• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright 2012 the V8 project authors. All rights reserved.
2  // Use of this source code is governed by a BSD-style license that can be
3  // found in the LICENSE file.
4  
5  #ifndef V8_DATE_H_
6  #define V8_DATE_H_
7  
8  #include "src/allocation.h"
9  #include "src/base/platform/platform.h"
10  #include "src/globals.h"
11  
12  
13  namespace v8 {
14  namespace internal {
15  
16  class DateCache {
17   public:
18    static const int kMsPerMin = 60 * 1000;
19    static const int kSecPerDay = 24 * 60 * 60;
20    static const int64_t kMsPerDay = kSecPerDay * 1000;
21    static const int64_t kMsPerMonth = kMsPerDay * 30;
22  
23    // The largest time that can be passed to OS date-time library functions.
24    static const int kMaxEpochTimeInSec = kMaxInt;
25    static const int64_t kMaxEpochTimeInMs =
26        static_cast<int64_t>(kMaxInt) * 1000;
27  
28    // The largest time that can be stored in JSDate.
29    static const int64_t kMaxTimeInMs =
30        static_cast<int64_t>(864000000) * 10000000;
31  
32    // Conservative upper bound on time that can be stored in JSDate
33    // before UTC conversion.
34    static const int64_t kMaxTimeBeforeUTCInMs = kMaxTimeInMs + kMsPerMonth;
35  
36    // Sentinel that denotes an invalid local offset.
37    static const int kInvalidLocalOffsetInMs = kMaxInt;
38    // Sentinel that denotes an invalid cache stamp.
39    // It is an invariant of DateCache that cache stamp is non-negative.
40    static const int kInvalidStamp = -1;
41  
DateCache()42    DateCache() : stamp_(0), tz_cache_(base::OS::CreateTimezoneCache()) {
43      ResetDateCache();
44    }
45  
~DateCache()46    virtual ~DateCache() {
47      base::OS::DisposeTimezoneCache(tz_cache_);
48      tz_cache_ = NULL;
49    }
50  
51  
52    // Clears cached timezone information and increments the cache stamp.
53    void ResetDateCache();
54  
55  
56    // Computes floor(time_ms / kMsPerDay).
DaysFromTime(int64_t time_ms)57    static int DaysFromTime(int64_t time_ms) {
58      if (time_ms < 0) time_ms -= (kMsPerDay - 1);
59      return static_cast<int>(time_ms / kMsPerDay);
60    }
61  
62  
63    // Computes modulo(time_ms, kMsPerDay) given that
64    // days = floor(time_ms / kMsPerDay).
TimeInDay(int64_t time_ms,int days)65    static int TimeInDay(int64_t time_ms, int days) {
66      return static_cast<int>(time_ms - days * kMsPerDay);
67    }
68  
69  
70    // Given the number of days since the epoch, computes the weekday.
71    // ECMA 262 - 15.9.1.6.
Weekday(int days)72    int Weekday(int days) {
73      int result = (days + 4) % 7;
74      return result >= 0 ? result : result + 7;
75    }
76  
77  
IsLeap(int year)78    bool IsLeap(int year) {
79      return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
80    }
81  
82  
83    // ECMA 262 - 15.9.1.7.
LocalOffsetInMs()84    int LocalOffsetInMs() {
85      if (local_offset_ms_ == kInvalidLocalOffsetInMs)  {
86        local_offset_ms_ = GetLocalOffsetFromOS();
87      }
88      return local_offset_ms_;
89    }
90  
91  
LocalTimezone(int64_t time_ms)92    const char* LocalTimezone(int64_t time_ms) {
93      if (time_ms < 0 || time_ms > kMaxEpochTimeInMs) {
94        time_ms = EquivalentTime(time_ms);
95      }
96      return base::OS::LocalTimezone(static_cast<double>(time_ms), tz_cache_);
97    }
98  
99    // ECMA 262 - 15.9.5.26
TimezoneOffset(int64_t time_ms)100    int TimezoneOffset(int64_t time_ms) {
101      int64_t local_ms = ToLocal(time_ms);
102      return static_cast<int>((time_ms - local_ms) / kMsPerMin);
103    }
104  
105    // ECMA 262 - 15.9.1.9
106    // LocalTime(t) = t + LocalTZA + DaylightSavingTA(t)
ToLocal(int64_t time_ms)107    int64_t ToLocal(int64_t time_ms) {
108      return time_ms + LocalOffsetInMs() + DaylightSavingsOffsetInMs(time_ms);
109    }
110  
111    // ECMA 262 - 15.9.1.9
112    // UTC(t) = t - LocalTZA - DaylightSavingTA(t - LocalTZA)
ToUTC(int64_t time_ms)113    int64_t ToUTC(int64_t time_ms) {
114      // We need to compute UTC time that corresponds to the given local time.
115      // Literally following spec here leads to incorrect time computation at
116      // the points were we transition to and from DST.
117      //
118      // The following shows that using DST for (t - LocalTZA - hour) produces
119      // correct conversion.
120      //
121      // Consider transition to DST at local time L1.
122      // Let L0 = L1 - hour, L2 = L1 + hour,
123      //     U1 = UTC time that corresponds to L1,
124      //     U0 = U1 - hour.
125      // Transitioning to DST moves local clock one hour forward L1 => L2, so
126      // U0 = UTC time that corresponds to L0 = L0 - LocalTZA,
127      // U1 = UTC time that corresponds to L1 = L1 - LocalTZA,
128      // U1 = UTC time that corresponds to L2 = L2 - LocalTZA - hour.
129      // Note that DST(U0 - hour) = 0, DST(U0) = 0, DST(U1) = 1.
130      // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour),
131      // U1 = L1 - LocalTZA - DST(L1 - LocalTZA - hour),
132      // U1 = L2 - LocalTZA - DST(L2 - LocalTZA - hour).
133      //
134      // Consider transition from DST at local time L1.
135      // Let L0 = L1 - hour,
136      //     U1 = UTC time that corresponds to L1,
137      //     U0 = U1 - hour, U2 = U1 + hour.
138      // Transitioning from DST moves local clock one hour back L1 => L0, so
139      // U0 = UTC time that corresponds to L0 (before transition)
140      //    = L0 - LocalTZA - hour.
141      // U1 = UTC time that corresponds to L0 (after transition)
142      //    = L0 - LocalTZA = L1 - LocalTZA - hour
143      // U2 = UTC time that corresponds to L1 = L1 - LocalTZA.
144      // Note that DST(U0) = 1, DST(U1) = 0, DST(U2) = 0.
145      // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour) = L0 - LocalTZA - DST(U0).
146      // U2 = L1 - LocalTZA - DST(L1 - LocalTZA - hour) = L1 - LocalTZA - DST(U1).
147      // It is impossible to get U1 from local time.
148  
149      const int kMsPerHour = 3600 * 1000;
150      time_ms -= LocalOffsetInMs();
151      return time_ms - DaylightSavingsOffsetInMs(time_ms - kMsPerHour);
152    }
153  
154  
155    // Computes a time equivalent to the given time according
156    // to ECMA 262 - 15.9.1.9.
157    // The issue here is that some library calls don't work right for dates
158    // that cannot be represented using a non-negative signed 32 bit integer
159    // (measured in whole seconds based on the 1970 epoch).
160    // We solve this by mapping the time to a year with same leap-year-ness
161    // and same starting day for the year. The ECMAscript specification says
162    // we must do this, but for compatibility with other browsers, we use
163    // the actual year if it is in the range 1970..2037
EquivalentTime(int64_t time_ms)164    int64_t EquivalentTime(int64_t time_ms) {
165      int days = DaysFromTime(time_ms);
166      int time_within_day_ms = static_cast<int>(time_ms - days * kMsPerDay);
167      int year, month, day;
168      YearMonthDayFromDays(days, &year, &month, &day);
169      int new_days = DaysFromYearMonth(EquivalentYear(year), month) + day - 1;
170      return static_cast<int64_t>(new_days) * kMsPerDay + time_within_day_ms;
171    }
172  
173    // Returns an equivalent year in the range [2008-2035] matching
174    // - leap year,
175    // - week day of first day.
176    // ECMA 262 - 15.9.1.9.
EquivalentYear(int year)177    int EquivalentYear(int year) {
178      int week_day = Weekday(DaysFromYearMonth(year, 0));
179      int recent_year = (IsLeap(year) ? 1956 : 1967) + (week_day * 12) % 28;
180      // Find the year in the range 2008..2037 that is equivalent mod 28.
181      // Add 3*28 to give a positive argument to the modulus operator.
182      return 2008 + (recent_year + 3 * 28 - 2008) % 28;
183    }
184  
185    // Given the number of days since the epoch, computes
186    // the corresponding year, month, and day.
187    void YearMonthDayFromDays(int days, int* year, int* month, int* day);
188  
189    // Computes the number of days since the epoch for
190    // the first day of the given month in the given year.
191    int DaysFromYearMonth(int year, int month);
192  
193    // Breaks down the time value.
194    void BreakDownTime(int64_t time_ms, int* year, int* month, int* day,
195                       int* weekday, int* hour, int* min, int* sec, int* ms);
196  
197    // Cache stamp is used for invalidating caches in JSDate.
198    // We increment the stamp each time when the timezone information changes.
199    // JSDate objects perform stamp check and invalidate their caches if
200    // their saved stamp is not equal to the current stamp.
stamp()201    Smi* stamp() { return stamp_; }
stamp_address()202    void* stamp_address() { return &stamp_; }
203  
204    // These functions are virtual so that we can override them when testing.
GetDaylightSavingsOffsetFromOS(int64_t time_sec)205    virtual int GetDaylightSavingsOffsetFromOS(int64_t time_sec) {
206      double time_ms = static_cast<double>(time_sec * 1000);
207      return static_cast<int>(
208          base::OS::DaylightSavingsOffset(time_ms, tz_cache_));
209    }
210  
GetLocalOffsetFromOS()211    virtual int GetLocalOffsetFromOS() {
212      double offset = base::OS::LocalTimeOffset(tz_cache_);
213      DCHECK(offset < kInvalidLocalOffsetInMs);
214      return static_cast<int>(offset);
215    }
216  
217   private:
218    // The implementation relies on the fact that no time zones have
219    // more than one daylight savings offset change per 19 days.
220    // In Egypt in 2010 they decided to suspend DST during Ramadan. This
221    // led to a short interval where DST is in effect from September 10 to
222    // September 30.
223    static const int kDefaultDSTDeltaInSec = 19 * kSecPerDay;
224  
225    // Size of the Daylight Savings Time cache.
226    static const int kDSTSize = 32;
227  
228    // Daylight Savings Time segment stores a segment of time where
229    // daylight savings offset does not change.
230    struct DST {
231      int start_sec;
232      int end_sec;
233      int offset_ms;
234      int last_used;
235    };
236  
237    // Computes the daylight savings offset for the given time.
238    // ECMA 262 - 15.9.1.8
239    int DaylightSavingsOffsetInMs(int64_t time_ms);
240  
241    // Sets the before_ and the after_ segments from the DST cache such that
242    // the before_ segment starts earlier than the given time and
243    // the after_ segment start later than the given time.
244    // Both segments might be invalid.
245    // The last_used counters of the before_ and after_ are updated.
246    void ProbeDST(int time_sec);
247  
248    // Finds the least recently used segment from the DST cache that is not
249    // equal to the given 'skip' segment.
250    DST* LeastRecentlyUsedDST(DST* skip);
251  
252    // Extends the after_ segment with the given point or resets it
253    // if it starts later than the given time + kDefaultDSTDeltaInSec.
254    inline void ExtendTheAfterSegment(int time_sec, int offset_ms);
255  
256    // Makes the given segment invalid.
257    inline void ClearSegment(DST* segment);
258  
InvalidSegment(DST * segment)259    bool InvalidSegment(DST* segment) {
260      return segment->start_sec > segment->end_sec;
261    }
262  
263    Smi* stamp_;
264  
265    // Daylight Saving Time cache.
266    DST dst_[kDSTSize];
267    int dst_usage_counter_;
268    DST* before_;
269    DST* after_;
270  
271    int local_offset_ms_;
272  
273    // Year/Month/Day cache.
274    bool ymd_valid_;
275    int ymd_days_;
276    int ymd_year_;
277    int ymd_month_;
278    int ymd_day_;
279  
280    base::TimezoneCache* tz_cache_;
281  };
282  
283  }  // namespace internal
284  }  // namespace v8
285  
286  #endif
287