1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Third party copyrights are property of their respective owners. 16 // 17 // Redistribution and use in source and binary forms, with or without modification, 18 // are permitted provided that the following conditions are met: 19 // 20 // * Redistribution's of source code must retain the above copyright notice, 21 // this list of conditions and the following disclaimer. 22 // 23 // * Redistribution's in binary form must reproduce the above copyright notice, 24 // this list of conditions and the following disclaimer in the documentation 25 // and/or other materials provided with the distribution. 26 // 27 // * The name of the copyright holders may not be used to endorse or promote products 28 // derived from this software without specific prior written permission. 29 // 30 // This software is provided by the copyright holders and contributors "as is" and 31 // any express or implied warranties, including, but not limited to, the implied 32 // warranties of merchantability and fitness for a particular purpose are disclaimed. 33 // In no event shall the Intel Corporation or contributors be liable for any direct, 34 // indirect, incidental, special, exemplary, or consequential damages 35 // (including, but not limited to, procurement of substitute goods or services; 36 // loss of use, data, or profits; or business interruption) however caused 37 // and on any theory of liability, whether in contract, strict liability, 38 // or tort (including negligence or otherwise) arising in any way out of 39 // the use of this software, even if advised of the possibility of such damage. 40 // 41 //M*/ 42 43 #include "opencv2/opencv_modules.hpp" 44 45 #if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) && defined(HAVE_OPENCV_CUDAFILTERS) 46 47 #include "opencv2/core/cuda/common.hpp" 48 #include "opencv2/core/cuda/transform.hpp" 49 #include "opencv2/core/cuda/vec_traits.hpp" 50 #include "opencv2/core/cuda/vec_math.hpp" 51 52 using namespace cv::cuda; 53 using namespace cv::cuda::device; 54 55 namespace btv_l1_cudev 56 { 57 void buildMotionMaps(PtrStepSzf forwardMotionX, PtrStepSzf forwardMotionY, 58 PtrStepSzf backwardMotionX, PtrStepSzf bacwardMotionY, 59 PtrStepSzf forwardMapX, PtrStepSzf forwardMapY, 60 PtrStepSzf backwardMapX, PtrStepSzf backwardMapY); 61 62 template <int cn> 63 void upscale(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream); 64 65 void diffSign(PtrStepSzf src1, PtrStepSzf src2, PtrStepSzf dst, cudaStream_t stream); 66 67 void loadBtvWeights(const float* weights, size_t count); 68 template <int cn> void calcBtvRegularization(PtrStepSzb src, PtrStepSzb dst, int ksize); 69 } 70 71 namespace btv_l1_cudev 72 { buildMotionMapsKernel(const PtrStepSzf forwardMotionX,const PtrStepf forwardMotionY,PtrStepf backwardMotionX,PtrStepf backwardMotionY,PtrStepf forwardMapX,PtrStepf forwardMapY,PtrStepf backwardMapX,PtrStepf backwardMapY)73 __global__ void buildMotionMapsKernel(const PtrStepSzf forwardMotionX, const PtrStepf forwardMotionY, 74 PtrStepf backwardMotionX, PtrStepf backwardMotionY, 75 PtrStepf forwardMapX, PtrStepf forwardMapY, 76 PtrStepf backwardMapX, PtrStepf backwardMapY) 77 { 78 const int x = blockIdx.x * blockDim.x + threadIdx.x; 79 const int y = blockIdx.y * blockDim.y + threadIdx.y; 80 81 if (x >= forwardMotionX.cols || y >= forwardMotionX.rows) 82 return; 83 84 const float fx = forwardMotionX(y, x); 85 const float fy = forwardMotionY(y, x); 86 87 const float bx = backwardMotionX(y, x); 88 const float by = backwardMotionY(y, x); 89 90 forwardMapX(y, x) = x + bx; 91 forwardMapY(y, x) = y + by; 92 93 backwardMapX(y, x) = x + fx; 94 backwardMapY(y, x) = y + fy; 95 } 96 buildMotionMaps(PtrStepSzf forwardMotionX,PtrStepSzf forwardMotionY,PtrStepSzf backwardMotionX,PtrStepSzf bacwardMotionY,PtrStepSzf forwardMapX,PtrStepSzf forwardMapY,PtrStepSzf backwardMapX,PtrStepSzf backwardMapY)97 void buildMotionMaps(PtrStepSzf forwardMotionX, PtrStepSzf forwardMotionY, 98 PtrStepSzf backwardMotionX, PtrStepSzf bacwardMotionY, 99 PtrStepSzf forwardMapX, PtrStepSzf forwardMapY, 100 PtrStepSzf backwardMapX, PtrStepSzf backwardMapY) 101 { 102 const dim3 block(32, 8); 103 const dim3 grid(divUp(forwardMapX.cols, block.x), divUp(forwardMapX.rows, block.y)); 104 105 buildMotionMapsKernel<<<grid, block>>>(forwardMotionX, forwardMotionY, 106 backwardMotionX, bacwardMotionY, 107 forwardMapX, forwardMapY, 108 backwardMapX, backwardMapY); 109 cudaSafeCall( cudaGetLastError() ); 110 111 cudaSafeCall( cudaDeviceSynchronize() ); 112 } 113 114 template <typename T> upscaleKernel(const PtrStepSz<T> src,PtrStep<T> dst,const int scale)115 __global__ void upscaleKernel(const PtrStepSz<T> src, PtrStep<T> dst, const int scale) 116 { 117 const int x = blockIdx.x * blockDim.x + threadIdx.x; 118 const int y = blockIdx.y * blockDim.y + threadIdx.y; 119 120 if (x >= src.cols || y >= src.rows) 121 return; 122 123 dst(y * scale, x * scale) = src(y, x); 124 } 125 126 template <int cn> upscale(const PtrStepSzb src,PtrStepSzb dst,int scale,cudaStream_t stream)127 void upscale(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream) 128 { 129 typedef typename TypeVec<float, cn>::vec_type src_t; 130 131 const dim3 block(32, 8); 132 const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y)); 133 134 upscaleKernel<src_t><<<grid, block, 0, stream>>>((PtrStepSz<src_t>) src, (PtrStepSz<src_t>) dst, scale); 135 cudaSafeCall( cudaGetLastError() ); 136 137 if (stream == 0) 138 cudaSafeCall( cudaDeviceSynchronize() ); 139 } 140 141 template void upscale<1>(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream); 142 template void upscale<3>(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream); 143 template void upscale<4>(const PtrStepSzb src, PtrStepSzb dst, int scale, cudaStream_t stream); 144 diffSign(float a,float b)145 __device__ __forceinline__ float diffSign(float a, float b) 146 { 147 return a > b ? 1.0f : a < b ? -1.0f : 0.0f; 148 } diffSign(const float3 & a,const float3 & b)149 __device__ __forceinline__ float3 diffSign(const float3& a, const float3& b) 150 { 151 return make_float3( 152 a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f, 153 a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f, 154 a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f 155 ); 156 } diffSign(const float4 & a,const float4 & b)157 __device__ __forceinline__ float4 diffSign(const float4& a, const float4& b) 158 { 159 return make_float4( 160 a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f, 161 a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f, 162 a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f, 163 0.0f 164 ); 165 } 166 167 struct DiffSign : binary_function<float, float, float> 168 { operator ()btv_l1_cudev::DiffSign169 __device__ __forceinline__ float operator ()(float a, float b) const 170 { 171 return diffSign(a, b); 172 } 173 }; 174 } 175 176 namespace cv { namespace cuda { namespace device 177 { 178 template <> struct TransformFunctorTraits<btv_l1_cudev::DiffSign> : DefaultTransformFunctorTraits<btv_l1_cudev::DiffSign> 179 { 180 enum { smart_block_dim_y = 8 }; 181 enum { smart_shift = 4 }; 182 }; 183 }}} 184 185 namespace btv_l1_cudev 186 { diffSign(PtrStepSzf src1,PtrStepSzf src2,PtrStepSzf dst,cudaStream_t stream)187 void diffSign(PtrStepSzf src1, PtrStepSzf src2, PtrStepSzf dst, cudaStream_t stream) 188 { 189 transform(src1, src2, dst, DiffSign(), WithOutMask(), stream); 190 } 191 192 __constant__ float c_btvRegWeights[16*16]; 193 194 template <typename T> calcBtvRegularizationKernel(const PtrStepSz<T> src,PtrStep<T> dst,const int ksize)195 __global__ void calcBtvRegularizationKernel(const PtrStepSz<T> src, PtrStep<T> dst, const int ksize) 196 { 197 const int x = blockIdx.x * blockDim.x + threadIdx.x + ksize; 198 const int y = blockIdx.y * blockDim.y + threadIdx.y + ksize; 199 200 if (y >= src.rows - ksize || x >= src.cols - ksize) 201 return; 202 203 const T srcVal = src(y, x); 204 205 T dstVal = VecTraits<T>::all(0); 206 207 for (int m = 0, count = 0; m <= ksize; ++m) 208 { 209 for (int l = ksize; l + m >= 0; --l, ++count) 210 dstVal = dstVal + c_btvRegWeights[count] * (diffSign(srcVal, src(y + m, x + l)) - diffSign(src(y - m, x - l), srcVal)); 211 } 212 213 dst(y, x) = dstVal; 214 } 215 loadBtvWeights(const float * weights,size_t count)216 void loadBtvWeights(const float* weights, size_t count) 217 { 218 cudaSafeCall( cudaMemcpyToSymbol(c_btvRegWeights, weights, count * sizeof(float)) ); 219 } 220 221 template <int cn> calcBtvRegularization(PtrStepSzb src,PtrStepSzb dst,int ksize)222 void calcBtvRegularization(PtrStepSzb src, PtrStepSzb dst, int ksize) 223 { 224 typedef typename TypeVec<float, cn>::vec_type src_t; 225 226 const dim3 block(32, 8); 227 const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y)); 228 229 calcBtvRegularizationKernel<src_t><<<grid, block>>>((PtrStepSz<src_t>) src, (PtrStepSz<src_t>) dst, ksize); 230 cudaSafeCall( cudaGetLastError() ); 231 232 cudaSafeCall( cudaDeviceSynchronize() ); 233 } 234 235 template void calcBtvRegularization<1>(PtrStepSzb src, PtrStepSzb dst, int ksize); 236 template void calcBtvRegularization<3>(PtrStepSzb src, PtrStepSzb dst, int ksize); 237 template void calcBtvRegularization<4>(PtrStepSzb src, PtrStepSzb dst, int ksize); 238 } 239 240 #endif 241