1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SlotIndexes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/ModuleSlotTracker.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/Support/DataTypes.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43     : BB(B), Number(-1), xParent(&MF) {
44   Insts.Parent = this;
45 }
46 
~MachineBasicBlock()47 MachineBasicBlock::~MachineBasicBlock() {
48 }
49 
50 /// Return the MCSymbol for this basic block.
getSymbol() const51 MCSymbol *MachineBasicBlock::getSymbol() const {
52   if (!CachedMCSymbol) {
53     const MachineFunction *MF = getParent();
54     MCContext &Ctx = MF->getContext();
55     const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
56     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
57     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
58                                            Twine(MF->getFunctionNumber()) +
59                                            "_" + Twine(getNumber()));
60   }
61 
62   return CachedMCSymbol;
63 }
64 
65 
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)66 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
67   MBB.print(OS);
68   return OS;
69 }
70 
71 /// When an MBB is added to an MF, we need to update the parent pointer of the
72 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
73 /// operand list for registers.
74 ///
75 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
76 /// gets the next available unique MBB number. If it is removed from a
77 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)78 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
79   MachineFunction &MF = *N->getParent();
80   N->Number = MF.addToMBBNumbering(N);
81 
82   // Make sure the instructions have their operands in the reginfo lists.
83   MachineRegisterInfo &RegInfo = MF.getRegInfo();
84   for (MachineBasicBlock::instr_iterator
85          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
86     I->AddRegOperandsToUseLists(RegInfo);
87 }
88 
removeNodeFromList(MachineBasicBlock * N)89 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
90   N->getParent()->removeFromMBBNumbering(N->Number);
91   N->Number = -1;
92 }
93 
94 /// When we add an instruction to a basic block list, we update its parent
95 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)96 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
97   assert(!N->getParent() && "machine instruction already in a basic block");
98   N->setParent(Parent);
99 
100   // Add the instruction's register operands to their corresponding
101   // use/def lists.
102   MachineFunction *MF = Parent->getParent();
103   N->AddRegOperandsToUseLists(MF->getRegInfo());
104 }
105 
106 /// When we remove an instruction from a basic block list, we update its parent
107 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)108 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
109   assert(N->getParent() && "machine instruction not in a basic block");
110 
111   // Remove from the use/def lists.
112   if (MachineFunction *MF = N->getParent()->getParent())
113     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
114 
115   N->setParent(nullptr);
116 }
117 
118 /// When moving a range of instructions from one MBB list to another, we need to
119 /// update the parent pointers and the use/def lists.
120 void ilist_traits<MachineInstr>::
transferNodesFromList(ilist_traits<MachineInstr> & FromList,ilist_iterator<MachineInstr> First,ilist_iterator<MachineInstr> Last)121 transferNodesFromList(ilist_traits<MachineInstr> &FromList,
122                       ilist_iterator<MachineInstr> First,
123                       ilist_iterator<MachineInstr> Last) {
124   assert(Parent->getParent() == FromList.Parent->getParent() &&
125         "MachineInstr parent mismatch!");
126 
127   // Splice within the same MBB -> no change.
128   if (Parent == FromList.Parent) return;
129 
130   // If splicing between two blocks within the same function, just update the
131   // parent pointers.
132   for (; First != Last; ++First)
133     First->setParent(Parent);
134 }
135 
deleteNode(MachineInstr * MI)136 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
137   assert(!MI->getParent() && "MI is still in a block!");
138   Parent->getParent()->DeleteMachineInstr(MI);
139 }
140 
getFirstNonPHI()141 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
142   instr_iterator I = instr_begin(), E = instr_end();
143   while (I != E && I->isPHI())
144     ++I;
145   assert((I == E || !I->isInsideBundle()) &&
146          "First non-phi MI cannot be inside a bundle!");
147   return I;
148 }
149 
150 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)151 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
152   iterator E = end();
153   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue()))
154     ++I;
155   // FIXME: This needs to change if we wish to bundle labels / dbg_values
156   // inside the bundle.
157   assert((I == E || !I->isInsideBundle()) &&
158          "First non-phi / non-label instruction is inside a bundle!");
159   return I;
160 }
161 
getFirstTerminator()162 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
163   iterator B = begin(), E = end(), I = E;
164   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
165     ; /*noop */
166   while (I != E && !I->isTerminator())
167     ++I;
168   return I;
169 }
170 
getFirstInstrTerminator()171 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
172   instr_iterator B = instr_begin(), E = instr_end(), I = E;
173   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
174     ; /*noop */
175   while (I != E && !I->isTerminator())
176     ++I;
177   return I;
178 }
179 
getFirstNonDebugInstr()180 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
181   // Skip over begin-of-block dbg_value instructions.
182   iterator I = begin(), E = end();
183   while (I != E && I->isDebugValue())
184     ++I;
185   return I;
186 }
187 
getLastNonDebugInstr()188 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
189   // Skip over end-of-block dbg_value instructions.
190   instr_iterator B = instr_begin(), I = instr_end();
191   while (I != B) {
192     --I;
193     // Return instruction that starts a bundle.
194     if (I->isDebugValue() || I->isInsideBundle())
195       continue;
196     return I;
197   }
198   // The block is all debug values.
199   return end();
200 }
201 
getLandingPadSuccessor() const202 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
203   // A block with a landing pad successor only has one other successor.
204   if (succ_size() > 2)
205     return nullptr;
206   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
207     if ((*I)->isEHPad())
208       return *I;
209   return nullptr;
210 }
211 
hasEHPadSuccessor() const212 bool MachineBasicBlock::hasEHPadSuccessor() const {
213   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
214     if ((*I)->isEHPad())
215       return true;
216   return false;
217 }
218 
219 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const220 void MachineBasicBlock::dump() const {
221   print(dbgs());
222 }
223 #endif
224 
getName() const225 StringRef MachineBasicBlock::getName() const {
226   if (const BasicBlock *LBB = getBasicBlock())
227     return LBB->getName();
228   else
229     return "(null)";
230 }
231 
232 /// Return a hopefully unique identifier for this block.
getFullName() const233 std::string MachineBasicBlock::getFullName() const {
234   std::string Name;
235   if (getParent())
236     Name = (getParent()->getName() + ":").str();
237   if (getBasicBlock())
238     Name += getBasicBlock()->getName();
239   else
240     Name += ("BB" + Twine(getNumber())).str();
241   return Name;
242 }
243 
print(raw_ostream & OS,SlotIndexes * Indexes) const244 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
245   const MachineFunction *MF = getParent();
246   if (!MF) {
247     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
248        << " is null\n";
249     return;
250   }
251   const Function *F = MF->getFunction();
252   const Module *M = F ? F->getParent() : nullptr;
253   ModuleSlotTracker MST(M);
254   print(OS, MST, Indexes);
255 }
256 
print(raw_ostream & OS,ModuleSlotTracker & MST,SlotIndexes * Indexes) const257 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
258                               SlotIndexes *Indexes) const {
259   const MachineFunction *MF = getParent();
260   if (!MF) {
261     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
262        << " is null\n";
263     return;
264   }
265 
266   if (Indexes)
267     OS << Indexes->getMBBStartIdx(this) << '\t';
268 
269   OS << "BB#" << getNumber() << ": ";
270 
271   const char *Comma = "";
272   if (const BasicBlock *LBB = getBasicBlock()) {
273     OS << Comma << "derived from LLVM BB ";
274     LBB->printAsOperand(OS, /*PrintType=*/false, MST);
275     Comma = ", ";
276   }
277   if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
278   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
279   if (Alignment)
280     OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
281        << " bytes)";
282 
283   OS << '\n';
284 
285   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
286   if (!livein_empty()) {
287     if (Indexes) OS << '\t';
288     OS << "    Live Ins:";
289     for (const auto &LI : make_range(livein_begin(), livein_end())) {
290       OS << ' ' << PrintReg(LI.PhysReg, TRI);
291       if (LI.LaneMask != ~0u)
292         OS << ':' << PrintLaneMask(LI.LaneMask);
293     }
294     OS << '\n';
295   }
296   // Print the preds of this block according to the CFG.
297   if (!pred_empty()) {
298     if (Indexes) OS << '\t';
299     OS << "    Predecessors according to CFG:";
300     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
301       OS << " BB#" << (*PI)->getNumber();
302     OS << '\n';
303   }
304 
305   for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
306     if (Indexes) {
307       if (Indexes->hasIndex(&*I))
308         OS << Indexes->getInstructionIndex(&*I);
309       OS << '\t';
310     }
311     OS << '\t';
312     if (I->isInsideBundle())
313       OS << "  * ";
314     I->print(OS, MST);
315   }
316 
317   // Print the successors of this block according to the CFG.
318   if (!succ_empty()) {
319     if (Indexes) OS << '\t';
320     OS << "    Successors according to CFG:";
321     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
322       OS << " BB#" << (*SI)->getNumber();
323       if (!Probs.empty())
324         OS << '(' << *getProbabilityIterator(SI) << ')';
325     }
326     OS << '\n';
327   }
328 }
329 
printAsOperand(raw_ostream & OS,bool) const330 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
331                                        bool /*PrintType*/) const {
332   OS << "BB#" << getNumber();
333 }
334 
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)335 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
336   LiveInVector::iterator I = std::find_if(
337       LiveIns.begin(), LiveIns.end(),
338       [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
339   if (I == LiveIns.end())
340     return;
341 
342   I->LaneMask &= ~LaneMask;
343   if (I->LaneMask == 0)
344     LiveIns.erase(I);
345 }
346 
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const347 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
348   livein_iterator I = std::find_if(
349       LiveIns.begin(), LiveIns.end(),
350       [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
351   return I != livein_end() && (I->LaneMask & LaneMask) != 0;
352 }
353 
sortUniqueLiveIns()354 void MachineBasicBlock::sortUniqueLiveIns() {
355   std::sort(LiveIns.begin(), LiveIns.end(),
356             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
357               return LI0.PhysReg < LI1.PhysReg;
358             });
359   // Liveins are sorted by physreg now we can merge their lanemasks.
360   LiveInVector::const_iterator I = LiveIns.begin();
361   LiveInVector::const_iterator J;
362   LiveInVector::iterator Out = LiveIns.begin();
363   for (; I != LiveIns.end(); ++Out, I = J) {
364     unsigned PhysReg = I->PhysReg;
365     LaneBitmask LaneMask = I->LaneMask;
366     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
367       LaneMask |= J->LaneMask;
368     Out->PhysReg = PhysReg;
369     Out->LaneMask = LaneMask;
370   }
371   LiveIns.erase(Out, LiveIns.end());
372 }
373 
374 unsigned
addLiveIn(MCPhysReg PhysReg,const TargetRegisterClass * RC)375 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
376   assert(getParent() && "MBB must be inserted in function");
377   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
378   assert(RC && "Register class is required");
379   assert((isEHPad() || this == &getParent()->front()) &&
380          "Only the entry block and landing pads can have physreg live ins");
381 
382   bool LiveIn = isLiveIn(PhysReg);
383   iterator I = SkipPHIsAndLabels(begin()), E = end();
384   MachineRegisterInfo &MRI = getParent()->getRegInfo();
385   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
386 
387   // Look for an existing copy.
388   if (LiveIn)
389     for (;I != E && I->isCopy(); ++I)
390       if (I->getOperand(1).getReg() == PhysReg) {
391         unsigned VirtReg = I->getOperand(0).getReg();
392         if (!MRI.constrainRegClass(VirtReg, RC))
393           llvm_unreachable("Incompatible live-in register class.");
394         return VirtReg;
395       }
396 
397   // No luck, create a virtual register.
398   unsigned VirtReg = MRI.createVirtualRegister(RC);
399   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
400     .addReg(PhysReg, RegState::Kill);
401   if (!LiveIn)
402     addLiveIn(PhysReg);
403   return VirtReg;
404 }
405 
moveBefore(MachineBasicBlock * NewAfter)406 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
407   getParent()->splice(NewAfter->getIterator(), getIterator());
408 }
409 
moveAfter(MachineBasicBlock * NewBefore)410 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
411   getParent()->splice(++NewBefore->getIterator(), getIterator());
412 }
413 
updateTerminator()414 void MachineBasicBlock::updateTerminator() {
415   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
416   // A block with no successors has no concerns with fall-through edges.
417   if (this->succ_empty()) return;
418 
419   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
420   SmallVector<MachineOperand, 4> Cond;
421   DebugLoc DL;  // FIXME: this is nowhere
422   bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
423   (void) B;
424   assert(!B && "UpdateTerminators requires analyzable predecessors!");
425   if (Cond.empty()) {
426     if (TBB) {
427       // The block has an unconditional branch. If its successor is now
428       // its layout successor, delete the branch.
429       if (isLayoutSuccessor(TBB))
430         TII->RemoveBranch(*this);
431     } else {
432       // The block has an unconditional fallthrough. If its successor is not
433       // its layout successor, insert a branch. First we have to locate the
434       // only non-landing-pad successor, as that is the fallthrough block.
435       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
436         if ((*SI)->isEHPad())
437           continue;
438         assert(!TBB && "Found more than one non-landing-pad successor!");
439         TBB = *SI;
440       }
441 
442       // If there is no non-landing-pad successor, the block has no
443       // fall-through edges to be concerned with.
444       if (!TBB)
445         return;
446 
447       // Finally update the unconditional successor to be reached via a branch
448       // if it would not be reached by fallthrough.
449       if (!isLayoutSuccessor(TBB))
450         TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
451     }
452   } else {
453     if (FBB) {
454       // The block has a non-fallthrough conditional branch. If one of its
455       // successors is its layout successor, rewrite it to a fallthrough
456       // conditional branch.
457       if (isLayoutSuccessor(TBB)) {
458         if (TII->ReverseBranchCondition(Cond))
459           return;
460         TII->RemoveBranch(*this);
461         TII->InsertBranch(*this, FBB, nullptr, Cond, DL);
462       } else if (isLayoutSuccessor(FBB)) {
463         TII->RemoveBranch(*this);
464         TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
465       }
466     } else {
467       // Walk through the successors and find the successor which is not
468       // a landing pad and is not the conditional branch destination (in TBB)
469       // as the fallthrough successor.
470       MachineBasicBlock *FallthroughBB = nullptr;
471       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
472         if ((*SI)->isEHPad() || *SI == TBB)
473           continue;
474         assert(!FallthroughBB && "Found more than one fallthrough successor.");
475         FallthroughBB = *SI;
476       }
477       if (!FallthroughBB && canFallThrough()) {
478         // We fallthrough to the same basic block as the conditional jump
479         // targets. Remove the conditional jump, leaving unconditional
480         // fallthrough.
481         // FIXME: This does not seem like a reasonable pattern to support, but
482         // it has been seen in the wild coming out of degenerate ARM test cases.
483         TII->RemoveBranch(*this);
484 
485         // Finally update the unconditional successor to be reached via a branch
486         // if it would not be reached by fallthrough.
487         if (!isLayoutSuccessor(TBB))
488           TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
489         return;
490       }
491 
492       // The block has a fallthrough conditional branch.
493       if (isLayoutSuccessor(TBB)) {
494         if (TII->ReverseBranchCondition(Cond)) {
495           // We can't reverse the condition, add an unconditional branch.
496           Cond.clear();
497           TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
498           return;
499         }
500         TII->RemoveBranch(*this);
501         TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
502       } else if (!isLayoutSuccessor(FallthroughBB)) {
503         TII->RemoveBranch(*this);
504         TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL);
505       }
506     }
507   }
508 }
509 
validateSuccProbs() const510 void MachineBasicBlock::validateSuccProbs() const {
511 #ifndef NDEBUG
512   int64_t Sum = 0;
513   for (auto Prob : Probs)
514     Sum += Prob.getNumerator();
515   // Due to precision issue, we assume that the sum of probabilities is one if
516   // the difference between the sum of their numerators and the denominator is
517   // no greater than the number of successors.
518   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
519              Probs.size() &&
520          "The sum of successors's probabilities exceeds one.");
521 #endif // NDEBUG
522 }
523 
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)524 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
525                                      BranchProbability Prob) {
526   // Probability list is either empty (if successor list isn't empty, this means
527   // disabled optimization) or has the same size as successor list.
528   if (!(Probs.empty() && !Successors.empty()))
529     Probs.push_back(Prob);
530   Successors.push_back(Succ);
531   Succ->addPredecessor(this);
532 }
533 
addSuccessorWithoutProb(MachineBasicBlock * Succ)534 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
535   // We need to make sure probability list is either empty or has the same size
536   // of successor list. When this function is called, we can safely delete all
537   // probability in the list.
538   Probs.clear();
539   Successors.push_back(Succ);
540   Succ->addPredecessor(this);
541 }
542 
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)543 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
544                                         bool NormalizeSuccProbs) {
545   succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ);
546   removeSuccessor(I, NormalizeSuccProbs);
547 }
548 
549 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)550 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
551   assert(I != Successors.end() && "Not a current successor!");
552 
553   // If probability list is empty it means we don't use it (disabled
554   // optimization).
555   if (!Probs.empty()) {
556     probability_iterator WI = getProbabilityIterator(I);
557     Probs.erase(WI);
558     if (NormalizeSuccProbs)
559       normalizeSuccProbs();
560   }
561 
562   (*I)->removePredecessor(this);
563   return Successors.erase(I);
564 }
565 
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)566 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
567                                          MachineBasicBlock *New) {
568   if (Old == New)
569     return;
570 
571   succ_iterator E = succ_end();
572   succ_iterator NewI = E;
573   succ_iterator OldI = E;
574   for (succ_iterator I = succ_begin(); I != E; ++I) {
575     if (*I == Old) {
576       OldI = I;
577       if (NewI != E)
578         break;
579     }
580     if (*I == New) {
581       NewI = I;
582       if (OldI != E)
583         break;
584     }
585   }
586   assert(OldI != E && "Old is not a successor of this block");
587 
588   // If New isn't already a successor, let it take Old's place.
589   if (NewI == E) {
590     Old->removePredecessor(this);
591     New->addPredecessor(this);
592     *OldI = New;
593     return;
594   }
595 
596   // New is already a successor.
597   // Update its probability instead of adding a duplicate edge.
598   if (!Probs.empty()) {
599     auto ProbIter = getProbabilityIterator(NewI);
600     if (!ProbIter->isUnknown())
601       *ProbIter += *getProbabilityIterator(OldI);
602   }
603   removeSuccessor(OldI);
604 }
605 
addPredecessor(MachineBasicBlock * Pred)606 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
607   Predecessors.push_back(Pred);
608 }
609 
removePredecessor(MachineBasicBlock * Pred)610 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
611   pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred);
612   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
613   Predecessors.erase(I);
614 }
615 
transferSuccessors(MachineBasicBlock * FromMBB)616 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
617   if (this == FromMBB)
618     return;
619 
620   while (!FromMBB->succ_empty()) {
621     MachineBasicBlock *Succ = *FromMBB->succ_begin();
622 
623     // If probability list is empty it means we don't use it (disabled optimization).
624     if (!FromMBB->Probs.empty()) {
625       auto Prob = *FromMBB->Probs.begin();
626       addSuccessor(Succ, Prob);
627     } else
628       addSuccessorWithoutProb(Succ);
629 
630     FromMBB->removeSuccessor(Succ);
631   }
632 }
633 
634 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)635 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
636   if (this == FromMBB)
637     return;
638 
639   while (!FromMBB->succ_empty()) {
640     MachineBasicBlock *Succ = *FromMBB->succ_begin();
641     if (!FromMBB->Probs.empty()) {
642       auto Prob = *FromMBB->Probs.begin();
643       addSuccessor(Succ, Prob);
644     } else
645       addSuccessorWithoutProb(Succ);
646     FromMBB->removeSuccessor(Succ);
647 
648     // Fix up any PHI nodes in the successor.
649     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
650            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
651       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
652         MachineOperand &MO = MI->getOperand(i);
653         if (MO.getMBB() == FromMBB)
654           MO.setMBB(this);
655       }
656   }
657   normalizeSuccProbs();
658 }
659 
isPredecessor(const MachineBasicBlock * MBB) const660 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
661   return std::find(pred_begin(), pred_end(), MBB) != pred_end();
662 }
663 
isSuccessor(const MachineBasicBlock * MBB) const664 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
665   return std::find(succ_begin(), succ_end(), MBB) != succ_end();
666 }
667 
isLayoutSuccessor(const MachineBasicBlock * MBB) const668 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
669   MachineFunction::const_iterator I(this);
670   return std::next(I) == MachineFunction::const_iterator(MBB);
671 }
672 
canFallThrough()673 bool MachineBasicBlock::canFallThrough() {
674   MachineFunction::iterator Fallthrough = getIterator();
675   ++Fallthrough;
676   // If FallthroughBlock is off the end of the function, it can't fall through.
677   if (Fallthrough == getParent()->end())
678     return false;
679 
680   // If FallthroughBlock isn't a successor, no fallthrough is possible.
681   if (!isSuccessor(&*Fallthrough))
682     return false;
683 
684   // Analyze the branches, if any, at the end of the block.
685   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
686   SmallVector<MachineOperand, 4> Cond;
687   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
688   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
689     // If we couldn't analyze the branch, examine the last instruction.
690     // If the block doesn't end in a known control barrier, assume fallthrough
691     // is possible. The isPredicated check is needed because this code can be
692     // called during IfConversion, where an instruction which is normally a
693     // Barrier is predicated and thus no longer an actual control barrier.
694     return empty() || !back().isBarrier() || TII->isPredicated(&back());
695   }
696 
697   // If there is no branch, control always falls through.
698   if (!TBB) return true;
699 
700   // If there is some explicit branch to the fallthrough block, it can obviously
701   // reach, even though the branch should get folded to fall through implicitly.
702   if (MachineFunction::iterator(TBB) == Fallthrough ||
703       MachineFunction::iterator(FBB) == Fallthrough)
704     return true;
705 
706   // If it's an unconditional branch to some block not the fall through, it
707   // doesn't fall through.
708   if (Cond.empty()) return false;
709 
710   // Otherwise, if it is conditional and has no explicit false block, it falls
711   // through.
712   return FBB == nullptr;
713 }
714 
715 MachineBasicBlock *
SplitCriticalEdge(MachineBasicBlock * Succ,Pass * P)716 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
717   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
718   // it in this generic function.
719   if (Succ->isEHPad())
720     return nullptr;
721 
722   MachineFunction *MF = getParent();
723   DebugLoc DL;  // FIXME: this is nowhere
724 
725   // Performance might be harmed on HW that implements branching using exec mask
726   // where both sides of the branches are always executed.
727   if (MF->getTarget().requiresStructuredCFG())
728     return nullptr;
729 
730   // We may need to update this's terminator, but we can't do that if
731   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
732   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
733   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
734   SmallVector<MachineOperand, 4> Cond;
735   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
736     return nullptr;
737 
738   // Avoid bugpoint weirdness: A block may end with a conditional branch but
739   // jumps to the same MBB is either case. We have duplicate CFG edges in that
740   // case that we can't handle. Since this never happens in properly optimized
741   // code, just skip those edges.
742   if (TBB && TBB == FBB) {
743     DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
744                  << getNumber() << '\n');
745     return nullptr;
746   }
747 
748   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
749   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
750   DEBUG(dbgs() << "Splitting critical edge:"
751         " BB#" << getNumber()
752         << " -- BB#" << NMBB->getNumber()
753         << " -- BB#" << Succ->getNumber() << '\n');
754 
755   LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
756   SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
757   if (LIS)
758     LIS->insertMBBInMaps(NMBB);
759   else if (Indexes)
760     Indexes->insertMBBInMaps(NMBB);
761 
762   // On some targets like Mips, branches may kill virtual registers. Make sure
763   // that LiveVariables is properly updated after updateTerminator replaces the
764   // terminators.
765   LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
766 
767   // Collect a list of virtual registers killed by the terminators.
768   SmallVector<unsigned, 4> KilledRegs;
769   if (LV)
770     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
771          I != E; ++I) {
772       MachineInstr *MI = &*I;
773       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
774            OE = MI->operands_end(); OI != OE; ++OI) {
775         if (!OI->isReg() || OI->getReg() == 0 ||
776             !OI->isUse() || !OI->isKill() || OI->isUndef())
777           continue;
778         unsigned Reg = OI->getReg();
779         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
780             LV->getVarInfo(Reg).removeKill(MI)) {
781           KilledRegs.push_back(Reg);
782           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
783           OI->setIsKill(false);
784         }
785       }
786     }
787 
788   SmallVector<unsigned, 4> UsedRegs;
789   if (LIS) {
790     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
791          I != E; ++I) {
792       MachineInstr *MI = &*I;
793 
794       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
795            OE = MI->operands_end(); OI != OE; ++OI) {
796         if (!OI->isReg() || OI->getReg() == 0)
797           continue;
798 
799         unsigned Reg = OI->getReg();
800         if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
801           UsedRegs.push_back(Reg);
802       }
803     }
804   }
805 
806   ReplaceUsesOfBlockWith(Succ, NMBB);
807 
808   // If updateTerminator() removes instructions, we need to remove them from
809   // SlotIndexes.
810   SmallVector<MachineInstr*, 4> Terminators;
811   if (Indexes) {
812     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
813          I != E; ++I)
814       Terminators.push_back(&*I);
815   }
816 
817   updateTerminator();
818 
819   if (Indexes) {
820     SmallVector<MachineInstr*, 4> NewTerminators;
821     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
822          I != E; ++I)
823       NewTerminators.push_back(&*I);
824 
825     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
826         E = Terminators.end(); I != E; ++I) {
827       if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
828           NewTerminators.end())
829        Indexes->removeMachineInstrFromMaps(*I);
830     }
831   }
832 
833   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
834   NMBB->addSuccessor(Succ);
835   if (!NMBB->isLayoutSuccessor(Succ)) {
836     Cond.clear();
837     TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL);
838 
839     if (Indexes) {
840       for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
841            I != E; ++I) {
842         // Some instructions may have been moved to NMBB by updateTerminator(),
843         // so we first remove any instruction that already has an index.
844         if (Indexes->hasIndex(&*I))
845           Indexes->removeMachineInstrFromMaps(&*I);
846         Indexes->insertMachineInstrInMaps(&*I);
847       }
848     }
849   }
850 
851   // Fix PHI nodes in Succ so they refer to NMBB instead of this
852   for (MachineBasicBlock::instr_iterator
853          i = Succ->instr_begin(),e = Succ->instr_end();
854        i != e && i->isPHI(); ++i)
855     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
856       if (i->getOperand(ni+1).getMBB() == this)
857         i->getOperand(ni+1).setMBB(NMBB);
858 
859   // Inherit live-ins from the successor
860   for (const auto &LI : Succ->liveins())
861     NMBB->addLiveIn(LI);
862 
863   // Update LiveVariables.
864   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
865   if (LV) {
866     // Restore kills of virtual registers that were killed by the terminators.
867     while (!KilledRegs.empty()) {
868       unsigned Reg = KilledRegs.pop_back_val();
869       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
870         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
871           continue;
872         if (TargetRegisterInfo::isVirtualRegister(Reg))
873           LV->getVarInfo(Reg).Kills.push_back(&*I);
874         DEBUG(dbgs() << "Restored terminator kill: " << *I);
875         break;
876       }
877     }
878     // Update relevant live-through information.
879     LV->addNewBlock(NMBB, this, Succ);
880   }
881 
882   if (LIS) {
883     // After splitting the edge and updating SlotIndexes, live intervals may be
884     // in one of two situations, depending on whether this block was the last in
885     // the function. If the original block was the last in the function, all
886     // live intervals will end prior to the beginning of the new split block. If
887     // the original block was not at the end of the function, all live intervals
888     // will extend to the end of the new split block.
889 
890     bool isLastMBB =
891       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
892 
893     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
894     SlotIndex PrevIndex = StartIndex.getPrevSlot();
895     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
896 
897     // Find the registers used from NMBB in PHIs in Succ.
898     SmallSet<unsigned, 8> PHISrcRegs;
899     for (MachineBasicBlock::instr_iterator
900          I = Succ->instr_begin(), E = Succ->instr_end();
901          I != E && I->isPHI(); ++I) {
902       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
903         if (I->getOperand(ni+1).getMBB() == NMBB) {
904           MachineOperand &MO = I->getOperand(ni);
905           unsigned Reg = MO.getReg();
906           PHISrcRegs.insert(Reg);
907           if (MO.isUndef())
908             continue;
909 
910           LiveInterval &LI = LIS->getInterval(Reg);
911           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
912           assert(VNI &&
913                  "PHI sources should be live out of their predecessors.");
914           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
915         }
916       }
917     }
918 
919     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
920     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
921       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
922       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
923         continue;
924 
925       LiveInterval &LI = LIS->getInterval(Reg);
926       if (!LI.liveAt(PrevIndex))
927         continue;
928 
929       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
930       if (isLiveOut && isLastMBB) {
931         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
932         assert(VNI && "LiveInterval should have VNInfo where it is live.");
933         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
934       } else if (!isLiveOut && !isLastMBB) {
935         LI.removeSegment(StartIndex, EndIndex);
936       }
937     }
938 
939     // Update all intervals for registers whose uses may have been modified by
940     // updateTerminator().
941     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
942   }
943 
944   if (MachineDominatorTree *MDT =
945       P->getAnalysisIfAvailable<MachineDominatorTree>())
946     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
947 
948   if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
949     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
950       // If one or the other blocks were not in a loop, the new block is not
951       // either, and thus LI doesn't need to be updated.
952       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
953         if (TIL == DestLoop) {
954           // Both in the same loop, the NMBB joins loop.
955           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
956         } else if (TIL->contains(DestLoop)) {
957           // Edge from an outer loop to an inner loop.  Add to the outer loop.
958           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
959         } else if (DestLoop->contains(TIL)) {
960           // Edge from an inner loop to an outer loop.  Add to the outer loop.
961           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
962         } else {
963           // Edge from two loops with no containment relation.  Because these
964           // are natural loops, we know that the destination block must be the
965           // header of its loop (adding a branch into a loop elsewhere would
966           // create an irreducible loop).
967           assert(DestLoop->getHeader() == Succ &&
968                  "Should not create irreducible loops!");
969           if (MachineLoop *P = DestLoop->getParentLoop())
970             P->addBasicBlockToLoop(NMBB, MLI->getBase());
971         }
972       }
973     }
974 
975   return NMBB;
976 }
977 
978 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
979 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)980 static void unbundleSingleMI(MachineInstr *MI) {
981   // Removing the first instruction in a bundle.
982   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
983     MI->unbundleFromSucc();
984   // Removing the last instruction in a bundle.
985   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
986     MI->unbundleFromPred();
987   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
988   // are already fine.
989 }
990 
991 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)992 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
993   unbundleSingleMI(&*I);
994   return Insts.erase(I);
995 }
996 
remove_instr(MachineInstr * MI)997 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
998   unbundleSingleMI(MI);
999   MI->clearFlag(MachineInstr::BundledPred);
1000   MI->clearFlag(MachineInstr::BundledSucc);
1001   return Insts.remove(MI);
1002 }
1003 
1004 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1005 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1006   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1007          "Cannot insert instruction with bundle flags");
1008   // Set the bundle flags when inserting inside a bundle.
1009   if (I != instr_end() && I->isBundledWithPred()) {
1010     MI->setFlag(MachineInstr::BundledPred);
1011     MI->setFlag(MachineInstr::BundledSucc);
1012   }
1013   return Insts.insert(I, MI);
1014 }
1015 
1016 /// This method unlinks 'this' from the containing function, and returns it, but
1017 /// does not delete it.
removeFromParent()1018 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1019   assert(getParent() && "Not embedded in a function!");
1020   getParent()->remove(this);
1021   return this;
1022 }
1023 
1024 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1025 void MachineBasicBlock::eraseFromParent() {
1026   assert(getParent() && "Not embedded in a function!");
1027   getParent()->erase(this);
1028 }
1029 
1030 /// Given a machine basic block that branched to 'Old', change the code and CFG
1031 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1032 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1033                                                MachineBasicBlock *New) {
1034   assert(Old != New && "Cannot replace self with self!");
1035 
1036   MachineBasicBlock::instr_iterator I = instr_end();
1037   while (I != instr_begin()) {
1038     --I;
1039     if (!I->isTerminator()) break;
1040 
1041     // Scan the operands of this machine instruction, replacing any uses of Old
1042     // with New.
1043     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1044       if (I->getOperand(i).isMBB() &&
1045           I->getOperand(i).getMBB() == Old)
1046         I->getOperand(i).setMBB(New);
1047   }
1048 
1049   // Update the successor information.
1050   replaceSuccessor(Old, New);
1051 }
1052 
1053 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1054 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1055 /// MBB successors from the CFG.  DestA and DestB can be null.
1056 ///
1057 /// Besides DestA and DestB, retain other edges leading to LandingPads
1058 /// (currently there can be only one; we don't check or require that here).
1059 /// Note it is possible that DestA and/or DestB are LandingPads.
CorrectExtraCFGEdges(MachineBasicBlock * DestA,MachineBasicBlock * DestB,bool IsCond)1060 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1061                                              MachineBasicBlock *DestB,
1062                                              bool IsCond) {
1063   // The values of DestA and DestB frequently come from a call to the
1064   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1065   // values from there.
1066   //
1067   // 1. If both DestA and DestB are null, then the block ends with no branches
1068   //    (it falls through to its successor).
1069   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1070   //    with only an unconditional branch.
1071   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1072   //    with a conditional branch that falls through to a successor (DestB).
1073   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1074   //    conditional branch followed by an unconditional branch. DestA is the
1075   //    'true' destination and DestB is the 'false' destination.
1076 
1077   bool Changed = false;
1078 
1079   MachineFunction::iterator FallThru = std::next(getIterator());
1080 
1081   if (!DestA && !DestB) {
1082     // Block falls through to successor.
1083     DestA = &*FallThru;
1084     DestB = &*FallThru;
1085   } else if (DestA && !DestB) {
1086     if (IsCond)
1087       // Block ends in conditional jump that falls through to successor.
1088       DestB = &*FallThru;
1089   } else {
1090     assert(DestA && DestB && IsCond &&
1091            "CFG in a bad state. Cannot correct CFG edges");
1092   }
1093 
1094   // Remove superfluous edges. I.e., those which aren't destinations of this
1095   // basic block, duplicate edges, or landing pads.
1096   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1097   MachineBasicBlock::succ_iterator SI = succ_begin();
1098   while (SI != succ_end()) {
1099     const MachineBasicBlock *MBB = *SI;
1100     if (!SeenMBBs.insert(MBB).second ||
1101         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1102       // This is a superfluous edge, remove it.
1103       SI = removeSuccessor(SI);
1104       Changed = true;
1105     } else {
1106       ++SI;
1107     }
1108   }
1109 
1110   if (Changed)
1111     normalizeSuccProbs();
1112   return Changed;
1113 }
1114 
1115 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1116 /// instructions.  Return UnknownLoc if there is none.
1117 DebugLoc
findDebugLoc(instr_iterator MBBI)1118 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1119   DebugLoc DL;
1120   instr_iterator E = instr_end();
1121   if (MBBI == E)
1122     return DL;
1123 
1124   // Skip debug declarations, we don't want a DebugLoc from them.
1125   while (MBBI != E && MBBI->isDebugValue())
1126     MBBI++;
1127   if (MBBI != E)
1128     DL = MBBI->getDebugLoc();
1129   return DL;
1130 }
1131 
1132 /// Return probability of the edge from this block to MBB.
1133 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1134 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1135   if (Probs.empty())
1136     return BranchProbability(1, succ_size());
1137 
1138   const auto &Prob = *getProbabilityIterator(Succ);
1139   if (Prob.isUnknown()) {
1140     // For unknown probabilities, collect the sum of all known ones, and evenly
1141     // ditribute the complemental of the sum to each unknown probability.
1142     unsigned KnownProbNum = 0;
1143     auto Sum = BranchProbability::getZero();
1144     for (auto &P : Probs) {
1145       if (!P.isUnknown()) {
1146         Sum += P;
1147         KnownProbNum++;
1148       }
1149     }
1150     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1151   } else
1152     return Prob;
1153 }
1154 
1155 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1156 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1157                                            BranchProbability Prob) {
1158   assert(!Prob.isUnknown());
1159   if (Probs.empty())
1160     return;
1161   *getProbabilityIterator(I) = Prob;
1162 }
1163 
1164 /// Return probability iterator corresonding to the I successor iterator
1165 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1166 MachineBasicBlock::getProbabilityIterator(
1167     MachineBasicBlock::const_succ_iterator I) const {
1168   assert(Probs.size() == Successors.size() && "Async probability list!");
1169   const size_t index = std::distance(Successors.begin(), I);
1170   assert(index < Probs.size() && "Not a current successor!");
1171   return Probs.begin() + index;
1172 }
1173 
1174 /// Return probability iterator corresonding to the I successor iterator.
1175 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1176 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1177   assert(Probs.size() == Successors.size() && "Async probability list!");
1178   const size_t index = std::distance(Successors.begin(), I);
1179   assert(index < Probs.size() && "Not a current successor!");
1180   return Probs.begin() + index;
1181 }
1182 
1183 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1184 /// as of just before "MI".
1185 ///
1186 /// Search is localised to a neighborhood of
1187 /// Neighborhood instructions before (searching for defs or kills) and N
1188 /// instructions after (searching just for defs) MI.
1189 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,unsigned Reg,const_iterator Before,unsigned Neighborhood) const1190 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1191                                            unsigned Reg, const_iterator Before,
1192                                            unsigned Neighborhood) const {
1193   unsigned N = Neighborhood;
1194 
1195   // Start by searching backwards from Before, looking for kills, reads or defs.
1196   const_iterator I(Before);
1197   // If this is the first insn in the block, don't search backwards.
1198   if (I != begin()) {
1199     do {
1200       --I;
1201 
1202       MachineOperandIteratorBase::PhysRegInfo Info =
1203         ConstMIOperands(I).analyzePhysReg(Reg, TRI);
1204 
1205       // Defs happen after uses so they take precedence if both are present.
1206 
1207       // Register is dead after a dead def of the full register.
1208       if (Info.DeadDef)
1209         return LQR_Dead;
1210       // Register is (at least partially) live after a def.
1211       if (Info.Defined)
1212         return LQR_Live;
1213       // Register is dead after a full kill or clobber and no def.
1214       if (Info.Killed || Info.Clobbered)
1215         return LQR_Dead;
1216       // Register must be live if we read it.
1217       if (Info.Read)
1218         return LQR_Live;
1219     } while (I != begin() && --N > 0);
1220   }
1221 
1222   // Did we get to the start of the block?
1223   if (I == begin()) {
1224     // If so, the register's state is definitely defined by the live-in state.
1225     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1226          ++RAI)
1227       if (isLiveIn(*RAI))
1228         return LQR_Live;
1229 
1230     return LQR_Dead;
1231   }
1232 
1233   N = Neighborhood;
1234 
1235   // Try searching forwards from Before, looking for reads or defs.
1236   I = const_iterator(Before);
1237   // If this is the last insn in the block, don't search forwards.
1238   if (I != end()) {
1239     for (++I; I != end() && N > 0; ++I, --N) {
1240       MachineOperandIteratorBase::PhysRegInfo Info =
1241         ConstMIOperands(I).analyzePhysReg(Reg, TRI);
1242 
1243       // Register is live when we read it here.
1244       if (Info.Read)
1245         return LQR_Live;
1246       // Register is dead if we can fully overwrite or clobber it here.
1247       if (Info.FullyDefined || Info.Clobbered)
1248         return LQR_Dead;
1249     }
1250   }
1251 
1252   // At this point we have no idea of the liveness of the register.
1253   return LQR_Unknown;
1254 }
1255 
1256 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1257 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1258   // EH funclet entry does not preserve any registers.
1259   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1260 }
1261 
1262 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1263 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1264   // If we see a return block with successors, this must be a funclet return,
1265   // which does not preserve any registers. If there are no successors, we don't
1266   // care what kind of return it is, putting a mask after it is a no-op.
1267   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1268 }
1269