1 //===--- MacroExpansion.cpp - Top level Macro Expansion -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the top level handling of macro expansion for the
11 // preprocessor.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Lex/Preprocessor.h"
16 #include "clang/Basic/Attributes.h"
17 #include "clang/Basic/FileManager.h"
18 #include "clang/Basic/SourceManager.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Lex/CodeCompletionHandler.h"
21 #include "clang/Lex/ExternalPreprocessorSource.h"
22 #include "clang/Lex/LexDiagnostic.h"
23 #include "clang/Lex/MacroArgs.h"
24 #include "clang/Lex/MacroInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/Config/llvm-config.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Format.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <cstdio>
33 #include <ctime>
34 using namespace clang;
35
36 MacroDirective *
getLocalMacroDirectiveHistory(const IdentifierInfo * II) const37 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
38 if (!II->hadMacroDefinition())
39 return nullptr;
40 auto Pos = CurSubmoduleState->Macros.find(II);
41 return Pos == CurSubmoduleState->Macros.end() ? nullptr
42 : Pos->second.getLatest();
43 }
44
appendMacroDirective(IdentifierInfo * II,MacroDirective * MD)45 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
46 assert(MD && "MacroDirective should be non-zero!");
47 assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
48
49 MacroState &StoredMD = CurSubmoduleState->Macros[II];
50 auto *OldMD = StoredMD.getLatest();
51 MD->setPrevious(OldMD);
52 StoredMD.setLatest(MD);
53 StoredMD.overrideActiveModuleMacros(*this, II);
54
55 // Set up the identifier as having associated macro history.
56 II->setHasMacroDefinition(true);
57 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
58 II->setHasMacroDefinition(false);
59 if (II->isFromAST())
60 II->setChangedSinceDeserialization();
61 }
62
setLoadedMacroDirective(IdentifierInfo * II,MacroDirective * MD)63 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
64 MacroDirective *MD) {
65 assert(II && MD);
66 MacroState &StoredMD = CurSubmoduleState->Macros[II];
67 assert(!StoredMD.getLatest() &&
68 "the macro history was modified before initializing it from a pch");
69 StoredMD = MD;
70 // Setup the identifier as having associated macro history.
71 II->setHasMacroDefinition(true);
72 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
73 II->setHasMacroDefinition(false);
74 }
75
addModuleMacro(Module * Mod,IdentifierInfo * II,MacroInfo * Macro,ArrayRef<ModuleMacro * > Overrides,bool & New)76 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
77 MacroInfo *Macro,
78 ArrayRef<ModuleMacro *> Overrides,
79 bool &New) {
80 llvm::FoldingSetNodeID ID;
81 ModuleMacro::Profile(ID, Mod, II);
82
83 void *InsertPos;
84 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
85 New = false;
86 return MM;
87 }
88
89 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
90 ModuleMacros.InsertNode(MM, InsertPos);
91
92 // Each overridden macro is now overridden by one more macro.
93 bool HidAny = false;
94 for (auto *O : Overrides) {
95 HidAny |= (O->NumOverriddenBy == 0);
96 ++O->NumOverriddenBy;
97 }
98
99 // If we were the first overrider for any macro, it's no longer a leaf.
100 auto &LeafMacros = LeafModuleMacros[II];
101 if (HidAny) {
102 LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(),
103 [](ModuleMacro *MM) {
104 return MM->NumOverriddenBy != 0;
105 }),
106 LeafMacros.end());
107 }
108
109 // The new macro is always a leaf macro.
110 LeafMacros.push_back(MM);
111 // The identifier now has defined macros (that may or may not be visible).
112 II->setHasMacroDefinition(true);
113
114 New = true;
115 return MM;
116 }
117
getModuleMacro(Module * Mod,IdentifierInfo * II)118 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) {
119 llvm::FoldingSetNodeID ID;
120 ModuleMacro::Profile(ID, Mod, II);
121
122 void *InsertPos;
123 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
124 }
125
updateModuleMacroInfo(const IdentifierInfo * II,ModuleMacroInfo & Info)126 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
127 ModuleMacroInfo &Info) {
128 assert(Info.ActiveModuleMacrosGeneration !=
129 CurSubmoduleState->VisibleModules.getGeneration() &&
130 "don't need to update this macro name info");
131 Info.ActiveModuleMacrosGeneration =
132 CurSubmoduleState->VisibleModules.getGeneration();
133
134 auto Leaf = LeafModuleMacros.find(II);
135 if (Leaf == LeafModuleMacros.end()) {
136 // No imported macros at all: nothing to do.
137 return;
138 }
139
140 Info.ActiveModuleMacros.clear();
141
142 // Every macro that's locally overridden is overridden by a visible macro.
143 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
144 for (auto *O : Info.OverriddenMacros)
145 NumHiddenOverrides[O] = -1;
146
147 // Collect all macros that are not overridden by a visible macro.
148 llvm::SmallVector<ModuleMacro *, 16> Worklist;
149 for (auto *LeafMM : Leaf->second) {
150 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
151 if (NumHiddenOverrides.lookup(LeafMM) == 0)
152 Worklist.push_back(LeafMM);
153 }
154 while (!Worklist.empty()) {
155 auto *MM = Worklist.pop_back_val();
156 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
157 // We only care about collecting definitions; undefinitions only act
158 // to override other definitions.
159 if (MM->getMacroInfo())
160 Info.ActiveModuleMacros.push_back(MM);
161 } else {
162 for (auto *O : MM->overrides())
163 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
164 Worklist.push_back(O);
165 }
166 }
167 // Our reverse postorder walk found the macros in reverse order.
168 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
169
170 // Determine whether the macro name is ambiguous.
171 MacroInfo *MI = nullptr;
172 bool IsSystemMacro = true;
173 bool IsAmbiguous = false;
174 if (auto *MD = Info.MD) {
175 while (MD && isa<VisibilityMacroDirective>(MD))
176 MD = MD->getPrevious();
177 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
178 MI = DMD->getInfo();
179 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
180 }
181 }
182 for (auto *Active : Info.ActiveModuleMacros) {
183 auto *NewMI = Active->getMacroInfo();
184
185 // Before marking the macro as ambiguous, check if this is a case where
186 // both macros are in system headers. If so, we trust that the system
187 // did not get it wrong. This also handles cases where Clang's own
188 // headers have a different spelling of certain system macros:
189 // #define LONG_MAX __LONG_MAX__ (clang's limits.h)
190 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
191 //
192 // FIXME: Remove the defined-in-system-headers check. clang's limits.h
193 // overrides the system limits.h's macros, so there's no conflict here.
194 if (MI && NewMI != MI &&
195 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
196 IsAmbiguous = true;
197 IsSystemMacro &= Active->getOwningModule()->IsSystem ||
198 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
199 MI = NewMI;
200 }
201 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
202 }
203
dumpMacroInfo(const IdentifierInfo * II)204 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
205 ArrayRef<ModuleMacro*> Leaf;
206 auto LeafIt = LeafModuleMacros.find(II);
207 if (LeafIt != LeafModuleMacros.end())
208 Leaf = LeafIt->second;
209 const MacroState *State = nullptr;
210 auto Pos = CurSubmoduleState->Macros.find(II);
211 if (Pos != CurSubmoduleState->Macros.end())
212 State = &Pos->second;
213
214 llvm::errs() << "MacroState " << State << " " << II->getNameStart();
215 if (State && State->isAmbiguous(*this, II))
216 llvm::errs() << " ambiguous";
217 if (State && !State->getOverriddenMacros().empty()) {
218 llvm::errs() << " overrides";
219 for (auto *O : State->getOverriddenMacros())
220 llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
221 }
222 llvm::errs() << "\n";
223
224 // Dump local macro directives.
225 for (auto *MD = State ? State->getLatest() : nullptr; MD;
226 MD = MD->getPrevious()) {
227 llvm::errs() << " ";
228 MD->dump();
229 }
230
231 // Dump module macros.
232 llvm::DenseSet<ModuleMacro*> Active;
233 for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
234 Active.insert(MM);
235 llvm::DenseSet<ModuleMacro*> Visited;
236 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
237 while (!Worklist.empty()) {
238 auto *MM = Worklist.pop_back_val();
239 llvm::errs() << " ModuleMacro " << MM << " "
240 << MM->getOwningModule()->getFullModuleName();
241 if (!MM->getMacroInfo())
242 llvm::errs() << " undef";
243
244 if (Active.count(MM))
245 llvm::errs() << " active";
246 else if (!CurSubmoduleState->VisibleModules.isVisible(
247 MM->getOwningModule()))
248 llvm::errs() << " hidden";
249 else if (MM->getMacroInfo())
250 llvm::errs() << " overridden";
251
252 if (!MM->overrides().empty()) {
253 llvm::errs() << " overrides";
254 for (auto *O : MM->overrides()) {
255 llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
256 if (Visited.insert(O).second)
257 Worklist.push_back(O);
258 }
259 }
260 llvm::errs() << "\n";
261 if (auto *MI = MM->getMacroInfo()) {
262 llvm::errs() << " ";
263 MI->dump();
264 llvm::errs() << "\n";
265 }
266 }
267 }
268
269 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
270 /// table and mark it as a builtin macro to be expanded.
RegisterBuiltinMacro(Preprocessor & PP,const char * Name)271 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
272 // Get the identifier.
273 IdentifierInfo *Id = PP.getIdentifierInfo(Name);
274
275 // Mark it as being a macro that is builtin.
276 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
277 MI->setIsBuiltinMacro();
278 PP.appendDefMacroDirective(Id, MI);
279 return Id;
280 }
281
282
283 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
284 /// identifier table.
RegisterBuiltinMacros()285 void Preprocessor::RegisterBuiltinMacros() {
286 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
287 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
288 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
289 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
290 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
291 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma");
292
293 // C++ Standing Document Extensions.
294 if (LangOpts.CPlusPlus)
295 Ident__has_cpp_attribute =
296 RegisterBuiltinMacro(*this, "__has_cpp_attribute");
297 else
298 Ident__has_cpp_attribute = nullptr;
299
300 // GCC Extensions.
301 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__");
302 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
303 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
304
305 // Microsoft Extensions.
306 if (LangOpts.MicrosoftExt) {
307 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
308 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
309 } else {
310 Ident__identifier = nullptr;
311 Ident__pragma = nullptr;
312 }
313
314 // Clang Extensions.
315 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature");
316 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension");
317 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin");
318 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute");
319 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
320 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include");
321 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
322 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning");
323 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier");
324
325 // Modules.
326 if (LangOpts.Modules) {
327 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module");
328
329 // __MODULE__
330 if (!LangOpts.CurrentModule.empty())
331 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
332 else
333 Ident__MODULE__ = nullptr;
334 } else {
335 Ident__building_module = nullptr;
336 Ident__MODULE__ = nullptr;
337 }
338 }
339
340 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
341 /// in its expansion, currently expands to that token literally.
isTrivialSingleTokenExpansion(const MacroInfo * MI,const IdentifierInfo * MacroIdent,Preprocessor & PP)342 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
343 const IdentifierInfo *MacroIdent,
344 Preprocessor &PP) {
345 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
346
347 // If the token isn't an identifier, it's always literally expanded.
348 if (!II) return true;
349
350 // If the information about this identifier is out of date, update it from
351 // the external source.
352 if (II->isOutOfDate())
353 PP.getExternalSource()->updateOutOfDateIdentifier(*II);
354
355 // If the identifier is a macro, and if that macro is enabled, it may be
356 // expanded so it's not a trivial expansion.
357 if (auto *ExpansionMI = PP.getMacroInfo(II))
358 if (ExpansionMI->isEnabled() &&
359 // Fast expanding "#define X X" is ok, because X would be disabled.
360 II != MacroIdent)
361 return false;
362
363 // If this is an object-like macro invocation, it is safe to trivially expand
364 // it.
365 if (MI->isObjectLike()) return true;
366
367 // If this is a function-like macro invocation, it's safe to trivially expand
368 // as long as the identifier is not a macro argument.
369 return std::find(MI->arg_begin(), MI->arg_end(), II) == MI->arg_end();
370
371 }
372
373
374 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
375 /// lexed is a '('. If so, consume the token and return true, if not, this
376 /// method should have no observable side-effect on the lexed tokens.
isNextPPTokenLParen()377 bool Preprocessor::isNextPPTokenLParen() {
378 // Do some quick tests for rejection cases.
379 unsigned Val;
380 if (CurLexer)
381 Val = CurLexer->isNextPPTokenLParen();
382 else if (CurPTHLexer)
383 Val = CurPTHLexer->isNextPPTokenLParen();
384 else
385 Val = CurTokenLexer->isNextTokenLParen();
386
387 if (Val == 2) {
388 // We have run off the end. If it's a source file we don't
389 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
390 // macro stack.
391 if (CurPPLexer)
392 return false;
393 for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
394 IncludeStackInfo &Entry = IncludeMacroStack[i-1];
395 if (Entry.TheLexer)
396 Val = Entry.TheLexer->isNextPPTokenLParen();
397 else if (Entry.ThePTHLexer)
398 Val = Entry.ThePTHLexer->isNextPPTokenLParen();
399 else
400 Val = Entry.TheTokenLexer->isNextTokenLParen();
401
402 if (Val != 2)
403 break;
404
405 // Ran off the end of a source file?
406 if (Entry.ThePPLexer)
407 return false;
408 }
409 }
410
411 // Okay, if we know that the token is a '(', lex it and return. Otherwise we
412 // have found something that isn't a '(' or we found the end of the
413 // translation unit. In either case, return false.
414 return Val == 1;
415 }
416
417 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
418 /// expanded as a macro, handle it and return the next token as 'Identifier'.
HandleMacroExpandedIdentifier(Token & Identifier,const MacroDefinition & M)419 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
420 const MacroDefinition &M) {
421 MacroInfo *MI = M.getMacroInfo();
422
423 // If this is a macro expansion in the "#if !defined(x)" line for the file,
424 // then the macro could expand to different things in other contexts, we need
425 // to disable the optimization in this case.
426 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
427
428 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
429 if (MI->isBuiltinMacro()) {
430 if (Callbacks)
431 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
432 /*Args=*/nullptr);
433 ExpandBuiltinMacro(Identifier);
434 return true;
435 }
436
437 /// Args - If this is a function-like macro expansion, this contains,
438 /// for each macro argument, the list of tokens that were provided to the
439 /// invocation.
440 MacroArgs *Args = nullptr;
441
442 // Remember where the end of the expansion occurred. For an object-like
443 // macro, this is the identifier. For a function-like macro, this is the ')'.
444 SourceLocation ExpansionEnd = Identifier.getLocation();
445
446 // If this is a function-like macro, read the arguments.
447 if (MI->isFunctionLike()) {
448 // Remember that we are now parsing the arguments to a macro invocation.
449 // Preprocessor directives used inside macro arguments are not portable, and
450 // this enables the warning.
451 InMacroArgs = true;
452 Args = ReadFunctionLikeMacroArgs(Identifier, MI, ExpansionEnd);
453
454 // Finished parsing args.
455 InMacroArgs = false;
456
457 // If there was an error parsing the arguments, bail out.
458 if (!Args) return true;
459
460 ++NumFnMacroExpanded;
461 } else {
462 ++NumMacroExpanded;
463 }
464
465 // Notice that this macro has been used.
466 markMacroAsUsed(MI);
467
468 // Remember where the token is expanded.
469 SourceLocation ExpandLoc = Identifier.getLocation();
470 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
471
472 if (Callbacks) {
473 if (InMacroArgs) {
474 // We can have macro expansion inside a conditional directive while
475 // reading the function macro arguments. To ensure, in that case, that
476 // MacroExpands callbacks still happen in source order, queue this
477 // callback to have it happen after the function macro callback.
478 DelayedMacroExpandsCallbacks.push_back(
479 MacroExpandsInfo(Identifier, M, ExpansionRange));
480 } else {
481 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
482 if (!DelayedMacroExpandsCallbacks.empty()) {
483 for (unsigned i=0, e = DelayedMacroExpandsCallbacks.size(); i!=e; ++i) {
484 MacroExpandsInfo &Info = DelayedMacroExpandsCallbacks[i];
485 // FIXME: We lose macro args info with delayed callback.
486 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
487 /*Args=*/nullptr);
488 }
489 DelayedMacroExpandsCallbacks.clear();
490 }
491 }
492 }
493
494 // If the macro definition is ambiguous, complain.
495 if (M.isAmbiguous()) {
496 Diag(Identifier, diag::warn_pp_ambiguous_macro)
497 << Identifier.getIdentifierInfo();
498 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
499 << Identifier.getIdentifierInfo();
500 M.forAllDefinitions([&](const MacroInfo *OtherMI) {
501 if (OtherMI != MI)
502 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
503 << Identifier.getIdentifierInfo();
504 });
505 }
506
507 // If we started lexing a macro, enter the macro expansion body.
508
509 // If this macro expands to no tokens, don't bother to push it onto the
510 // expansion stack, only to take it right back off.
511 if (MI->getNumTokens() == 0) {
512 // No need for arg info.
513 if (Args) Args->destroy(*this);
514
515 // Propagate whitespace info as if we had pushed, then popped,
516 // a macro context.
517 Identifier.setFlag(Token::LeadingEmptyMacro);
518 PropagateLineStartLeadingSpaceInfo(Identifier);
519 ++NumFastMacroExpanded;
520 return false;
521 } else if (MI->getNumTokens() == 1 &&
522 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
523 *this)) {
524 // Otherwise, if this macro expands into a single trivially-expanded
525 // token: expand it now. This handles common cases like
526 // "#define VAL 42".
527
528 // No need for arg info.
529 if (Args) Args->destroy(*this);
530
531 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
532 // identifier to the expanded token.
533 bool isAtStartOfLine = Identifier.isAtStartOfLine();
534 bool hasLeadingSpace = Identifier.hasLeadingSpace();
535
536 // Replace the result token.
537 Identifier = MI->getReplacementToken(0);
538
539 // Restore the StartOfLine/LeadingSpace markers.
540 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
541 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
542
543 // Update the tokens location to include both its expansion and physical
544 // locations.
545 SourceLocation Loc =
546 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
547 ExpansionEnd,Identifier.getLength());
548 Identifier.setLocation(Loc);
549
550 // If this is a disabled macro or #define X X, we must mark the result as
551 // unexpandable.
552 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
553 if (MacroInfo *NewMI = getMacroInfo(NewII))
554 if (!NewMI->isEnabled() || NewMI == MI) {
555 Identifier.setFlag(Token::DisableExpand);
556 // Don't warn for "#define X X" like "#define bool bool" from
557 // stdbool.h.
558 if (NewMI != MI || MI->isFunctionLike())
559 Diag(Identifier, diag::pp_disabled_macro_expansion);
560 }
561 }
562
563 // Since this is not an identifier token, it can't be macro expanded, so
564 // we're done.
565 ++NumFastMacroExpanded;
566 return true;
567 }
568
569 // Start expanding the macro.
570 EnterMacro(Identifier, ExpansionEnd, MI, Args);
571 return false;
572 }
573
574 enum Bracket {
575 Brace,
576 Paren
577 };
578
579 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
580 /// token vector are properly nested.
CheckMatchedBrackets(const SmallVectorImpl<Token> & Tokens)581 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
582 SmallVector<Bracket, 8> Brackets;
583 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
584 E = Tokens.end();
585 I != E; ++I) {
586 if (I->is(tok::l_paren)) {
587 Brackets.push_back(Paren);
588 } else if (I->is(tok::r_paren)) {
589 if (Brackets.empty() || Brackets.back() == Brace)
590 return false;
591 Brackets.pop_back();
592 } else if (I->is(tok::l_brace)) {
593 Brackets.push_back(Brace);
594 } else if (I->is(tok::r_brace)) {
595 if (Brackets.empty() || Brackets.back() == Paren)
596 return false;
597 Brackets.pop_back();
598 }
599 }
600 if (!Brackets.empty())
601 return false;
602 return true;
603 }
604
605 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
606 /// vector of tokens in NewTokens. The new number of arguments will be placed
607 /// in NumArgs and the ranges which need to surrounded in parentheses will be
608 /// in ParenHints.
609 /// Returns false if the token stream cannot be changed. If this is because
610 /// of an initializer list starting a macro argument, the range of those
611 /// initializer lists will be place in InitLists.
GenerateNewArgTokens(Preprocessor & PP,SmallVectorImpl<Token> & OldTokens,SmallVectorImpl<Token> & NewTokens,unsigned & NumArgs,SmallVectorImpl<SourceRange> & ParenHints,SmallVectorImpl<SourceRange> & InitLists)612 static bool GenerateNewArgTokens(Preprocessor &PP,
613 SmallVectorImpl<Token> &OldTokens,
614 SmallVectorImpl<Token> &NewTokens,
615 unsigned &NumArgs,
616 SmallVectorImpl<SourceRange> &ParenHints,
617 SmallVectorImpl<SourceRange> &InitLists) {
618 if (!CheckMatchedBrackets(OldTokens))
619 return false;
620
621 // Once it is known that the brackets are matched, only a simple count of the
622 // braces is needed.
623 unsigned Braces = 0;
624
625 // First token of a new macro argument.
626 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
627
628 // First closing brace in a new macro argument. Used to generate
629 // SourceRanges for InitLists.
630 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
631 NumArgs = 0;
632 Token TempToken;
633 // Set to true when a macro separator token is found inside a braced list.
634 // If true, the fixed argument spans multiple old arguments and ParenHints
635 // will be updated.
636 bool FoundSeparatorToken = false;
637 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
638 E = OldTokens.end();
639 I != E; ++I) {
640 if (I->is(tok::l_brace)) {
641 ++Braces;
642 } else if (I->is(tok::r_brace)) {
643 --Braces;
644 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
645 ClosingBrace = I;
646 } else if (I->is(tok::eof)) {
647 // EOF token is used to separate macro arguments
648 if (Braces != 0) {
649 // Assume comma separator is actually braced list separator and change
650 // it back to a comma.
651 FoundSeparatorToken = true;
652 I->setKind(tok::comma);
653 I->setLength(1);
654 } else { // Braces == 0
655 // Separator token still separates arguments.
656 ++NumArgs;
657
658 // If the argument starts with a brace, it can't be fixed with
659 // parentheses. A different diagnostic will be given.
660 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
661 InitLists.push_back(
662 SourceRange(ArgStartIterator->getLocation(),
663 PP.getLocForEndOfToken(ClosingBrace->getLocation())));
664 ClosingBrace = E;
665 }
666
667 // Add left paren
668 if (FoundSeparatorToken) {
669 TempToken.startToken();
670 TempToken.setKind(tok::l_paren);
671 TempToken.setLocation(ArgStartIterator->getLocation());
672 TempToken.setLength(0);
673 NewTokens.push_back(TempToken);
674 }
675
676 // Copy over argument tokens
677 NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
678
679 // Add right paren and store the paren locations in ParenHints
680 if (FoundSeparatorToken) {
681 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
682 TempToken.startToken();
683 TempToken.setKind(tok::r_paren);
684 TempToken.setLocation(Loc);
685 TempToken.setLength(0);
686 NewTokens.push_back(TempToken);
687 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
688 Loc));
689 }
690
691 // Copy separator token
692 NewTokens.push_back(*I);
693
694 // Reset values
695 ArgStartIterator = I + 1;
696 FoundSeparatorToken = false;
697 }
698 }
699 }
700
701 return !ParenHints.empty() && InitLists.empty();
702 }
703
704 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
705 /// token is the '(' of the macro, this method is invoked to read all of the
706 /// actual arguments specified for the macro invocation. This returns null on
707 /// error.
ReadFunctionLikeMacroArgs(Token & MacroName,MacroInfo * MI,SourceLocation & MacroEnd)708 MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName,
709 MacroInfo *MI,
710 SourceLocation &MacroEnd) {
711 // The number of fixed arguments to parse.
712 unsigned NumFixedArgsLeft = MI->getNumArgs();
713 bool isVariadic = MI->isVariadic();
714
715 // Outer loop, while there are more arguments, keep reading them.
716 Token Tok;
717
718 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
719 // an argument value in a macro could expand to ',' or '(' or ')'.
720 LexUnexpandedToken(Tok);
721 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
722
723 // ArgTokens - Build up a list of tokens that make up each argument. Each
724 // argument is separated by an EOF token. Use a SmallVector so we can avoid
725 // heap allocations in the common case.
726 SmallVector<Token, 64> ArgTokens;
727 bool ContainsCodeCompletionTok = false;
728
729 SourceLocation TooManyArgsLoc;
730
731 unsigned NumActuals = 0;
732 while (Tok.isNot(tok::r_paren)) {
733 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
734 break;
735
736 assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
737 "only expect argument separators here");
738
739 unsigned ArgTokenStart = ArgTokens.size();
740 SourceLocation ArgStartLoc = Tok.getLocation();
741
742 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
743 // that we already consumed the first one.
744 unsigned NumParens = 0;
745
746 while (1) {
747 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
748 // an argument value in a macro could expand to ',' or '(' or ')'.
749 LexUnexpandedToken(Tok);
750
751 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
752 if (!ContainsCodeCompletionTok) {
753 Diag(MacroName, diag::err_unterm_macro_invoc);
754 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
755 << MacroName.getIdentifierInfo();
756 // Do not lose the EOF/EOD. Return it to the client.
757 MacroName = Tok;
758 return nullptr;
759 } else {
760 // Do not lose the EOF/EOD.
761 Token *Toks = new Token[1];
762 Toks[0] = Tok;
763 EnterTokenStream(Toks, 1, true, true);
764 break;
765 }
766 } else if (Tok.is(tok::r_paren)) {
767 // If we found the ) token, the macro arg list is done.
768 if (NumParens-- == 0) {
769 MacroEnd = Tok.getLocation();
770 break;
771 }
772 } else if (Tok.is(tok::l_paren)) {
773 ++NumParens;
774 } else if (Tok.is(tok::comma) && NumParens == 0 &&
775 !(Tok.getFlags() & Token::IgnoredComma)) {
776 // In Microsoft-compatibility mode, single commas from nested macro
777 // expansions should not be considered as argument separators. We test
778 // for this with the IgnoredComma token flag above.
779
780 // Comma ends this argument if there are more fixed arguments expected.
781 // However, if this is a variadic macro, and this is part of the
782 // variadic part, then the comma is just an argument token.
783 if (!isVariadic) break;
784 if (NumFixedArgsLeft > 1)
785 break;
786 } else if (Tok.is(tok::comment) && !KeepMacroComments) {
787 // If this is a comment token in the argument list and we're just in
788 // -C mode (not -CC mode), discard the comment.
789 continue;
790 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
791 // Reading macro arguments can cause macros that we are currently
792 // expanding from to be popped off the expansion stack. Doing so causes
793 // them to be reenabled for expansion. Here we record whether any
794 // identifiers we lex as macro arguments correspond to disabled macros.
795 // If so, we mark the token as noexpand. This is a subtle aspect of
796 // C99 6.10.3.4p2.
797 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
798 if (!MI->isEnabled())
799 Tok.setFlag(Token::DisableExpand);
800 } else if (Tok.is(tok::code_completion)) {
801 ContainsCodeCompletionTok = true;
802 if (CodeComplete)
803 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
804 MI, NumActuals);
805 // Don't mark that we reached the code-completion point because the
806 // parser is going to handle the token and there will be another
807 // code-completion callback.
808 }
809
810 ArgTokens.push_back(Tok);
811 }
812
813 // If this was an empty argument list foo(), don't add this as an empty
814 // argument.
815 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
816 break;
817
818 // If this is not a variadic macro, and too many args were specified, emit
819 // an error.
820 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
821 if (ArgTokens.size() != ArgTokenStart)
822 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
823 else
824 TooManyArgsLoc = ArgStartLoc;
825 }
826
827 // Empty arguments are standard in C99 and C++0x, and are supported as an
828 // extension in other modes.
829 if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
830 Diag(Tok, LangOpts.CPlusPlus11 ?
831 diag::warn_cxx98_compat_empty_fnmacro_arg :
832 diag::ext_empty_fnmacro_arg);
833
834 // Add a marker EOF token to the end of the token list for this argument.
835 Token EOFTok;
836 EOFTok.startToken();
837 EOFTok.setKind(tok::eof);
838 EOFTok.setLocation(Tok.getLocation());
839 EOFTok.setLength(0);
840 ArgTokens.push_back(EOFTok);
841 ++NumActuals;
842 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
843 --NumFixedArgsLeft;
844 }
845
846 // Okay, we either found the r_paren. Check to see if we parsed too few
847 // arguments.
848 unsigned MinArgsExpected = MI->getNumArgs();
849
850 // If this is not a variadic macro, and too many args were specified, emit
851 // an error.
852 if (!isVariadic && NumActuals > MinArgsExpected &&
853 !ContainsCodeCompletionTok) {
854 // Emit the diagnostic at the macro name in case there is a missing ).
855 // Emitting it at the , could be far away from the macro name.
856 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
857 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
858 << MacroName.getIdentifierInfo();
859
860 // Commas from braced initializer lists will be treated as argument
861 // separators inside macros. Attempt to correct for this with parentheses.
862 // TODO: See if this can be generalized to angle brackets for templates
863 // inside macro arguments.
864
865 SmallVector<Token, 4> FixedArgTokens;
866 unsigned FixedNumArgs = 0;
867 SmallVector<SourceRange, 4> ParenHints, InitLists;
868 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
869 ParenHints, InitLists)) {
870 if (!InitLists.empty()) {
871 DiagnosticBuilder DB =
872 Diag(MacroName,
873 diag::note_init_list_at_beginning_of_macro_argument);
874 for (SourceRange Range : InitLists)
875 DB << Range;
876 }
877 return nullptr;
878 }
879 if (FixedNumArgs != MinArgsExpected)
880 return nullptr;
881
882 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
883 for (SourceRange ParenLocation : ParenHints) {
884 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
885 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
886 }
887 ArgTokens.swap(FixedArgTokens);
888 NumActuals = FixedNumArgs;
889 }
890
891 // See MacroArgs instance var for description of this.
892 bool isVarargsElided = false;
893
894 if (ContainsCodeCompletionTok) {
895 // Recover from not-fully-formed macro invocation during code-completion.
896 Token EOFTok;
897 EOFTok.startToken();
898 EOFTok.setKind(tok::eof);
899 EOFTok.setLocation(Tok.getLocation());
900 EOFTok.setLength(0);
901 for (; NumActuals < MinArgsExpected; ++NumActuals)
902 ArgTokens.push_back(EOFTok);
903 }
904
905 if (NumActuals < MinArgsExpected) {
906 // There are several cases where too few arguments is ok, handle them now.
907 if (NumActuals == 0 && MinArgsExpected == 1) {
908 // #define A(X) or #define A(...) ---> A()
909
910 // If there is exactly one argument, and that argument is missing,
911 // then we have an empty "()" argument empty list. This is fine, even if
912 // the macro expects one argument (the argument is just empty).
913 isVarargsElided = MI->isVariadic();
914 } else if (MI->isVariadic() &&
915 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X)
916 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
917 // Varargs where the named vararg parameter is missing: OK as extension.
918 // #define A(x, ...)
919 // A("blah")
920 //
921 // If the macro contains the comma pasting extension, the diagnostic
922 // is suppressed; we know we'll get another diagnostic later.
923 if (!MI->hasCommaPasting()) {
924 Diag(Tok, diag::ext_missing_varargs_arg);
925 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
926 << MacroName.getIdentifierInfo();
927 }
928
929 // Remember this occurred, allowing us to elide the comma when used for
930 // cases like:
931 // #define A(x, foo...) blah(a, ## foo)
932 // #define B(x, ...) blah(a, ## __VA_ARGS__)
933 // #define C(...) blah(a, ## __VA_ARGS__)
934 // A(x) B(x) C()
935 isVarargsElided = true;
936 } else if (!ContainsCodeCompletionTok) {
937 // Otherwise, emit the error.
938 Diag(Tok, diag::err_too_few_args_in_macro_invoc);
939 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
940 << MacroName.getIdentifierInfo();
941 return nullptr;
942 }
943
944 // Add a marker EOF token to the end of the token list for this argument.
945 SourceLocation EndLoc = Tok.getLocation();
946 Tok.startToken();
947 Tok.setKind(tok::eof);
948 Tok.setLocation(EndLoc);
949 Tok.setLength(0);
950 ArgTokens.push_back(Tok);
951
952 // If we expect two arguments, add both as empty.
953 if (NumActuals == 0 && MinArgsExpected == 2)
954 ArgTokens.push_back(Tok);
955
956 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
957 !ContainsCodeCompletionTok) {
958 // Emit the diagnostic at the macro name in case there is a missing ).
959 // Emitting it at the , could be far away from the macro name.
960 Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
961 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
962 << MacroName.getIdentifierInfo();
963 return nullptr;
964 }
965
966 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
967 }
968
969 /// \brief Keeps macro expanded tokens for TokenLexers.
970 //
971 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
972 /// going to lex in the cache and when it finishes the tokens are removed
973 /// from the end of the cache.
cacheMacroExpandedTokens(TokenLexer * tokLexer,ArrayRef<Token> tokens)974 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
975 ArrayRef<Token> tokens) {
976 assert(tokLexer);
977 if (tokens.empty())
978 return nullptr;
979
980 size_t newIndex = MacroExpandedTokens.size();
981 bool cacheNeedsToGrow = tokens.size() >
982 MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
983 MacroExpandedTokens.append(tokens.begin(), tokens.end());
984
985 if (cacheNeedsToGrow) {
986 // Go through all the TokenLexers whose 'Tokens' pointer points in the
987 // buffer and update the pointers to the (potential) new buffer array.
988 for (unsigned i = 0, e = MacroExpandingLexersStack.size(); i != e; ++i) {
989 TokenLexer *prevLexer;
990 size_t tokIndex;
991 std::tie(prevLexer, tokIndex) = MacroExpandingLexersStack[i];
992 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
993 }
994 }
995
996 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
997 return MacroExpandedTokens.data() + newIndex;
998 }
999
removeCachedMacroExpandedTokensOfLastLexer()1000 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1001 assert(!MacroExpandingLexersStack.empty());
1002 size_t tokIndex = MacroExpandingLexersStack.back().second;
1003 assert(tokIndex < MacroExpandedTokens.size());
1004 // Pop the cached macro expanded tokens from the end.
1005 MacroExpandedTokens.resize(tokIndex);
1006 MacroExpandingLexersStack.pop_back();
1007 }
1008
1009 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1010 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1011 /// the identifier tokens inserted.
ComputeDATE_TIME(SourceLocation & DATELoc,SourceLocation & TIMELoc,Preprocessor & PP)1012 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1013 Preprocessor &PP) {
1014 time_t TT = time(nullptr);
1015 struct tm *TM = localtime(&TT);
1016
1017 static const char * const Months[] = {
1018 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1019 };
1020
1021 {
1022 SmallString<32> TmpBuffer;
1023 llvm::raw_svector_ostream TmpStream(TmpBuffer);
1024 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1025 TM->tm_mday, TM->tm_year + 1900);
1026 Token TmpTok;
1027 TmpTok.startToken();
1028 PP.CreateString(TmpStream.str(), TmpTok);
1029 DATELoc = TmpTok.getLocation();
1030 }
1031
1032 {
1033 SmallString<32> TmpBuffer;
1034 llvm::raw_svector_ostream TmpStream(TmpBuffer);
1035 TmpStream << llvm::format("\"%02d:%02d:%02d\"",
1036 TM->tm_hour, TM->tm_min, TM->tm_sec);
1037 Token TmpTok;
1038 TmpTok.startToken();
1039 PP.CreateString(TmpStream.str(), TmpTok);
1040 TIMELoc = TmpTok.getLocation();
1041 }
1042 }
1043
1044
1045 /// HasFeature - Return true if we recognize and implement the feature
1046 /// specified by the identifier as a standard language feature.
HasFeature(const Preprocessor & PP,const IdentifierInfo * II)1047 static bool HasFeature(const Preprocessor &PP, const IdentifierInfo *II) {
1048 const LangOptions &LangOpts = PP.getLangOpts();
1049 StringRef Feature = II->getName();
1050
1051 // Normalize the feature name, __foo__ becomes foo.
1052 if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
1053 Feature = Feature.substr(2, Feature.size() - 4);
1054
1055 return llvm::StringSwitch<bool>(Feature)
1056 .Case("address_sanitizer",
1057 LangOpts.Sanitize.hasOneOf(SanitizerKind::Address |
1058 SanitizerKind::KernelAddress))
1059 .Case("assume_nonnull", true)
1060 .Case("attribute_analyzer_noreturn", true)
1061 .Case("attribute_availability", true)
1062 .Case("attribute_availability_with_message", true)
1063 .Case("attribute_availability_app_extension", true)
1064 .Case("attribute_availability_with_version_underscores", true)
1065 .Case("attribute_availability_tvos", true)
1066 .Case("attribute_availability_watchos", true)
1067 .Case("attribute_cf_returns_not_retained", true)
1068 .Case("attribute_cf_returns_retained", true)
1069 .Case("attribute_cf_returns_on_parameters", true)
1070 .Case("attribute_deprecated_with_message", true)
1071 .Case("attribute_ext_vector_type", true)
1072 .Case("attribute_ns_returns_not_retained", true)
1073 .Case("attribute_ns_returns_retained", true)
1074 .Case("attribute_ns_consumes_self", true)
1075 .Case("attribute_ns_consumed", true)
1076 .Case("attribute_cf_consumed", true)
1077 .Case("attribute_objc_ivar_unused", true)
1078 .Case("attribute_objc_method_family", true)
1079 .Case("attribute_overloadable", true)
1080 .Case("attribute_unavailable_with_message", true)
1081 .Case("attribute_unused_on_fields", true)
1082 .Case("blocks", LangOpts.Blocks)
1083 .Case("c_thread_safety_attributes", true)
1084 .Case("cxx_exceptions", LangOpts.CXXExceptions)
1085 .Case("cxx_rtti", LangOpts.RTTI && LangOpts.RTTIData)
1086 .Case("enumerator_attributes", true)
1087 .Case("nullability", true)
1088 .Case("memory_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Memory))
1089 .Case("thread_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Thread))
1090 .Case("dataflow_sanitizer", LangOpts.Sanitize.has(SanitizerKind::DataFlow))
1091 // Objective-C features
1092 .Case("objc_arr", LangOpts.ObjCAutoRefCount) // FIXME: REMOVE?
1093 .Case("objc_arc", LangOpts.ObjCAutoRefCount)
1094 .Case("objc_arc_weak", LangOpts.ObjCWeak)
1095 .Case("objc_default_synthesize_properties", LangOpts.ObjC2)
1096 .Case("objc_fixed_enum", LangOpts.ObjC2)
1097 .Case("objc_instancetype", LangOpts.ObjC2)
1098 .Case("objc_kindof", LangOpts.ObjC2)
1099 .Case("objc_modules", LangOpts.ObjC2 && LangOpts.Modules)
1100 .Case("objc_nonfragile_abi", LangOpts.ObjCRuntime.isNonFragile())
1101 .Case("objc_property_explicit_atomic",
1102 true) // Does clang support explicit "atomic" keyword?
1103 .Case("objc_protocol_qualifier_mangling", true)
1104 .Case("objc_weak_class", LangOpts.ObjCRuntime.hasWeakClassImport())
1105 .Case("ownership_holds", true)
1106 .Case("ownership_returns", true)
1107 .Case("ownership_takes", true)
1108 .Case("objc_bool", true)
1109 .Case("objc_subscripting", LangOpts.ObjCRuntime.isNonFragile())
1110 .Case("objc_array_literals", LangOpts.ObjC2)
1111 .Case("objc_dictionary_literals", LangOpts.ObjC2)
1112 .Case("objc_boxed_expressions", LangOpts.ObjC2)
1113 .Case("objc_boxed_nsvalue_expressions", LangOpts.ObjC2)
1114 .Case("arc_cf_code_audited", true)
1115 .Case("objc_bridge_id", true)
1116 .Case("objc_bridge_id_on_typedefs", true)
1117 .Case("objc_generics", LangOpts.ObjC2)
1118 .Case("objc_generics_variance", LangOpts.ObjC2)
1119 // C11 features
1120 .Case("c_alignas", LangOpts.C11)
1121 .Case("c_alignof", LangOpts.C11)
1122 .Case("c_atomic", LangOpts.C11)
1123 .Case("c_generic_selections", LangOpts.C11)
1124 .Case("c_static_assert", LangOpts.C11)
1125 .Case("c_thread_local",
1126 LangOpts.C11 && PP.getTargetInfo().isTLSSupported())
1127 // C++11 features
1128 .Case("cxx_access_control_sfinae", LangOpts.CPlusPlus11)
1129 .Case("cxx_alias_templates", LangOpts.CPlusPlus11)
1130 .Case("cxx_alignas", LangOpts.CPlusPlus11)
1131 .Case("cxx_alignof", LangOpts.CPlusPlus11)
1132 .Case("cxx_atomic", LangOpts.CPlusPlus11)
1133 .Case("cxx_attributes", LangOpts.CPlusPlus11)
1134 .Case("cxx_auto_type", LangOpts.CPlusPlus11)
1135 .Case("cxx_constexpr", LangOpts.CPlusPlus11)
1136 .Case("cxx_decltype", LangOpts.CPlusPlus11)
1137 .Case("cxx_decltype_incomplete_return_types", LangOpts.CPlusPlus11)
1138 .Case("cxx_default_function_template_args", LangOpts.CPlusPlus11)
1139 .Case("cxx_defaulted_functions", LangOpts.CPlusPlus11)
1140 .Case("cxx_delegating_constructors", LangOpts.CPlusPlus11)
1141 .Case("cxx_deleted_functions", LangOpts.CPlusPlus11)
1142 .Case("cxx_explicit_conversions", LangOpts.CPlusPlus11)
1143 .Case("cxx_generalized_initializers", LangOpts.CPlusPlus11)
1144 .Case("cxx_implicit_moves", LangOpts.CPlusPlus11)
1145 .Case("cxx_inheriting_constructors", LangOpts.CPlusPlus11)
1146 .Case("cxx_inline_namespaces", LangOpts.CPlusPlus11)
1147 .Case("cxx_lambdas", LangOpts.CPlusPlus11)
1148 .Case("cxx_local_type_template_args", LangOpts.CPlusPlus11)
1149 .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus11)
1150 .Case("cxx_noexcept", LangOpts.CPlusPlus11)
1151 .Case("cxx_nullptr", LangOpts.CPlusPlus11)
1152 .Case("cxx_override_control", LangOpts.CPlusPlus11)
1153 .Case("cxx_range_for", LangOpts.CPlusPlus11)
1154 .Case("cxx_raw_string_literals", LangOpts.CPlusPlus11)
1155 .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus11)
1156 .Case("cxx_rvalue_references", LangOpts.CPlusPlus11)
1157 .Case("cxx_strong_enums", LangOpts.CPlusPlus11)
1158 .Case("cxx_static_assert", LangOpts.CPlusPlus11)
1159 .Case("cxx_thread_local",
1160 LangOpts.CPlusPlus11 && PP.getTargetInfo().isTLSSupported())
1161 .Case("cxx_trailing_return", LangOpts.CPlusPlus11)
1162 .Case("cxx_unicode_literals", LangOpts.CPlusPlus11)
1163 .Case("cxx_unrestricted_unions", LangOpts.CPlusPlus11)
1164 .Case("cxx_user_literals", LangOpts.CPlusPlus11)
1165 .Case("cxx_variadic_templates", LangOpts.CPlusPlus11)
1166 // C++1y features
1167 .Case("cxx_aggregate_nsdmi", LangOpts.CPlusPlus14)
1168 .Case("cxx_binary_literals", LangOpts.CPlusPlus14)
1169 .Case("cxx_contextual_conversions", LangOpts.CPlusPlus14)
1170 .Case("cxx_decltype_auto", LangOpts.CPlusPlus14)
1171 .Case("cxx_generic_lambdas", LangOpts.CPlusPlus14)
1172 .Case("cxx_init_captures", LangOpts.CPlusPlus14)
1173 .Case("cxx_relaxed_constexpr", LangOpts.CPlusPlus14)
1174 .Case("cxx_return_type_deduction", LangOpts.CPlusPlus14)
1175 .Case("cxx_variable_templates", LangOpts.CPlusPlus14)
1176 // C++ TSes
1177 //.Case("cxx_runtime_arrays", LangOpts.CPlusPlusTSArrays)
1178 //.Case("cxx_concepts", LangOpts.CPlusPlusTSConcepts)
1179 // FIXME: Should this be __has_feature or __has_extension?
1180 //.Case("raw_invocation_type", LangOpts.CPlusPlus)
1181 // Type traits
1182 .Case("has_nothrow_assign", LangOpts.CPlusPlus)
1183 .Case("has_nothrow_copy", LangOpts.CPlusPlus)
1184 .Case("has_nothrow_constructor", LangOpts.CPlusPlus)
1185 .Case("has_trivial_assign", LangOpts.CPlusPlus)
1186 .Case("has_trivial_copy", LangOpts.CPlusPlus)
1187 .Case("has_trivial_constructor", LangOpts.CPlusPlus)
1188 .Case("has_trivial_destructor", LangOpts.CPlusPlus)
1189 .Case("has_virtual_destructor", LangOpts.CPlusPlus)
1190 .Case("is_abstract", LangOpts.CPlusPlus)
1191 .Case("is_base_of", LangOpts.CPlusPlus)
1192 .Case("is_class", LangOpts.CPlusPlus)
1193 .Case("is_constructible", LangOpts.CPlusPlus)
1194 .Case("is_convertible_to", LangOpts.CPlusPlus)
1195 .Case("is_empty", LangOpts.CPlusPlus)
1196 .Case("is_enum", LangOpts.CPlusPlus)
1197 .Case("is_final", LangOpts.CPlusPlus)
1198 .Case("is_literal", LangOpts.CPlusPlus)
1199 .Case("is_standard_layout", LangOpts.CPlusPlus)
1200 .Case("is_pod", LangOpts.CPlusPlus)
1201 .Case("is_polymorphic", LangOpts.CPlusPlus)
1202 .Case("is_sealed", LangOpts.MicrosoftExt)
1203 .Case("is_trivial", LangOpts.CPlusPlus)
1204 .Case("is_trivially_assignable", LangOpts.CPlusPlus)
1205 .Case("is_trivially_constructible", LangOpts.CPlusPlus)
1206 .Case("is_trivially_copyable", LangOpts.CPlusPlus)
1207 .Case("is_union", LangOpts.CPlusPlus)
1208 .Case("modules", LangOpts.Modules)
1209 .Case("safe_stack", LangOpts.Sanitize.has(SanitizerKind::SafeStack))
1210 .Case("tls", PP.getTargetInfo().isTLSSupported())
1211 .Case("underlying_type", LangOpts.CPlusPlus)
1212 .Default(false);
1213 }
1214
1215 /// HasExtension - Return true if we recognize and implement the feature
1216 /// specified by the identifier, either as an extension or a standard language
1217 /// feature.
HasExtension(const Preprocessor & PP,const IdentifierInfo * II)1218 static bool HasExtension(const Preprocessor &PP, const IdentifierInfo *II) {
1219 if (HasFeature(PP, II))
1220 return true;
1221
1222 // If the use of an extension results in an error diagnostic, extensions are
1223 // effectively unavailable, so just return false here.
1224 if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1225 diag::Severity::Error)
1226 return false;
1227
1228 const LangOptions &LangOpts = PP.getLangOpts();
1229 StringRef Extension = II->getName();
1230
1231 // Normalize the extension name, __foo__ becomes foo.
1232 if (Extension.startswith("__") && Extension.endswith("__") &&
1233 Extension.size() >= 4)
1234 Extension = Extension.substr(2, Extension.size() - 4);
1235
1236 // Because we inherit the feature list from HasFeature, this string switch
1237 // must be less restrictive than HasFeature's.
1238 return llvm::StringSwitch<bool>(Extension)
1239 // C11 features supported by other languages as extensions.
1240 .Case("c_alignas", true)
1241 .Case("c_alignof", true)
1242 .Case("c_atomic", true)
1243 .Case("c_generic_selections", true)
1244 .Case("c_static_assert", true)
1245 .Case("c_thread_local", PP.getTargetInfo().isTLSSupported())
1246 // C++11 features supported by other languages as extensions.
1247 .Case("cxx_atomic", LangOpts.CPlusPlus)
1248 .Case("cxx_deleted_functions", LangOpts.CPlusPlus)
1249 .Case("cxx_explicit_conversions", LangOpts.CPlusPlus)
1250 .Case("cxx_inline_namespaces", LangOpts.CPlusPlus)
1251 .Case("cxx_local_type_template_args", LangOpts.CPlusPlus)
1252 .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus)
1253 .Case("cxx_override_control", LangOpts.CPlusPlus)
1254 .Case("cxx_range_for", LangOpts.CPlusPlus)
1255 .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus)
1256 .Case("cxx_rvalue_references", LangOpts.CPlusPlus)
1257 .Case("cxx_variadic_templates", LangOpts.CPlusPlus)
1258 // C++1y features supported by other languages as extensions.
1259 .Case("cxx_binary_literals", true)
1260 .Case("cxx_init_captures", LangOpts.CPlusPlus11)
1261 .Case("cxx_variable_templates", LangOpts.CPlusPlus)
1262 .Default(false);
1263 }
1264
1265 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1266 /// or '__has_include_next("path")' expression.
1267 /// Returns true if successful.
EvaluateHasIncludeCommon(Token & Tok,IdentifierInfo * II,Preprocessor & PP,const DirectoryLookup * LookupFrom,const FileEntry * LookupFromFile)1268 static bool EvaluateHasIncludeCommon(Token &Tok,
1269 IdentifierInfo *II, Preprocessor &PP,
1270 const DirectoryLookup *LookupFrom,
1271 const FileEntry *LookupFromFile) {
1272 // Save the location of the current token. If a '(' is later found, use
1273 // that location. If not, use the end of this location instead.
1274 SourceLocation LParenLoc = Tok.getLocation();
1275
1276 // These expressions are only allowed within a preprocessor directive.
1277 if (!PP.isParsingIfOrElifDirective()) {
1278 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II->getName();
1279 // Return a valid identifier token.
1280 assert(Tok.is(tok::identifier));
1281 Tok.setIdentifierInfo(II);
1282 return false;
1283 }
1284
1285 // Get '('.
1286 PP.LexNonComment(Tok);
1287
1288 // Ensure we have a '('.
1289 if (Tok.isNot(tok::l_paren)) {
1290 // No '(', use end of last token.
1291 LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1292 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1293 // If the next token looks like a filename or the start of one,
1294 // assume it is and process it as such.
1295 if (!Tok.is(tok::angle_string_literal) && !Tok.is(tok::string_literal) &&
1296 !Tok.is(tok::less))
1297 return false;
1298 } else {
1299 // Save '(' location for possible missing ')' message.
1300 LParenLoc = Tok.getLocation();
1301
1302 if (PP.getCurrentLexer()) {
1303 // Get the file name.
1304 PP.getCurrentLexer()->LexIncludeFilename(Tok);
1305 } else {
1306 // We're in a macro, so we can't use LexIncludeFilename; just
1307 // grab the next token.
1308 PP.Lex(Tok);
1309 }
1310 }
1311
1312 // Reserve a buffer to get the spelling.
1313 SmallString<128> FilenameBuffer;
1314 StringRef Filename;
1315 SourceLocation EndLoc;
1316
1317 switch (Tok.getKind()) {
1318 case tok::eod:
1319 // If the token kind is EOD, the error has already been diagnosed.
1320 return false;
1321
1322 case tok::angle_string_literal:
1323 case tok::string_literal: {
1324 bool Invalid = false;
1325 Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1326 if (Invalid)
1327 return false;
1328 break;
1329 }
1330
1331 case tok::less:
1332 // This could be a <foo/bar.h> file coming from a macro expansion. In this
1333 // case, glue the tokens together into FilenameBuffer and interpret those.
1334 FilenameBuffer.push_back('<');
1335 if (PP.ConcatenateIncludeName(FilenameBuffer, EndLoc)) {
1336 // Let the caller know a <eod> was found by changing the Token kind.
1337 Tok.setKind(tok::eod);
1338 return false; // Found <eod> but no ">"? Diagnostic already emitted.
1339 }
1340 Filename = FilenameBuffer;
1341 break;
1342 default:
1343 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1344 return false;
1345 }
1346
1347 SourceLocation FilenameLoc = Tok.getLocation();
1348
1349 // Get ')'.
1350 PP.LexNonComment(Tok);
1351
1352 // Ensure we have a trailing ).
1353 if (Tok.isNot(tok::r_paren)) {
1354 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1355 << II << tok::r_paren;
1356 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1357 return false;
1358 }
1359
1360 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1361 // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1362 // error.
1363 if (Filename.empty())
1364 return false;
1365
1366 // Search include directories.
1367 const DirectoryLookup *CurDir;
1368 const FileEntry *File =
1369 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1370 CurDir, nullptr, nullptr, nullptr);
1371
1372 // Get the result value. A result of true means the file exists.
1373 return File != nullptr;
1374 }
1375
1376 /// EvaluateHasInclude - Process a '__has_include("path")' expression.
1377 /// Returns true if successful.
EvaluateHasInclude(Token & Tok,IdentifierInfo * II,Preprocessor & PP)1378 static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
1379 Preprocessor &PP) {
1380 return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr);
1381 }
1382
1383 /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
1384 /// Returns true if successful.
EvaluateHasIncludeNext(Token & Tok,IdentifierInfo * II,Preprocessor & PP)1385 static bool EvaluateHasIncludeNext(Token &Tok,
1386 IdentifierInfo *II, Preprocessor &PP) {
1387 // __has_include_next is like __has_include, except that we start
1388 // searching after the current found directory. If we can't do this,
1389 // issue a diagnostic.
1390 // FIXME: Factor out duplication with
1391 // Preprocessor::HandleIncludeNextDirective.
1392 const DirectoryLookup *Lookup = PP.GetCurDirLookup();
1393 const FileEntry *LookupFromFile = nullptr;
1394 if (PP.isInPrimaryFile()) {
1395 Lookup = nullptr;
1396 PP.Diag(Tok, diag::pp_include_next_in_primary);
1397 } else if (PP.getCurrentSubmodule()) {
1398 // Start looking up in the directory *after* the one in which the current
1399 // file would be found, if any.
1400 assert(PP.getCurrentLexer() && "#include_next directive in macro?");
1401 LookupFromFile = PP.getCurrentLexer()->getFileEntry();
1402 Lookup = nullptr;
1403 } else if (!Lookup) {
1404 PP.Diag(Tok, diag::pp_include_next_absolute_path);
1405 } else {
1406 // Start looking up in the next directory.
1407 ++Lookup;
1408 }
1409
1410 return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile);
1411 }
1412
1413 /// \brief Process __building_module(identifier) expression.
1414 /// \returns true if we are building the named module, false otherwise.
EvaluateBuildingModule(Token & Tok,IdentifierInfo * II,Preprocessor & PP)1415 static bool EvaluateBuildingModule(Token &Tok,
1416 IdentifierInfo *II, Preprocessor &PP) {
1417 // Get '('.
1418 PP.LexNonComment(Tok);
1419
1420 // Ensure we have a '('.
1421 if (Tok.isNot(tok::l_paren)) {
1422 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1423 << tok::l_paren;
1424 return false;
1425 }
1426
1427 // Save '(' location for possible missing ')' message.
1428 SourceLocation LParenLoc = Tok.getLocation();
1429
1430 // Get the module name.
1431 PP.LexNonComment(Tok);
1432
1433 // Ensure that we have an identifier.
1434 if (Tok.isNot(tok::identifier)) {
1435 PP.Diag(Tok.getLocation(), diag::err_expected_id_building_module);
1436 return false;
1437 }
1438
1439 bool Result
1440 = Tok.getIdentifierInfo()->getName() == PP.getLangOpts().CurrentModule;
1441
1442 // Get ')'.
1443 PP.LexNonComment(Tok);
1444
1445 // Ensure we have a trailing ).
1446 if (Tok.isNot(tok::r_paren)) {
1447 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1448 << tok::r_paren;
1449 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1450 return false;
1451 }
1452
1453 return Result;
1454 }
1455
1456 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1457 /// as a builtin macro, handle it and return the next token as 'Tok'.
ExpandBuiltinMacro(Token & Tok)1458 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1459 // Figure out which token this is.
1460 IdentifierInfo *II = Tok.getIdentifierInfo();
1461 assert(II && "Can't be a macro without id info!");
1462
1463 // If this is an _Pragma or Microsoft __pragma directive, expand it,
1464 // invoke the pragma handler, then lex the token after it.
1465 if (II == Ident_Pragma)
1466 return Handle_Pragma(Tok);
1467 else if (II == Ident__pragma) // in non-MS mode this is null
1468 return HandleMicrosoft__pragma(Tok);
1469
1470 ++NumBuiltinMacroExpanded;
1471
1472 SmallString<128> TmpBuffer;
1473 llvm::raw_svector_ostream OS(TmpBuffer);
1474
1475 // Set up the return result.
1476 Tok.setIdentifierInfo(nullptr);
1477 Tok.clearFlag(Token::NeedsCleaning);
1478
1479 if (II == Ident__LINE__) {
1480 // C99 6.10.8: "__LINE__: The presumed line number (within the current
1481 // source file) of the current source line (an integer constant)". This can
1482 // be affected by #line.
1483 SourceLocation Loc = Tok.getLocation();
1484
1485 // Advance to the location of the first _, this might not be the first byte
1486 // of the token if it starts with an escaped newline.
1487 Loc = AdvanceToTokenCharacter(Loc, 0);
1488
1489 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1490 // a macro expansion. This doesn't matter for object-like macros, but
1491 // can matter for a function-like macro that expands to contain __LINE__.
1492 // Skip down through expansion points until we find a file loc for the
1493 // end of the expansion history.
1494 Loc = SourceMgr.getExpansionRange(Loc).second;
1495 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1496
1497 // __LINE__ expands to a simple numeric value.
1498 OS << (PLoc.isValid()? PLoc.getLine() : 1);
1499 Tok.setKind(tok::numeric_constant);
1500 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) {
1501 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1502 // character string literal)". This can be affected by #line.
1503 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1504
1505 // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1506 // #include stack instead of the current file.
1507 if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1508 SourceLocation NextLoc = PLoc.getIncludeLoc();
1509 while (NextLoc.isValid()) {
1510 PLoc = SourceMgr.getPresumedLoc(NextLoc);
1511 if (PLoc.isInvalid())
1512 break;
1513
1514 NextLoc = PLoc.getIncludeLoc();
1515 }
1516 }
1517
1518 // Escape this filename. Turn '\' -> '\\' '"' -> '\"'
1519 SmallString<128> FN;
1520 if (PLoc.isValid()) {
1521 FN += PLoc.getFilename();
1522 Lexer::Stringify(FN);
1523 OS << '"' << FN << '"';
1524 }
1525 Tok.setKind(tok::string_literal);
1526 } else if (II == Ident__DATE__) {
1527 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1528 if (!DATELoc.isValid())
1529 ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1530 Tok.setKind(tok::string_literal);
1531 Tok.setLength(strlen("\"Mmm dd yyyy\""));
1532 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1533 Tok.getLocation(),
1534 Tok.getLength()));
1535 return;
1536 } else if (II == Ident__TIME__) {
1537 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1538 if (!TIMELoc.isValid())
1539 ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1540 Tok.setKind(tok::string_literal);
1541 Tok.setLength(strlen("\"hh:mm:ss\""));
1542 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1543 Tok.getLocation(),
1544 Tok.getLength()));
1545 return;
1546 } else if (II == Ident__INCLUDE_LEVEL__) {
1547 // Compute the presumed include depth of this token. This can be affected
1548 // by GNU line markers.
1549 unsigned Depth = 0;
1550
1551 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1552 if (PLoc.isValid()) {
1553 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1554 for (; PLoc.isValid(); ++Depth)
1555 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1556 }
1557
1558 // __INCLUDE_LEVEL__ expands to a simple numeric value.
1559 OS << Depth;
1560 Tok.setKind(tok::numeric_constant);
1561 } else if (II == Ident__TIMESTAMP__) {
1562 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1563 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
1564 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1565
1566 // Get the file that we are lexing out of. If we're currently lexing from
1567 // a macro, dig into the include stack.
1568 const FileEntry *CurFile = nullptr;
1569 PreprocessorLexer *TheLexer = getCurrentFileLexer();
1570
1571 if (TheLexer)
1572 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1573
1574 const char *Result;
1575 if (CurFile) {
1576 time_t TT = CurFile->getModificationTime();
1577 struct tm *TM = localtime(&TT);
1578 Result = asctime(TM);
1579 } else {
1580 Result = "??? ??? ?? ??:??:?? ????\n";
1581 }
1582 // Surround the string with " and strip the trailing newline.
1583 OS << '"' << StringRef(Result).drop_back() << '"';
1584 Tok.setKind(tok::string_literal);
1585 } else if (II == Ident__COUNTER__) {
1586 // __COUNTER__ expands to a simple numeric value.
1587 OS << CounterValue++;
1588 Tok.setKind(tok::numeric_constant);
1589 } else if (II == Ident__has_feature ||
1590 II == Ident__has_extension ||
1591 II == Ident__has_builtin ||
1592 II == Ident__is_identifier ||
1593 II == Ident__has_attribute ||
1594 II == Ident__has_declspec ||
1595 II == Ident__has_cpp_attribute) {
1596 // The argument to these builtins should be a parenthesized identifier.
1597 SourceLocation StartLoc = Tok.getLocation();
1598
1599 bool IsValid = false;
1600 IdentifierInfo *FeatureII = nullptr;
1601 IdentifierInfo *ScopeII = nullptr;
1602
1603 // Read the '('.
1604 LexUnexpandedToken(Tok);
1605 if (Tok.is(tok::l_paren)) {
1606 // Read the identifier
1607 LexUnexpandedToken(Tok);
1608 if ((FeatureII = Tok.getIdentifierInfo())) {
1609 // If we're checking __has_cpp_attribute, it is possible to receive a
1610 // scope token. Read the "::", if it's available.
1611 LexUnexpandedToken(Tok);
1612 bool IsScopeValid = true;
1613 if (II == Ident__has_cpp_attribute && Tok.is(tok::coloncolon)) {
1614 LexUnexpandedToken(Tok);
1615 // The first thing we read was not the feature, it was the scope.
1616 ScopeII = FeatureII;
1617 if ((FeatureII = Tok.getIdentifierInfo()))
1618 LexUnexpandedToken(Tok);
1619 else
1620 IsScopeValid = false;
1621 }
1622 // Read the closing paren.
1623 if (IsScopeValid && Tok.is(tok::r_paren))
1624 IsValid = true;
1625 }
1626 // Eat tokens until ')'.
1627 while (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eod) &&
1628 Tok.isNot(tok::eof))
1629 LexUnexpandedToken(Tok);
1630 }
1631
1632 int Value = 0;
1633 if (!IsValid)
1634 Diag(StartLoc, diag::err_feature_check_malformed);
1635 else if (II == Ident__is_identifier)
1636 Value = FeatureII->getTokenID() == tok::identifier;
1637 else if (II == Ident__has_builtin) {
1638 // Check for a builtin is trivial.
1639 if (FeatureII->getBuiltinID() != 0) {
1640 Value = true;
1641 } else {
1642 StringRef Feature = FeatureII->getName();
1643 Value = llvm::StringSwitch<bool>(Feature)
1644 .Case("__make_integer_seq", getLangOpts().CPlusPlus)
1645 .Default(false);
1646 }
1647 } else if (II == Ident__has_attribute)
1648 Value = hasAttribute(AttrSyntax::GNU, nullptr, FeatureII,
1649 getTargetInfo(), getLangOpts());
1650 else if (II == Ident__has_cpp_attribute)
1651 Value = hasAttribute(AttrSyntax::CXX, ScopeII, FeatureII,
1652 getTargetInfo(), getLangOpts());
1653 else if (II == Ident__has_declspec)
1654 Value = hasAttribute(AttrSyntax::Declspec, nullptr, FeatureII,
1655 getTargetInfo(), getLangOpts());
1656 else if (II == Ident__has_extension)
1657 Value = HasExtension(*this, FeatureII);
1658 else {
1659 assert(II == Ident__has_feature && "Must be feature check");
1660 Value = HasFeature(*this, FeatureII);
1661 }
1662
1663 if (!IsValid)
1664 return;
1665 OS << Value;
1666 Tok.setKind(tok::numeric_constant);
1667 } else if (II == Ident__has_include ||
1668 II == Ident__has_include_next) {
1669 // The argument to these two builtins should be a parenthesized
1670 // file name string literal using angle brackets (<>) or
1671 // double-quotes ("").
1672 bool Value;
1673 if (II == Ident__has_include)
1674 Value = EvaluateHasInclude(Tok, II, *this);
1675 else
1676 Value = EvaluateHasIncludeNext(Tok, II, *this);
1677
1678 if (Tok.isNot(tok::r_paren))
1679 return;
1680 OS << (int)Value;
1681 Tok.setKind(tok::numeric_constant);
1682 } else if (II == Ident__has_warning) {
1683 // The argument should be a parenthesized string literal.
1684 // The argument to these builtins should be a parenthesized identifier.
1685 SourceLocation StartLoc = Tok.getLocation();
1686 bool IsValid = false;
1687 bool Value = false;
1688 // Read the '('.
1689 LexUnexpandedToken(Tok);
1690 do {
1691 if (Tok.isNot(tok::l_paren)) {
1692 Diag(StartLoc, diag::err_warning_check_malformed);
1693 break;
1694 }
1695
1696 LexUnexpandedToken(Tok);
1697 std::string WarningName;
1698 SourceLocation StrStartLoc = Tok.getLocation();
1699 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1700 /*MacroExpansion=*/false)) {
1701 // Eat tokens until ')'.
1702 while (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eod) &&
1703 Tok.isNot(tok::eof))
1704 LexUnexpandedToken(Tok);
1705 break;
1706 }
1707
1708 // Is the end a ')'?
1709 if (!(IsValid = Tok.is(tok::r_paren))) {
1710 Diag(StartLoc, diag::err_warning_check_malformed);
1711 break;
1712 }
1713
1714 // FIXME: Should we accept "-R..." flags here, or should that be handled
1715 // by a separate __has_remark?
1716 if (WarningName.size() < 3 || WarningName[0] != '-' ||
1717 WarningName[1] != 'W') {
1718 Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1719 break;
1720 }
1721
1722 // Finally, check if the warning flags maps to a diagnostic group.
1723 // We construct a SmallVector here to talk to getDiagnosticIDs().
1724 // Although we don't use the result, this isn't a hot path, and not
1725 // worth special casing.
1726 SmallVector<diag::kind, 10> Diags;
1727 Value = !getDiagnostics().getDiagnosticIDs()->
1728 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1729 WarningName.substr(2), Diags);
1730 } while (false);
1731
1732 if (!IsValid)
1733 return;
1734 OS << (int)Value;
1735 Tok.setKind(tok::numeric_constant);
1736 } else if (II == Ident__building_module) {
1737 // The argument to this builtin should be an identifier. The
1738 // builtin evaluates to 1 when that identifier names the module we are
1739 // currently building.
1740 OS << (int)EvaluateBuildingModule(Tok, II, *this);
1741 Tok.setKind(tok::numeric_constant);
1742 } else if (II == Ident__MODULE__) {
1743 // The current module as an identifier.
1744 OS << getLangOpts().CurrentModule;
1745 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1746 Tok.setIdentifierInfo(ModuleII);
1747 Tok.setKind(ModuleII->getTokenID());
1748 } else if (II == Ident__identifier) {
1749 SourceLocation Loc = Tok.getLocation();
1750
1751 // We're expecting '__identifier' '(' identifier ')'. Try to recover
1752 // if the parens are missing.
1753 LexNonComment(Tok);
1754 if (Tok.isNot(tok::l_paren)) {
1755 // No '(', use end of last token.
1756 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
1757 << II << tok::l_paren;
1758 // If the next token isn't valid as our argument, we can't recover.
1759 if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1760 Tok.setKind(tok::identifier);
1761 return;
1762 }
1763
1764 SourceLocation LParenLoc = Tok.getLocation();
1765 LexNonComment(Tok);
1766
1767 if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1768 Tok.setKind(tok::identifier);
1769 else {
1770 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
1771 << Tok.getKind();
1772 // Don't walk past anything that's not a real token.
1773 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
1774 return;
1775 }
1776
1777 // Discard the ')', preserving 'Tok' as our result.
1778 Token RParen;
1779 LexNonComment(RParen);
1780 if (RParen.isNot(tok::r_paren)) {
1781 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
1782 << Tok.getKind() << tok::r_paren;
1783 Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1784 }
1785 return;
1786 } else {
1787 llvm_unreachable("Unknown identifier!");
1788 }
1789 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
1790 }
1791
markMacroAsUsed(MacroInfo * MI)1792 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
1793 // If the 'used' status changed, and the macro requires 'unused' warning,
1794 // remove its SourceLocation from the warn-for-unused-macro locations.
1795 if (MI->isWarnIfUnused() && !MI->isUsed())
1796 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
1797 MI->setIsUsed(true);
1798 }
1799