1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file brw_wm_channel_expressions.cpp
26  *
27  * Breaks vector operations down into operations on each component.
28  *
29  * The 965 fragment shader receives 8 or 16 pixels at a time, so each
30  * channel of a vector is laid out as 1 or 2 8-float registers.  Each
31  * ALU operation operates on one of those channel registers.  As a
32  * result, there is no value to the 965 fragment shader in tracking
33  * "vector" expressions in the sense of GLSL fragment shaders, when
34  * doing a channel at a time may help in constant folding, algebraic
35  * simplification, and reducing the liveness of channel registers.
36  *
37  * The exception to the desire to break everything down to floats is
38  * texturing.  The texture sampler returns a writemasked masked
39  * 4/8-register sequence containing the texture values.  We don't want
40  * to dispatch to the sampler separately for each channel we need, so
41  * we do retain the vector types in that case.
42  */
43 
44 extern "C" {
45 #include "main/core.h"
46 #include "brw_wm.h"
47 }
48 #include "glsl/ir.h"
49 #include "glsl/ir_expression_flattening.h"
50 #include "glsl/glsl_types.h"
51 
52 class ir_channel_expressions_visitor : public ir_hierarchical_visitor {
53 public:
ir_channel_expressions_visitor()54    ir_channel_expressions_visitor()
55    {
56       this->progress = false;
57       this->mem_ctx = NULL;
58    }
59 
60    ir_visitor_status visit_leave(ir_assignment *);
61 
62    ir_rvalue *get_element(ir_variable *var, unsigned int element);
63    void assign(ir_assignment *ir, int elem, ir_rvalue *val);
64 
65    bool progress;
66    void *mem_ctx;
67 };
68 
69 static bool
channel_expressions_predicate(ir_instruction * ir)70 channel_expressions_predicate(ir_instruction *ir)
71 {
72    ir_expression *expr = ir->as_expression();
73    unsigned int i;
74 
75    if (!expr)
76       return false;
77 
78    for (i = 0; i < expr->get_num_operands(); i++) {
79       if (expr->operands[i]->type->is_vector())
80 	 return true;
81    }
82 
83    return false;
84 }
85 
86 bool
brw_do_channel_expressions(exec_list * instructions)87 brw_do_channel_expressions(exec_list *instructions)
88 {
89    ir_channel_expressions_visitor v;
90 
91    /* Pull out any matrix expression to a separate assignment to a
92     * temp.  This will make our handling of the breakdown to
93     * operations on the matrix's vector components much easier.
94     */
95    do_expression_flattening(instructions, channel_expressions_predicate);
96 
97    visit_list_elements(&v, instructions);
98 
99    return v.progress;
100 }
101 
102 ir_rvalue *
get_element(ir_variable * var,unsigned int elem)103 ir_channel_expressions_visitor::get_element(ir_variable *var, unsigned int elem)
104 {
105    ir_dereference *deref;
106 
107    if (var->type->is_scalar())
108       return new(mem_ctx) ir_dereference_variable(var);
109 
110    assert(elem < var->type->components());
111    deref = new(mem_ctx) ir_dereference_variable(var);
112    return new(mem_ctx) ir_swizzle(deref, elem, 0, 0, 0, 1);
113 }
114 
115 void
assign(ir_assignment * ir,int elem,ir_rvalue * val)116 ir_channel_expressions_visitor::assign(ir_assignment *ir, int elem, ir_rvalue *val)
117 {
118    ir_dereference *lhs = ir->lhs->clone(mem_ctx, NULL);
119    ir_assignment *assign;
120 
121    /* This assign-of-expression should have been generated by the
122     * expression flattening visitor (since we never short circit to
123     * not flatten, even for plain assignments of variables), so the
124     * writemask is always full.
125     */
126    assert(ir->write_mask == (1 << ir->lhs->type->components()) - 1);
127 
128    assign = new(mem_ctx) ir_assignment(lhs, val, NULL, (1 << elem));
129    ir->insert_before(assign);
130 }
131 
132 ir_visitor_status
visit_leave(ir_assignment * ir)133 ir_channel_expressions_visitor::visit_leave(ir_assignment *ir)
134 {
135    ir_expression *expr = ir->rhs->as_expression();
136    bool found_vector = false;
137    unsigned int i, vector_elements = 1;
138    ir_variable *op_var[2];
139 
140    if (!expr)
141       return visit_continue;
142 
143    if (!this->mem_ctx)
144       this->mem_ctx = ralloc_parent(ir);
145 
146    for (i = 0; i < expr->get_num_operands(); i++) {
147       if (expr->operands[i]->type->is_vector()) {
148 	 found_vector = true;
149 	 vector_elements = expr->operands[i]->type->vector_elements;
150 	 break;
151       }
152    }
153    if (!found_vector)
154       return visit_continue;
155 
156    /* Store the expression operands in temps so we can use them
157     * multiple times.
158     */
159    for (i = 0; i < expr->get_num_operands(); i++) {
160       ir_assignment *assign;
161       ir_dereference *deref;
162 
163       assert(!expr->operands[i]->type->is_matrix());
164 
165       op_var[i] = new(mem_ctx) ir_variable(expr->operands[i]->type,
166 					   "channel_expressions",
167 					   ir_var_temporary);
168       ir->insert_before(op_var[i]);
169 
170       deref = new(mem_ctx) ir_dereference_variable(op_var[i]);
171       assign = new(mem_ctx) ir_assignment(deref,
172 					  expr->operands[i],
173 					  NULL);
174       ir->insert_before(assign);
175    }
176 
177    const glsl_type *element_type = glsl_type::get_instance(ir->lhs->type->base_type,
178 							   1, 1);
179 
180    /* OK, time to break down this vector operation. */
181    switch (expr->operation) {
182    case ir_unop_bit_not:
183    case ir_unop_logic_not:
184    case ir_unop_neg:
185    case ir_unop_abs:
186    case ir_unop_sign:
187    case ir_unop_rcp:
188    case ir_unop_rsq:
189    case ir_unop_sqrt:
190    case ir_unop_exp:
191    case ir_unop_log:
192    case ir_unop_exp2:
193    case ir_unop_log2:
194    case ir_unop_bitcast_i2f:
195    case ir_unop_bitcast_f2i:
196    case ir_unop_bitcast_f2u:
197    case ir_unop_bitcast_u2f:
198    case ir_unop_i2u:
199    case ir_unop_u2i:
200    case ir_unop_f2i:
201    case ir_unop_f2u:
202    case ir_unop_i2f:
203    case ir_unop_f2b:
204    case ir_unop_b2f:
205    case ir_unop_i2b:
206    case ir_unop_b2i:
207    case ir_unop_u2f:
208    case ir_unop_trunc:
209    case ir_unop_ceil:
210    case ir_unop_floor:
211    case ir_unop_fract:
212    case ir_unop_round_even:
213    case ir_unop_sin:
214    case ir_unop_cos:
215    case ir_unop_sin_reduced:
216    case ir_unop_cos_reduced:
217    case ir_unop_dFdx:
218    case ir_unop_dFdy:
219       for (i = 0; i < vector_elements; i++) {
220 	 ir_rvalue *op0 = get_element(op_var[0], i);
221 
222 	 assign(ir, i, new(mem_ctx) ir_expression(expr->operation,
223 						  element_type,
224 						  op0,
225 						  NULL));
226       }
227       break;
228 
229    case ir_binop_add:
230    case ir_binop_sub:
231    case ir_binop_mul:
232    case ir_binop_div:
233    case ir_binop_mod:
234    case ir_binop_min:
235    case ir_binop_max:
236    case ir_binop_pow:
237    case ir_binop_lshift:
238    case ir_binop_rshift:
239    case ir_binop_bit_and:
240    case ir_binop_bit_xor:
241    case ir_binop_bit_or:
242    case ir_binop_less:
243    case ir_binop_greater:
244    case ir_binop_lequal:
245    case ir_binop_gequal:
246    case ir_binop_equal:
247    case ir_binop_nequal:
248       for (i = 0; i < vector_elements; i++) {
249 	 ir_rvalue *op0 = get_element(op_var[0], i);
250 	 ir_rvalue *op1 = get_element(op_var[1], i);
251 
252 	 assign(ir, i, new(mem_ctx) ir_expression(expr->operation,
253 						  element_type,
254 						  op0,
255 						  op1));
256       }
257       break;
258 
259    case ir_unop_any: {
260       ir_expression *temp;
261       temp = new(mem_ctx) ir_expression(ir_binop_logic_or,
262 					element_type,
263 					get_element(op_var[0], 0),
264 					get_element(op_var[0], 1));
265 
266       for (i = 2; i < vector_elements; i++) {
267 	 temp = new(mem_ctx) ir_expression(ir_binop_logic_or,
268 					   element_type,
269 					   get_element(op_var[0], i),
270 					   temp);
271       }
272       assign(ir, 0, temp);
273       break;
274    }
275 
276    case ir_binop_dot: {
277       ir_expression *last = NULL;
278       for (i = 0; i < vector_elements; i++) {
279 	 ir_rvalue *op0 = get_element(op_var[0], i);
280 	 ir_rvalue *op1 = get_element(op_var[1], i);
281 	 ir_expression *temp;
282 
283 	 temp = new(mem_ctx) ir_expression(ir_binop_mul,
284 					   element_type,
285 					   op0,
286 					   op1);
287 	 if (last) {
288 	    last = new(mem_ctx) ir_expression(ir_binop_add,
289 					      element_type,
290 					      temp,
291 					      last);
292 	 } else {
293 	    last = temp;
294 	 }
295       }
296       assign(ir, 0, last);
297       break;
298    }
299 
300    case ir_binop_logic_and:
301    case ir_binop_logic_xor:
302    case ir_binop_logic_or:
303       ir->print();
304       printf("\n");
305       assert(!"not reached: expression operates on scalars only");
306       break;
307    case ir_binop_all_equal:
308    case ir_binop_any_nequal: {
309       ir_expression *last = NULL;
310       for (i = 0; i < vector_elements; i++) {
311 	 ir_rvalue *op0 = get_element(op_var[0], i);
312 	 ir_rvalue *op1 = get_element(op_var[1], i);
313 	 ir_expression *temp;
314 	 ir_expression_operation join;
315 
316 	 if (expr->operation == ir_binop_all_equal)
317 	    join = ir_binop_logic_and;
318 	 else
319 	    join = ir_binop_logic_or;
320 
321 	 temp = new(mem_ctx) ir_expression(expr->operation,
322 					   element_type,
323 					   op0,
324 					   op1);
325 	 if (last) {
326 	    last = new(mem_ctx) ir_expression(join,
327 					      element_type,
328 					      temp,
329 					      last);
330 	 } else {
331 	    last = temp;
332 	 }
333       }
334       assign(ir, 0, last);
335       break;
336    }
337    case ir_unop_noise:
338       assert(!"noise should have been broken down to function call");
339       break;
340 
341    case ir_binop_ubo_load:
342       assert(!"not yet supported");
343       break;
344 
345    case ir_quadop_vector:
346       assert(!"should have been lowered");
347       break;
348    }
349 
350    ir->remove();
351    this->progress = true;
352 
353    return visit_continue;
354 }
355