1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines RangeConstraintManager, a class that tracks simple
11 // equality and inequality constraints on symbolic values of ProgramState.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SimpleConstraintManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
19 #include "llvm/ADT/FoldingSet.h"
20 #include "llvm/ADT/ImmutableSet.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23
24 using namespace clang;
25 using namespace ento;
26
27 /// A Range represents the closed range [from, to]. The caller must
28 /// guarantee that from <= to. Note that Range is immutable, so as not
29 /// to subvert RangeSet's immutability.
30 namespace {
31 class Range : public std::pair<const llvm::APSInt*,
32 const llvm::APSInt*> {
33 public:
Range(const llvm::APSInt & from,const llvm::APSInt & to)34 Range(const llvm::APSInt &from, const llvm::APSInt &to)
35 : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
36 assert(from <= to);
37 }
Includes(const llvm::APSInt & v) const38 bool Includes(const llvm::APSInt &v) const {
39 return *first <= v && v <= *second;
40 }
From() const41 const llvm::APSInt &From() const {
42 return *first;
43 }
To() const44 const llvm::APSInt &To() const {
45 return *second;
46 }
getConcreteValue() const47 const llvm::APSInt *getConcreteValue() const {
48 return &From() == &To() ? &From() : nullptr;
49 }
50
Profile(llvm::FoldingSetNodeID & ID) const51 void Profile(llvm::FoldingSetNodeID &ID) const {
52 ID.AddPointer(&From());
53 ID.AddPointer(&To());
54 }
55 };
56
57
58 class RangeTrait : public llvm::ImutContainerInfo<Range> {
59 public:
60 // When comparing if one Range is less than another, we should compare
61 // the actual APSInt values instead of their pointers. This keeps the order
62 // consistent (instead of comparing by pointer values) and can potentially
63 // be used to speed up some of the operations in RangeSet.
isLess(key_type_ref lhs,key_type_ref rhs)64 static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
65 return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
66 *lhs.second < *rhs.second);
67 }
68 };
69
70 /// RangeSet contains a set of ranges. If the set is empty, then
71 /// there the value of a symbol is overly constrained and there are no
72 /// possible values for that symbol.
73 class RangeSet {
74 typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
75 PrimRangeSet ranges; // no need to make const, since it is an
76 // ImmutableSet - this allows default operator=
77 // to work.
78 public:
79 typedef PrimRangeSet::Factory Factory;
80 typedef PrimRangeSet::iterator iterator;
81
RangeSet(PrimRangeSet RS)82 RangeSet(PrimRangeSet RS) : ranges(RS) {}
83
84 /// Create a new set with all ranges of this set and RS.
85 /// Possible intersections are not checked here.
addRange(Factory & F,const RangeSet & RS)86 RangeSet addRange(Factory &F, const RangeSet &RS) {
87 PrimRangeSet Ranges(RS.ranges);
88 for (const auto &range : ranges)
89 Ranges = F.add(Ranges, range);
90 return RangeSet(Ranges);
91 }
92
begin() const93 iterator begin() const { return ranges.begin(); }
end() const94 iterator end() const { return ranges.end(); }
95
isEmpty() const96 bool isEmpty() const { return ranges.isEmpty(); }
97
98 /// Construct a new RangeSet representing '{ [from, to] }'.
RangeSet(Factory & F,const llvm::APSInt & from,const llvm::APSInt & to)99 RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
100 : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
101
102 /// Profile - Generates a hash profile of this RangeSet for use
103 /// by FoldingSet.
Profile(llvm::FoldingSetNodeID & ID) const104 void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
105
106 /// getConcreteValue - If a symbol is contrained to equal a specific integer
107 /// constant then this method returns that value. Otherwise, it returns
108 /// NULL.
getConcreteValue() const109 const llvm::APSInt* getConcreteValue() const {
110 return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
111 }
112
113 private:
IntersectInRange(BasicValueFactory & BV,Factory & F,const llvm::APSInt & Lower,const llvm::APSInt & Upper,PrimRangeSet & newRanges,PrimRangeSet::iterator & i,PrimRangeSet::iterator & e) const114 void IntersectInRange(BasicValueFactory &BV, Factory &F,
115 const llvm::APSInt &Lower,
116 const llvm::APSInt &Upper,
117 PrimRangeSet &newRanges,
118 PrimRangeSet::iterator &i,
119 PrimRangeSet::iterator &e) const {
120 // There are six cases for each range R in the set:
121 // 1. R is entirely before the intersection range.
122 // 2. R is entirely after the intersection range.
123 // 3. R contains the entire intersection range.
124 // 4. R starts before the intersection range and ends in the middle.
125 // 5. R starts in the middle of the intersection range and ends after it.
126 // 6. R is entirely contained in the intersection range.
127 // These correspond to each of the conditions below.
128 for (/* i = begin(), e = end() */; i != e; ++i) {
129 if (i->To() < Lower) {
130 continue;
131 }
132 if (i->From() > Upper) {
133 break;
134 }
135
136 if (i->Includes(Lower)) {
137 if (i->Includes(Upper)) {
138 newRanges = F.add(newRanges, Range(BV.getValue(Lower),
139 BV.getValue(Upper)));
140 break;
141 } else
142 newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
143 } else {
144 if (i->Includes(Upper)) {
145 newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
146 break;
147 } else
148 newRanges = F.add(newRanges, *i);
149 }
150 }
151 }
152
getMinValue() const153 const llvm::APSInt &getMinValue() const {
154 assert(!isEmpty());
155 return ranges.begin()->From();
156 }
157
pin(llvm::APSInt & Lower,llvm::APSInt & Upper) const158 bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
159 // This function has nine cases, the cartesian product of range-testing
160 // both the upper and lower bounds against the symbol's type.
161 // Each case requires a different pinning operation.
162 // The function returns false if the described range is entirely outside
163 // the range of values for the associated symbol.
164 APSIntType Type(getMinValue());
165 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
166 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
167
168 switch (LowerTest) {
169 case APSIntType::RTR_Below:
170 switch (UpperTest) {
171 case APSIntType::RTR_Below:
172 // The entire range is outside the symbol's set of possible values.
173 // If this is a conventionally-ordered range, the state is infeasible.
174 if (Lower < Upper)
175 return false;
176
177 // However, if the range wraps around, it spans all possible values.
178 Lower = Type.getMinValue();
179 Upper = Type.getMaxValue();
180 break;
181 case APSIntType::RTR_Within:
182 // The range starts below what's possible but ends within it. Pin.
183 Lower = Type.getMinValue();
184 Type.apply(Upper);
185 break;
186 case APSIntType::RTR_Above:
187 // The range spans all possible values for the symbol. Pin.
188 Lower = Type.getMinValue();
189 Upper = Type.getMaxValue();
190 break;
191 }
192 break;
193 case APSIntType::RTR_Within:
194 switch (UpperTest) {
195 case APSIntType::RTR_Below:
196 // The range wraps around, but all lower values are not possible.
197 Type.apply(Lower);
198 Upper = Type.getMaxValue();
199 break;
200 case APSIntType::RTR_Within:
201 // The range may or may not wrap around, but both limits are valid.
202 Type.apply(Lower);
203 Type.apply(Upper);
204 break;
205 case APSIntType::RTR_Above:
206 // The range starts within what's possible but ends above it. Pin.
207 Type.apply(Lower);
208 Upper = Type.getMaxValue();
209 break;
210 }
211 break;
212 case APSIntType::RTR_Above:
213 switch (UpperTest) {
214 case APSIntType::RTR_Below:
215 // The range wraps but is outside the symbol's set of possible values.
216 return false;
217 case APSIntType::RTR_Within:
218 // The range starts above what's possible but ends within it (wrap).
219 Lower = Type.getMinValue();
220 Type.apply(Upper);
221 break;
222 case APSIntType::RTR_Above:
223 // The entire range is outside the symbol's set of possible values.
224 // If this is a conventionally-ordered range, the state is infeasible.
225 if (Lower < Upper)
226 return false;
227
228 // However, if the range wraps around, it spans all possible values.
229 Lower = Type.getMinValue();
230 Upper = Type.getMaxValue();
231 break;
232 }
233 break;
234 }
235
236 return true;
237 }
238
239 public:
240 // Returns a set containing the values in the receiving set, intersected with
241 // the closed range [Lower, Upper]. Unlike the Range type, this range uses
242 // modular arithmetic, corresponding to the common treatment of C integer
243 // overflow. Thus, if the Lower bound is greater than the Upper bound, the
244 // range is taken to wrap around. This is equivalent to taking the
245 // intersection with the two ranges [Min, Upper] and [Lower, Max],
246 // or, alternatively, /removing/ all integers between Upper and Lower.
Intersect(BasicValueFactory & BV,Factory & F,llvm::APSInt Lower,llvm::APSInt Upper) const247 RangeSet Intersect(BasicValueFactory &BV, Factory &F,
248 llvm::APSInt Lower, llvm::APSInt Upper) const {
249 if (!pin(Lower, Upper))
250 return F.getEmptySet();
251
252 PrimRangeSet newRanges = F.getEmptySet();
253
254 PrimRangeSet::iterator i = begin(), e = end();
255 if (Lower <= Upper)
256 IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
257 else {
258 // The order of the next two statements is important!
259 // IntersectInRange() does not reset the iteration state for i and e.
260 // Therefore, the lower range most be handled first.
261 IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
262 IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
263 }
264
265 return newRanges;
266 }
267
print(raw_ostream & os) const268 void print(raw_ostream &os) const {
269 bool isFirst = true;
270 os << "{ ";
271 for (iterator i = begin(), e = end(); i != e; ++i) {
272 if (isFirst)
273 isFirst = false;
274 else
275 os << ", ";
276
277 os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
278 << ']';
279 }
280 os << " }";
281 }
282
operator ==(const RangeSet & other) const283 bool operator==(const RangeSet &other) const {
284 return ranges == other.ranges;
285 }
286 };
287 } // end anonymous namespace
288
289 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
290 CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
291 RangeSet))
292
293 namespace {
294 class RangeConstraintManager : public SimpleConstraintManager{
295 RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
296 public:
RangeConstraintManager(SubEngine * subengine,SValBuilder & SVB)297 RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB)
298 : SimpleConstraintManager(subengine, SVB) {}
299
300 ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
301 const llvm::APSInt& Int,
302 const llvm::APSInt& Adjustment) override;
303
304 ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
305 const llvm::APSInt& Int,
306 const llvm::APSInt& Adjustment) override;
307
308 ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
309 const llvm::APSInt& Int,
310 const llvm::APSInt& Adjustment) override;
311
312 ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
313 const llvm::APSInt& Int,
314 const llvm::APSInt& Adjustment) override;
315
316 ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
317 const llvm::APSInt& Int,
318 const llvm::APSInt& Adjustment) override;
319
320 ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
321 const llvm::APSInt& Int,
322 const llvm::APSInt& Adjustment) override;
323
324 ProgramStateRef assumeSymbolWithinInclusiveRange(
325 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
326 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
327
328 ProgramStateRef assumeSymbolOutOfInclusiveRange(
329 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
330 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
331
332 const llvm::APSInt* getSymVal(ProgramStateRef St,
333 SymbolRef sym) const override;
334 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
335
336 ProgramStateRef removeDeadBindings(ProgramStateRef St,
337 SymbolReaper& SymReaper) override;
338
339 void print(ProgramStateRef St, raw_ostream &Out,
340 const char* nl, const char *sep) override;
341
342 private:
343 RangeSet::Factory F;
344 RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
345 const llvm::APSInt &Int,
346 const llvm::APSInt &Adjustment);
347 RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
348 const llvm::APSInt &Int,
349 const llvm::APSInt &Adjustment);
350 RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
351 const llvm::APSInt &Int,
352 const llvm::APSInt &Adjustment);
353 RangeSet getSymLERange(const RangeSet &RS, const llvm::APSInt &Int,
354 const llvm::APSInt &Adjustment);
355 RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
356 const llvm::APSInt &Int,
357 const llvm::APSInt &Adjustment);
358 };
359
360 } // end anonymous namespace
361
362 std::unique_ptr<ConstraintManager>
CreateRangeConstraintManager(ProgramStateManager & StMgr,SubEngine * Eng)363 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
364 return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
365 }
366
getSymVal(ProgramStateRef St,SymbolRef sym) const367 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
368 SymbolRef sym) const {
369 const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
370 return T ? T->getConcreteValue() : nullptr;
371 }
372
checkNull(ProgramStateRef State,SymbolRef Sym)373 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
374 SymbolRef Sym) {
375 const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
376
377 // If we don't have any information about this symbol, it's underconstrained.
378 if (!Ranges)
379 return ConditionTruthVal();
380
381 // If we have a concrete value, see if it's zero.
382 if (const llvm::APSInt *Value = Ranges->getConcreteValue())
383 return *Value == 0;
384
385 BasicValueFactory &BV = getBasicVals();
386 APSIntType IntType = BV.getAPSIntType(Sym->getType());
387 llvm::APSInt Zero = IntType.getZeroValue();
388
389 // Check if zero is in the set of possible values.
390 if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
391 return false;
392
393 // Zero is a possible value, but it is not the /only/ possible value.
394 return ConditionTruthVal();
395 }
396
397 /// Scan all symbols referenced by the constraints. If the symbol is not alive
398 /// as marked in LSymbols, mark it as dead in DSymbols.
399 ProgramStateRef
removeDeadBindings(ProgramStateRef state,SymbolReaper & SymReaper)400 RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
401 SymbolReaper& SymReaper) {
402
403 ConstraintRangeTy CR = state->get<ConstraintRange>();
404 ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
405
406 for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
407 SymbolRef sym = I.getKey();
408 if (SymReaper.maybeDead(sym))
409 CR = CRFactory.remove(CR, sym);
410 }
411
412 return state->set<ConstraintRange>(CR);
413 }
414
415 RangeSet
GetRange(ProgramStateRef state,SymbolRef sym)416 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
417 if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
418 return *V;
419
420 // Lazily generate a new RangeSet representing all possible values for the
421 // given symbol type.
422 BasicValueFactory &BV = getBasicVals();
423 QualType T = sym->getType();
424
425 RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
426
427 // Special case: references are known to be non-zero.
428 if (T->isReferenceType()) {
429 APSIntType IntType = BV.getAPSIntType(T);
430 Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
431 --IntType.getZeroValue());
432 }
433
434 return Result;
435 }
436
437 //===------------------------------------------------------------------------===
438 // assumeSymX methods: public interface for RangeConstraintManager.
439 //===------------------------------------------------------------------------===/
440
441 // The syntax for ranges below is mathematical, using [x, y] for closed ranges
442 // and (x, y) for open ranges. These ranges are modular, corresponding with
443 // a common treatment of C integer overflow. This means that these methods
444 // do not have to worry about overflow; RangeSet::Intersect can handle such a
445 // "wraparound" range.
446 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
447 // UINT_MAX, 0, 1, and 2.
448
449 ProgramStateRef
assumeSymNE(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)450 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
451 const llvm::APSInt &Int,
452 const llvm::APSInt &Adjustment) {
453 // Before we do any real work, see if the value can even show up.
454 APSIntType AdjustmentType(Adjustment);
455 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
456 return St;
457
458 llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
459 llvm::APSInt Upper = Lower;
460 --Lower;
461 ++Upper;
462
463 // [Int-Adjustment+1, Int-Adjustment-1]
464 // Notice that the lower bound is greater than the upper bound.
465 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
466 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
467 }
468
469 ProgramStateRef
assumeSymEQ(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)470 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
471 const llvm::APSInt &Int,
472 const llvm::APSInt &Adjustment) {
473 // Before we do any real work, see if the value can even show up.
474 APSIntType AdjustmentType(Adjustment);
475 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
476 return nullptr;
477
478 // [Int-Adjustment, Int-Adjustment]
479 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
480 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
481 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
482 }
483
getSymLTRange(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)484 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
485 SymbolRef Sym,
486 const llvm::APSInt &Int,
487 const llvm::APSInt &Adjustment) {
488 // Before we do any real work, see if the value can even show up.
489 APSIntType AdjustmentType(Adjustment);
490 switch (AdjustmentType.testInRange(Int, true)) {
491 case APSIntType::RTR_Below:
492 return F.getEmptySet();
493 case APSIntType::RTR_Within:
494 break;
495 case APSIntType::RTR_Above:
496 return GetRange(St, Sym);
497 }
498
499 // Special case for Int == Min. This is always false.
500 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
501 llvm::APSInt Min = AdjustmentType.getMinValue();
502 if (ComparisonVal == Min)
503 return F.getEmptySet();
504
505 llvm::APSInt Lower = Min - Adjustment;
506 llvm::APSInt Upper = ComparisonVal - Adjustment;
507 --Upper;
508
509 return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
510 }
511
512 ProgramStateRef
assumeSymLT(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)513 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
514 const llvm::APSInt &Int,
515 const llvm::APSInt &Adjustment) {
516 RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
517 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
518 }
519
520 RangeSet
getSymGTRange(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)521 RangeConstraintManager::getSymGTRange(ProgramStateRef St, SymbolRef Sym,
522 const llvm::APSInt &Int,
523 const llvm::APSInt &Adjustment) {
524 // Before we do any real work, see if the value can even show up.
525 APSIntType AdjustmentType(Adjustment);
526 switch (AdjustmentType.testInRange(Int, true)) {
527 case APSIntType::RTR_Below:
528 return GetRange(St, Sym);
529 case APSIntType::RTR_Within:
530 break;
531 case APSIntType::RTR_Above:
532 return F.getEmptySet();
533 }
534
535 // Special case for Int == Max. This is always false.
536 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
537 llvm::APSInt Max = AdjustmentType.getMaxValue();
538 if (ComparisonVal == Max)
539 return F.getEmptySet();
540
541 llvm::APSInt Lower = ComparisonVal - Adjustment;
542 llvm::APSInt Upper = Max - Adjustment;
543 ++Lower;
544
545 return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
546 }
547
548 ProgramStateRef
assumeSymGT(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)549 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
550 const llvm::APSInt &Int,
551 const llvm::APSInt &Adjustment) {
552 RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
553 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
554 }
555
556 RangeSet
getSymGERange(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)557 RangeConstraintManager::getSymGERange(ProgramStateRef St, SymbolRef Sym,
558 const llvm::APSInt &Int,
559 const llvm::APSInt &Adjustment) {
560 // Before we do any real work, see if the value can even show up.
561 APSIntType AdjustmentType(Adjustment);
562 switch (AdjustmentType.testInRange(Int, true)) {
563 case APSIntType::RTR_Below:
564 return GetRange(St, Sym);
565 case APSIntType::RTR_Within:
566 break;
567 case APSIntType::RTR_Above:
568 return F.getEmptySet();
569 }
570
571 // Special case for Int == Min. This is always feasible.
572 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
573 llvm::APSInt Min = AdjustmentType.getMinValue();
574 if (ComparisonVal == Min)
575 return GetRange(St, Sym);
576
577 llvm::APSInt Max = AdjustmentType.getMaxValue();
578 llvm::APSInt Lower = ComparisonVal - Adjustment;
579 llvm::APSInt Upper = Max - Adjustment;
580
581 return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
582 }
583
584 ProgramStateRef
assumeSymGE(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)585 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
586 const llvm::APSInt &Int,
587 const llvm::APSInt &Adjustment) {
588 RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
589 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
590 }
591
592 RangeSet
getSymLERange(const RangeSet & RS,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)593 RangeConstraintManager::getSymLERange(const RangeSet &RS,
594 const llvm::APSInt &Int,
595 const llvm::APSInt &Adjustment) {
596 // Before we do any real work, see if the value can even show up.
597 APSIntType AdjustmentType(Adjustment);
598 switch (AdjustmentType.testInRange(Int, true)) {
599 case APSIntType::RTR_Below:
600 return F.getEmptySet();
601 case APSIntType::RTR_Within:
602 break;
603 case APSIntType::RTR_Above:
604 return RS;
605 }
606
607 // Special case for Int == Max. This is always feasible.
608 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
609 llvm::APSInt Max = AdjustmentType.getMaxValue();
610 if (ComparisonVal == Max)
611 return RS;
612
613 llvm::APSInt Min = AdjustmentType.getMinValue();
614 llvm::APSInt Lower = Min - Adjustment;
615 llvm::APSInt Upper = ComparisonVal - Adjustment;
616
617 return RS.Intersect(getBasicVals(), F, Lower, Upper);
618 }
619
620 RangeSet
getSymLERange(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)621 RangeConstraintManager::getSymLERange(ProgramStateRef St, SymbolRef Sym,
622 const llvm::APSInt &Int,
623 const llvm::APSInt &Adjustment) {
624 // Before we do any real work, see if the value can even show up.
625 APSIntType AdjustmentType(Adjustment);
626 switch (AdjustmentType.testInRange(Int, true)) {
627 case APSIntType::RTR_Below:
628 return F.getEmptySet();
629 case APSIntType::RTR_Within:
630 break;
631 case APSIntType::RTR_Above:
632 return GetRange(St, Sym);
633 }
634
635 // Special case for Int == Max. This is always feasible.
636 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
637 llvm::APSInt Max = AdjustmentType.getMaxValue();
638 if (ComparisonVal == Max)
639 return GetRange(St, Sym);
640
641 llvm::APSInt Min = AdjustmentType.getMinValue();
642 llvm::APSInt Lower = Min - Adjustment;
643 llvm::APSInt Upper = ComparisonVal - Adjustment;
644
645 return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
646 }
647
648 ProgramStateRef
assumeSymLE(ProgramStateRef St,SymbolRef Sym,const llvm::APSInt & Int,const llvm::APSInt & Adjustment)649 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
650 const llvm::APSInt &Int,
651 const llvm::APSInt &Adjustment) {
652 RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
653 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
654 }
655
656 ProgramStateRef
assumeSymbolWithinInclusiveRange(ProgramStateRef State,SymbolRef Sym,const llvm::APSInt & From,const llvm::APSInt & To,const llvm::APSInt & Adjustment)657 RangeConstraintManager::assumeSymbolWithinInclusiveRange(
658 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
659 const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
660 RangeSet New = getSymGERange(State, Sym, From, Adjustment);
661 if (New.isEmpty())
662 return nullptr;
663 New = getSymLERange(New, To, Adjustment);
664 return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
665 }
666
667 ProgramStateRef
assumeSymbolOutOfInclusiveRange(ProgramStateRef State,SymbolRef Sym,const llvm::APSInt & From,const llvm::APSInt & To,const llvm::APSInt & Adjustment)668 RangeConstraintManager::assumeSymbolOutOfInclusiveRange(
669 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
670 const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
671 RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
672 RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
673 RangeSet New(RangeLT.addRange(F, RangeGT));
674 return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
675 }
676
677 //===------------------------------------------------------------------------===
678 // Pretty-printing.
679 //===------------------------------------------------------------------------===/
680
print(ProgramStateRef St,raw_ostream & Out,const char * nl,const char * sep)681 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
682 const char* nl, const char *sep) {
683
684 ConstraintRangeTy Ranges = St->get<ConstraintRange>();
685
686 if (Ranges.isEmpty()) {
687 Out << nl << sep << "Ranges are empty." << nl;
688 return;
689 }
690
691 Out << nl << sep << "Ranges of symbol values:";
692 for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
693 Out << nl << ' ' << I.getKey() << " : ";
694 I.getData().print(Out);
695 }
696 Out << nl;
697 }
698