1 
2 /*
3  * Copyright 2012 Google Inc.
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 #ifndef SkPathRef_DEFINED
10 #define SkPathRef_DEFINED
11 
12 #include "../private/SkTDArray.h"
13 #include "SkMatrix.h"
14 #include "SkPoint.h"
15 #include "SkRRect.h"
16 #include "SkRect.h"
17 #include "SkRefCnt.h"
18 #include <stddef.h> // ptrdiff_t
19 
20 class SkRBuffer;
21 class SkWBuffer;
22 
23 /**
24  * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
25  * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
26  * SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
27  * copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's
28  * constructor a SkAutoTUnref, which may be updated to point to a new SkPathRef after the editor's
29  * constructor returns.
30  *
31  * The points and verbs are stored in a single allocation. The points are at the begining of the
32  * allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
33  * and verbs both grow into the middle of the allocation until the meet. To access verb i in the
34  * verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
35  * logical verb or the last verb in memory).
36  */
37 
38 class SK_API SkPathRef : public ::SkRefCnt {
39 public:
40     class Editor {
41     public:
42         Editor(SkAutoTUnref<SkPathRef>* pathRef,
43                int incReserveVerbs = 0,
44                int incReservePoints = 0);
45 
~Editor()46         ~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) }
47 
48         /**
49          * Returns the array of points.
50          */
points()51         SkPoint* points() { return fPathRef->getPoints(); }
points()52         const SkPoint* points() const { return fPathRef->points(); }
53 
54         /**
55          * Gets the ith point. Shortcut for this->points() + i
56          */
atPoint(int i)57         SkPoint* atPoint(int i) {
58             SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
59             return this->points() + i;
60         };
atPoint(int i)61         const SkPoint* atPoint(int i) const {
62             SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
63             return this->points() + i;
64         };
65 
66         /**
67          * Adds the verb and allocates space for the number of points indicated by the verb. The
68          * return value is a pointer to where the points for the verb should be written.
69          * 'weight' is only used if 'verb' is kConic_Verb
70          */
71         SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) {
72             SkDEBUGCODE(fPathRef->validate();)
73             return fPathRef->growForVerb(verb, weight);
74         }
75 
76         /**
77          * Allocates space for multiple instances of a particular verb and the
78          * requisite points & weights.
79          * The return pointer points at the first new point (indexed normally [<i>]).
80          * If 'verb' is kConic_Verb, 'weights' will return a pointer to the
81          * space for the conic weights (indexed normally).
82          */
83         SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb,
84                                      int numVbs,
85                                      SkScalar** weights = NULL) {
86             return fPathRef->growForRepeatedVerb(verb, numVbs, weights);
87         }
88 
89         /**
90          * Resets the path ref to a new verb and point count. The new verbs and points are
91          * uninitialized.
92          */
resetToSize(int newVerbCnt,int newPointCnt,int newConicCount)93         void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) {
94             fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount);
95         }
96 
97         /**
98          * Gets the path ref that is wrapped in the Editor.
99          */
pathRef()100         SkPathRef* pathRef() { return fPathRef; }
101 
setIsOval(bool isOval)102         void setIsOval(bool isOval) { fPathRef->setIsOval(isOval); }
103 
setIsRRect(bool isRRect)104         void setIsRRect(bool isRRect) { fPathRef->setIsRRect(isRRect); }
105 
setBounds(const SkRect & rect)106         void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); }
107 
108     private:
109         SkPathRef* fPathRef;
110     };
111 
112     class SK_API Iter {
113     public:
114         Iter();
115         Iter(const SkPathRef&);
116 
117         void setPathRef(const SkPathRef&);
118 
119         /** Return the next verb in this iteration of the path. When all
120             segments have been visited, return kDone_Verb.
121 
122             @param  pts The points representing the current verb and/or segment
123                         This must not be NULL.
124             @return The verb for the current segment
125         */
126         uint8_t next(SkPoint pts[4]);
127         uint8_t peek() const;
128 
conicWeight()129         SkScalar conicWeight() const { return *fConicWeights; }
130 
131     private:
132         const SkPoint*  fPts;
133         const uint8_t*  fVerbs;
134         const uint8_t*  fVerbStop;
135         const SkScalar* fConicWeights;
136     };
137 
138 public:
139     /**
140      * Gets a path ref with no verbs or points.
141      */
142     static SkPathRef* CreateEmpty();
143 
144     /**
145      *  Returns true if all of the points in this path are finite, meaning there
146      *  are no infinities and no NaNs.
147      */
isFinite()148     bool isFinite() const {
149         if (fBoundsIsDirty) {
150             this->computeBounds();
151         }
152         return SkToBool(fIsFinite);
153     }
154 
155     /**
156      *  Returns a mask, where each bit corresponding to a SegmentMask is
157      *  set if the path contains 1 or more segments of that type.
158      *  Returns 0 for an empty path (no segments).
159      */
getSegmentMasks()160     uint32_t getSegmentMasks() const { return fSegmentMask; }
161 
162     /** Returns true if the path is an oval.
163      *
164      * @param rect      returns the bounding rect of this oval. It's a circle
165      *                  if the height and width are the same.
166      *
167      * @return true if this path is an oval.
168      *              Tracking whether a path is an oval is considered an
169      *              optimization for performance and so some paths that are in
170      *              fact ovals can report false.
171      */
isOval(SkRect * rect)172     bool isOval(SkRect* rect) const {
173         if (fIsOval && rect) {
174             *rect = this->getBounds();
175         }
176 
177         return SkToBool(fIsOval);
178     }
179 
isRRect(SkRRect * rrect)180     bool isRRect(SkRRect* rrect) const {
181         if (fIsRRect && rrect) {
182             *rrect = this->getRRect();
183         }
184         return SkToBool(fIsRRect);
185     }
186 
187 
hasComputedBounds()188     bool hasComputedBounds() const {
189         return !fBoundsIsDirty;
190     }
191 
192     /** Returns the bounds of the path's points. If the path contains 0 or 1
193         points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
194         Note: this bounds may be larger than the actual shape, since curves
195         do not extend as far as their control points.
196     */
getBounds()197     const SkRect& getBounds() const {
198         if (fBoundsIsDirty) {
199             this->computeBounds();
200         }
201         return fBounds;
202     }
203 
204     SkRRect getRRect() const;
205 
206     /**
207      * Transforms a path ref by a matrix, allocating a new one only if necessary.
208      */
209     static void CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst,
210                                       const SkPathRef& src,
211                                       const SkMatrix& matrix);
212 
213     static SkPathRef* CreateFromBuffer(SkRBuffer* buffer);
214 
215     /**
216      * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
217      * repopulated with approximately the same number of verbs and points. A new path ref is created
218      * only if necessary.
219      */
220     static void Rewind(SkAutoTUnref<SkPathRef>* pathRef);
221 
222     virtual ~SkPathRef();
countPoints()223     int countPoints() const { SkDEBUGCODE(this->validate();) return fPointCnt; }
countVerbs()224     int countVerbs() const { SkDEBUGCODE(this->validate();) return fVerbCnt; }
countWeights()225     int countWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.count(); }
226 
227     /**
228      * Returns a pointer one beyond the first logical verb (last verb in memory order).
229      */
verbs()230     const uint8_t* verbs() const { SkDEBUGCODE(this->validate();) return fVerbs; }
231 
232     /**
233      * Returns a const pointer to the first verb in memory (which is the last logical verb).
234      */
verbsMemBegin()235     const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; }
236 
237     /**
238      * Returns a const pointer to the first point.
239      */
points()240     const SkPoint* points() const { SkDEBUGCODE(this->validate();) return fPoints; }
241 
242     /**
243      * Shortcut for this->points() + this->countPoints()
244      */
pointsEnd()245     const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
246 
conicWeights()247     const SkScalar* conicWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.begin(); }
conicWeightsEnd()248     const SkScalar* conicWeightsEnd() const { SkDEBUGCODE(this->validate();) return fConicWeights.end(); }
249 
250     /**
251      * Convenience methods for getting to a verb or point by index.
252      */
atVerb(int index)253     uint8_t atVerb(int index) const {
254         SkASSERT((unsigned) index < (unsigned) fVerbCnt);
255         return this->verbs()[~index];
256     }
atPoint(int index)257     const SkPoint& atPoint(int index) const {
258         SkASSERT((unsigned) index < (unsigned) fPointCnt);
259         return this->points()[index];
260     }
261 
262     bool operator== (const SkPathRef& ref) const;
263 
264     /**
265      * Writes the path points and verbs to a buffer.
266      */
267     void writeToBuffer(SkWBuffer* buffer) const;
268 
269     /**
270      * Gets the number of bytes that would be written in writeBuffer()
271      */
272     uint32_t writeSize() const;
273 
274     void interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const;
275 
276     /**
277      * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
278      * same ID then they have the same verbs and points. However, two path refs may have the same
279      * contents but different genIDs.
280      */
281     uint32_t genID() const;
282 
283     struct GenIDChangeListener {
~GenIDChangeListenerGenIDChangeListener284         virtual ~GenIDChangeListener() {}
285         virtual void onChange() = 0;
286     };
287 
288     void addGenIDChangeListener(GenIDChangeListener* listener);
289 
290     SkDEBUGCODE(void validate() const;)
291 
292 private:
293     enum SerializationOffsets {
294         kIsRRect_SerializationShift = 26,   // requires 1 bit
295         kIsFinite_SerializationShift = 25,  // requires 1 bit
296         kIsOval_SerializationShift = 24,    // requires 1 bit
297         kSegmentMask_SerializationShift = 0 // requires 4 bits
298     };
299 
SkPathRef()300     SkPathRef() {
301         fBoundsIsDirty = true;    // this also invalidates fIsFinite
302         fPointCnt = 0;
303         fVerbCnt = 0;
304         fVerbs = NULL;
305         fPoints = NULL;
306         fFreeSpace = 0;
307         fGenerationID = kEmptyGenID;
308         fSegmentMask = 0;
309         fIsOval = false;
310         fIsRRect = false;
311         SkDEBUGCODE(fEditorsAttached = 0;)
312         SkDEBUGCODE(this->validate();)
313     }
314 
315     void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints);
316 
317     // Return true if the computed bounds are finite.
ComputePtBounds(SkRect * bounds,const SkPathRef & ref)318     static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
319         return bounds->setBoundsCheck(ref.points(), ref.countPoints());
320     }
321 
322     // called, if dirty, by getBounds()
computeBounds()323     void computeBounds() const {
324         SkDEBUGCODE(this->validate();)
325         // TODO(mtklein): remove fBoundsIsDirty and fIsFinite,
326         // using an inverted rect instead of fBoundsIsDirty and always recalculating fIsFinite.
327         SkASSERT(fBoundsIsDirty);
328 
329         fIsFinite = ComputePtBounds(&fBounds, *this);
330         fBoundsIsDirty = false;
331     }
332 
setBounds(const SkRect & rect)333     void setBounds(const SkRect& rect) {
334         SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
335         fBounds = rect;
336         fBoundsIsDirty = false;
337         fIsFinite = fBounds.isFinite();
338     }
339 
340     /** Makes additional room but does not change the counts or change the genID */
incReserve(int additionalVerbs,int additionalPoints)341     void incReserve(int additionalVerbs, int additionalPoints) {
342         SkDEBUGCODE(this->validate();)
343         size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint);
344         this->makeSpace(space);
345         SkDEBUGCODE(this->validate();)
346     }
347 
348     /** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
349      *  allocates space for reserveVerb additional verbs and reservePoints additional points.*/
350     void resetToSize(int verbCount, int pointCount, int conicCount,
351                      int reserveVerbs = 0, int reservePoints = 0) {
352         SkDEBUGCODE(this->validate();)
353         fBoundsIsDirty = true;      // this also invalidates fIsFinite
354         fGenerationID = 0;
355 
356         fSegmentMask = 0;
357         fIsOval = false;
358         fIsRRect = false;
359 
360         size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
361         size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints;
362         size_t minSize = newSize + newReserve;
363 
364         ptrdiff_t sizeDelta = this->currSize() - minSize;
365 
366         if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) {
367             sk_free(fPoints);
368             fPoints = NULL;
369             fVerbs = NULL;
370             fFreeSpace = 0;
371             fVerbCnt = 0;
372             fPointCnt = 0;
373             this->makeSpace(minSize);
374             fVerbCnt = verbCount;
375             fPointCnt = pointCount;
376             fFreeSpace -= newSize;
377         } else {
378             fPointCnt = pointCount;
379             fVerbCnt = verbCount;
380             fFreeSpace = this->currSize() - minSize;
381         }
382         fConicWeights.setCount(conicCount);
383         SkDEBUGCODE(this->validate();)
384     }
385 
386     /**
387      * Increases the verb count by numVbs and point count by the required amount.
388      * The new points are uninitialized. All the new verbs are set to the specified
389      * verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the
390      * uninitialized conic weights.
391      */
392     SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights);
393 
394     /**
395      * Increases the verb count 1, records the new verb, and creates room for the requisite number
396      * of additional points. A pointer to the first point is returned. Any new points are
397      * uninitialized.
398      */
399     SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight);
400 
401     /**
402      * Ensures that the free space available in the path ref is >= size. The verb and point counts
403      * are not changed.
404      */
makeSpace(size_t size)405     void makeSpace(size_t size) {
406         SkDEBUGCODE(this->validate();)
407         ptrdiff_t growSize = size - fFreeSpace;
408         if (growSize <= 0) {
409             return;
410         }
411         size_t oldSize = this->currSize();
412         // round to next multiple of 8 bytes
413         growSize = (growSize + 7) & ~static_cast<size_t>(7);
414         // we always at least double the allocation
415         if (static_cast<size_t>(growSize) < oldSize) {
416             growSize = oldSize;
417         }
418         if (growSize < kMinSize) {
419             growSize = kMinSize;
420         }
421         size_t newSize = oldSize + growSize;
422         // Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO:
423         // encapsulate this.
424         fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize));
425         size_t oldVerbSize = fVerbCnt * sizeof(uint8_t);
426         void* newVerbsDst = reinterpret_cast<void*>(
427                                 reinterpret_cast<intptr_t>(fPoints) + newSize - oldVerbSize);
428         void* oldVerbsSrc = reinterpret_cast<void*>(
429                                 reinterpret_cast<intptr_t>(fPoints) + oldSize - oldVerbSize);
430         memmove(newVerbsDst, oldVerbsSrc, oldVerbSize);
431         fVerbs = reinterpret_cast<uint8_t*>(reinterpret_cast<intptr_t>(fPoints) + newSize);
432         fFreeSpace += growSize;
433         SkDEBUGCODE(this->validate();)
434     }
435 
436     /**
437      * Private, non-const-ptr version of the public function verbsMemBegin().
438      */
verbsMemWritable()439     uint8_t* verbsMemWritable() {
440         SkDEBUGCODE(this->validate();)
441         return fVerbs - fVerbCnt;
442     }
443 
444     /**
445      * Gets the total amount of space allocated for verbs, points, and reserve.
446      */
currSize()447     size_t currSize() const {
448         return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints);
449     }
450 
451     /**
452      * Called the first time someone calls CreateEmpty to actually create the singleton.
453      */
454     friend SkPathRef* sk_create_empty_pathref();
455 
setIsOval(bool isOval)456     void setIsOval(bool isOval) { fIsOval = isOval; }
457 
setIsRRect(bool isRRect)458     void setIsRRect(bool isRRect) { fIsRRect = isRRect; }
459 
460     // called only by the editor. Note that this is not a const function.
getPoints()461     SkPoint* getPoints() {
462         SkDEBUGCODE(this->validate();)
463         fIsOval = false;
464         fIsRRect = false;
465         return fPoints;
466     }
467 
getPoints()468     const SkPoint* getPoints() const {
469         SkDEBUGCODE(this->validate();)
470         return fPoints;
471     }
472 
473     void callGenIDChangeListeners();
474 
475     enum {
476         kMinSize = 256,
477     };
478 
479     mutable SkRect   fBounds;
480 
481     SkPoint*            fPoints; // points to begining of the allocation
482     uint8_t*            fVerbs; // points just past the end of the allocation (verbs grow backwards)
483     int                 fVerbCnt;
484     int                 fPointCnt;
485     size_t              fFreeSpace; // redundant but saves computation
486     SkTDArray<SkScalar> fConicWeights;
487 
488     enum {
489         kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
490     };
491     mutable uint32_t    fGenerationID;
492     SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time.
493 
494     SkTDArray<GenIDChangeListener*> fGenIDChangeListeners;  // pointers are owned
495 
496     mutable uint8_t  fBoundsIsDirty;
497     mutable SkBool8  fIsFinite;    // only meaningful if bounds are valid
498 
499     SkBool8  fIsOval;
500     SkBool8  fIsRRect;
501     uint8_t  fSegmentMask;
502 
503     friend class PathRefTest_Private;
504     friend class ForceIsRRect_Private; // unit test isRRect
505     typedef SkRefCnt INHERITED;
506 };
507 
508 #endif
509