1 //===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// 11 /// This file provides interfaces used to build and manipulate a call graph, 12 /// which is a very useful tool for interprocedural optimization. 13 /// 14 /// Every function in a module is represented as a node in the call graph. The 15 /// callgraph node keeps track of which functions are called by the function 16 /// corresponding to the node. 17 /// 18 /// A call graph may contain nodes where the function that they correspond to 19 /// is null. These 'external' nodes are used to represent control flow that is 20 /// not represented (or analyzable) in the module. In particular, this 21 /// analysis builds one external node such that: 22 /// 1. All functions in the module without internal linkage will have edges 23 /// from this external node, indicating that they could be called by 24 /// functions outside of the module. 25 /// 2. All functions whose address is used for something more than a direct 26 /// call, for example being stored into a memory location will also have 27 /// an edge from this external node. Since they may be called by an 28 /// unknown caller later, they must be tracked as such. 29 /// 30 /// There is a second external node added for calls that leave this module. 31 /// Functions have a call edge to the external node iff: 32 /// 1. The function is external, reflecting the fact that they could call 33 /// anything without internal linkage or that has its address taken. 34 /// 2. The function contains an indirect function call. 35 /// 36 /// As an extension in the future, there may be multiple nodes with a null 37 /// function. These will be used when we can prove (through pointer analysis) 38 /// that an indirect call site can call only a specific set of functions. 39 /// 40 /// Because of these properties, the CallGraph captures a conservative superset 41 /// of all of the caller-callee relationships, which is useful for 42 /// transformations. 43 /// 44 /// The CallGraph class also attempts to figure out what the root of the 45 /// CallGraph is, which it currently does by looking for a function named 46 /// 'main'. If no function named 'main' is found, the external node is used as 47 /// the entry node, reflecting the fact that any function without internal 48 /// linkage could be called into (which is common for libraries). 49 /// 50 //===----------------------------------------------------------------------===// 51 52 #ifndef LLVM_ANALYSIS_CALLGRAPH_H 53 #define LLVM_ANALYSIS_CALLGRAPH_H 54 55 #include "llvm/ADT/GraphTraits.h" 56 #include "llvm/ADT/STLExtras.h" 57 #include "llvm/IR/CallSite.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/ValueHandle.h" 61 #include "llvm/Pass.h" 62 #include <map> 63 64 namespace llvm { 65 66 class Function; 67 class Module; 68 class CallGraphNode; 69 70 /// \brief The basic data container for the call graph of a \c Module of IR. 71 /// 72 /// This class exposes both the interface to the call graph for a module of IR. 73 /// 74 /// The core call graph itself can also be updated to reflect changes to the IR. 75 class CallGraph { 76 Module &M; 77 78 typedef std::map<const Function *, std::unique_ptr<CallGraphNode>> 79 FunctionMapTy; 80 81 /// \brief A map from \c Function* to \c CallGraphNode*. 82 FunctionMapTy FunctionMap; 83 84 /// \brief Root is root of the call graph, or the external node if a 'main' 85 /// function couldn't be found. 86 CallGraphNode *Root; 87 88 /// \brief This node has edges to all external functions and those internal 89 /// functions that have their address taken. 90 CallGraphNode *ExternalCallingNode; 91 92 /// \brief This node has edges to it from all functions making indirect calls 93 /// or calling an external function. 94 std::unique_ptr<CallGraphNode> CallsExternalNode; 95 96 /// \brief Replace the function represented by this node by another. 97 /// 98 /// This does not rescan the body of the function, so it is suitable when 99 /// splicing the body of one function to another while also updating all 100 /// callers from the old function to the new. 101 void spliceFunction(const Function *From, const Function *To); 102 103 /// \brief Add a function to the call graph, and link the node to all of the 104 /// functions that it calls. 105 void addToCallGraph(Function *F); 106 107 public: 108 explicit CallGraph(Module &M); 109 CallGraph(CallGraph &&Arg); 110 ~CallGraph(); 111 112 void print(raw_ostream &OS) const; 113 void dump() const; 114 115 typedef FunctionMapTy::iterator iterator; 116 typedef FunctionMapTy::const_iterator const_iterator; 117 118 /// \brief Returns the module the call graph corresponds to. getModule()119 Module &getModule() const { return M; } 120 begin()121 inline iterator begin() { return FunctionMap.begin(); } end()122 inline iterator end() { return FunctionMap.end(); } begin()123 inline const_iterator begin() const { return FunctionMap.begin(); } end()124 inline const_iterator end() const { return FunctionMap.end(); } 125 126 /// \brief Returns the call graph node for the provided function. 127 inline const CallGraphNode *operator[](const Function *F) const { 128 const_iterator I = FunctionMap.find(F); 129 assert(I != FunctionMap.end() && "Function not in callgraph!"); 130 return I->second.get(); 131 } 132 133 /// \brief Returns the call graph node for the provided function. 134 inline CallGraphNode *operator[](const Function *F) { 135 const_iterator I = FunctionMap.find(F); 136 assert(I != FunctionMap.end() && "Function not in callgraph!"); 137 return I->second.get(); 138 } 139 140 /// \brief Returns the \c CallGraphNode which is used to represent 141 /// undetermined calls into the callgraph. getExternalCallingNode()142 CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; } 143 getCallsExternalNode()144 CallGraphNode *getCallsExternalNode() const { 145 return CallsExternalNode.get(); 146 } 147 148 //===--------------------------------------------------------------------- 149 // Functions to keep a call graph up to date with a function that has been 150 // modified. 151 // 152 153 /// \brief Unlink the function from this module, returning it. 154 /// 155 /// Because this removes the function from the module, the call graph node is 156 /// destroyed. This is only valid if the function does not call any other 157 /// functions (ie, there are no edges in it's CGN). The easiest way to do 158 /// this is to dropAllReferences before calling this. 159 Function *removeFunctionFromModule(CallGraphNode *CGN); 160 161 /// \brief Similar to operator[], but this will insert a new CallGraphNode for 162 /// \c F if one does not already exist. 163 CallGraphNode *getOrInsertFunction(const Function *F); 164 }; 165 166 /// \brief A node in the call graph for a module. 167 /// 168 /// Typically represents a function in the call graph. There are also special 169 /// "null" nodes used to represent theoretical entries in the call graph. 170 class CallGraphNode { 171 public: 172 /// \brief A pair of the calling instruction (a call or invoke) 173 /// and the call graph node being called. 174 typedef std::pair<WeakVH, CallGraphNode *> CallRecord; 175 176 public: 177 typedef std::vector<CallRecord> CalledFunctionsVector; 178 179 /// \brief Creates a node for the specified function. CallGraphNode(Function * F)180 inline CallGraphNode(Function *F) : F(F), NumReferences(0) {} 181 ~CallGraphNode()182 ~CallGraphNode() { 183 assert(NumReferences == 0 && "Node deleted while references remain"); 184 } 185 186 typedef std::vector<CallRecord>::iterator iterator; 187 typedef std::vector<CallRecord>::const_iterator const_iterator; 188 189 /// \brief Returns the function that this call graph node represents. getFunction()190 Function *getFunction() const { return F; } 191 begin()192 inline iterator begin() { return CalledFunctions.begin(); } end()193 inline iterator end() { return CalledFunctions.end(); } begin()194 inline const_iterator begin() const { return CalledFunctions.begin(); } end()195 inline const_iterator end() const { return CalledFunctions.end(); } empty()196 inline bool empty() const { return CalledFunctions.empty(); } size()197 inline unsigned size() const { return (unsigned)CalledFunctions.size(); } 198 199 /// \brief Returns the number of other CallGraphNodes in this CallGraph that 200 /// reference this node in their callee list. getNumReferences()201 unsigned getNumReferences() const { return NumReferences; } 202 203 /// \brief Returns the i'th called function. 204 CallGraphNode *operator[](unsigned i) const { 205 assert(i < CalledFunctions.size() && "Invalid index"); 206 return CalledFunctions[i].second; 207 } 208 209 /// \brief Print out this call graph node. 210 void dump() const; 211 void print(raw_ostream &OS) const; 212 213 //===--------------------------------------------------------------------- 214 // Methods to keep a call graph up to date with a function that has been 215 // modified 216 // 217 218 /// \brief Removes all edges from this CallGraphNode to any functions it 219 /// calls. removeAllCalledFunctions()220 void removeAllCalledFunctions() { 221 while (!CalledFunctions.empty()) { 222 CalledFunctions.back().second->DropRef(); 223 CalledFunctions.pop_back(); 224 } 225 } 226 227 /// \brief Moves all the callee information from N to this node. stealCalledFunctionsFrom(CallGraphNode * N)228 void stealCalledFunctionsFrom(CallGraphNode *N) { 229 assert(CalledFunctions.empty() && 230 "Cannot steal callsite information if I already have some"); 231 std::swap(CalledFunctions, N->CalledFunctions); 232 } 233 234 /// \brief Adds a function to the list of functions called by this one. addCalledFunction(CallSite CS,CallGraphNode * M)235 void addCalledFunction(CallSite CS, CallGraphNode *M) { 236 assert(!CS.getInstruction() || !CS.getCalledFunction() || 237 !CS.getCalledFunction()->isIntrinsic() || 238 !Intrinsic::isLeaf(CS.getCalledFunction()->getIntrinsicID())); 239 CalledFunctions.emplace_back(CS.getInstruction(), M); 240 M->AddRef(); 241 } 242 removeCallEdge(iterator I)243 void removeCallEdge(iterator I) { 244 I->second->DropRef(); 245 *I = CalledFunctions.back(); 246 CalledFunctions.pop_back(); 247 } 248 249 /// \brief Removes the edge in the node for the specified call site. 250 /// 251 /// Note that this method takes linear time, so it should be used sparingly. 252 void removeCallEdgeFor(CallSite CS); 253 254 /// \brief Removes all call edges from this node to the specified callee 255 /// function. 256 /// 257 /// This takes more time to execute than removeCallEdgeTo, so it should not 258 /// be used unless necessary. 259 void removeAnyCallEdgeTo(CallGraphNode *Callee); 260 261 /// \brief Removes one edge associated with a null callsite from this node to 262 /// the specified callee function. 263 void removeOneAbstractEdgeTo(CallGraphNode *Callee); 264 265 /// \brief Replaces the edge in the node for the specified call site with a 266 /// new one. 267 /// 268 /// Note that this method takes linear time, so it should be used sparingly. 269 void replaceCallEdge(CallSite CS, CallSite NewCS, CallGraphNode *NewNode); 270 271 private: 272 friend class CallGraph; 273 274 AssertingVH<Function> F; 275 276 std::vector<CallRecord> CalledFunctions; 277 278 /// \brief The number of times that this CallGraphNode occurs in the 279 /// CalledFunctions array of this or other CallGraphNodes. 280 unsigned NumReferences; 281 282 CallGraphNode(const CallGraphNode &) = delete; 283 void operator=(const CallGraphNode &) = delete; 284 DropRef()285 void DropRef() { --NumReferences; } AddRef()286 void AddRef() { ++NumReferences; } 287 288 /// \brief A special function that should only be used by the CallGraph class. allReferencesDropped()289 void allReferencesDropped() { NumReferences = 0; } 290 }; 291 292 /// \brief An analysis pass to compute the \c CallGraph for a \c Module. 293 /// 294 /// This class implements the concept of an analysis pass used by the \c 295 /// ModuleAnalysisManager to run an analysis over a module and cache the 296 /// resulting data. 297 class CallGraphAnalysis { 298 public: 299 /// \brief A formulaic typedef to inform clients of the result type. 300 typedef CallGraph Result; 301 ID()302 static void *ID() { return (void *)&PassID; } 303 304 /// \brief Compute the \c CallGraph for the module \c M. 305 /// 306 /// The real work here is done in the \c CallGraph constructor. run(Module * M)307 CallGraph run(Module *M) { return CallGraph(*M); } 308 309 private: 310 static char PassID; 311 }; 312 313 /// \brief The \c ModulePass which wraps up a \c CallGraph and the logic to 314 /// build it. 315 /// 316 /// This class exposes both the interface to the call graph container and the 317 /// module pass which runs over a module of IR and produces the call graph. The 318 /// call graph interface is entirelly a wrapper around a \c CallGraph object 319 /// which is stored internally for each module. 320 class CallGraphWrapperPass : public ModulePass { 321 std::unique_ptr<CallGraph> G; 322 323 public: 324 static char ID; // Class identification, replacement for typeinfo 325 326 CallGraphWrapperPass(); 327 ~CallGraphWrapperPass() override; 328 329 /// \brief The internal \c CallGraph around which the rest of this interface 330 /// is wrapped. getCallGraph()331 const CallGraph &getCallGraph() const { return *G; } getCallGraph()332 CallGraph &getCallGraph() { return *G; } 333 334 typedef CallGraph::iterator iterator; 335 typedef CallGraph::const_iterator const_iterator; 336 337 /// \brief Returns the module the call graph corresponds to. getModule()338 Module &getModule() const { return G->getModule(); } 339 begin()340 inline iterator begin() { return G->begin(); } end()341 inline iterator end() { return G->end(); } begin()342 inline const_iterator begin() const { return G->begin(); } end()343 inline const_iterator end() const { return G->end(); } 344 345 /// \brief Returns the call graph node for the provided function. 346 inline const CallGraphNode *operator[](const Function *F) const { 347 return (*G)[F]; 348 } 349 350 /// \brief Returns the call graph node for the provided function. 351 inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; } 352 353 /// \brief Returns the \c CallGraphNode which is used to represent 354 /// undetermined calls into the callgraph. getExternalCallingNode()355 CallGraphNode *getExternalCallingNode() const { 356 return G->getExternalCallingNode(); 357 } 358 getCallsExternalNode()359 CallGraphNode *getCallsExternalNode() const { 360 return G->getCallsExternalNode(); 361 } 362 363 //===--------------------------------------------------------------------- 364 // Functions to keep a call graph up to date with a function that has been 365 // modified. 366 // 367 368 /// \brief Unlink the function from this module, returning it. 369 /// 370 /// Because this removes the function from the module, the call graph node is 371 /// destroyed. This is only valid if the function does not call any other 372 /// functions (ie, there are no edges in it's CGN). The easiest way to do 373 /// this is to dropAllReferences before calling this. removeFunctionFromModule(CallGraphNode * CGN)374 Function *removeFunctionFromModule(CallGraphNode *CGN) { 375 return G->removeFunctionFromModule(CGN); 376 } 377 378 /// \brief Similar to operator[], but this will insert a new CallGraphNode for 379 /// \c F if one does not already exist. getOrInsertFunction(const Function * F)380 CallGraphNode *getOrInsertFunction(const Function *F) { 381 return G->getOrInsertFunction(F); 382 } 383 384 //===--------------------------------------------------------------------- 385 // Implementation of the ModulePass interface needed here. 386 // 387 388 void getAnalysisUsage(AnalysisUsage &AU) const override; 389 bool runOnModule(Module &M) override; 390 void releaseMemory() override; 391 392 void print(raw_ostream &o, const Module *) const override; 393 void dump() const; 394 }; 395 396 //===----------------------------------------------------------------------===// 397 // GraphTraits specializations for call graphs so that they can be treated as 398 // graphs by the generic graph algorithms. 399 // 400 401 // Provide graph traits for tranversing call graphs using standard graph 402 // traversals. 403 template <> struct GraphTraits<CallGraphNode *> { 404 typedef CallGraphNode NodeType; 405 406 typedef CallGraphNode::CallRecord CGNPairTy; 407 typedef std::pointer_to_unary_function<CGNPairTy, CallGraphNode *> 408 CGNDerefFun; 409 410 static NodeType *getEntryNode(CallGraphNode *CGN) { return CGN; } 411 412 typedef mapped_iterator<NodeType::iterator, CGNDerefFun> ChildIteratorType; 413 414 static inline ChildIteratorType child_begin(NodeType *N) { 415 return map_iterator(N->begin(), CGNDerefFun(CGNDeref)); 416 } 417 static inline ChildIteratorType child_end(NodeType *N) { 418 return map_iterator(N->end(), CGNDerefFun(CGNDeref)); 419 } 420 421 static CallGraphNode *CGNDeref(CGNPairTy P) { return P.second; } 422 }; 423 424 template <> struct GraphTraits<const CallGraphNode *> { 425 typedef const CallGraphNode NodeType; 426 427 typedef CallGraphNode::CallRecord CGNPairTy; 428 typedef std::pointer_to_unary_function<CGNPairTy, const CallGraphNode *> 429 CGNDerefFun; 430 431 static NodeType *getEntryNode(const CallGraphNode *CGN) { return CGN; } 432 433 typedef mapped_iterator<NodeType::const_iterator, CGNDerefFun> 434 ChildIteratorType; 435 436 static inline ChildIteratorType child_begin(NodeType *N) { 437 return map_iterator(N->begin(), CGNDerefFun(CGNDeref)); 438 } 439 static inline ChildIteratorType child_end(NodeType *N) { 440 return map_iterator(N->end(), CGNDerefFun(CGNDeref)); 441 } 442 443 static const CallGraphNode *CGNDeref(CGNPairTy P) { return P.second; } 444 }; 445 446 template <> 447 struct GraphTraits<CallGraph *> : public GraphTraits<CallGraphNode *> { 448 static NodeType *getEntryNode(CallGraph *CGN) { 449 return CGN->getExternalCallingNode(); // Start at the external node! 450 } 451 typedef std::pair<const Function *const, std::unique_ptr<CallGraphNode>> 452 PairTy; 453 typedef std::pointer_to_unary_function<const PairTy &, CallGraphNode &> 454 DerefFun; 455 456 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 457 typedef mapped_iterator<CallGraph::iterator, DerefFun> nodes_iterator; 458 static nodes_iterator nodes_begin(CallGraph *CG) { 459 return map_iterator(CG->begin(), DerefFun(CGdereference)); 460 } 461 static nodes_iterator nodes_end(CallGraph *CG) { 462 return map_iterator(CG->end(), DerefFun(CGdereference)); 463 } 464 465 static CallGraphNode &CGdereference(const PairTy &P) { return *P.second; } 466 }; 467 468 template <> 469 struct GraphTraits<const CallGraph *> : public GraphTraits< 470 const CallGraphNode *> { 471 static NodeType *getEntryNode(const CallGraph *CGN) { 472 return CGN->getExternalCallingNode(); // Start at the external node! 473 } 474 typedef std::pair<const Function *const, std::unique_ptr<CallGraphNode>> 475 PairTy; 476 typedef std::pointer_to_unary_function<const PairTy &, const CallGraphNode &> 477 DerefFun; 478 479 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 480 typedef mapped_iterator<CallGraph::const_iterator, DerefFun> nodes_iterator; 481 static nodes_iterator nodes_begin(const CallGraph *CG) { 482 return map_iterator(CG->begin(), DerefFun(CGdereference)); 483 } 484 static nodes_iterator nodes_end(const CallGraph *CG) { 485 return map_iterator(CG->end(), DerefFun(CGdereference)); 486 } 487 488 static const CallGraphNode &CGdereference(const PairTy &P) { 489 return *P.second; 490 } 491 }; 492 493 } // End llvm namespace 494 495 #endif 496