1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* ChangeLog for this library:
30  *
31  * NDK r10e?: Add MIPS MSA feature.
32  *
33  * NDK r10: Support for 64-bit CPUs (Intel, ARM & MIPS).
34  *
35  * NDK r8d: Add android_setCpu().
36  *
37  * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
38  *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
39  *
40  *          Rewrite the code to parse /proc/self/auxv instead of
41  *          the "Features" field in /proc/cpuinfo.
42  *
43  *          Dynamically allocate the buffer that hold the content
44  *          of /proc/cpuinfo to deal with newer hardware.
45  *
46  * NDK r7c: Fix CPU count computation. The old method only reported the
47  *           number of _active_ CPUs when the library was initialized,
48  *           which could be less than the real total.
49  *
50  * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
51  *         for an ARMv6 CPU (see below).
52  *
53  *         Handle kernels that only report 'neon', and not 'vfpv3'
54  *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
55  *
56  *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
57  *
58  *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
59  *         android_getCpuFamily().
60  *
61  * NDK r4: Initial release
62  */
63 
64 #include "cpu-features.h"
65 
66 #include <dlfcn.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <pthread.h>
70 #include <stdio.h>
71 #include <stdlib.h>
72 #include <sys/system_properties.h>
73 
74 static  pthread_once_t     g_once;
75 static  int                g_inited;
76 static  AndroidCpuFamily   g_cpuFamily;
77 static  uint64_t           g_cpuFeatures;
78 static  int                g_cpuCount;
79 
80 #ifdef __arm__
81 static  uint32_t           g_cpuIdArm;
82 #endif
83 
84 static const int android_cpufeatures_debug = 0;
85 
86 #define  D(...) \
87     do { \
88         if (android_cpufeatures_debug) { \
89             printf(__VA_ARGS__); fflush(stdout); \
90         } \
91     } while (0)
92 
93 #ifdef __i386__
x86_cpuid(int func,int values[4])94 static __inline__ void x86_cpuid(int func, int values[4])
95 {
96     int a, b, c, d;
97     /* We need to preserve ebx since we're compiling PIC code */
98     /* this means we can't use "=b" for the second output register */
99     __asm__ __volatile__ ( \
100       "push %%ebx\n"
101       "cpuid\n" \
102       "mov %%ebx, %1\n"
103       "pop %%ebx\n"
104       : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
105       : "a" (func) \
106     );
107     values[0] = a;
108     values[1] = b;
109     values[2] = c;
110     values[3] = d;
111 }
112 #elif defined(__x86_64__)
x86_cpuid(int func,int values[4])113 static __inline__ void x86_cpuid(int func, int values[4])
114 {
115     int64_t a, b, c, d;
116     /* We need to preserve ebx since we're compiling PIC code */
117     /* this means we can't use "=b" for the second output register */
118     __asm__ __volatile__ ( \
119       "push %%rbx\n"
120       "cpuid\n" \
121       "mov %%rbx, %1\n"
122       "pop %%rbx\n"
123       : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
124       : "a" (func) \
125     );
126     values[0] = a;
127     values[1] = b;
128     values[2] = c;
129     values[3] = d;
130 }
131 #endif
132 
133 /* Get the size of a file by reading it until the end. This is needed
134  * because files under /proc do not always return a valid size when
135  * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
136  */
137 static int
get_file_size(const char * pathname)138 get_file_size(const char* pathname)
139 {
140 
141    int fd, result = 0;
142     char buffer[256];
143 
144     fd = open(pathname, O_RDONLY);
145     if (fd < 0) {
146         D("Can't open %s: %s\n", pathname, strerror(errno));
147         return -1;
148     }
149 
150     for (;;) {
151         int ret = read(fd, buffer, sizeof buffer);
152         if (ret < 0) {
153             if (errno == EINTR)
154                 continue;
155             D("Error while reading %s: %s\n", pathname, strerror(errno));
156             break;
157         }
158         if (ret == 0)
159             break;
160 
161         result += ret;
162     }
163     close(fd);
164     return result;
165 }
166 
167 /* Read the content of /proc/cpuinfo into a user-provided buffer.
168  * Return the length of the data, or -1 on error. Does *not*
169  * zero-terminate the content. Will not read more
170  * than 'buffsize' bytes.
171  */
172 static int
read_file(const char * pathname,char * buffer,size_t buffsize)173 read_file(const char*  pathname, char*  buffer, size_t  buffsize)
174 {
175     int  fd, count;
176 
177     fd = open(pathname, O_RDONLY);
178     if (fd < 0) {
179         D("Could not open %s: %s\n", pathname, strerror(errno));
180         return -1;
181     }
182     count = 0;
183     while (count < (int)buffsize) {
184         int ret = read(fd, buffer + count, buffsize - count);
185         if (ret < 0) {
186             if (errno == EINTR)
187                 continue;
188             D("Error while reading from %s: %s\n", pathname, strerror(errno));
189             if (count == 0)
190                 count = -1;
191             break;
192         }
193         if (ret == 0)
194             break;
195         count += ret;
196     }
197     close(fd);
198     return count;
199 }
200 
201 #ifdef __arm__
202 /* Extract the content of a the first occurence of a given field in
203  * the content of /proc/cpuinfo and return it as a heap-allocated
204  * string that must be freed by the caller.
205  *
206  * Return NULL if not found
207  */
208 static char*
extract_cpuinfo_field(const char * buffer,int buflen,const char * field)209 extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
210 {
211     int  fieldlen = strlen(field);
212     const char* bufend = buffer + buflen;
213     char* result = NULL;
214     int len;
215     const char *p, *q;
216 
217     /* Look for first field occurence, and ensures it starts the line. */
218     p = buffer;
219     for (;;) {
220         p = memmem(p, bufend-p, field, fieldlen);
221         if (p == NULL)
222             goto EXIT;
223 
224         if (p == buffer || p[-1] == '\n')
225             break;
226 
227         p += fieldlen;
228     }
229 
230     /* Skip to the first column followed by a space */
231     p += fieldlen;
232     p  = memchr(p, ':', bufend-p);
233     if (p == NULL || p[1] != ' ')
234         goto EXIT;
235 
236     /* Find the end of the line */
237     p += 2;
238     q = memchr(p, '\n', bufend-p);
239     if (q == NULL)
240         q = bufend;
241 
242     /* Copy the line into a heap-allocated buffer */
243     len = q-p;
244     result = malloc(len+1);
245     if (result == NULL)
246         goto EXIT;
247 
248     memcpy(result, p, len);
249     result[len] = '\0';
250 
251 EXIT:
252     return result;
253 }
254 
255 /* Checks that a space-separated list of items contains one given 'item'.
256  * Returns 1 if found, 0 otherwise.
257  */
258 static int
has_list_item(const char * list,const char * item)259 has_list_item(const char* list, const char* item)
260 {
261     const char*  p = list;
262     int itemlen = strlen(item);
263 
264     if (list == NULL)
265         return 0;
266 
267     while (*p) {
268         const char*  q;
269 
270         /* skip spaces */
271         while (*p == ' ' || *p == '\t')
272             p++;
273 
274         /* find end of current list item */
275         q = p;
276         while (*q && *q != ' ' && *q != '\t')
277             q++;
278 
279         if (itemlen == q-p && !memcmp(p, item, itemlen))
280             return 1;
281 
282         /* skip to next item */
283         p = q;
284     }
285     return 0;
286 }
287 #endif /* __arm__ */
288 
289 /* Parse a number starting from 'input', but not going further
290  * than 'limit'. Return the value into '*result'.
291  *
292  * NOTE: Does not skip over leading spaces, or deal with sign characters.
293  * NOTE: Ignores overflows.
294  *
295  * The function returns NULL in case of error (bad format), or the new
296  * position after the decimal number in case of success (which will always
297  * be <= 'limit').
298  */
299 static const char*
parse_number(const char * input,const char * limit,int base,int * result)300 parse_number(const char* input, const char* limit, int base, int* result)
301 {
302     const char* p = input;
303     int val = 0;
304     while (p < limit) {
305         int d = (*p - '0');
306         if ((unsigned)d >= 10U) {
307             d = (*p - 'a');
308             if ((unsigned)d >= 6U)
309               d = (*p - 'A');
310             if ((unsigned)d >= 6U)
311               break;
312             d += 10;
313         }
314         if (d >= base)
315           break;
316         val = val*base + d;
317         p++;
318     }
319     if (p == input)
320         return NULL;
321 
322     *result = val;
323     return p;
324 }
325 
326 static const char*
parse_decimal(const char * input,const char * limit,int * result)327 parse_decimal(const char* input, const char* limit, int* result)
328 {
329     return parse_number(input, limit, 10, result);
330 }
331 
332 #ifdef __arm__
333 static const char*
parse_hexadecimal(const char * input,const char * limit,int * result)334 parse_hexadecimal(const char* input, const char* limit, int* result)
335 {
336     return parse_number(input, limit, 16, result);
337 }
338 #endif /* __arm__ */
339 
340 /* This small data type is used to represent a CPU list / mask, as read
341  * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
342  *
343  * For now, we don't expect more than 32 cores on mobile devices, so keep
344  * everything simple.
345  */
346 typedef struct {
347     uint32_t mask;
348 } CpuList;
349 
350 static __inline__ void
cpulist_init(CpuList * list)351 cpulist_init(CpuList* list) {
352     list->mask = 0;
353 }
354 
355 static __inline__ void
cpulist_and(CpuList * list1,CpuList * list2)356 cpulist_and(CpuList* list1, CpuList* list2) {
357     list1->mask &= list2->mask;
358 }
359 
360 static __inline__ void
cpulist_set(CpuList * list,int index)361 cpulist_set(CpuList* list, int index) {
362     if ((unsigned)index < 32) {
363         list->mask |= (uint32_t)(1U << index);
364     }
365 }
366 
367 static __inline__ int
cpulist_count(CpuList * list)368 cpulist_count(CpuList* list) {
369     return __builtin_popcount(list->mask);
370 }
371 
372 /* Parse a textual list of cpus and store the result inside a CpuList object.
373  * Input format is the following:
374  * - comma-separated list of items (no spaces)
375  * - each item is either a single decimal number (cpu index), or a range made
376  *   of two numbers separated by a single dash (-). Ranges are inclusive.
377  *
378  * Examples:   0
379  *             2,4-127,128-143
380  *             0-1
381  */
382 static void
cpulist_parse(CpuList * list,const char * line,int line_len)383 cpulist_parse(CpuList* list, const char* line, int line_len)
384 {
385     const char* p = line;
386     const char* end = p + line_len;
387     const char* q;
388 
389     /* NOTE: the input line coming from sysfs typically contains a
390      * trailing newline, so take care of it in the code below
391      */
392     while (p < end && *p != '\n')
393     {
394         int val, start_value, end_value;
395 
396         /* Find the end of current item, and put it into 'q' */
397         q = memchr(p, ',', end-p);
398         if (q == NULL) {
399             q = end;
400         }
401 
402         /* Get first value */
403         p = parse_decimal(p, q, &start_value);
404         if (p == NULL)
405             goto BAD_FORMAT;
406 
407         end_value = start_value;
408 
409         /* If we're not at the end of the item, expect a dash and
410          * and integer; extract end value.
411          */
412         if (p < q && *p == '-') {
413             p = parse_decimal(p+1, q, &end_value);
414             if (p == NULL)
415                 goto BAD_FORMAT;
416         }
417 
418         /* Set bits CPU list bits */
419         for (val = start_value; val <= end_value; val++) {
420             cpulist_set(list, val);
421         }
422 
423         /* Jump to next item */
424         p = q;
425         if (p < end)
426             p++;
427     }
428 
429 BAD_FORMAT:
430     ;
431 }
432 
433 /* Read a CPU list from one sysfs file */
434 static void
cpulist_read_from(CpuList * list,const char * filename)435 cpulist_read_from(CpuList* list, const char* filename)
436 {
437     char   file[64];
438     int    filelen;
439 
440     cpulist_init(list);
441 
442     filelen = read_file(filename, file, sizeof file);
443     if (filelen < 0) {
444         D("Could not read %s: %s\n", filename, strerror(errno));
445         return;
446     }
447 
448     cpulist_parse(list, file, filelen);
449 }
450 #if defined(__aarch64__)
451 // see <uapi/asm/hwcap.h> kernel header
452 #define HWCAP_FP                (1 << 0)
453 #define HWCAP_ASIMD             (1 << 1)
454 #define HWCAP_AES               (1 << 3)
455 #define HWCAP_PMULL             (1 << 4)
456 #define HWCAP_SHA1              (1 << 5)
457 #define HWCAP_SHA2              (1 << 6)
458 #define HWCAP_CRC32             (1 << 7)
459 #endif
460 
461 #if defined(__arm__)
462 
463 // See <asm/hwcap.h> kernel header.
464 #define HWCAP_VFP       (1 << 6)
465 #define HWCAP_IWMMXT    (1 << 9)
466 #define HWCAP_NEON      (1 << 12)
467 #define HWCAP_VFPv3     (1 << 13)
468 #define HWCAP_VFPv3D16  (1 << 14)
469 #define HWCAP_VFPv4     (1 << 16)
470 #define HWCAP_IDIVA     (1 << 17)
471 #define HWCAP_IDIVT     (1 << 18)
472 
473 // see <uapi/asm/hwcap.h> kernel header
474 #define HWCAP2_AES     (1 << 0)
475 #define HWCAP2_PMULL   (1 << 1)
476 #define HWCAP2_SHA1    (1 << 2)
477 #define HWCAP2_SHA2    (1 << 3)
478 #define HWCAP2_CRC32   (1 << 4)
479 
480 // This is the list of 32-bit ARMv7 optional features that are _always_
481 // supported by ARMv8 CPUs, as mandated by the ARM Architecture Reference
482 // Manual.
483 #define HWCAP_SET_FOR_ARMV8  \
484   ( HWCAP_VFP | \
485     HWCAP_NEON | \
486     HWCAP_VFPv3 | \
487     HWCAP_VFPv4 | \
488     HWCAP_IDIVA | \
489     HWCAP_IDIVT )
490 #endif
491 
492 #if defined(__mips__)
493 // see <uapi/asm/hwcap.h> kernel header
494 #define HWCAP_MIPS_R6           (1 << 0)
495 #define HWCAP_MIPS_MSA          (1 << 1)
496 #endif
497 
498 #if defined(__arm__) || defined(__aarch64__) || defined(__mips__)
499 
500 #define AT_HWCAP 16
501 #define AT_HWCAP2 26
502 
503 // Probe the system's C library for a 'getauxval' function and call it if
504 // it exits, or return 0 for failure. This function is available since API
505 // level 20.
506 //
507 // This code does *NOT* check for '__ANDROID_API__ >= 20' to support the
508 // edge case where some NDK developers use headers for a platform that is
509 // newer than the one really targetted by their application.
510 // This is typically done to use newer native APIs only when running on more
511 // recent Android versions, and requires careful symbol management.
512 //
513 // Note that getauxval() can't really be re-implemented here, because
514 // its implementation does not parse /proc/self/auxv. Instead it depends
515 // on values  that are passed by the kernel at process-init time to the
516 // C runtime initialization layer.
517 static uint32_t
get_elf_hwcap_from_getauxval(int hwcap_type)518 get_elf_hwcap_from_getauxval(int hwcap_type) {
519     typedef unsigned long getauxval_func_t(unsigned long);
520 
521     dlerror();
522     void* libc_handle = dlopen("libc.so", RTLD_NOW);
523     if (!libc_handle) {
524         D("Could not dlopen() C library: %s\n", dlerror());
525         return 0;
526     }
527 
528     uint32_t ret = 0;
529     getauxval_func_t* func = (getauxval_func_t*)
530             dlsym(libc_handle, "getauxval");
531     if (!func) {
532         D("Could not find getauxval() in C library\n");
533     } else {
534         // Note: getauxval() returns 0 on failure. Doesn't touch errno.
535         ret = (uint32_t)(*func)(hwcap_type);
536     }
537     dlclose(libc_handle);
538     return ret;
539 }
540 #endif
541 
542 #if defined(__arm__)
543 // Parse /proc/self/auxv to extract the ELF HW capabilities bitmap for the
544 // current CPU. Note that this file is not accessible from regular
545 // application processes on some Android platform releases.
546 // On success, return new ELF hwcaps, or 0 on failure.
547 static uint32_t
get_elf_hwcap_from_proc_self_auxv(void)548 get_elf_hwcap_from_proc_self_auxv(void) {
549     const char filepath[] = "/proc/self/auxv";
550     int fd = TEMP_FAILURE_RETRY(open(filepath, O_RDONLY));
551     if (fd < 0) {
552         D("Could not open %s: %s\n", filepath, strerror(errno));
553         return 0;
554     }
555 
556     struct { uint32_t tag; uint32_t value; } entry;
557 
558     uint32_t result = 0;
559     for (;;) {
560         int ret = TEMP_FAILURE_RETRY(read(fd, (char*)&entry, sizeof entry));
561         if (ret < 0) {
562             D("Error while reading %s: %s\n", filepath, strerror(errno));
563             break;
564         }
565         // Detect end of list.
566         if (ret == 0 || (entry.tag == 0 && entry.value == 0))
567           break;
568         if (entry.tag == AT_HWCAP) {
569           result = entry.value;
570           break;
571         }
572     }
573     close(fd);
574     return result;
575 }
576 
577 /* Compute the ELF HWCAP flags from the content of /proc/cpuinfo.
578  * This works by parsing the 'Features' line, which lists which optional
579  * features the device's CPU supports, on top of its reference
580  * architecture.
581  */
582 static uint32_t
get_elf_hwcap_from_proc_cpuinfo(const char * cpuinfo,int cpuinfo_len)583 get_elf_hwcap_from_proc_cpuinfo(const char* cpuinfo, int cpuinfo_len) {
584     uint32_t hwcaps = 0;
585     long architecture = 0;
586     char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
587     if (cpuArch) {
588         architecture = strtol(cpuArch, NULL, 10);
589         free(cpuArch);
590 
591         if (architecture >= 8L) {
592             // This is a 32-bit ARM binary running on a 64-bit ARM64 kernel.
593             // The 'Features' line only lists the optional features that the
594             // device's CPU supports, compared to its reference architecture
595             // which are of no use for this process.
596             D("Faking 32-bit ARM HWCaps on ARMv%ld CPU\n", architecture);
597             return HWCAP_SET_FOR_ARMV8;
598         }
599     }
600 
601     char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
602     if (cpuFeatures != NULL) {
603         D("Found cpuFeatures = '%s'\n", cpuFeatures);
604 
605         if (has_list_item(cpuFeatures, "vfp"))
606             hwcaps |= HWCAP_VFP;
607         if (has_list_item(cpuFeatures, "vfpv3"))
608             hwcaps |= HWCAP_VFPv3;
609         if (has_list_item(cpuFeatures, "vfpv3d16"))
610             hwcaps |= HWCAP_VFPv3D16;
611         if (has_list_item(cpuFeatures, "vfpv4"))
612             hwcaps |= HWCAP_VFPv4;
613         if (has_list_item(cpuFeatures, "neon"))
614             hwcaps |= HWCAP_NEON;
615         if (has_list_item(cpuFeatures, "idiva"))
616             hwcaps |= HWCAP_IDIVA;
617         if (has_list_item(cpuFeatures, "idivt"))
618             hwcaps |= HWCAP_IDIVT;
619         if (has_list_item(cpuFeatures, "idiv"))
620             hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
621         if (has_list_item(cpuFeatures, "iwmmxt"))
622             hwcaps |= HWCAP_IWMMXT;
623 
624         free(cpuFeatures);
625     }
626     return hwcaps;
627 }
628 #endif  /* __arm__ */
629 
630 /* Return the number of cpus present on a given device.
631  *
632  * To handle all weird kernel configurations, we need to compute the
633  * intersection of the 'present' and 'possible' CPU lists and count
634  * the result.
635  */
636 static int
get_cpu_count(void)637 get_cpu_count(void)
638 {
639     CpuList cpus_present[1];
640     CpuList cpus_possible[1];
641 
642     cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
643     cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
644 
645     /* Compute the intersection of both sets to get the actual number of
646      * CPU cores that can be used on this device by the kernel.
647      */
648     cpulist_and(cpus_present, cpus_possible);
649 
650     return cpulist_count(cpus_present);
651 }
652 
653 static void
android_cpuInitFamily(void)654 android_cpuInitFamily(void)
655 {
656 #if defined(__arm__)
657     g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
658 #elif defined(__i386__)
659     g_cpuFamily = ANDROID_CPU_FAMILY_X86;
660 #elif defined(__mips64)
661 /* Needs to be before __mips__ since the compiler defines both */
662     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS64;
663 #elif defined(__mips__)
664     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
665 #elif defined(__aarch64__)
666     g_cpuFamily = ANDROID_CPU_FAMILY_ARM64;
667 #elif defined(__x86_64__)
668     g_cpuFamily = ANDROID_CPU_FAMILY_X86_64;
669 #else
670     g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
671 #endif
672 }
673 
674 static void
android_cpuInit(void)675 android_cpuInit(void)
676 {
677     char* cpuinfo = NULL;
678     int   cpuinfo_len;
679 
680     android_cpuInitFamily();
681 
682     g_cpuFeatures = 0;
683     g_cpuCount    = 1;
684     g_inited      = 1;
685 
686     cpuinfo_len = get_file_size("/proc/cpuinfo");
687     if (cpuinfo_len < 0) {
688       D("cpuinfo_len cannot be computed!");
689       return;
690     }
691     cpuinfo = malloc(cpuinfo_len);
692     if (cpuinfo == NULL) {
693       D("cpuinfo buffer could not be allocated");
694       return;
695     }
696     cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
697     D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
698       cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
699 
700     if (cpuinfo_len < 0)  /* should not happen */ {
701         free(cpuinfo);
702         return;
703     }
704 
705     /* Count the CPU cores, the value may be 0 for single-core CPUs */
706     g_cpuCount = get_cpu_count();
707     if (g_cpuCount == 0) {
708         g_cpuCount = 1;
709     }
710 
711     D("found cpuCount = %d\n", g_cpuCount);
712 
713 #ifdef __arm__
714     {
715         /* Extract architecture from the "CPU Architecture" field.
716          * The list is well-known, unlike the the output of
717          * the 'Processor' field which can vary greatly.
718          *
719          * See the definition of the 'proc_arch' array in
720          * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
721          * same file.
722          */
723         char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
724 
725         if (cpuArch != NULL) {
726             char*  end;
727             long   archNumber;
728             int    hasARMv7 = 0;
729 
730             D("found cpuArch = '%s'\n", cpuArch);
731 
732             /* read the initial decimal number, ignore the rest */
733             archNumber = strtol(cpuArch, &end, 10);
734 
735             /* Note that ARMv8 is upwards compatible with ARMv7. */
736             if (end > cpuArch && archNumber >= 7) {
737                 hasARMv7 = 1;
738             }
739 
740             /* Unfortunately, it seems that certain ARMv6-based CPUs
741              * report an incorrect architecture number of 7!
742              *
743              * See http://code.google.com/p/android/issues/detail?id=10812
744              *
745              * We try to correct this by looking at the 'elf_format'
746              * field reported by the 'Processor' field, which is of the
747              * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
748              * an ARMv6-one.
749              */
750             if (hasARMv7) {
751                 char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
752                                                       "Processor");
753                 if (cpuProc != NULL) {
754                     D("found cpuProc = '%s'\n", cpuProc);
755                     if (has_list_item(cpuProc, "(v6l)")) {
756                         D("CPU processor and architecture mismatch!!\n");
757                         hasARMv7 = 0;
758                     }
759                     free(cpuProc);
760                 }
761             }
762 
763             if (hasARMv7) {
764                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
765             }
766 
767             /* The LDREX / STREX instructions are available from ARMv6 */
768             if (archNumber >= 6) {
769                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
770             }
771 
772             free(cpuArch);
773         }
774 
775         /* Extract the list of CPU features from ELF hwcaps */
776         uint32_t hwcaps = 0;
777         hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
778         if (!hwcaps) {
779             D("Parsing /proc/self/auxv to extract ELF hwcaps!\n");
780             hwcaps = get_elf_hwcap_from_proc_self_auxv();
781         }
782         if (!hwcaps) {
783             // Parsing /proc/self/auxv will fail from regular application
784             // processes on some Android platform versions, when this happens
785             // parse proc/cpuinfo instead.
786             D("Parsing /proc/cpuinfo to extract ELF hwcaps!\n");
787             hwcaps = get_elf_hwcap_from_proc_cpuinfo(cpuinfo, cpuinfo_len);
788         }
789 
790         if (hwcaps != 0) {
791             int has_vfp = (hwcaps & HWCAP_VFP);
792             int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
793             int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
794             int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
795             int has_neon = (hwcaps & HWCAP_NEON);
796             int has_idiva = (hwcaps & HWCAP_IDIVA);
797             int has_idivt = (hwcaps & HWCAP_IDIVT);
798             int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
799 
800             // The kernel does a poor job at ensuring consistency when
801             // describing CPU features. So lots of guessing is needed.
802 
803             // 'vfpv4' implies VFPv3|VFP_FMA|FP16
804             if (has_vfpv4)
805                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
806                                  ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
807                                  ANDROID_CPU_ARM_FEATURE_VFP_FMA;
808 
809             // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
810             // a value of 'vfpv3' doesn't necessarily mean that the D32
811             // feature is present, so be conservative. All CPUs in the
812             // field that support D32 also support NEON, so this should
813             // not be a problem in practice.
814             if (has_vfpv3 || has_vfpv3d16)
815                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
816 
817             // 'vfp' is super ambiguous. Depending on the kernel, it can
818             // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
819             if (has_vfp) {
820               if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
821                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
822               else
823                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
824             }
825 
826             // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
827             if (has_neon) {
828                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
829                                  ANDROID_CPU_ARM_FEATURE_NEON |
830                                  ANDROID_CPU_ARM_FEATURE_VFP_D32;
831               if (has_vfpv4)
832                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
833             }
834 
835             // VFPv3 implies VFPv2 and ARMv7
836             if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
837                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
838                                  ANDROID_CPU_ARM_FEATURE_ARMv7;
839 
840             if (has_idiva)
841                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
842             if (has_idivt)
843                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
844 
845             if (has_iwmmxt)
846                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
847         }
848 
849         /* Extract the list of CPU features from ELF hwcaps2 */
850         uint32_t hwcaps2 = 0;
851         hwcaps2 = get_elf_hwcap_from_getauxval(AT_HWCAP2);
852         if (hwcaps2 != 0) {
853             int has_aes     = (hwcaps2 & HWCAP2_AES);
854             int has_pmull   = (hwcaps2 & HWCAP2_PMULL);
855             int has_sha1    = (hwcaps2 & HWCAP2_SHA1);
856             int has_sha2    = (hwcaps2 & HWCAP2_SHA2);
857             int has_crc32   = (hwcaps2 & HWCAP2_CRC32);
858 
859             if (has_aes)
860                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_AES;
861             if (has_pmull)
862                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_PMULL;
863             if (has_sha1)
864                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA1;
865             if (has_sha2)
866                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA2;
867             if (has_crc32)
868                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_CRC32;
869         }
870         /* Extract the cpuid value from various fields */
871         // The CPUID value is broken up in several entries in /proc/cpuinfo.
872         // This table is used to rebuild it from the entries.
873         static const struct CpuIdEntry {
874             const char* field;
875             char        format;
876             char        bit_lshift;
877             char        bit_length;
878         } cpu_id_entries[] = {
879             { "CPU implementer", 'x', 24, 8 },
880             { "CPU variant", 'x', 20, 4 },
881             { "CPU part", 'x', 4, 12 },
882             { "CPU revision", 'd', 0, 4 },
883         };
884         size_t i;
885         D("Parsing /proc/cpuinfo to recover CPUID\n");
886         for (i = 0;
887              i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
888              ++i) {
889             const struct CpuIdEntry* entry = &cpu_id_entries[i];
890             char* value = extract_cpuinfo_field(cpuinfo,
891                                                 cpuinfo_len,
892                                                 entry->field);
893             if (value == NULL)
894                 continue;
895 
896             D("field=%s value='%s'\n", entry->field, value);
897             char* value_end = value + strlen(value);
898             int val = 0;
899             const char* start = value;
900             const char* p;
901             if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
902               start += 2;
903               p = parse_hexadecimal(start, value_end, &val);
904             } else if (entry->format == 'x')
905               p = parse_hexadecimal(value, value_end, &val);
906             else
907               p = parse_decimal(value, value_end, &val);
908 
909             if (p > (const char*)start) {
910               val &= ((1 << entry->bit_length)-1);
911               val <<= entry->bit_lshift;
912               g_cpuIdArm |= (uint32_t) val;
913             }
914 
915             free(value);
916         }
917 
918         // Handle kernel configuration bugs that prevent the correct
919         // reporting of CPU features.
920         static const struct CpuFix {
921             uint32_t  cpuid;
922             uint64_t  or_flags;
923         } cpu_fixes[] = {
924             /* The Nexus 4 (Qualcomm Krait) kernel configuration
925              * forgets to report IDIV support. */
926             { 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
927                           ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
928             { 0x510006f3, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
929                           ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
930         };
931         size_t n;
932         for (n = 0; n < sizeof(cpu_fixes)/sizeof(cpu_fixes[0]); ++n) {
933             const struct CpuFix* entry = &cpu_fixes[n];
934 
935             if (g_cpuIdArm == entry->cpuid)
936                 g_cpuFeatures |= entry->or_flags;
937         }
938 
939         // Special case: The emulator-specific Android 4.2 kernel fails
940         // to report support for the 32-bit ARM IDIV instruction.
941         // Technically, this is a feature of the virtual CPU implemented
942         // by the emulator. Note that it could also support Thumb IDIV
943         // in the future, and this will have to be slightly updated.
944         char* hardware = extract_cpuinfo_field(cpuinfo,
945                                                cpuinfo_len,
946                                                "Hardware");
947         if (hardware) {
948             if (!strcmp(hardware, "Goldfish") &&
949                 g_cpuIdArm == 0x4100c080 &&
950                 (g_cpuFamily & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0) {
951                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
952             }
953             free(hardware);
954         }
955     }
956 #endif /* __arm__ */
957 #ifdef __aarch64__
958     {
959         /* Extract the list of CPU features from ELF hwcaps */
960         uint32_t hwcaps = 0;
961         hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
962         if (hwcaps != 0) {
963             int has_fp      = (hwcaps & HWCAP_FP);
964             int has_asimd   = (hwcaps & HWCAP_ASIMD);
965             int has_aes     = (hwcaps & HWCAP_AES);
966             int has_pmull   = (hwcaps & HWCAP_PMULL);
967             int has_sha1    = (hwcaps & HWCAP_SHA1);
968             int has_sha2    = (hwcaps & HWCAP_SHA2);
969             int has_crc32   = (hwcaps & HWCAP_CRC32);
970 
971             if(has_fp == 0) {
972                 D("ERROR: Floating-point unit missing, but is required by Android on AArch64 CPUs\n");
973             }
974             if(has_asimd == 0) {
975                 D("ERROR: ASIMD unit missing, but is required by Android on AArch64 CPUs\n");
976             }
977 
978             if (has_fp)
979                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_FP;
980             if (has_asimd)
981                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_ASIMD;
982             if (has_aes)
983                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_AES;
984             if (has_pmull)
985                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_PMULL;
986             if (has_sha1)
987                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA1;
988             if (has_sha2)
989                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA2;
990             if (has_crc32)
991                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_CRC32;
992         }
993     }
994 #endif /* __aarch64__ */
995 
996 #if defined(__i386__) || defined(__x86_64__)
997     int regs[4];
998 
999 /* According to http://en.wikipedia.org/wiki/CPUID */
1000 #define VENDOR_INTEL_b  0x756e6547
1001 #define VENDOR_INTEL_c  0x6c65746e
1002 #define VENDOR_INTEL_d  0x49656e69
1003 
1004     x86_cpuid(0, regs);
1005     int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
1006                          regs[2] == VENDOR_INTEL_c &&
1007                          regs[3] == VENDOR_INTEL_d);
1008 
1009     x86_cpuid(1, regs);
1010     if ((regs[2] & (1 << 9)) != 0) {
1011         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
1012     }
1013     if ((regs[2] & (1 << 23)) != 0) {
1014         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
1015     }
1016     if ((regs[2] & (1 << 19)) != 0) {
1017         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSE4_1;
1018     }
1019     if ((regs[2] & (1 << 20)) != 0) {
1020         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSE4_2;
1021     }
1022     if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
1023         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
1024     }
1025 #endif
1026 #if defined( __mips__)
1027     {   /* MIPS and MIPS64 */
1028         /* Extract the list of CPU features from ELF hwcaps */
1029         uint32_t hwcaps = 0;
1030         hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
1031         if (hwcaps != 0) {
1032             int has_r6      = (hwcaps & HWCAP_MIPS_R6);
1033             int has_msa     = (hwcaps & HWCAP_MIPS_MSA);
1034             if (has_r6)
1035                 g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_R6;
1036             if (has_msa)
1037                 g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_MSA;
1038         }
1039     }
1040 #endif /* __mips__ */
1041 
1042     free(cpuinfo);
1043 }
1044 
1045 
1046 AndroidCpuFamily
android_getCpuFamily(void)1047 android_getCpuFamily(void)
1048 {
1049     pthread_once(&g_once, android_cpuInit);
1050     return g_cpuFamily;
1051 }
1052 
1053 
1054 uint64_t
android_getCpuFeatures(void)1055 android_getCpuFeatures(void)
1056 {
1057     pthread_once(&g_once, android_cpuInit);
1058     return g_cpuFeatures;
1059 }
1060 
1061 
1062 int
android_getCpuCount(void)1063 android_getCpuCount(void)
1064 {
1065     pthread_once(&g_once, android_cpuInit);
1066     return g_cpuCount;
1067 }
1068 
1069 static void
android_cpuInitDummy(void)1070 android_cpuInitDummy(void)
1071 {
1072     g_inited = 1;
1073 }
1074 
1075 int
android_setCpu(int cpu_count,uint64_t cpu_features)1076 android_setCpu(int cpu_count, uint64_t cpu_features)
1077 {
1078     /* Fail if the library was already initialized. */
1079     if (g_inited)
1080         return 0;
1081 
1082     android_cpuInitFamily();
1083     g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
1084     g_cpuFeatures = cpu_features;
1085     pthread_once(&g_once, android_cpuInitDummy);
1086 
1087     return 1;
1088 }
1089 
1090 #ifdef __arm__
1091 uint32_t
android_getCpuIdArm(void)1092 android_getCpuIdArm(void)
1093 {
1094     pthread_once(&g_once, android_cpuInit);
1095     return g_cpuIdArm;
1096 }
1097 
1098 int
android_setCpuArm(int cpu_count,uint64_t cpu_features,uint32_t cpu_id)1099 android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
1100 {
1101     if (!android_setCpu(cpu_count, cpu_features))
1102         return 0;
1103 
1104     g_cpuIdArm = cpu_id;
1105     return 1;
1106 }
1107 #endif  /* __arm__ */
1108 
1109 /*
1110  * Technical note: Making sense of ARM's FPU architecture versions.
1111  *
1112  * FPA was ARM's first attempt at an FPU architecture. There is no Android
1113  * device that actually uses it since this technology was already obsolete
1114  * when the project started. If you see references to FPA instructions
1115  * somewhere, you can be sure that this doesn't apply to Android at all.
1116  *
1117  * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
1118  * new versions / additions to it. ARM considers this obsolete right now,
1119  * and no known Android device implements it either.
1120  *
1121  * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
1122  * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
1123  * supporting the 'armeabi' ABI doesn't necessarily support these.
1124  *
1125  * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
1126  * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
1127  * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
1128  * that it provides 16 double-precision FPU registers (d0-d15) and 32
1129  * single-precision ones (s0-s31) which happen to be mapped to the same
1130  * register banks.
1131  *
1132  * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
1133  * additional double precision registers (d16-d31). Note that there are
1134  * still only 32 single precision registers.
1135  *
1136  * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
1137  * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
1138  * are not supported by Android. Note that it is not compatible with VFPv2.
1139  *
1140  * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
1141  *       depending on context. For example GCC uses it for VFPv3-D32, but
1142  *       the Linux kernel code uses it for VFPv3-D16 (especially in
1143  *       /proc/cpuinfo). Always try to use the full designation when
1144  *       possible.
1145  *
1146  * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
1147  * instructions to perform parallel computations on vectors of 8, 16,
1148  * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
1149  * NEON registers are also mapped to the same register banks.
1150  *
1151  * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
1152  * perform fused multiply-accumulate on VFP registers, as well as
1153  * half-precision (16-bit) conversion operations.
1154  *
1155  * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
1156  * registers.
1157  *
1158  * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
1159  * multiply-accumulate instructions that work on the NEON registers.
1160  *
1161  * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
1162  *       depending on context.
1163  *
1164  * The following information was determined by scanning the binutils-2.22
1165  * sources:
1166  *
1167  * Basic VFP instruction subsets:
1168  *
1169  * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
1170  * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
1171  * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
1172  * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
1173  * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
1174  * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
1175  * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
1176  * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
1177  * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
1178  * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
1179  *
1180  * FPU types (excluding NEON)
1181  *
1182  * FPU_VFP_V1xD (EXT_V1xD)
1183  *    |
1184  *    +--------------------------+
1185  *    |                          |
1186  * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
1187  *    |                          |
1188  *    |                          |
1189  * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
1190  *    |
1191  * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
1192  *    |
1193  *    +--------------------------+
1194  *    |                          |
1195  * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
1196  *    |                          |
1197  *    |                      FPU_VFP_V4 (+EXT_D32)
1198  *    |
1199  * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
1200  *
1201  * VFP architectures:
1202  *
1203  * ARCH_VFP_V1xD  (EXT_V1xD)
1204  *   |
1205  *   +------------------+
1206  *   |                  |
1207  *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
1208  *   |                  |
1209  *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
1210  *   |                  |
1211  *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
1212  *   |
1213  * ARCH_VFP_V1 (+EXT_V1)
1214  *   |
1215  * ARCH_VFP_V2 (+EXT_V2)
1216  *   |
1217  * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
1218  *   |
1219  *   +-------------------+
1220  *   |                   |
1221  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1222  *   |
1223  *   +-------------------+
1224  *   |                   |
1225  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1226  *   |                   |
1227  *   |         ARCH_VFP_V4 (+EXT_D32)
1228  *   |                   |
1229  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1230  *   |
1231  * ARCH_VFP_V3 (+EXT_D32)
1232  *   |
1233  *   +-------------------+
1234  *   |                   |
1235  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1236  *   |
1237  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1238  *   |
1239  * ARCH_NEON_FP16 (+EXT_FP16)
1240  *
1241  * -fpu=<name> values and their correspondance with FPU architectures above:
1242  *
1243  *   {"vfp",               FPU_ARCH_VFP_V2},
1244  *   {"vfp9",              FPU_ARCH_VFP_V2},
1245  *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
1246  *   {"vfp10",             FPU_ARCH_VFP_V2},
1247  *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
1248  *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
1249  *   {"vfpv2",             FPU_ARCH_VFP_V2},
1250  *   {"vfpv3",             FPU_ARCH_VFP_V3},
1251  *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
1252  *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
1253  *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
1254  *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
1255  *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
1256  *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
1257  *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
1258  *   {"vfpv4",             FPU_ARCH_VFP_V4},
1259  *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
1260  *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
1261  *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
1262  *
1263  *
1264  * Simplified diagram that only includes FPUs supported by Android:
1265  * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
1266  * all others are optional and must be probed at runtime.
1267  *
1268  * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
1269  *   |
1270  *   +-------------------+
1271  *   |                   |
1272  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1273  *   |
1274  *   +-------------------+
1275  *   |                   |
1276  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1277  *   |                   |
1278  *   |         ARCH_VFP_V4 (+EXT_D32)
1279  *   |                   |
1280  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1281  *   |
1282  * ARCH_VFP_V3 (+EXT_D32)
1283  *   |
1284  *   +-------------------+
1285  *   |                   |
1286  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1287  *   |
1288  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1289  *   |
1290  * ARCH_NEON_FP16 (+EXT_FP16)
1291  *
1292  */
1293