1 /*
2 * Copyright 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef SYSTEM_KEYMASTER_ANDROID_KEYMASTER_UTILS_H_
18 #define SYSTEM_KEYMASTER_ANDROID_KEYMASTER_UTILS_H_
19
20 #include <stdint.h>
21 #include <string.h>
22 #include <time.h> // for time_t.
23
24 #include <UniquePtr.h>
25
26 #include <hardware/keymaster_defs.h>
27 #include <keymaster/serializable.h>
28
29 namespace keymaster {
30
31 /**
32 * Convert the specified time value into "Java time", which is a signed 64-bit integer representing
33 * elapsed milliseconds since Jan 1, 1970.
34 */
java_time(time_t time)35 inline int64_t java_time(time_t time) {
36 // The exact meaning of a time_t value is implementation-dependent. If this code is ported to a
37 // platform that doesn't define it as "seconds since Jan 1, 1970 UTC", this function will have
38 // to be revised.
39 return static_cast<int64_t>(time) * 1000;
40 }
41
42 /*
43 * Array Manipulation functions. This set of templated inline functions provides some nice tools
44 * for operating on c-style arrays. C-style arrays actually do have a defined size associated with
45 * them, as long as they are not allowed to decay to a pointer. These template methods exploit this
46 * to allow size-based array operations without explicitly specifying the size. If passed a pointer
47 * rather than an array, they'll fail to compile.
48 */
49
50 /**
51 * Return the size in bytes of the array \p a.
52 */
array_size(const T (& a)[N])53 template <typename T, size_t N> inline size_t array_size(const T (&a)[N]) {
54 return sizeof(a);
55 }
56
57 /**
58 * Return the number of elements in array \p a.
59 */
array_length(const T (&)[N])60 template <typename T, size_t N> inline size_t array_length(const T (&)[N]) {
61 return N;
62 }
63
64 /**
65 * Duplicate the array \p a. The memory for the new array is allocated and the caller takes
66 * responsibility.
67 */
dup_array(const T * a,size_t n)68 template <typename T> inline T* dup_array(const T* a, size_t n) {
69 T* dup = new (std::nothrow) T[n];
70 if (dup)
71 for (size_t i = 0; i < n; ++i)
72 dup[i] = a[i];
73 return dup;
74 }
75
76 /**
77 * Duplicate the array \p a. The memory for the new array is allocated and the caller takes
78 * responsibility. Note that the dup is necessarily returned as a pointer, so size is lost. Call
79 * array_length() on the original array to discover the size.
80 */
dup_array(const T (& a)[N])81 template <typename T, size_t N> inline T* dup_array(const T (&a)[N]) {
82 return dup_array(a, N);
83 }
84
85 /**
86 * Duplicate the buffer \p buf. The memory for the new buffer is allocated and the caller takes
87 * responsibility.
88 */
89 uint8_t* dup_buffer(const void* buf, size_t size);
90
91 /**
92 * Copy the contents of array \p arr to \p dest.
93 */
copy_array(const T (& arr)[N],T * dest)94 template <typename T, size_t N> inline void copy_array(const T (&arr)[N], T* dest) {
95 for (size_t i = 0; i < N; ++i)
96 dest[i] = arr[i];
97 }
98
99 /**
100 * Search array \p a for value \p val, returning true if found. Note that this function is
101 * early-exit, meaning that it should not be used in contexts where timing analysis attacks could be
102 * a concern.
103 */
array_contains(const T (& a)[N],T val)104 template <typename T, size_t N> inline bool array_contains(const T (&a)[N], T val) {
105 for (size_t i = 0; i < N; ++i) {
106 if (a[i] == val) {
107 return true;
108 }
109 }
110 return false;
111 }
112
113 /**
114 * Variant of memset() that uses GCC-specific pragmas to disable optimizations, so effect is not
115 * optimized away. This is important because we often need to wipe blocks of sensitive data from
116 * memory. As an additional convenience, this implementation avoids writing to NULL pointers.
117 */
118 #ifdef __clang__
119 #define OPTNONE __attribute__((optnone))
120 #else // not __clang__
121 #define OPTNONE __attribute__((optimize("O0")))
122 #endif // not __clang__
memset_s(void * s,int c,size_t n)123 inline OPTNONE void* memset_s(void* s, int c, size_t n) {
124 if (!s)
125 return s;
126 return memset(s, c, n);
127 }
128 #undef OPTNONE
129
130 /**
131 * Variant of memcmp that has the same runtime regardless of whether the data matches (i.e. doesn't
132 * short-circuit). Not an exact equivalent to memcmp because it doesn't return <0 if p1 < p2, just
133 * 0 for match and non-zero for non-match.
134 */
135 int memcmp_s(const void* p1, const void* p2, size_t length);
136
137 /**
138 * Eraser clears buffers. Construct it with a buffer or object and the destructor will ensure that
139 * it is zeroed.
140 */
141 class Eraser {
142 public:
143 /* Not implemented. If this gets used, we want a link error. */
144 template <typename T> explicit Eraser(T* t);
145
146 template <typename T>
Eraser(T & t)147 explicit Eraser(T& t) : buf_(reinterpret_cast<uint8_t*>(&t)), size_(sizeof(t)) {}
148
Eraser(uint8_t (& arr)[N])149 template <size_t N> explicit Eraser(uint8_t (&arr)[N]) : buf_(arr), size_(N) {}
150
Eraser(void * buf,size_t size)151 Eraser(void* buf, size_t size) : buf_(static_cast<uint8_t*>(buf)), size_(size) {}
~Eraser()152 ~Eraser() { memset_s(buf_, 0, size_); }
153
154 private:
155 Eraser(const Eraser&);
156 void operator=(const Eraser&);
157
158 uint8_t* buf_;
159 size_t size_;
160 };
161
162 /**
163 * ArrayWrapper is a trivial wrapper around a C-style array that provides begin() and end()
164 * methods. This is primarily to facilitate range-based iteration on arrays. It does not copy, nor
165 * does it take ownership; it just holds pointers.
166 */
167 template <typename T> class ArrayWrapper {
168 public:
ArrayWrapper(T * array,size_t size)169 ArrayWrapper(T* array, size_t size) : begin_(array), end_(array + size) {}
170
begin()171 T* begin() { return begin_; }
end()172 T* end() { return end_; }
173
174 private:
175 T* begin_;
176 T* end_;
177 };
array_range(T * begin,size_t length)178 template <typename T> ArrayWrapper<T> array_range(T* begin, size_t length) {
179 return ArrayWrapper<T>(begin, length);
180 }
181
182 /**
183 * Convert any unsigned integer from network to host order. We implement this here rather than
184 * using the functions from arpa/inet.h because the TEE doesn't have inet.h. This isn't the most
185 * efficient implementation, but the compiler should unroll the loop and tighten it up.
186 */
ntoh(T t)187 template <typename T> T ntoh(T t) {
188 const uint8_t* byte_ptr = reinterpret_cast<const uint8_t*>(&t);
189 T retval = 0;
190 for (size_t i = 0; i < sizeof(t); ++i) {
191 retval <<= 8;
192 retval |= byte_ptr[i];
193 }
194 return retval;
195 }
196
197 /**
198 * Convert any unsigned integer from host to network order. We implement this here rather than
199 * using the functions from arpa/inet.h because the TEE doesn't have inet.h. This isn't the most
200 * efficient implementation, but the compiler should unroll the loop and tighten it up.
201 */
hton(T t)202 template <typename T> T hton(T t) {
203 T retval;
204 uint8_t* byte_ptr = reinterpret_cast<uint8_t*>(&retval);
205 for (size_t i = sizeof(t); i > 0; --i) {
206 byte_ptr[i - 1] = t & 0xFF;
207 t >>= 8;
208 }
209 return retval;
210 }
211
212 /**
213 * KeymasterKeyBlob is a very simple extension of the C struct keymaster_key_blob_t. It manages its
214 * own memory, which makes avoiding memory leaks much easier.
215 */
216 struct KeymasterKeyBlob : public keymaster_key_blob_t {
KeymasterKeyBlobKeymasterKeyBlob217 KeymasterKeyBlob() {
218 key_material = nullptr;
219 key_material_size = 0;
220 }
221
KeymasterKeyBlobKeymasterKeyBlob222 KeymasterKeyBlob(const uint8_t* data, size_t size) {
223 key_material_size = 0;
224 key_material = dup_buffer(data, size);
225 if (key_material)
226 key_material_size = size;
227 }
228
KeymasterKeyBlobKeymasterKeyBlob229 explicit KeymasterKeyBlob(size_t size) {
230 key_material_size = 0;
231 key_material = new (std::nothrow) uint8_t[size];
232 if (key_material)
233 key_material_size = size;
234 }
235
KeymasterKeyBlobKeymasterKeyBlob236 explicit KeymasterKeyBlob(const keymaster_key_blob_t& blob) {
237 key_material_size = 0;
238 key_material = dup_buffer(blob.key_material, blob.key_material_size);
239 if (key_material)
240 key_material_size = blob.key_material_size;
241 }
242
KeymasterKeyBlobKeymasterKeyBlob243 KeymasterKeyBlob(const KeymasterKeyBlob& blob) {
244 key_material_size = 0;
245 key_material = dup_buffer(blob.key_material, blob.key_material_size);
246 if (key_material)
247 key_material_size = blob.key_material_size;
248 }
249
250 void operator=(const KeymasterKeyBlob& blob) {
251 Clear();
252 key_material = dup_buffer(blob.key_material, blob.key_material_size);
253 key_material_size = blob.key_material_size;
254 }
255
~KeymasterKeyBlobKeymasterKeyBlob256 ~KeymasterKeyBlob() { Clear(); }
257
beginKeymasterKeyBlob258 const uint8_t* begin() const { return key_material; }
endKeymasterKeyBlob259 const uint8_t* end() const { return key_material + key_material_size; }
260
ClearKeymasterKeyBlob261 void Clear() {
262 memset_s(const_cast<uint8_t*>(key_material), 0, key_material_size);
263 delete[] key_material;
264 key_material = nullptr;
265 key_material_size = 0;
266 }
267
ResetKeymasterKeyBlob268 const uint8_t* Reset(size_t new_size) {
269 Clear();
270 key_material = new (std::nothrow) uint8_t[new_size];
271 if (key_material)
272 key_material_size = new_size;
273 return key_material;
274 }
275
276 // The key_material in keymaster_key_blob_t is const, which is the right thing in most
277 // circumstances, but occasionally we do need to write into it. This method exposes a non-const
278 // version of the pointer. Use sparingly.
writable_dataKeymasterKeyBlob279 uint8_t* writable_data() { return const_cast<uint8_t*>(key_material); }
280
releaseKeymasterKeyBlob281 keymaster_key_blob_t release() {
282 keymaster_key_blob_t tmp = {key_material, key_material_size};
283 key_material = nullptr;
284 key_material_size = 0;
285 return tmp;
286 }
287
SerializedSizeKeymasterKeyBlob288 size_t SerializedSize() const { return sizeof(uint32_t) + key_material_size; }
SerializeKeymasterKeyBlob289 uint8_t* Serialize(uint8_t* buf, const uint8_t* end) const {
290 return append_size_and_data_to_buf(buf, end, key_material, key_material_size);
291 }
292
DeserializeKeymasterKeyBlob293 bool Deserialize(const uint8_t** buf_ptr, const uint8_t* end) {
294 Clear();
295 UniquePtr<uint8_t[]> tmp;
296 if (!copy_size_and_data_from_buf(buf_ptr, end, &key_material_size, &tmp)) {
297 key_material = nullptr;
298 key_material_size = 0;
299 return false;
300 }
301 key_material = tmp.release();
302 return true;
303 }
304 };
305
306 struct Characteristics_Delete {
operatorCharacteristics_Delete307 void operator()(keymaster_key_characteristics_t* p) {
308 keymaster_free_characteristics(p);
309 free(p);
310 }
311 };
312
313 struct Malloc_Delete {
operatorMalloc_Delete314 void operator()(void* p) { free(p); }
315 };
316
317 struct CertificateChainDelete {
operatorCertificateChainDelete318 void operator()(keymaster_cert_chain_t* p) {
319 if (!p)
320 return;
321 for (size_t i = 0; i < p->entry_count; ++i)
322 delete[] p->entries[i].data;
323 delete[] p->entries;
324 delete p;
325 }
326 };
327
328 keymaster_error_t EcKeySizeToCurve(uint32_t key_size_bits, keymaster_ec_curve_t* curve);
329 keymaster_error_t EcCurveToKeySize(keymaster_ec_curve_t curve, uint32_t* key_size_bits);
330
331 } // namespace keymaster
332
333 #endif // SYSTEM_KEYMASTER_ANDROID_KEYMASTER_UTILS_H_
334