1 /*
2  * datatypes.c
3  *
4  * data types for finite fields and functions for input, output, and
5  * manipulation
6  *
7  * David A. McGrew
8  * Cisco Systems, Inc.
9  */
10 /*
11  *
12  * Copyright (c) 2001-2006 Cisco Systems, Inc.
13  * All rights reserved.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  *
19  *   Redistributions of source code must retain the above copyright
20  *   notice, this list of conditions and the following disclaimer.
21  *
22  *   Redistributions in binary form must reproduce the above
23  *   copyright notice, this list of conditions and the following
24  *   disclaimer in the documentation and/or other materials provided
25  *   with the distribution.
26  *
27  *   Neither the name of the Cisco Systems, Inc. nor the names of its
28  *   contributors may be used to endorse or promote products derived
29  *   from this software without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
34  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
35  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
36  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
37  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
38  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
41  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
42  * OF THE POSSIBILITY OF SUCH DAMAGE.
43  *
44  */
45 
46 #include "datatypes.h"
47 
48 int
49 octet_weight[256] = {
50   0, 1, 1, 2, 1, 2, 2, 3,
51   1, 2, 2, 3, 2, 3, 3, 4,
52   1, 2, 2, 3, 2, 3, 3, 4,
53   2, 3, 3, 4, 3, 4, 4, 5,
54   1, 2, 2, 3, 2, 3, 3, 4,
55   2, 3, 3, 4, 3, 4, 4, 5,
56   2, 3, 3, 4, 3, 4, 4, 5,
57   3, 4, 4, 5, 4, 5, 5, 6,
58   1, 2, 2, 3, 2, 3, 3, 4,
59   2, 3, 3, 4, 3, 4, 4, 5,
60   2, 3, 3, 4, 3, 4, 4, 5,
61   3, 4, 4, 5, 4, 5, 5, 6,
62   2, 3, 3, 4, 3, 4, 4, 5,
63   3, 4, 4, 5, 4, 5, 5, 6,
64   3, 4, 4, 5, 4, 5, 5, 6,
65   4, 5, 5, 6, 5, 6, 6, 7,
66   1, 2, 2, 3, 2, 3, 3, 4,
67   2, 3, 3, 4, 3, 4, 4, 5,
68   2, 3, 3, 4, 3, 4, 4, 5,
69   3, 4, 4, 5, 4, 5, 5, 6,
70   2, 3, 3, 4, 3, 4, 4, 5,
71   3, 4, 4, 5, 4, 5, 5, 6,
72   3, 4, 4, 5, 4, 5, 5, 6,
73   4, 5, 5, 6, 5, 6, 6, 7,
74   2, 3, 3, 4, 3, 4, 4, 5,
75   3, 4, 4, 5, 4, 5, 5, 6,
76   3, 4, 4, 5, 4, 5, 5, 6,
77   4, 5, 5, 6, 5, 6, 6, 7,
78   3, 4, 4, 5, 4, 5, 5, 6,
79   4, 5, 5, 6, 5, 6, 6, 7,
80   4, 5, 5, 6, 5, 6, 6, 7,
81   5, 6, 6, 7, 6, 7, 7, 8
82 };
83 
84 int
octet_get_weight(uint8_t octet)85 octet_get_weight(uint8_t octet) {
86   extern int octet_weight[256];
87 
88   return octet_weight[octet];
89 }
90 
91 /*
92  * bit_string is a buffer that is used to hold output strings, e.g.
93  * for printing.
94  */
95 
96 /* the value MAX_PRINT_STRING_LEN is defined in datatypes.h */
97 
98 char bit_string[MAX_PRINT_STRING_LEN];
99 
100 uint8_t
nibble_to_hex_char(uint8_t nibble)101 nibble_to_hex_char(uint8_t nibble) {
102   char buf[16] = {'0', '1', '2', '3', '4', '5', '6', '7',
103 		  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
104   return buf[nibble & 0xF];
105 }
106 
107 char *
octet_string_hex_string(const void * s,int length)108 octet_string_hex_string(const void *s, int length) {
109   const uint8_t *str = (const uint8_t *)s;
110   int i;
111 
112   /* double length, since one octet takes two hex characters */
113   length *= 2;
114 
115   /* truncate string if it would be too long */
116   if (length > MAX_PRINT_STRING_LEN)
117     length = MAX_PRINT_STRING_LEN-1;
118 
119   for (i=0; i < length; i+=2) {
120     bit_string[i]   = nibble_to_hex_char(*str >> 4);
121     bit_string[i+1] = nibble_to_hex_char(*str++ & 0xF);
122   }
123   bit_string[i] = 0; /* null terminate string */
124   return bit_string;
125 }
126 
127 inline int
hex_char_to_nibble(uint8_t c)128 hex_char_to_nibble(uint8_t c) {
129   switch(c) {
130   case ('0'): return 0x0;
131   case ('1'): return 0x1;
132   case ('2'): return 0x2;
133   case ('3'): return 0x3;
134   case ('4'): return 0x4;
135   case ('5'): return 0x5;
136   case ('6'): return 0x6;
137   case ('7'): return 0x7;
138   case ('8'): return 0x8;
139   case ('9'): return 0x9;
140   case ('a'): return 0xa;
141   case ('A'): return 0xa;
142   case ('b'): return 0xb;
143   case ('B'): return 0xb;
144   case ('c'): return 0xc;
145   case ('C'): return 0xc;
146   case ('d'): return 0xd;
147   case ('D'): return 0xd;
148   case ('e'): return 0xe;
149   case ('E'): return 0xe;
150   case ('f'): return 0xf;
151   case ('F'): return 0xf;
152   default: return -1;   /* this flags an error */
153   }
154   /* NOTREACHED */
155   return -1;  /* this keeps compilers from complaining */
156 }
157 
158 int
is_hex_string(char * s)159 is_hex_string(char *s) {
160   while(*s != 0)
161     if (hex_char_to_nibble(*s++) == -1)
162       return 0;
163   return 1;
164 }
165 
166 /*
167  * hex_string_to_octet_string converts a hexadecimal string
168  * of length 2 * len to a raw octet string of length len
169  */
170 
171 int
hex_string_to_octet_string(char * raw,char * hex,int len)172 hex_string_to_octet_string(char *raw, char *hex, int len) {
173   uint8_t x;
174   int tmp;
175   int hex_len;
176 
177   hex_len = 0;
178   while (hex_len < len) {
179     tmp = hex_char_to_nibble(hex[0]);
180     if (tmp == -1)
181       return hex_len;
182     x = (tmp << 4);
183     hex_len++;
184     tmp = hex_char_to_nibble(hex[1]);
185     if (tmp == -1)
186       return hex_len;
187     x |= (tmp & 0xff);
188     hex_len++;
189     *raw++ = x;
190     hex += 2;
191   }
192   return hex_len;
193 }
194 
195 char *
v128_hex_string(v128_t * x)196 v128_hex_string(v128_t *x) {
197   int i, j;
198 
199   for (i=j=0; i < 16; i++) {
200     bit_string[j++]  = nibble_to_hex_char(x->v8[i] >> 4);
201     bit_string[j++]  = nibble_to_hex_char(x->v8[i] & 0xF);
202   }
203 
204   bit_string[j] = 0; /* null terminate string */
205   return bit_string;
206 }
207 
208 char *
v128_bit_string(v128_t * x)209 v128_bit_string(v128_t *x) {
210   int j, index;
211   uint32_t mask;
212 
213   for (j=index=0; j < 4; j++) {
214     for (mask=0x80000000; mask > 0; mask >>= 1) {
215       if (x->v32[j] & mask)
216 	bit_string[index] = '1';
217       else
218 	bit_string[index] = '0';
219       ++index;
220     }
221   }
222   bit_string[128] = 0; /* null terminate string */
223 
224   return bit_string;
225 }
226 
227 void
v128_copy_octet_string(v128_t * x,const uint8_t s[16])228 v128_copy_octet_string(v128_t *x, const uint8_t s[16]) {
229 #ifdef ALIGNMENT_32BIT_REQUIRED
230   if ((((uint32_t) &s[0]) & 0x3) != 0)
231 #endif
232   {
233 	  x->v8[0]  = s[0];
234 	  x->v8[1]  = s[1];
235 	  x->v8[2]  = s[2];
236 	  x->v8[3]  = s[3];
237 	  x->v8[4]  = s[4];
238 	  x->v8[5]  = s[5];
239 	  x->v8[6]  = s[6];
240 	  x->v8[7]  = s[7];
241 	  x->v8[8]  = s[8];
242 	  x->v8[9]  = s[9];
243 	  x->v8[10] = s[10];
244 	  x->v8[11] = s[11];
245 	  x->v8[12] = s[12];
246 	  x->v8[13] = s[13];
247 	  x->v8[14] = s[14];
248 	  x->v8[15] = s[15];
249   }
250 #ifdef ALIGNMENT_32BIT_REQUIRED
251   else
252   {
253 	  v128_t *v = (v128_t *) &s[0];
254 
255 	  v128_copy(x,v);
256   }
257 #endif
258 }
259 
260 #ifndef DATATYPES_USE_MACROS /* little functions are not macros */
261 
262 void
v128_set_to_zero(v128_t * x)263 v128_set_to_zero(v128_t *x) {
264   _v128_set_to_zero(x);
265 }
266 
267 void
v128_copy(v128_t * x,const v128_t * y)268 v128_copy(v128_t *x, const v128_t *y) {
269   _v128_copy(x, y);
270 }
271 
272 void
v128_xor(v128_t * z,v128_t * x,v128_t * y)273 v128_xor(v128_t *z, v128_t *x, v128_t *y) {
274   _v128_xor(z, x, y);
275 }
276 
277 void
v128_and(v128_t * z,v128_t * x,v128_t * y)278 v128_and(v128_t *z, v128_t *x, v128_t *y) {
279   _v128_and(z, x, y);
280 }
281 
282 void
v128_or(v128_t * z,v128_t * x,v128_t * y)283 v128_or(v128_t *z, v128_t *x, v128_t *y) {
284   _v128_or(z, x, y);
285 }
286 
287 void
v128_complement(v128_t * x)288 v128_complement(v128_t *x) {
289   _v128_complement(x);
290 }
291 
292 int
v128_is_eq(const v128_t * x,const v128_t * y)293 v128_is_eq(const v128_t *x, const v128_t *y) {
294   return _v128_is_eq(x, y);
295 }
296 
297 int
v128_xor_eq(v128_t * x,const v128_t * y)298 v128_xor_eq(v128_t *x, const v128_t *y) {
299   return _v128_xor_eq(x, y);
300 }
301 
302 int
v128_get_bit(const v128_t * x,int i)303 v128_get_bit(const v128_t *x, int i) {
304   return _v128_get_bit(x, i);
305 }
306 
307 void
v128_set_bit(v128_t * x,int i)308 v128_set_bit(v128_t *x, int i) {
309   _v128_set_bit(x, i);
310 }
311 
312 void
v128_clear_bit(v128_t * x,int i)313 v128_clear_bit(v128_t *x, int i){
314   _v128_clear_bit(x, i);
315 }
316 
317 void
v128_set_bit_to(v128_t * x,int i,int y)318 v128_set_bit_to(v128_t *x, int i, int y){
319   _v128_set_bit_to(x, i, y);
320 }
321 
322 
323 #endif /* DATATYPES_USE_MACROS */
324 
325 void
v128_right_shift(v128_t * x,int index)326 v128_right_shift(v128_t *x, int index) {
327   const int base_index = index >> 5;
328   const int bit_index = index & 31;
329   int i, from;
330   uint32_t b;
331 
332   if (index > 127) {
333     v128_set_to_zero(x);
334     return;
335   }
336 
337   if (bit_index == 0) {
338 
339     /* copy each word from left size to right side */
340     x->v32[4-1] = x->v32[4-1-base_index];
341     for (i=4-1; i > base_index; i--)
342       x->v32[i-1] = x->v32[i-1-base_index];
343 
344   } else {
345 
346     /* set each word to the "or" of the two bit-shifted words */
347     for (i = 4; i > base_index; i--) {
348       from = i-1 - base_index;
349       b = x->v32[from] << bit_index;
350       if (from > 0)
351         b |= x->v32[from-1] >> (32-bit_index);
352       x->v32[i-1] = b;
353     }
354 
355   }
356 
357   /* now wrap up the final portion */
358   for (i=0; i < base_index; i++)
359     x->v32[i] = 0;
360 
361 }
362 
363 void
v128_left_shift(v128_t * x,int index)364 v128_left_shift(v128_t *x, int index) {
365   int i;
366   const int base_index = index >> 5;
367   const int bit_index = index & 31;
368 
369   if (index > 127) {
370     v128_set_to_zero(x);
371     return;
372   }
373 
374   if (bit_index == 0) {
375     for (i=0; i < 4 - base_index; i++)
376       x->v32[i] = x->v32[i+base_index];
377   } else {
378     for (i=0; i < 4 - base_index - 1; i++)
379       x->v32[i] = (x->v32[i+base_index] >> bit_index) ^
380 	(x->v32[i+base_index+1] << (32 - bit_index));
381     x->v32[4 - base_index-1] = x->v32[4-1] >> bit_index;
382   }
383 
384   /* now wrap up the final portion */
385   for (i = 4 - base_index; i < 4; i++)
386     x->v32[i] = 0;
387 
388 }
389 
390 /* functions manipulating bitvector_t */
391 
392 #ifndef DATATYPES_USE_MACROS /* little functions are not macros */
393 
394 int
bitvector_get_bit(const bitvector_t * v,int bit_index)395 bitvector_get_bit(const bitvector_t *v, int bit_index)
396 {
397   return _bitvector_get_bit(v, bit_index);
398 }
399 
400 void
bitvector_set_bit(bitvector_t * v,int bit_index)401 bitvector_set_bit(bitvector_t *v, int bit_index)
402 {
403   _bitvector_set_bit(v, bit_index);
404 }
405 
406 void
bitvector_clear_bit(bitvector_t * v,int bit_index)407 bitvector_clear_bit(bitvector_t *v, int bit_index)
408 {
409   _bitvector_clear_bit(v, bit_index);
410 }
411 
412 
413 #endif /* DATATYPES_USE_MACROS */
414 
415 int
bitvector_alloc(bitvector_t * v,unsigned long length)416 bitvector_alloc(bitvector_t *v, unsigned long length) {
417   unsigned long l;
418 
419   /* Round length up to a multiple of bits_per_word */
420   length = (length + bits_per_word - 1) & ~(unsigned long)((bits_per_word - 1));
421 
422   l = length / bits_per_word * bytes_per_word;
423 
424   /* allocate memory, then set parameters */
425   if (l == 0)
426 	v->word = NULL;
427   else {
428 	v->word = (uint32_t*)crypto_alloc(l);
429 	if (v->word == NULL) {
430 	  v->word = NULL;
431 	  v->length = 0;
432 	  return -1;
433 	}
434   }
435   v->length = length;
436 
437   /* initialize bitvector to zero */
438   bitvector_set_to_zero(v);
439 
440   return 0;
441 }
442 
443 
444 void
bitvector_dealloc(bitvector_t * v)445 bitvector_dealloc(bitvector_t *v) {
446   if (v->word != NULL)
447 	crypto_free(v->word);
448   v->word = NULL;
449   v->length = 0;
450 }
451 
452 void
bitvector_set_to_zero(bitvector_t * x)453 bitvector_set_to_zero(bitvector_t *x)
454 {
455 	/* C99 guarantees that memset(0) will set the value 0 for uint32_t */
456 	memset(x->word, 0, x->length >> 3);
457 }
458 
459 char *
bitvector_bit_string(bitvector_t * x,char * buf,int len)460 bitvector_bit_string(bitvector_t *x, char* buf, int len) {
461   int j, index;
462   uint32_t mask;
463 
464   for (j=index=0; j < (int)(x->length>>5) && index < len-1; j++) {
465     for (mask=0x80000000; mask > 0; mask >>= 1) {
466       if (x->word[j] & mask)
467 	buf[index] = '1';
468       else
469 	buf[index] = '0';
470       ++index;
471       if (index >= len-1)
472         break;
473     }
474   }
475   buf[index] = 0; /* null terminate string */
476 
477   return buf;
478 }
479 
480 void
bitvector_left_shift(bitvector_t * x,int index)481 bitvector_left_shift(bitvector_t *x, int index) {
482   int i;
483   const int base_index = index >> 5;
484   const int bit_index = index & 31;
485   const int word_length = x->length >> 5;
486 
487   if (index >= (int)x->length) {
488     bitvector_set_to_zero(x);
489     return;
490   }
491 
492   if (bit_index == 0) {
493     for (i=0; i < word_length - base_index; i++)
494       x->word[i] = x->word[i+base_index];
495   } else {
496     for (i=0; i < word_length - base_index - 1; i++)
497       x->word[i] = (x->word[i+base_index] >> bit_index) ^
498 	(x->word[i+base_index+1] << (32 - bit_index));
499     x->word[word_length - base_index-1] = x->word[word_length-1] >> bit_index;
500   }
501 
502   /* now wrap up the final portion */
503   for (i = word_length - base_index; i < word_length; i++)
504     x->word[i] = 0;
505 
506 }
507 
508 
509 int
octet_string_is_eq(uint8_t * a,uint8_t * b,int len)510 octet_string_is_eq(uint8_t *a, uint8_t *b, int len) {
511   uint8_t *end = b + len;
512   while (b < end)
513     if (*a++ != *b++)
514       return 1;
515   return 0;
516 }
517 
518 void
octet_string_set_to_zero(uint8_t * s,int len)519 octet_string_set_to_zero(uint8_t *s, int len) {
520   uint8_t *end = s + len;
521 
522   do {
523     *s = 0;
524   } while (++s < end);
525 
526 }
527 
528 
529 /*
530  *  From RFC 1521: The Base64 Alphabet
531  *
532  *   Value Encoding  Value Encoding  Value Encoding  Value Encoding
533  *        0 A            17 R            34 i            51 z
534  *        1 B            18 S            35 j            52 0
535  *        2 C            19 T            36 k            53 1
536  *        3 D            20 U            37 l            54 2
537  *        4 E            21 V            38 m            55 3
538  *        5 F            22 W            39 n            56 4
539  *        6 G            23 X            40 o            57 5
540  *        7 H            24 Y            41 p            58 6
541  *        8 I            25 Z            42 q            59 7
542  *        9 J            26 a            43 r            60 8
543  *       10 K            27 b            44 s            61 9
544  *       11 L            28 c            45 t            62 +
545  *       12 M            29 d            46 u            63 /
546  *       13 N            30 e            47 v
547  *       14 O            31 f            48 w         (pad) =
548  *       15 P            32 g            49 x
549  *       16 Q            33 h            50 y
550  */
551 
552 int
base64_char_to_sextet(uint8_t c)553 base64_char_to_sextet(uint8_t c) {
554   switch(c) {
555   case 'A':
556     return 0;
557   case 'B':
558     return 1;
559   case 'C':
560     return 2;
561   case 'D':
562     return 3;
563   case 'E':
564     return 4;
565   case 'F':
566     return 5;
567   case 'G':
568     return 6;
569   case 'H':
570     return 7;
571   case 'I':
572     return 8;
573   case 'J':
574     return 9;
575   case 'K':
576     return 10;
577   case 'L':
578     return 11;
579   case 'M':
580     return 12;
581   case 'N':
582     return 13;
583   case 'O':
584     return 14;
585   case 'P':
586     return 15;
587   case 'Q':
588     return 16;
589   case 'R':
590     return 17;
591   case 'S':
592     return 18;
593   case 'T':
594     return 19;
595   case 'U':
596     return 20;
597   case 'V':
598     return 21;
599   case 'W':
600     return 22;
601   case 'X':
602     return 23;
603   case 'Y':
604     return 24;
605   case 'Z':
606     return 25;
607   case 'a':
608     return 26;
609   case 'b':
610     return 27;
611   case 'c':
612     return 28;
613   case 'd':
614     return 29;
615   case 'e':
616     return 30;
617   case 'f':
618     return 31;
619   case 'g':
620     return 32;
621   case 'h':
622     return 33;
623   case 'i':
624     return 34;
625   case 'j':
626     return 35;
627   case 'k':
628     return 36;
629   case 'l':
630     return 37;
631   case 'm':
632     return 38;
633   case 'n':
634     return 39;
635   case 'o':
636     return 40;
637   case 'p':
638     return 41;
639   case 'q':
640     return 42;
641   case 'r':
642     return 43;
643   case 's':
644     return 44;
645   case 't':
646     return 45;
647   case 'u':
648     return 46;
649   case 'v':
650     return 47;
651   case 'w':
652     return 48;
653   case 'x':
654     return 49;
655   case 'y':
656     return 50;
657   case 'z':
658     return 51;
659   case '0':
660     return 52;
661   case '1':
662     return 53;
663   case '2':
664     return 54;
665   case '3':
666     return 55;
667   case '4':
668     return 56;
669   case '5':
670     return 57;
671   case '6':
672     return 58;
673   case '7':
674     return 59;
675   case '8':
676     return 60;
677   case '9':
678     return 61;
679   case '+':
680     return 62;
681   case '/':
682     return 63;
683   case '=':
684     return 64;
685   default:
686     break;
687  }
688  return -1;
689 }
690 
691 /*
692  * base64_string_to_octet_string converts a hexadecimal string
693  * of length 2 * len to a raw octet string of length len
694  */
695 
696 int
base64_string_to_octet_string(char * raw,char * base64,int len)697 base64_string_to_octet_string(char *raw, char *base64, int len) {
698   uint8_t x;
699   int tmp;
700   int base64_len;
701 
702   base64_len = 0;
703   while (base64_len < len) {
704     tmp = base64_char_to_sextet(base64[0]);
705     if (tmp == -1)
706       return base64_len;
707     x = (tmp << 6);
708     base64_len++;
709     tmp = base64_char_to_sextet(base64[1]);
710     if (tmp == -1)
711       return base64_len;
712     x |= (tmp & 0xffff);
713     base64_len++;
714     *raw++ = x;
715     base64 += 2;
716   }
717   return base64_len;
718 }
719