offset);
8802       if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8803 	fill_extra_space = the_add_entry->size;
8804 
8805       target_fa = find_fill_action (&target_relax_info->action_list,
8806 				    target_sec, entry_sec_offset);
8807       removed_diff = compute_removed_action_diff (target_fa, target_sec,
8808 						  entry_sec_offset, 4,
8809 						  fill_extra_space);
8810       if (target_fa)
8811 	adjust_fill_action (target_fa, removed_diff);
8812       else
8813 	text_action_add (&target_relax_info->action_list,
8814 			 ta_fill, target_sec, entry_sec_offset, removed_diff);
8815     }
8816 
8817   /* Mark that the literal will be moved to the new location.  */
8818   add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
8819 
8820   /* Remove the literal.  */
8821   text_action_add (&relax_info->action_list,
8822 		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8823 
8824   /* If the section is 4-byte aligned, do not add fill.  */
8825   if (sec->alignment_power > 2 && target_entry != src_entry)
8826     {
8827       int fill_extra_space;
8828       bfd_vma entry_sec_offset;
8829 
8830       if (src_entry)
8831 	entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8832       else
8833 	entry_sec_offset = rel->r_rel.target_offset+4;
8834 
8835       /* If the literal range is at the end of the section,
8836 	 do not add fill.  */
8837       fill_extra_space = 0;
8838       the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8839 						      entry_sec_offset);
8840       if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8841 	fill_extra_space = the_add_entry->size;
8842 
8843       fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8844       removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8845 						  -4, fill_extra_space);
8846       if (fa)
8847 	adjust_fill_action (fa, removed_diff);
8848       else
8849 	text_action_add (&relax_info->action_list,
8850 			 ta_fill, sec, entry_sec_offset, removed_diff);
8851     }
8852 
8853   return TRUE;
8854 }
8855 
8856 
8857 /* Second relaxation pass.  */
8858 
8859 /* Modify all of the relocations to point to the right spot, and if this
8860    is a relaxable section, delete the unwanted literals and fix the
8861    section size.  */
8862 
8863 bfd_boolean
relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info)8864 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8865 {
8866   Elf_Internal_Rela *internal_relocs;
8867   xtensa_relax_info *relax_info;
8868   bfd_byte *contents;
8869   bfd_boolean ok = TRUE;
8870   unsigned i;
8871   bfd_boolean rv = FALSE;
8872   bfd_boolean virtual_action;
8873   bfd_size_type sec_size;
8874 
8875   sec_size = bfd_get_section_limit (abfd, sec);
8876   relax_info = get_xtensa_relax_info (sec);
8877   BFD_ASSERT (relax_info);
8878 
8879   /* First translate any of the fixes that have been added already.  */
8880   translate_section_fixes (sec);
8881 
8882   /* Handle property sections (e.g., literal tables) specially.  */
8883   if (xtensa_is_property_section (sec))
8884     {
8885       BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8886       return relax_property_section (abfd, sec, link_info);
8887     }
8888 
8889   internal_relocs = retrieve_internal_relocs (abfd, sec,
8890 					      link_info->keep_memory);
8891   if (!internal_relocs && !relax_info->action_list.head)
8892     return TRUE;
8893 
8894   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8895   if (contents == NULL && sec_size != 0)
8896     {
8897       ok = FALSE;
8898       goto error_return;
8899     }
8900 
8901   if (internal_relocs)
8902     {
8903       for (i = 0; i < sec->reloc_count; i++)
8904 	{
8905 	  Elf_Internal_Rela *irel;
8906 	  xtensa_relax_info *target_relax_info;
8907 	  bfd_vma source_offset, old_source_offset;
8908 	  r_reloc r_rel;
8909 	  unsigned r_type;
8910 	  asection *target_sec;
8911 
8912 	  /* Locally change the source address.
8913 	     Translate the target to the new target address.
8914 	     If it points to this section and has been removed,
8915 	     NULLify it.
8916 	     Write it back.  */
8917 
8918 	  irel = &internal_relocs[i];
8919 	  source_offset = irel->r_offset;
8920 	  old_source_offset = source_offset;
8921 
8922 	  r_type = ELF32_R_TYPE (irel->r_info);
8923 	  r_reloc_init (&r_rel, abfd, irel, contents,
8924 			bfd_get_section_limit (abfd, sec));
8925 
8926 	  /* If this section could have changed then we may need to
8927 	     change the relocation's offset.  */
8928 
8929 	  if (relax_info->is_relaxable_literal_section
8930 	      || relax_info->is_relaxable_asm_section)
8931 	    {
8932 	      pin_internal_relocs (sec, internal_relocs);
8933 
8934 	      if (r_type != R_XTENSA_NONE
8935 		  && find_removed_literal (&relax_info->removed_list,
8936 					   irel->r_offset))
8937 		{
8938 		  /* Remove this relocation.  */
8939 		  if (elf_hash_table (link_info)->dynamic_sections_created)
8940 		    shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8941 		  irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8942 		  irel->r_offset = offset_with_removed_text
8943 		    (&relax_info->action_list, irel->r_offset);
8944 		  continue;
8945 		}
8946 
8947 	      if (r_type == R_XTENSA_ASM_SIMPLIFY)
8948 		{
8949 		  text_action *action =
8950 		    find_insn_action (&relax_info->action_list,
8951 				      irel->r_offset);
8952 		  if (action && (action->action == ta_convert_longcall
8953 				 || action->action == ta_remove_longcall))
8954 		    {
8955 		      bfd_reloc_status_type retval;
8956 		      char *error_message = NULL;
8957 
8958 		      retval = contract_asm_expansion (contents, sec_size,
8959 						       irel, &error_message);
8960 		      if (retval != bfd_reloc_ok)
8961 			{
8962 			  (*link_info->callbacks->reloc_dangerous)
8963 			    (link_info, error_message, abfd, sec,
8964 			     irel->r_offset);
8965 			  goto error_return;
8966 			}
8967 		      /* Update the action so that the code that moves
8968 			 the contents will do the right thing.  */
8969 		      if (action->action == ta_remove_longcall)
8970 			action->action = ta_remove_insn;
8971 		      else
8972 			action->action = ta_none;
8973 		      /* Refresh the info in the r_rel.  */
8974 		      r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8975 		      r_type = ELF32_R_TYPE (irel->r_info);
8976 		    }
8977 		}
8978 
8979 	      source_offset = offset_with_removed_text
8980 		(&relax_info->action_list, irel->r_offset);
8981 	      irel->r_offset = source_offset;
8982 	    }
8983 
8984 	  /* If the target section could have changed then
8985 	     we may need to change the relocation's target offset.  */
8986 
8987 	  target_sec = r_reloc_get_section (&r_rel);
8988 
8989 	  /* For a reference to a discarded section from a DWARF section,
8990 	     i.e., where action_discarded is PRETEND, the symbol will
8991 	     eventually be modified to refer to the kept section (at least if
8992 	     the kept and discarded sections are the same size).  Anticipate
8993 	     that here and adjust things accordingly.  */
8994 	  if (! elf_xtensa_ignore_discarded_relocs (sec)
8995 	      && elf_xtensa_action_discarded (sec) == PRETEND
8996 	      && sec->sec_info_type != SEC_INFO_TYPE_STABS
8997 	      && target_sec != NULL
8998 	      && discarded_section (target_sec))
8999 	    {
9000 	      /* It would be natural to call _bfd_elf_check_kept_section
9001 		 here, but it's not exported from elflink.c.  It's also a
9002 		 fairly expensive check.  Adjusting the relocations to the
9003 		 discarded section is fairly harmless; it will only adjust
9004 		 some addends and difference values.  If it turns out that
9005 		 _bfd_elf_check_kept_section fails later, it won't matter,
9006 		 so just compare the section names to find the right group
9007 		 member.  */
9008 	      asection *kept = target_sec->kept_section;
9009 	      if (kept != NULL)
9010 		{
9011 		  if ((kept->flags & SEC_GROUP) != 0)
9012 		    {
9013 		      asection *first = elf_next_in_group (kept);
9014 		      asection *s = first;
9015 
9016 		      kept = NULL;
9017 		      while (s != NULL)
9018 			{
9019 			  if (strcmp (s->name, target_sec->name) == 0)
9020 			    {
9021 			      kept = s;
9022 			      break;
9023 			    }
9024 			  s = elf_next_in_group (s);
9025 			  if (s == first)
9026 			    break;
9027 			}
9028 		    }
9029 		}
9030 	      if (kept != NULL
9031 		  && ((target_sec->rawsize != 0
9032 		       ? target_sec->rawsize : target_sec->size)
9033 		      == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9034 		target_sec = kept;
9035 	    }
9036 
9037 	  target_relax_info = get_xtensa_relax_info (target_sec);
9038 	  if (target_relax_info
9039 	      && (target_relax_info->is_relaxable_literal_section
9040 		  || target_relax_info->is_relaxable_asm_section))
9041 	    {
9042 	      r_reloc new_reloc;
9043 	      target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9044 
9045 	      if (r_type == R_XTENSA_DIFF8
9046 		  || r_type == R_XTENSA_DIFF16
9047 		  || r_type == R_XTENSA_DIFF32)
9048 		{
9049 		  bfd_signed_vma diff_value = 0;
9050 		  bfd_vma new_end_offset, diff_mask = 0;
9051 
9052 		  if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9053 		    {
9054 		      (*link_info->callbacks->reloc_dangerous)
9055 			(link_info, _("invalid relocation address"),
9056 			 abfd, sec, old_source_offset);
9057 		      goto error_return;
9058 		    }
9059 
9060 		  switch (r_type)
9061 		    {
9062 		    case R_XTENSA_DIFF8:
9063 		      diff_value =
9064 			bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9065 		      break;
9066 		    case R_XTENSA_DIFF16:
9067 		      diff_value =
9068 			bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9069 		      break;
9070 		    case R_XTENSA_DIFF32:
9071 		      diff_value =
9072 			bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9073 		      break;
9074 		    }
9075 
9076 		  new_end_offset = offset_with_removed_text
9077 		    (&target_relax_info->action_list,
9078 		     r_rel.target_offset + diff_value);
9079 		  diff_value = new_end_offset - new_reloc.target_offset;
9080 
9081 		  switch (r_type)
9082 		    {
9083 		    case R_XTENSA_DIFF8:
9084 		      diff_mask = 0x7f;
9085 		      bfd_put_signed_8 (abfd, diff_value,
9086 				 &contents[old_source_offset]);
9087 		      break;
9088 		    case R_XTENSA_DIFF16:
9089 		      diff_mask = 0x7fff;
9090 		      bfd_put_signed_16 (abfd, diff_value,
9091 				  &contents[old_source_offset]);
9092 		      break;
9093 		    case R_XTENSA_DIFF32:
9094 		      diff_mask = 0x7fffffff;
9095 		      bfd_put_signed_32 (abfd, diff_value,
9096 				  &contents[old_source_offset]);
9097 		      break;
9098 		    }
9099 
9100 		  /* Check for overflow. Sign bits must be all zeroes or all ones */
9101 		  if ((diff_value & ~diff_mask) != 0 &&
9102 		      (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9103 		    {
9104 		      (*link_info->callbacks->reloc_dangerous)
9105 			(link_info, _("overflow after relaxation"),
9106 			 abfd, sec, old_source_offset);
9107 		      goto error_return;
9108 		    }
9109 
9110 		  pin_contents (sec, contents);
9111 		}
9112 
9113 	      /* If the relocation still references a section in the same
9114 		 input file, modify the relocation directly instead of
9115 		 adding a "fix" record.  */
9116 	      if (target_sec->owner == abfd)
9117 		{
9118 		  unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9119 		  irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9120 		  irel->r_addend = new_reloc.rela.r_addend;
9121 		  pin_internal_relocs (sec, internal_relocs);
9122 		}
9123 	      else
9124 		{
9125 		  bfd_vma addend_displacement;
9126 		  reloc_bfd_fix *fix;
9127 
9128 		  addend_displacement =
9129 		    new_reloc.target_offset + new_reloc.virtual_offset;
9130 		  fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9131 					    target_sec,
9132 					    addend_displacement, TRUE);
9133 		  add_fix (sec, fix);
9134 		}
9135 	    }
9136 	}
9137     }
9138 
9139   if ((relax_info->is_relaxable_literal_section
9140        || relax_info->is_relaxable_asm_section)
9141       && relax_info->action_list.head)
9142     {
9143       /* Walk through the planned actions and build up a table
9144 	 of move, copy and fill records.  Use the move, copy and
9145 	 fill records to perform the actions once.  */
9146 
9147       int removed = 0;
9148       bfd_size_type final_size, copy_size, orig_insn_size;
9149       bfd_byte *scratch = NULL;
9150       bfd_byte *dup_contents = NULL;
9151       bfd_size_type orig_size = sec->size;
9152       bfd_vma orig_dot = 0;
9153       bfd_vma orig_dot_copied = 0; /* Byte copied already from
9154 					    orig dot in physical memory.  */
9155       bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot.  */
9156       bfd_vma dup_dot = 0;
9157 
9158       text_action *action = relax_info->action_list.head;
9159 
9160       final_size = sec->size;
9161       for (action = relax_info->action_list.head; action;
9162 	   action = action->next)
9163 	{
9164 	  final_size -= action->removed_bytes;
9165 	}
9166 
9167       scratch = (bfd_byte *) bfd_zmalloc (final_size);
9168       dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9169 
9170       /* The dot is the current fill location.  */
9171 #if DEBUG
9172       print_action_list (stderr, &relax_info->action_list);
9173 #endif
9174 
9175       for (action = relax_info->action_list.head; action;
9176 	   action = action->next)
9177 	{
9178 	  virtual_action = FALSE;
9179 	  if (action->offset > orig_dot)
9180 	    {
9181 	      orig_dot += orig_dot_copied;
9182 	      orig_dot_copied = 0;
9183 	      orig_dot_vo = 0;
9184 	      /* Out of the virtual world.  */
9185 	    }
9186 
9187 	  if (action->offset > orig_dot)
9188 	    {
9189 	      copy_size = action->offset - orig_dot;
9190 	      memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9191 	      orig_dot += copy_size;
9192 	      dup_dot += copy_size;
9193 	      BFD_ASSERT (action->offset == orig_dot);
9194 	    }
9195 	  else if (action->offset < orig_dot)
9196 	    {
9197 	      if (action->action == ta_fill
9198 		  && action->offset - action->removed_bytes == orig_dot)
9199 		{
9200 		  /* This is OK because the fill only effects the dup_dot.  */
9201 		}
9202 	      else if (action->action == ta_add_literal)
9203 		{
9204 		  /* TBD.  Might need to handle this.  */
9205 		}
9206 	    }
9207 	  if (action->offset == orig_dot)
9208 	    {
9209 	      if (action->virtual_offset > orig_dot_vo)
9210 		{
9211 		  if (orig_dot_vo == 0)
9212 		    {
9213 		      /* Need to copy virtual_offset bytes.  Probably four.  */
9214 		      copy_size = action->virtual_offset - orig_dot_vo;
9215 		      memmove (&dup_contents[dup_dot],
9216 			       &contents[orig_dot], copy_size);
9217 		      orig_dot_copied = copy_size;
9218 		      dup_dot += copy_size;
9219 		    }
9220 		  virtual_action = TRUE;
9221 		}
9222 	      else
9223 		BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9224 	    }
9225 	  switch (action->action)
9226 	    {
9227 	    case ta_remove_literal:
9228 	    case ta_remove_insn:
9229 	      BFD_ASSERT (action->removed_bytes >= 0);
9230 	      orig_dot += action->removed_bytes;
9231 	      break;
9232 
9233 	    case ta_narrow_insn:
9234 	      orig_insn_size = 3;
9235 	      copy_size = 2;
9236 	      memmove (scratch, &contents[orig_dot], orig_insn_size);
9237 	      BFD_ASSERT (action->removed_bytes == 1);
9238 	      rv = narrow_instruction (scratch, final_size, 0);
9239 	      BFD_ASSERT (rv);
9240 	      memmove (&dup_contents[dup_dot], scratch, copy_size);
9241 	      orig_dot += orig_insn_size;
9242 	      dup_dot += copy_size;
9243 	      break;
9244 
9245 	    case ta_fill:
9246 	      if (action->removed_bytes >= 0)
9247 		orig_dot += action->removed_bytes;
9248 	      else
9249 		{
9250 		  /* Already zeroed in dup_contents.  Just bump the
9251 		     counters.  */
9252 		  dup_dot += (-action->removed_bytes);
9253 		}
9254 	      break;
9255 
9256 	    case ta_none:
9257 	      BFD_ASSERT (action->removed_bytes == 0);
9258 	      break;
9259 
9260 	    case ta_convert_longcall:
9261 	    case ta_remove_longcall:
9262 	      /* These will be removed or converted before we get here.  */
9263 	      BFD_ASSERT (0);
9264 	      break;
9265 
9266 	    case ta_widen_insn:
9267 	      orig_insn_size = 2;
9268 	      copy_size = 3;
9269 	      memmove (scratch, &contents[orig_dot], orig_insn_size);
9270 	      BFD_ASSERT (action->removed_bytes == -1);
9271 	      rv = widen_instruction (scratch, final_size, 0);
9272 	      BFD_ASSERT (rv);
9273 	      memmove (&dup_contents[dup_dot], scratch, copy_size);
9274 	      orig_dot += orig_insn_size;
9275 	      dup_dot += copy_size;
9276 	      break;
9277 
9278 	    case ta_add_literal:
9279 	      orig_insn_size = 0;
9280 	      copy_size = 4;
9281 	      BFD_ASSERT (action->removed_bytes == -4);
9282 	      /* TBD -- place the literal value here and insert
9283 		 into the table.  */
9284 	      memset (&dup_contents[dup_dot], 0, 4);
9285 	      pin_internal_relocs (sec, internal_relocs);
9286 	      pin_contents (sec, contents);
9287 
9288 	      if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9289 				 relax_info, &internal_relocs, &action->value))
9290 		goto error_return;
9291 
9292 	      if (virtual_action)
9293 		orig_dot_vo += copy_size;
9294 
9295 	      orig_dot += orig_insn_size;
9296 	      dup_dot += copy_size;
9297 	      break;
9298 
9299 	    default:
9300 	      /* Not implemented yet.  */
9301 	      BFD_ASSERT (0);
9302 	      break;
9303 	    }
9304 
9305 	  removed += action->removed_bytes;
9306 	  BFD_ASSERT (dup_dot <= final_size);
9307 	  BFD_ASSERT (orig_dot <= orig_size);
9308 	}
9309 
9310       orig_dot += orig_dot_copied;
9311       orig_dot_copied = 0;
9312 
9313       if (orig_dot != orig_size)
9314 	{
9315 	  copy_size = orig_size - orig_dot;
9316 	  BFD_ASSERT (orig_size > orig_dot);
9317 	  BFD_ASSERT (dup_dot + copy_size == final_size);
9318 	  memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9319 	  orig_dot += copy_size;
9320 	  dup_dot += copy_size;
9321 	}
9322       BFD_ASSERT (orig_size == orig_dot);
9323       BFD_ASSERT (final_size == dup_dot);
9324 
9325       /* Move the dup_contents back.  */
9326       if (final_size > orig_size)
9327 	{
9328 	  /* Contents need to be reallocated.  Swap the dup_contents into
9329 	     contents.  */
9330 	  sec->contents = dup_contents;
9331 	  free (contents);
9332 	  contents = dup_contents;
9333 	  pin_contents (sec, contents);
9334 	}
9335       else
9336 	{
9337 	  BFD_ASSERT (final_size <= orig_size);
9338 	  memset (contents, 0, orig_size);
9339 	  memcpy (contents, dup_contents, final_size);
9340 	  free (dup_contents);
9341 	}
9342       free (scratch);
9343       pin_contents (sec, contents);
9344 
9345       if (sec->rawsize == 0)
9346 	sec->rawsize = sec->size;
9347       sec->size = final_size;
9348     }
9349 
9350  error_return:
9351   release_internal_relocs (sec, internal_relocs);
9352   release_contents (sec, contents);
9353   return ok;
9354 }
9355 
9356 
9357 static bfd_boolean
translate_section_fixes(asection * sec)9358 translate_section_fixes (asection *sec)
9359 {
9360   xtensa_relax_info *relax_info;
9361   reloc_bfd_fix *r;
9362 
9363   relax_info = get_xtensa_relax_info (sec);
9364   if (!relax_info)
9365     return TRUE;
9366 
9367   for (r = relax_info->fix_list; r != NULL; r = r->next)
9368     if (!translate_reloc_bfd_fix (r))
9369       return FALSE;
9370 
9371   return TRUE;
9372 }
9373 
9374 
9375 /* Translate a fix given the mapping in the relax info for the target
9376    section.  If it has already been translated, no work is required.  */
9377 
9378 static bfd_boolean
translate_reloc_bfd_fix(reloc_bfd_fix * fix)9379 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9380 {
9381   reloc_bfd_fix new_fix;
9382   asection *sec;
9383   xtensa_relax_info *relax_info;
9384   removed_literal *removed;
9385   bfd_vma new_offset, target_offset;
9386 
9387   if (fix->translated)
9388     return TRUE;
9389 
9390   sec = fix->target_sec;
9391   target_offset = fix->target_offset;
9392 
9393   relax_info = get_xtensa_relax_info (sec);
9394   if (!relax_info)
9395     {
9396       fix->translated = TRUE;
9397       return TRUE;
9398     }
9399 
9400   new_fix = *fix;
9401 
9402   /* The fix does not need to be translated if the section cannot change.  */
9403   if (!relax_info->is_relaxable_literal_section
9404       && !relax_info->is_relaxable_asm_section)
9405     {
9406       fix->translated = TRUE;
9407       return TRUE;
9408     }
9409 
9410   /* If the literal has been moved and this relocation was on an
9411      opcode, then the relocation should move to the new literal
9412      location.  Otherwise, the relocation should move within the
9413      section.  */
9414 
9415   removed = FALSE;
9416   if (is_operand_relocation (fix->src_type))
9417     {
9418       /* Check if the original relocation is against a literal being
9419 	 removed.  */
9420       removed = find_removed_literal (&relax_info->removed_list,
9421 				      target_offset);
9422     }
9423 
9424   if (removed)
9425     {
9426       asection *new_sec;
9427 
9428       /* The fact that there is still a relocation to this literal indicates
9429 	 that the literal is being coalesced, not simply removed.  */
9430       BFD_ASSERT (removed->to.abfd != NULL);
9431 
9432       /* This was moved to some other address (possibly another section).  */
9433       new_sec = r_reloc_get_section (&removed->to);
9434       if (new_sec != sec)
9435 	{
9436 	  sec = new_sec;
9437 	  relax_info = get_xtensa_relax_info (sec);
9438 	  if (!relax_info ||
9439 	      (!relax_info->is_relaxable_literal_section
9440 	       && !relax_info->is_relaxable_asm_section))
9441 	    {
9442 	      target_offset = removed->to.target_offset;
9443 	      new_fix.target_sec = new_sec;
9444 	      new_fix.target_offset = target_offset;
9445 	      new_fix.translated = TRUE;
9446 	      *fix = new_fix;
9447 	      return TRUE;
9448 	    }
9449 	}
9450       target_offset = removed->to.target_offset;
9451       new_fix.target_sec = new_sec;
9452     }
9453 
9454   /* The target address may have been moved within its section.  */
9455   new_offset = offset_with_removed_text (&relax_info->action_list,
9456 					 target_offset);
9457 
9458   new_fix.target_offset = new_offset;
9459   new_fix.target_offset = new_offset;
9460   new_fix.translated = TRUE;
9461   *fix = new_fix;
9462   return TRUE;
9463 }
9464 
9465 
9466 /* Fix up a relocation to take account of removed literals.  */
9467 
9468 static asection *
translate_reloc(const r_reloc * orig_rel,r_reloc * new_rel,asection * sec)9469 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9470 {
9471   xtensa_relax_info *relax_info;
9472   removed_literal *removed;
9473   bfd_vma target_offset, base_offset;
9474   text_action *act;
9475 
9476   *new_rel = *orig_rel;
9477 
9478   if (!r_reloc_is_defined (orig_rel))
9479     return sec ;
9480 
9481   relax_info = get_xtensa_relax_info (sec);
9482   BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9483 			     || relax_info->is_relaxable_asm_section));
9484 
9485   target_offset = orig_rel->target_offset;
9486 
9487   removed = FALSE;
9488   if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9489     {
9490       /* Check if the original relocation is against a literal being
9491 	 removed.  */
9492       removed = find_removed_literal (&relax_info->removed_list,
9493 				      target_offset);
9494     }
9495   if (removed && removed->to.abfd)
9496     {
9497       asection *new_sec;
9498 
9499       /* The fact that there is still a relocation to this literal indicates
9500 	 that the literal is being coalesced, not simply removed.  */
9501       BFD_ASSERT (removed->to.abfd != NULL);
9502 
9503       /* This was moved to some other address
9504 	 (possibly in another section).  */
9505       *new_rel = removed->to;
9506       new_sec = r_reloc_get_section (new_rel);
9507       if (new_sec != sec)
9508 	{
9509 	  sec = new_sec;
9510 	  relax_info = get_xtensa_relax_info (sec);
9511 	  if (!relax_info
9512 	      || (!relax_info->is_relaxable_literal_section
9513 		  && !relax_info->is_relaxable_asm_section))
9514 	    return sec;
9515 	}
9516       target_offset = new_rel->target_offset;
9517     }
9518 
9519   /* Find the base offset of the reloc symbol, excluding any addend from the
9520      reloc or from the section contents (for a partial_inplace reloc).  Then
9521      find the adjusted values of the offsets due to relaxation.  The base
9522      offset is needed to determine the change to the reloc's addend; the reloc
9523      addend should not be adjusted due to relaxations located before the base
9524      offset.  */
9525 
9526   base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9527   act = relax_info->action_list.head;
9528   if (base_offset <= target_offset)
9529     {
9530       int base_removed = removed_by_actions (&act, base_offset, FALSE);
9531       int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9532       new_rel->target_offset = target_offset - base_removed - addend_removed;
9533       new_rel->rela.r_addend -= addend_removed;
9534     }
9535   else
9536     {
9537       /* Handle a negative addend.  The base offset comes first.  */
9538       int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9539       int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9540       new_rel->target_offset = target_offset - tgt_removed;
9541       new_rel->rela.r_addend += addend_removed;
9542     }
9543 
9544   return sec;
9545 }
9546 
9547 
9548 /* For dynamic links, there may be a dynamic relocation for each
9549    literal.  The number of dynamic relocations must be computed in
9550    size_dynamic_sections, which occurs before relaxation.  When a
9551    literal is removed, this function checks if there is a corresponding
9552    dynamic relocation and shrinks the size of the appropriate dynamic
9553    relocation section accordingly.  At this point, the contents of the
9554    dynamic relocation sections have not yet been filled in, so there's
9555    nothing else that needs to be done.  */
9556 
9557 static void
shrink_dynamic_reloc_sections(struct bfd_link_info * info,bfd * abfd,asection * input_section,Elf_Internal_Rela * rel)9558 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9559 			       bfd *abfd,
9560 			       asection *input_section,
9561 			       Elf_Internal_Rela *rel)
9562 {
9563   struct elf_xtensa_link_hash_table *htab;
9564   Elf_Internal_Shdr *symtab_hdr;
9565   struct elf_link_hash_entry **sym_hashes;
9566   unsigned long r_symndx;
9567   int r_type;
9568   struct elf_link_hash_entry *h;
9569   bfd_boolean dynamic_symbol;
9570 
9571   htab = elf_xtensa_hash_table (info);
9572   if (htab == NULL)
9573     return;
9574 
9575   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9576   sym_hashes = elf_sym_hashes (abfd);
9577 
9578   r_type = ELF32_R_TYPE (rel->r_info);
9579   r_symndx = ELF32_R_SYM (rel->r_info);
9580 
9581   if (r_symndx < symtab_hdr->sh_info)
9582     h = NULL;
9583   else
9584     h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9585 
9586   dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
9587 
9588   if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9589       && (input_section->flags & SEC_ALLOC) != 0
9590       && (dynamic_symbol || info->shared))
9591     {
9592       asection *srel;
9593       bfd_boolean is_plt = FALSE;
9594 
9595       if (dynamic_symbol && r_type == R_XTENSA_PLT)
9596 	{
9597 	  srel = htab->srelplt;
9598 	  is_plt = TRUE;
9599 	}
9600       else
9601 	srel = htab->srelgot;
9602 
9603       /* Reduce size of the .rela.* section by one reloc.  */
9604       BFD_ASSERT (srel != NULL);
9605       BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9606       srel->size -= sizeof (Elf32_External_Rela);
9607 
9608       if (is_plt)
9609 	{
9610 	  asection *splt, *sgotplt, *srelgot;
9611 	  int reloc_index, chunk;
9612 
9613 	  /* Find the PLT reloc index of the entry being removed.  This
9614 	     is computed from the size of ".rela.plt".  It is needed to
9615 	     figure out which PLT chunk to resize.  Usually "last index
9616 	     = size - 1" since the index starts at zero, but in this
9617 	     context, the size has just been decremented so there's no
9618 	     need to subtract one.  */
9619 	  reloc_index = srel->size / sizeof (Elf32_External_Rela);
9620 
9621 	  chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
9622 	  splt = elf_xtensa_get_plt_section (info, chunk);
9623 	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
9624 	  BFD_ASSERT (splt != NULL && sgotplt != NULL);
9625 
9626 	  /* Check if an entire PLT chunk has just been eliminated.  */
9627 	  if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9628 	    {
9629 	      /* The two magic GOT entries for that chunk can go away.  */
9630 	      srelgot = htab->srelgot;
9631 	      BFD_ASSERT (srelgot != NULL);
9632 	      srelgot->reloc_count -= 2;
9633 	      srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9634 	      sgotplt->size -= 8;
9635 
9636 	      /* There should be only one entry left (and it will be
9637 		 removed below).  */
9638 	      BFD_ASSERT (sgotplt->size == 4);
9639 	      BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
9640 	    }
9641 
9642 	  BFD_ASSERT (sgotplt->size >= 4);
9643 	  BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
9644 
9645 	  sgotplt->size -= 4;
9646 	  splt->size -= PLT_ENTRY_SIZE;
9647 	}
9648     }
9649 }
9650 
9651 
9652 /* Take an r_rel and move it to another section.  This usually
9653    requires extending the interal_relocation array and pinning it.  If
9654    the original r_rel is from the same BFD, we can complete this here.
9655    Otherwise, we add a fix record to let the final link fix the
9656    appropriate address.  Contents and internal relocations for the
9657    section must be pinned after calling this routine.  */
9658 
9659 static bfd_boolean
move_literal(bfd * abfd,struct bfd_link_info * link_info,asection * sec,bfd_vma offset,bfd_byte * contents,xtensa_relax_info * relax_info,Elf_Internal_Rela ** internal_relocs_p,const literal_value * lit)9660 move_literal (bfd *abfd,
9661 	      struct bfd_link_info *link_info,
9662 	      asection *sec,
9663 	      bfd_vma offset,
9664 	      bfd_byte *contents,
9665 	      xtensa_relax_info *relax_info,
9666 	      Elf_Internal_Rela **internal_relocs_p,
9667 	      const literal_value *lit)
9668 {
9669   Elf_Internal_Rela *new_relocs = NULL;
9670   size_t new_relocs_count = 0;
9671   Elf_Internal_Rela this_rela;
9672   const r_reloc *r_rel;
9673 
9674   r_rel = &lit->r_rel;
9675   BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9676 
9677   if (r_reloc_is_const (r_rel))
9678     bfd_put_32 (abfd, lit->value, contents + offset);
9679   else
9680     {
9681       int r_type;
9682       unsigned i;
9683       reloc_bfd_fix *fix;
9684       unsigned insert_at;
9685 
9686       r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9687 
9688       /* This is the difficult case.  We have to create a fix up.  */
9689       this_rela.r_offset = offset;
9690       this_rela.r_info = ELF32_R_INFO (0, r_type);
9691       this_rela.r_addend =
9692 	r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9693       bfd_put_32 (abfd, lit->value, contents + offset);
9694 
9695       /* Currently, we cannot move relocations during a relocatable link.  */
9696       BFD_ASSERT (!link_info->relocatable);
9697       fix = reloc_bfd_fix_init (sec, offset, r_type,
9698 				r_reloc_get_section (r_rel),
9699 				r_rel->target_offset + r_rel->virtual_offset,
9700 				FALSE);
9701       /* We also need to mark that relocations are needed here.  */
9702       sec->flags |= SEC_RELOC;
9703 
9704       translate_reloc_bfd_fix (fix);
9705       /* This fix has not yet been translated.  */
9706       add_fix (sec, fix);
9707 
9708       /* Add the relocation.  If we have already allocated our own
9709 	 space for the relocations and we have room for more, then use
9710 	 it.  Otherwise, allocate new space and move the literals.  */
9711       insert_at = sec->reloc_count;
9712       for (i = 0; i < sec->reloc_count; ++i)
9713 	{
9714 	  if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9715 	    {
9716 	      insert_at = i;
9717 	      break;
9718 	    }
9719 	}
9720 
9721       if (*internal_relocs_p != relax_info->allocated_relocs
9722 	  || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
9723 	{
9724 	  BFD_ASSERT (relax_info->allocated_relocs == NULL
9725 		      || sec->reloc_count == relax_info->relocs_count);
9726 
9727 	  if (relax_info->allocated_relocs_count == 0)
9728 	    new_relocs_count = (sec->reloc_count + 2) * 2;
9729 	  else
9730 	    new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
9731 
9732 	  new_relocs = (Elf_Internal_Rela *)
9733 	    bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
9734 	  if (!new_relocs)
9735 	    return FALSE;
9736 
9737 	  /* We could handle this more quickly by finding the split point.  */
9738 	  if (insert_at != 0)
9739 	    memcpy (new_relocs, *internal_relocs_p,
9740 		    insert_at * sizeof (Elf_Internal_Rela));
9741 
9742 	  new_relocs[insert_at] = this_rela;
9743 
9744 	  if (insert_at != sec->reloc_count)
9745 	    memcpy (new_relocs + insert_at + 1,
9746 		    (*internal_relocs_p) + insert_at,
9747 		    (sec->reloc_count - insert_at)
9748 		    * sizeof (Elf_Internal_Rela));
9749 
9750 	  if (*internal_relocs_p != relax_info->allocated_relocs)
9751 	    {
9752 	      /* The first time we re-allocate, we can only free the
9753 		 old relocs if they were allocated with bfd_malloc.
9754 		 This is not true when keep_memory is in effect.  */
9755 	      if (!link_info->keep_memory)
9756 		free (*internal_relocs_p);
9757 	    }
9758 	  else
9759 	    free (*internal_relocs_p);
9760 	  relax_info->allocated_relocs = new_relocs;
9761 	  relax_info->allocated_relocs_count = new_relocs_count;
9762 	  elf_section_data (sec)->relocs = new_relocs;
9763 	  sec->reloc_count++;
9764 	  relax_info->relocs_count = sec->reloc_count;
9765 	  *internal_relocs_p = new_relocs;
9766 	}
9767       else
9768 	{
9769 	  if (insert_at != sec->reloc_count)
9770 	    {
9771 	      unsigned idx;
9772 	      for (idx = sec->reloc_count; idx > insert_at; idx--)
9773 		(*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
9774 	    }
9775 	  (*internal_relocs_p)[insert_at] = this_rela;
9776 	  sec->reloc_count++;
9777 	  if (relax_info->allocated_relocs)
9778 	    relax_info->relocs_count = sec->reloc_count;
9779 	}
9780     }
9781   return TRUE;
9782 }
9783 
9784 
9785 /* This is similar to relax_section except that when a target is moved,
9786    we shift addresses up.  We also need to modify the size.  This
9787    algorithm does NOT allow for relocations into the middle of the
9788    property sections.  */
9789 
9790 static bfd_boolean
relax_property_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info)9791 relax_property_section (bfd *abfd,
9792 			asection *sec,
9793 			struct bfd_link_info *link_info)
9794 {
9795   Elf_Internal_Rela *internal_relocs;
9796   bfd_byte *contents;
9797   unsigned i;
9798   bfd_boolean ok = TRUE;
9799   bfd_boolean is_full_prop_section;
9800   size_t last_zfill_target_offset = 0;
9801   asection *last_zfill_target_sec = NULL;
9802   bfd_size_type sec_size;
9803   bfd_size_type entry_size;
9804 
9805   sec_size = bfd_get_section_limit (abfd, sec);
9806   internal_relocs = retrieve_internal_relocs (abfd, sec,
9807 					      link_info->keep_memory);
9808   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9809   if (contents == NULL && sec_size != 0)
9810     {
9811       ok = FALSE;
9812       goto error_return;
9813     }
9814 
9815   is_full_prop_section = xtensa_is_proptable_section (sec);
9816   if (is_full_prop_section)
9817     entry_size = 12;
9818   else
9819     entry_size = 8;
9820 
9821   if (internal_relocs)
9822     {
9823       for (i = 0; i < sec->reloc_count; i++)
9824 	{
9825 	  Elf_Internal_Rela *irel;
9826 	  xtensa_relax_info *target_relax_info;
9827 	  unsigned r_type;
9828 	  asection *target_sec;
9829 	  literal_value val;
9830 	  bfd_byte *size_p, *flags_p;
9831 
9832 	  /* Locally change the source address.
9833 	     Translate the target to the new target address.
9834 	     If it points to this section and has been removed, MOVE IT.
9835 	     Also, don't forget to modify the associated SIZE at
9836 	     (offset + 4).  */
9837 
9838 	  irel = &internal_relocs[i];
9839 	  r_type = ELF32_R_TYPE (irel->r_info);
9840 	  if (r_type == R_XTENSA_NONE)
9841 	    continue;
9842 
9843 	  /* Find the literal value.  */
9844 	  r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
9845 	  size_p = &contents[irel->r_offset + 4];
9846 	  flags_p = NULL;
9847 	  if (is_full_prop_section)
9848 	    flags_p = &contents[irel->r_offset + 8];
9849 	  BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
9850 
9851 	  target_sec = r_reloc_get_section (&val.r_rel);
9852 	  target_relax_info = get_xtensa_relax_info (target_sec);
9853 
9854 	  if (target_relax_info
9855 	      && (target_relax_info->is_relaxable_literal_section
9856 		  || target_relax_info->is_relaxable_asm_section ))
9857 	    {
9858 	      /* Translate the relocation's destination.  */
9859 	      bfd_vma old_offset = val.r_rel.target_offset;
9860 	      bfd_vma new_offset;
9861 	      long old_size, new_size;
9862 	      text_action *act = target_relax_info->action_list.head;
9863 	      new_offset = old_offset -
9864 		removed_by_actions (&act, old_offset, FALSE);
9865 
9866 	      /* Assert that we are not out of bounds.  */
9867 	      old_size = bfd_get_32 (abfd, size_p);
9868 	      new_size = old_size;
9869 
9870 	      if (old_size == 0)
9871 		{
9872 		  /* Only the first zero-sized unreachable entry is
9873 		     allowed to expand.  In this case the new offset
9874 		     should be the offset before the fill and the new
9875 		     size is the expansion size.  For other zero-sized
9876 		     entries the resulting size should be zero with an
9877 		     offset before or after the fill address depending
9878 		     on whether the expanding unreachable entry
9879 		     preceeds it.  */
9880 		  if (last_zfill_target_sec == 0
9881 		      || last_zfill_target_sec != target_sec
9882 		      || last_zfill_target_offset != old_offset)
9883 		    {
9884 		      bfd_vma new_end_offset = new_offset;
9885 
9886 		      /* Recompute the new_offset, but this time don't
9887 			 include any fill inserted by relaxation.  */
9888 		      act = target_relax_info->action_list.head;
9889 		      new_offset = old_offset -
9890 			removed_by_actions (&act, old_offset, TRUE);
9891 
9892 		      /* If it is not unreachable and we have not yet
9893 			 seen an unreachable at this address, place it
9894 			 before the fill address.  */
9895 		      if (flags_p && (bfd_get_32 (abfd, flags_p)
9896 				      & XTENSA_PROP_UNREACHABLE) != 0)
9897 			{
9898 			  new_size = new_end_offset - new_offset;
9899 
9900 			  last_zfill_target_sec = target_sec;
9901 			  last_zfill_target_offset = old_offset;
9902 			}
9903 		    }
9904 		}
9905 	      else
9906 		new_size -=
9907 		    removed_by_actions (&act, old_offset + old_size, TRUE);
9908 
9909 	      if (new_size != old_size)
9910 		{
9911 		  bfd_put_32 (abfd, new_size, size_p);
9912 		  pin_contents (sec, contents);
9913 		}
9914 
9915 	      if (new_offset != old_offset)
9916 		{
9917 		  bfd_vma diff = new_offset - old_offset;
9918 		  irel->r_addend += diff;
9919 		  pin_internal_relocs (sec, internal_relocs);
9920 		}
9921 	    }
9922 	}
9923     }
9924 
9925   /* Combine adjacent property table entries.  This is also done in
9926      finish_dynamic_sections() but at that point it's too late to
9927      reclaim the space in the output section, so we do this twice.  */
9928 
9929   if (internal_relocs && (!link_info->relocatable
9930 			  || xtensa_is_littable_section (sec)))
9931     {
9932       Elf_Internal_Rela *last_irel = NULL;
9933       Elf_Internal_Rela *irel, *next_rel, *rel_end;
9934       int removed_bytes = 0;
9935       bfd_vma offset;
9936       flagword predef_flags;
9937 
9938       predef_flags = xtensa_get_property_predef_flags (sec);
9939 
9940       /* Walk over memory and relocations at the same time.
9941          This REQUIRES that the internal_relocs be sorted by offset.  */
9942       qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9943 	     internal_reloc_compare);
9944 
9945       pin_internal_relocs (sec, internal_relocs);
9946       pin_contents (sec, contents);
9947 
9948       next_rel = internal_relocs;
9949       rel_end = internal_relocs + sec->reloc_count;
9950 
9951       BFD_ASSERT (sec->size % entry_size == 0);
9952 
9953       for (offset = 0; offset < sec->size; offset += entry_size)
9954 	{
9955 	  Elf_Internal_Rela *offset_rel, *extra_rel;
9956 	  bfd_vma bytes_to_remove, size, actual_offset;
9957 	  bfd_boolean remove_this_rel;
9958 	  flagword flags;
9959 
9960 	  /* Find the first relocation for the entry at the current offset.
9961 	     Adjust the offsets of any extra relocations for the previous
9962 	     entry.  */
9963 	  offset_rel = NULL;
9964 	  if (next_rel)
9965 	    {
9966 	      for (irel = next_rel; irel < rel_end; irel++)
9967 		{
9968 		  if ((irel->r_offset == offset
9969 		       && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9970 		      || irel->r_offset > offset)
9971 		    {
9972 		      offset_rel = irel;
9973 		      break;
9974 		    }
9975 		  irel->r_offset -= removed_bytes;
9976 		}
9977 	    }
9978 
9979 	  /* Find the next relocation (if there are any left).  */
9980 	  extra_rel = NULL;
9981 	  if (offset_rel)
9982 	    {
9983 	      for (irel = offset_rel + 1; irel < rel_end; irel++)
9984 		{
9985 		  if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9986 		    {
9987 		      extra_rel = irel;
9988 		      break;
9989 		    }
9990 		}
9991 	    }
9992 
9993 	  /* Check if there are relocations on the current entry.  There
9994 	     should usually be a relocation on the offset field.  If there
9995 	     are relocations on the size or flags, then we can't optimize
9996 	     this entry.  Also, find the next relocation to examine on the
9997 	     next iteration.  */
9998 	  if (offset_rel)
9999 	    {
10000 	      if (offset_rel->r_offset >= offset + entry_size)
10001 		{
10002 		  next_rel = offset_rel;
10003 		  /* There are no relocations on the current entry, but we
10004 		     might still be able to remove it if the size is zero.  */
10005 		  offset_rel = NULL;
10006 		}
10007 	      else if (offset_rel->r_offset > offset
10008 		       || (extra_rel
10009 			   && extra_rel->r_offset < offset + entry_size))
10010 		{
10011 		  /* There is a relocation on the size or flags, so we can't
10012 		     do anything with this entry.  Continue with the next.  */
10013 		  next_rel = offset_rel;
10014 		  continue;
10015 		}
10016 	      else
10017 		{
10018 		  BFD_ASSERT (offset_rel->r_offset == offset);
10019 		  offset_rel->r_offset -= removed_bytes;
10020 		  next_rel = offset_rel + 1;
10021 		}
10022 	    }
10023 	  else
10024 	    next_rel = NULL;
10025 
10026 	  remove_this_rel = FALSE;
10027 	  bytes_to_remove = 0;
10028 	  actual_offset = offset - removed_bytes;
10029 	  size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10030 
10031 	  if (is_full_prop_section)
10032 	    flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10033 	  else
10034 	    flags = predef_flags;
10035 
10036 	  if (size == 0
10037 	      && (flags & XTENSA_PROP_ALIGN) == 0
10038 	      && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10039 	    {
10040 	      /* Always remove entries with zero size and no alignment.  */
10041 	      bytes_to_remove = entry_size;
10042 	      if (offset_rel)
10043 		remove_this_rel = TRUE;
10044 	    }
10045 	  else if (offset_rel
10046 		   && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10047 	    {
10048 	      if (last_irel)
10049 		{
10050 		  flagword old_flags;
10051 		  bfd_vma old_size =
10052 		    bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10053 		  bfd_vma old_address =
10054 		    (last_irel->r_addend
10055 		     + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10056 		  bfd_vma new_address =
10057 		    (offset_rel->r_addend
10058 		     + bfd_get_32 (abfd, &contents[actual_offset]));
10059 		  if (is_full_prop_section)
10060 		    old_flags = bfd_get_32
10061 		      (abfd, &contents[last_irel->r_offset + 8]);
10062 		  else
10063 		    old_flags = predef_flags;
10064 
10065 		  if ((ELF32_R_SYM (offset_rel->r_info)
10066 		       == ELF32_R_SYM (last_irel->r_info))
10067 		      && old_address + old_size == new_address
10068 		      && old_flags == flags
10069 		      && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10070 		      && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10071 		    {
10072 		      /* Fix the old size.  */
10073 		      bfd_put_32 (abfd, old_size + size,
10074 				  &contents[last_irel->r_offset + 4]);
10075 		      bytes_to_remove = entry_size;
10076 		      remove_this_rel = TRUE;
10077 		    }
10078 		  else
10079 		    last_irel = offset_rel;
10080 		}
10081 	      else
10082 		last_irel = offset_rel;
10083 	    }
10084 
10085 	  if (remove_this_rel)
10086 	    {
10087 	      offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10088 	      offset_rel->r_offset = 0;
10089 	    }
10090 
10091 	  if (bytes_to_remove != 0)
10092 	    {
10093 	      removed_bytes += bytes_to_remove;
10094 	      if (offset + bytes_to_remove < sec->size)
10095 		memmove (&contents[actual_offset],
10096 			 &contents[actual_offset + bytes_to_remove],
10097 			 sec->size - offset - bytes_to_remove);
10098 	    }
10099 	}
10100 
10101       if (removed_bytes)
10102 	{
10103 	  /* Fix up any extra relocations on the last entry.  */
10104 	  for (irel = next_rel; irel < rel_end; irel++)
10105 	    irel->r_offset -= removed_bytes;
10106 
10107 	  /* Clear the removed bytes.  */
10108 	  memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10109 
10110 	  if (sec->rawsize == 0)
10111 	    sec->rawsize = sec->size;
10112 	  sec->size -= removed_bytes;
10113 
10114 	  if (xtensa_is_littable_section (sec))
10115 	    {
10116 	      asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10117 	      if (sgotloc)
10118 		sgotloc->size -= removed_bytes;
10119 	    }
10120 	}
10121     }
10122 
10123  error_return:
10124   release_internal_relocs (sec, internal_relocs);
10125   release_contents (sec, contents);
10126   return ok;
10127 }
10128 
10129 
10130 /* Third relaxation pass.  */
10131 
10132 /* Change symbol values to account for removed literals.  */
10133 
10134 bfd_boolean
relax_section_symbols(bfd * abfd,asection * sec)10135 relax_section_symbols (bfd *abfd, asection *sec)
10136 {
10137   xtensa_relax_info *relax_info;
10138   unsigned int sec_shndx;
10139   Elf_Internal_Shdr *symtab_hdr;
10140   Elf_Internal_Sym *isymbuf;
10141   unsigned i, num_syms, num_locals;
10142 
10143   relax_info = get_xtensa_relax_info (sec);
10144   BFD_ASSERT (relax_info);
10145 
10146   if (!relax_info->is_relaxable_literal_section
10147       && !relax_info->is_relaxable_asm_section)
10148     return TRUE;
10149 
10150   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10151 
10152   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10153   isymbuf = retrieve_local_syms (abfd);
10154 
10155   num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10156   num_locals = symtab_hdr->sh_info;
10157 
10158   /* Adjust the local symbols defined in this section.  */
10159   for (i = 0; i < num_locals; i++)
10160     {
10161       Elf_Internal_Sym *isym = &isymbuf[i];
10162 
10163       if (isym->st_shndx == sec_shndx)
10164 	{
10165 	  text_action *act = relax_info->action_list.head;
10166 	  bfd_vma orig_addr = isym->st_value;
10167 
10168 	  isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
10169 
10170 	  if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10171 	    isym->st_size -=
10172 	      removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
10173 	}
10174     }
10175 
10176   /* Now adjust the global symbols defined in this section.  */
10177   for (i = 0; i < (num_syms - num_locals); i++)
10178     {
10179       struct elf_link_hash_entry *sym_hash;
10180 
10181       sym_hash = elf_sym_hashes (abfd)[i];
10182 
10183       if (sym_hash->root.type == bfd_link_hash_warning)
10184 	sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10185 
10186       if ((sym_hash->root.type == bfd_link_hash_defined
10187 	   || sym_hash->root.type == bfd_link_hash_defweak)
10188 	  && sym_hash->root.u.def.section == sec)
10189 	{
10190 	  text_action *act = relax_info->action_list.head;
10191 	  bfd_vma orig_addr = sym_hash->root.u.def.value;
10192 
10193 	  sym_hash->root.u.def.value -=
10194 	    removed_by_actions (&act, orig_addr, FALSE);
10195 
10196 	  if (sym_hash->type == STT_FUNC)
10197 	    sym_hash->size -=
10198 	      removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
10199 	}
10200     }
10201 
10202   return TRUE;
10203 }
10204 
10205 
10206 /* "Fix" handling functions, called while performing relocations.  */
10207 
10208 static bfd_boolean
do_fix_for_relocatable_link(Elf_Internal_Rela * rel,bfd * input_bfd,asection * input_section,bfd_byte * contents)10209 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10210 			     bfd *input_bfd,
10211 			     asection *input_section,
10212 			     bfd_byte *contents)
10213 {
10214   r_reloc r_rel;
10215   asection *sec, *old_sec;
10216   bfd_vma old_offset;
10217   int r_type = ELF32_R_TYPE (rel->r_info);
10218   reloc_bfd_fix *fix;
10219 
10220   if (r_type == R_XTENSA_NONE)
10221     return TRUE;
10222 
10223   fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10224   if (!fix)
10225     return TRUE;
10226 
10227   r_reloc_init (&r_rel, input_bfd, rel, contents,
10228 		bfd_get_section_limit (input_bfd, input_section));
10229   old_sec = r_reloc_get_section (&r_rel);
10230   old_offset = r_rel.target_offset;
10231 
10232   if (!old_sec || !r_reloc_is_defined (&r_rel))
10233     {
10234       if (r_type != R_XTENSA_ASM_EXPAND)
10235 	{
10236 	  (*_bfd_error_handler)
10237 	    (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10238 	     input_bfd, input_section, rel->r_offset,
10239 	     elf_howto_table[r_type].name);
10240 	  return FALSE;
10241 	}
10242       /* Leave it be.  Resolution will happen in a later stage.  */
10243     }
10244   else
10245     {
10246       sec = fix->target_sec;
10247       rel->r_addend += ((sec->output_offset + fix->target_offset)
10248 			- (old_sec->output_offset + old_offset));
10249     }
10250   return TRUE;
10251 }
10252 
10253 
10254 static void
do_fix_for_final_link(Elf_Internal_Rela * rel,bfd * input_bfd,asection * input_section,bfd_byte * contents,bfd_vma * relocationp)10255 do_fix_for_final_link (Elf_Internal_Rela *rel,
10256 		       bfd *input_bfd,
10257 		       asection *input_section,
10258 		       bfd_byte *contents,
10259 		       bfd_vma *relocationp)
10260 {
10261   asection *sec;
10262   int r_type = ELF32_R_TYPE (rel->r_info);
10263   reloc_bfd_fix *fix;
10264   bfd_vma fixup_diff;
10265 
10266   if (r_type == R_XTENSA_NONE)
10267     return;
10268 
10269   fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10270   if (!fix)
10271     return;
10272 
10273   sec = fix->target_sec;
10274 
10275   fixup_diff = rel->r_addend;
10276   if (elf_howto_table[fix->src_type].partial_inplace)
10277     {
10278       bfd_vma inplace_val;
10279       BFD_ASSERT (fix->src_offset
10280 		  < bfd_get_section_limit (input_bfd, input_section));
10281       inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10282       fixup_diff += inplace_val;
10283     }
10284 
10285   *relocationp = (sec->output_section->vma
10286 		  + sec->output_offset
10287 		  + fix->target_offset - fixup_diff);
10288 }
10289 
10290 
10291 /* Miscellaneous utility functions....  */
10292 
10293 static asection *
elf_xtensa_get_plt_section(struct bfd_link_info * info,int chunk)10294 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10295 {
10296   struct elf_xtensa_link_hash_table *htab;
10297   bfd *dynobj;
10298   char plt_name[10];
10299 
10300   if (chunk == 0)
10301     {
10302       htab = elf_xtensa_hash_table (info);
10303       if (htab == NULL)
10304 	return NULL;
10305 
10306       return htab->splt;
10307     }
10308 
10309   dynobj = elf_hash_table (info)->dynobj;
10310   sprintf (plt_name, ".plt.%u", chunk);
10311   return bfd_get_linker_section (dynobj, plt_name);
10312 }
10313 
10314 
10315 static asection *
elf_xtensa_get_gotplt_section(struct bfd_link_info * info,int chunk)10316 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10317 {
10318   struct elf_xtensa_link_hash_table *htab;
10319   bfd *dynobj;
10320   char got_name[14];
10321 
10322   if (chunk == 0)
10323     {
10324       htab = elf_xtensa_hash_table (info);
10325       if (htab == NULL)
10326 	return NULL;
10327       return htab->sgotplt;
10328     }
10329 
10330   dynobj = elf_hash_table (info)->dynobj;
10331   sprintf (got_name, ".got.plt.%u", chunk);
10332   return bfd_get_linker_section (dynobj, got_name);
10333 }
10334 
10335 
10336 /* Get the input section for a given symbol index.
10337    If the symbol is:
10338    . a section symbol, return the section;
10339    . a common symbol, return the common section;
10340    . an undefined symbol, return the undefined section;
10341    . an indirect symbol, follow the links;
10342    . an absolute value, return the absolute section.  */
10343 
10344 static asection *
get_elf_r_symndx_section(bfd * abfd,unsigned long r_symndx)10345 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10346 {
10347   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10348   asection *target_sec = NULL;
10349   if (r_symndx < symtab_hdr->sh_info)
10350     {
10351       Elf_Internal_Sym *isymbuf;
10352       unsigned int section_index;
10353 
10354       isymbuf = retrieve_local_syms (abfd);
10355       section_index = isymbuf[r_symndx].st_shndx;
10356 
10357       if (section_index == SHN_UNDEF)
10358 	target_sec = bfd_und_section_ptr;
10359       else if (section_index == SHN_ABS)
10360 	target_sec = bfd_abs_section_ptr;
10361       else if (section_index == SHN_COMMON)
10362 	target_sec = bfd_com_section_ptr;
10363       else
10364 	target_sec = bfd_section_from_elf_index (abfd, section_index);
10365     }
10366   else
10367     {
10368       unsigned long indx = r_symndx - symtab_hdr->sh_info;
10369       struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10370 
10371       while (h->root.type == bfd_link_hash_indirect
10372              || h->root.type == bfd_link_hash_warning)
10373         h = (struct elf_link_hash_entry *) h->root.u.i.link;
10374 
10375       switch (h->root.type)
10376 	{
10377 	case bfd_link_hash_defined:
10378 	case  bfd_link_hash_defweak:
10379 	  target_sec = h->root.u.def.section;
10380 	  break;
10381 	case bfd_link_hash_common:
10382 	  target_sec = bfd_com_section_ptr;
10383 	  break;
10384 	case bfd_link_hash_undefined:
10385 	case bfd_link_hash_undefweak:
10386 	  target_sec = bfd_und_section_ptr;
10387 	  break;
10388 	default: /* New indirect warning.  */
10389 	  target_sec = bfd_und_section_ptr;
10390 	  break;
10391 	}
10392     }
10393   return target_sec;
10394 }
10395 
10396 
10397 static struct elf_link_hash_entry *
get_elf_r_symndx_hash_entry(bfd * abfd,unsigned long r_symndx)10398 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10399 {
10400   unsigned long indx;
10401   struct elf_link_hash_entry *h;
10402   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10403 
10404   if (r_symndx < symtab_hdr->sh_info)
10405     return NULL;
10406 
10407   indx = r_symndx - symtab_hdr->sh_info;
10408   h = elf_sym_hashes (abfd)[indx];
10409   while (h->root.type == bfd_link_hash_indirect
10410 	 || h->root.type == bfd_link_hash_warning)
10411     h = (struct elf_link_hash_entry *) h->root.u.i.link;
10412   return h;
10413 }
10414 
10415 
10416 /* Get the section-relative offset for a symbol number.  */
10417 
10418 static bfd_vma
get_elf_r_symndx_offset(bfd * abfd,unsigned long r_symndx)10419 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10420 {
10421   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10422   bfd_vma offset = 0;
10423 
10424   if (r_symndx < symtab_hdr->sh_info)
10425     {
10426       Elf_Internal_Sym *isymbuf;
10427       isymbuf = retrieve_local_syms (abfd);
10428       offset = isymbuf[r_symndx].st_value;
10429     }
10430   else
10431     {
10432       unsigned long indx = r_symndx - symtab_hdr->sh_info;
10433       struct elf_link_hash_entry *h =
10434 	elf_sym_hashes (abfd)[indx];
10435 
10436       while (h->root.type == bfd_link_hash_indirect
10437              || h->root.type == bfd_link_hash_warning)
10438 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
10439       if (h->root.type == bfd_link_hash_defined
10440           || h->root.type == bfd_link_hash_defweak)
10441 	offset = h->root.u.def.value;
10442     }
10443   return offset;
10444 }
10445 
10446 
10447 static bfd_boolean
is_reloc_sym_weak(bfd * abfd,Elf_Internal_Rela * rel)10448 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10449 {
10450   unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10451   struct elf_link_hash_entry *h;
10452 
10453   h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10454   if (h && h->root.type == bfd_link_hash_defweak)
10455     return TRUE;
10456   return FALSE;
10457 }
10458 
10459 
10460 static bfd_boolean
pcrel_reloc_fits(xtensa_opcode opc,int opnd,bfd_vma self_address,bfd_vma dest_address)10461 pcrel_reloc_fits (xtensa_opcode opc,
10462 		  int opnd,
10463 		  bfd_vma self_address,
10464 		  bfd_vma dest_address)
10465 {
10466   xtensa_isa isa = xtensa_default_isa;
10467   uint32 valp = dest_address;
10468   if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10469       || xtensa_operand_encode (isa, opc, opnd, &valp))
10470     return FALSE;
10471   return TRUE;
10472 }
10473 
10474 
10475 static bfd_boolean
xtensa_is_property_section(asection * sec)10476 xtensa_is_property_section (asection *sec)
10477 {
10478   if (xtensa_is_insntable_section (sec)
10479       || xtensa_is_littable_section (sec)
10480       || xtensa_is_proptable_section (sec))
10481     return TRUE;
10482 
10483   return FALSE;
10484 }
10485 
10486 
10487 static bfd_boolean
xtensa_is_insntable_section(asection * sec)10488 xtensa_is_insntable_section (asection *sec)
10489 {
10490   if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10491       || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10492     return TRUE;
10493 
10494   return FALSE;
10495 }
10496 
10497 
10498 static bfd_boolean
xtensa_is_littable_section(asection * sec)10499 xtensa_is_littable_section (asection *sec)
10500 {
10501   if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10502       || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10503     return TRUE;
10504 
10505   return FALSE;
10506 }
10507 
10508 
10509 static bfd_boolean
xtensa_is_proptable_section(asection * sec)10510 xtensa_is_proptable_section (asection *sec)
10511 {
10512   if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10513       || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10514     return TRUE;
10515 
10516   return FALSE;
10517 }
10518 
10519 
10520 static int
internal_reloc_compare(const void * ap,const void * bp)10521 internal_reloc_compare (const void *ap, const void *bp)
10522 {
10523   const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10524   const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10525 
10526   if (a->r_offset != b->r_offset)
10527     return (a->r_offset - b->r_offset);
10528 
10529   /* We don't need to sort on these criteria for correctness,
10530      but enforcing a more strict ordering prevents unstable qsort
10531      from behaving differently with different implementations.
10532      Without the code below we get correct but different results
10533      on Solaris 2.7 and 2.8.  We would like to always produce the
10534      same results no matter the host.  */
10535 
10536   if (a->r_info != b->r_info)
10537     return (a->r_info - b->r_info);
10538 
10539   return (a->r_addend - b->r_addend);
10540 }
10541 
10542 
10543 static int
internal_reloc_matches(const void * ap,const void * bp)10544 internal_reloc_matches (const void *ap, const void *bp)
10545 {
10546   const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10547   const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10548 
10549   /* Check if one entry overlaps with the other; this shouldn't happen
10550      except when searching for a match.  */
10551   return (a->r_offset - b->r_offset);
10552 }
10553 
10554 
10555 /* Predicate function used to look up a section in a particular group.  */
10556 
10557 static bfd_boolean
match_section_group(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,void * inf)10558 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10559 {
10560   const char *gname = inf;
10561   const char *group_name = elf_group_name (sec);
10562 
10563   return (group_name == gname
10564 	  || (group_name != NULL
10565 	      && gname != NULL
10566 	      && strcmp (group_name, gname) == 0));
10567 }
10568 
10569 
10570 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10571 
10572 static char *
xtensa_property_section_name(asection * sec,const char * base_name)10573 xtensa_property_section_name (asection *sec, const char *base_name)
10574 {
10575   const char *suffix, *group_name;
10576   char *prop_sec_name;
10577 
10578   group_name = elf_group_name (sec);
10579   if (group_name)
10580     {
10581       suffix = strrchr (sec->name, '.');
10582       if (suffix == sec->name)
10583 	suffix = 0;
10584       prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10585 					   + (suffix ? strlen (suffix) : 0));
10586       strcpy (prop_sec_name, base_name);
10587       if (suffix)
10588 	strcat (prop_sec_name, suffix);
10589     }
10590   else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
10591     {
10592       char *linkonce_kind = 0;
10593 
10594       if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
10595 	linkonce_kind = "x.";
10596       else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
10597 	linkonce_kind = "p.";
10598       else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10599 	linkonce_kind = "prop.";
10600       else
10601 	abort ();
10602 
10603       prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10604 					   + strlen (linkonce_kind) + 1);
10605       memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
10606       strcpy (prop_sec_name + linkonce_len, linkonce_kind);
10607 
10608       suffix = sec->name + linkonce_len;
10609       /* For backward compatibility, replace "t." instead of inserting
10610          the new linkonce_kind (but not for "prop" sections).  */
10611       if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
10612         suffix += 2;
10613       strcat (prop_sec_name + linkonce_len, suffix);
10614     }
10615   else
10616     prop_sec_name = strdup (base_name);
10617 
10618   return prop_sec_name;
10619 }
10620 
10621 
10622 static asection *
xtensa_get_property_section(asection * sec,const char * base_name)10623 xtensa_get_property_section (asection *sec, const char *base_name)
10624 {
10625   char *prop_sec_name;
10626   asection *prop_sec;
10627 
10628   prop_sec_name = xtensa_property_section_name (sec, base_name);
10629   prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10630 					 match_section_group,
10631 					 (void *) elf_group_name (sec));
10632   free (prop_sec_name);
10633   return prop_sec;
10634 }
10635 
10636 
10637 asection *
xtensa_make_property_section(asection * sec,const char * base_name)10638 xtensa_make_property_section (asection *sec, const char *base_name)
10639 {
10640   char *prop_sec_name;
10641   asection *prop_sec;
10642 
10643   /* Check if the section already exists.  */
10644   prop_sec_name = xtensa_property_section_name (sec, base_name);
10645   prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10646 					 match_section_group,
10647 					 (void *) elf_group_name (sec));
10648   /* If not, create it.  */
10649   if (! prop_sec)
10650     {
10651       flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10652       flags |= (bfd_get_section_flags (sec->owner, sec)
10653 		& (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10654 
10655       prop_sec = bfd_make_section_anyway_with_flags
10656 	(sec->owner, strdup (prop_sec_name), flags);
10657       if (! prop_sec)
10658 	return 0;
10659 
10660       elf_group_name (prop_sec) = elf_group_name (sec);
10661     }
10662 
10663   free (prop_sec_name);
10664   return prop_sec;
10665 }
10666 
10667 
10668 flagword
xtensa_get_property_predef_flags(asection * sec)10669 xtensa_get_property_predef_flags (asection *sec)
10670 {
10671   if (xtensa_is_insntable_section (sec))
10672     return (XTENSA_PROP_INSN
10673 	    | XTENSA_PROP_NO_TRANSFORM
10674 	    | XTENSA_PROP_INSN_NO_REORDER);
10675 
10676   if (xtensa_is_littable_section (sec))
10677     return (XTENSA_PROP_LITERAL
10678 	    | XTENSA_PROP_NO_TRANSFORM
10679 	    | XTENSA_PROP_INSN_NO_REORDER);
10680 
10681   return 0;
10682 }
10683 
10684 
10685 /* Other functions called directly by the linker.  */
10686 
10687 bfd_boolean
xtensa_callback_required_dependence(bfd * abfd,asection * sec,struct bfd_link_info * link_info,deps_callback_t callback,void * closure)10688 xtensa_callback_required_dependence (bfd *abfd,
10689 				     asection *sec,
10690 				     struct bfd_link_info *link_info,
10691 				     deps_callback_t callback,
10692 				     void *closure)
10693 {
10694   Elf_Internal_Rela *internal_relocs;
10695   bfd_byte *contents;
10696   unsigned i;
10697   bfd_boolean ok = TRUE;
10698   bfd_size_type sec_size;
10699 
10700   sec_size = bfd_get_section_limit (abfd, sec);
10701 
10702   /* ".plt*" sections have no explicit relocations but they contain L32R
10703      instructions that reference the corresponding ".got.plt*" sections.  */
10704   if ((sec->flags & SEC_LINKER_CREATED) != 0
10705       && CONST_STRNEQ (sec->name, ".plt"))
10706     {
10707       asection *sgotplt;
10708 
10709       /* Find the corresponding ".got.plt*" section.  */
10710       if (sec->name[4] == '\0')
10711 	sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
10712       else
10713 	{
10714 	  char got_name[14];
10715 	  int chunk = 0;
10716 
10717 	  BFD_ASSERT (sec->name[4] == '.');
10718 	  chunk = strtol (&sec->name[5], NULL, 10);
10719 
10720 	  sprintf (got_name, ".got.plt.%u", chunk);
10721 	  sgotplt = bfd_get_linker_section (sec->owner, got_name);
10722 	}
10723       BFD_ASSERT (sgotplt);
10724 
10725       /* Assume worst-case offsets: L32R at the very end of the ".plt"
10726 	 section referencing a literal at the very beginning of
10727 	 ".got.plt".  This is very close to the real dependence, anyway.  */
10728       (*callback) (sec, sec_size, sgotplt, 0, closure);
10729     }
10730 
10731   /* Only ELF files are supported for Xtensa.  Check here to avoid a segfault
10732      when building uclibc, which runs "ld -b binary /dev/null".  */
10733   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
10734     return ok;
10735 
10736   internal_relocs = retrieve_internal_relocs (abfd, sec,
10737 					      link_info->keep_memory);
10738   if (internal_relocs == NULL
10739       || sec->reloc_count == 0)
10740     return ok;
10741 
10742   /* Cache the contents for the duration of this scan.  */
10743   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10744   if (contents == NULL && sec_size != 0)
10745     {
10746       ok = FALSE;
10747       goto error_return;
10748     }
10749 
10750   if (!xtensa_default_isa)
10751     xtensa_default_isa = xtensa_isa_init (0, 0);
10752 
10753   for (i = 0; i < sec->reloc_count; i++)
10754     {
10755       Elf_Internal_Rela *irel = &internal_relocs[i];
10756       if (is_l32r_relocation (abfd, sec, contents, irel))
10757 	{
10758 	  r_reloc l32r_rel;
10759 	  asection *target_sec;
10760 	  bfd_vma target_offset;
10761 
10762 	  r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
10763 	  target_sec = NULL;
10764 	  target_offset = 0;
10765 	  /* L32Rs must be local to the input file.  */
10766 	  if (r_reloc_is_defined (&l32r_rel))
10767 	    {
10768 	      target_sec = r_reloc_get_section (&l32r_rel);
10769 	      target_offset = l32r_rel.target_offset;
10770 	    }
10771 	  (*callback) (sec, irel->r_offset, target_sec, target_offset,
10772 		       closure);
10773 	}
10774     }
10775 
10776  error_return:
10777   release_internal_relocs (sec, internal_relocs);
10778   release_contents (sec, contents);
10779   return ok;
10780 }
10781 
10782 /* The default literal sections should always be marked as "code" (i.e.,
10783    SHF_EXECINSTR).  This is particularly important for the Linux kernel
10784    module loader so that the literals are not placed after the text.  */
10785 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
10786 {
10787   { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10788   { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10789   { STRING_COMMA_LEN (".literal"),      0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
10790   { STRING_COMMA_LEN (".xtensa.info"),  0, SHT_NOTE,     0 },
10791   { NULL,                       0,      0, 0,            0 }
10792 };
10793 
10794 #define ELF_TARGET_ID			XTENSA_ELF_DATA
10795 #ifndef ELF_ARCH
10796 #define TARGET_LITTLE_SYM		xtensa_elf32_le_vec
10797 #define TARGET_LITTLE_NAME		"elf32-xtensa-le"
10798 #define TARGET_BIG_SYM			xtensa_elf32_be_vec
10799 #define TARGET_BIG_NAME			"elf32-xtensa-be"
10800 #define ELF_ARCH			bfd_arch_xtensa
10801 
10802 #define ELF_MACHINE_CODE		EM_XTENSA
10803 #define ELF_MACHINE_ALT1		EM_XTENSA_OLD
10804 
10805 #if XCHAL_HAVE_MMU
10806 #define ELF_MAXPAGESIZE			(1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10807 #else /* !XCHAL_HAVE_MMU */
10808 #define ELF_MAXPAGESIZE			1
10809 #endif /* !XCHAL_HAVE_MMU */
10810 #endif /* ELF_ARCH */
10811 
10812 #define elf_backend_can_gc_sections	1
10813 #define elf_backend_can_refcount	1
10814 #define elf_backend_plt_readonly	1
10815 #define elf_backend_got_header_size	4
10816 #define elf_backend_want_dynbss		0
10817 #define elf_backend_want_got_plt	1
10818 
10819 #define elf_info_to_howto		     elf_xtensa_info_to_howto_rela
10820 
10821 #define bfd_elf32_mkobject		     elf_xtensa_mkobject
10822 
10823 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10824 #define bfd_elf32_new_section_hook	     elf_xtensa_new_section_hook
10825 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10826 #define bfd_elf32_bfd_relax_section	     elf_xtensa_relax_section
10827 #define bfd_elf32_bfd_reloc_type_lookup	     elf_xtensa_reloc_type_lookup
10828 #define bfd_elf32_bfd_reloc_name_lookup \
10829   elf_xtensa_reloc_name_lookup
10830 #define bfd_elf32_bfd_set_private_flags	     elf_xtensa_set_private_flags
10831 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
10832 
10833 #define elf_backend_adjust_dynamic_symbol    elf_xtensa_adjust_dynamic_symbol
10834 #define elf_backend_check_relocs	     elf_xtensa_check_relocs
10835 #define elf_backend_create_dynamic_sections  elf_xtensa_create_dynamic_sections
10836 #define elf_backend_discard_info	     elf_xtensa_discard_info
10837 #define elf_backend_ignore_discarded_relocs  elf_xtensa_ignore_discarded_relocs
10838 #define elf_backend_final_write_processing   elf_xtensa_final_write_processing
10839 #define elf_backend_finish_dynamic_sections  elf_xtensa_finish_dynamic_sections
10840 #define elf_backend_finish_dynamic_symbol    elf_xtensa_finish_dynamic_symbol
10841 #define elf_backend_gc_mark_hook	     elf_xtensa_gc_mark_hook
10842 #define elf_backend_gc_sweep_hook	     elf_xtensa_gc_sweep_hook
10843 #define elf_backend_grok_prstatus	     elf_xtensa_grok_prstatus
10844 #define elf_backend_grok_psinfo		     elf_xtensa_grok_psinfo
10845 #define elf_backend_hide_symbol		     elf_xtensa_hide_symbol
10846 #define elf_backend_object_p		     elf_xtensa_object_p
10847 #define elf_backend_reloc_type_class	     elf_xtensa_reloc_type_class
10848 #define elf_backend_relocate_section	     elf_xtensa_relocate_section
10849 #define elf_backend_size_dynamic_sections    elf_xtensa_size_dynamic_sections
10850 #define elf_backend_always_size_sections     elf_xtensa_always_size_sections
10851 #define elf_backend_omit_section_dynsym \
10852   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
10853 #define elf_backend_special_sections	     elf_xtensa_special_sections
10854 #define elf_backend_action_discarded	     elf_xtensa_action_discarded
10855 #define elf_backend_copy_indirect_symbol     elf_xtensa_copy_indirect_symbol
10856 
10857 #include "elf32-target.h"
10858