1 #ifndef FIO_STAT_H
2 #define FIO_STAT_H
3
4 #include "iolog.h"
5
6 struct group_run_stats {
7 uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT];
8 uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT];
9 uint64_t io_kb[DDIR_RWDIR_CNT];
10 uint64_t agg[DDIR_RWDIR_CNT];
11 uint32_t kb_base;
12 uint32_t unit_base;
13 uint32_t groupid;
14 uint32_t unified_rw_rep;
15 } __attribute__((packed));
16
17 /*
18 * How many depth levels to log
19 */
20 #define FIO_IO_U_MAP_NR 7
21 #define FIO_IO_U_LAT_U_NR 10
22 #define FIO_IO_U_LAT_M_NR 12
23
24 /*
25 * Aggregate clat samples to report percentile(s) of them.
26 *
27 * EXECUTIVE SUMMARY
28 *
29 * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the
30 * value of resulting percentiles. The error will be approximately
31 * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value.
32 *
33 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum
34 * range being tracked for latency samples. The maximum value tracked
35 * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds.
36 *
37 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory
38 * requirement of storing those aggregate counts. The memory used will
39 * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int)
40 * bytes.
41 *
42 * FIO_IO_U_PLAT_NR is the total number of buckets.
43 *
44 * DETAILS
45 *
46 * Suppose the clat varies from 0 to 999 (usec), the straightforward
47 * method is to keep an array of (999 + 1) buckets, in which a counter
48 * keeps the count of samples which fall in the bucket, e.g.,
49 * {[0],[1],...,[999]}. However this consumes a huge amount of space,
50 * and can be avoided if an approximation is acceptable.
51 *
52 * One such method is to let the range of the bucket to be greater
53 * than one. This method has low accuracy when the value is small. For
54 * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and
55 * the represented value of each bucket be the mean of the range. Then
56 * a value 0 has an round-off error of 49.5. To improve on this, we
57 * use buckets with non-uniform ranges, while bounding the error of
58 * each bucket within a ratio of the sample value. A simple example
59 * would be when error_bound = 0.005, buckets are {
60 * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},..,
61 * {[900,909],[910,919]...} }. The total range is partitioned into
62 * groups with different ranges, then buckets with uniform ranges. An
63 * upper bound of the error is (range_of_bucket/2)/value_of_bucket
64 *
65 * For better efficiency, we implement this using base two. We group
66 * samples by their Most Significant Bit (MSB), extract the next M bit
67 * of them as an index within the group, and discard the rest of the
68 * bits.
69 *
70 * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0),
71 * and use M bit for indexing
72 *
73 * | n | M bits | bit (n-M-1) ... bit 0 |
74 *
75 * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most
76 * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off
77 * error
78 *
79 * 2^(n-M)-1 2^(n-M) 1
80 * e <= --------- <= ------- = ---
81 * 2^n 2^n 2^M
82 *
83 * Furthermore, we use "mean" of the range to represent the bucket,
84 * the error e can be lowered by half to 1 / 2^(M+1). By using M bits
85 * as the index, each group must contains 2^M buckets.
86 *
87 * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6
88 * Error bound is 1/2^(6+1) = 0.0078125 (< 1%)
89 *
90 * Group MSB #discarded range of #buckets
91 * error_bits value
92 * ----------------------------------------------------------------
93 * 0* 0~5 0 [0,63] 64
94 * 1* 6 0 [64,127] 64
95 * 2 7 1 [128,255] 64
96 * 3 8 2 [256,511] 64
97 * 4 9 3 [512,1023] 64
98 * ... ... ... [...,...] ...
99 * 18 23 17 [8838608,+inf]** 64
100 *
101 * * Special cases: when n < (M-1) or when n == (M-1), in both cases,
102 * the value cannot be rounded off. Use all bits of the sample as
103 * index.
104 *
105 * ** If a sample's MSB is greater than 23, it will be counted as 23.
106 */
107
108 #define FIO_IO_U_PLAT_BITS 6
109 #define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS)
110 #define FIO_IO_U_PLAT_GROUP_NR 19
111 #define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL)
112 #define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified
113 list of percentiles */
114
115 #define MAX_PATTERN_SIZE 512
116 #define FIO_JOBNAME_SIZE 128
117 #define FIO_JOBDESC_SIZE 256
118 #define FIO_VERROR_SIZE 128
119
120 struct thread_stat {
121 char name[FIO_JOBNAME_SIZE];
122 char verror[FIO_VERROR_SIZE];
123 uint32_t error;
124 uint32_t thread_number;
125 uint32_t groupid;
126 uint32_t pid;
127 char description[FIO_JOBDESC_SIZE];
128 uint32_t members;
129 uint32_t unified_rw_rep;
130
131 /*
132 * bandwidth and latency stats
133 */
134 struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */
135 struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */
136 struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */
137 struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */
138 struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */
139
140 /*
141 * fio system usage accounting
142 */
143 uint64_t usr_time;
144 uint64_t sys_time;
145 uint64_t ctx;
146 uint64_t minf, majf;
147
148 /*
149 * IO depth and latency stats
150 */
151 uint64_t clat_percentiles;
152 uint64_t percentile_precision;
153 fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN];
154
155 uint32_t io_u_map[FIO_IO_U_MAP_NR];
156 uint32_t io_u_submit[FIO_IO_U_MAP_NR];
157 uint32_t io_u_complete[FIO_IO_U_MAP_NR];
158 uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR];
159 uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR];
160 uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR];
161 uint32_t pad;
162
163 uint64_t total_io_u[3];
164 uint64_t short_io_u[3];
165 uint64_t drop_io_u[3];
166 uint64_t total_submit;
167 uint64_t total_complete;
168
169 uint64_t io_bytes[DDIR_RWDIR_CNT];
170 uint64_t runtime[DDIR_RWDIR_CNT];
171 uint64_t total_run_time;
172
173 /*
174 * IO Error related stats
175 */
176 union {
177 uint16_t continue_on_error;
178 uint64_t pad2;
179 };
180 uint64_t total_err_count;
181 uint32_t first_error;
182
183 uint32_t kb_base;
184 uint32_t unit_base;
185
186 uint32_t latency_depth;
187 uint64_t latency_target;
188 fio_fp64_t latency_percentile;
189 uint64_t latency_window;
190 } __attribute__((packed));
191
192 struct jobs_eta {
193 uint32_t nr_running;
194 uint32_t nr_ramp;
195
196 uint32_t nr_pending;
197 uint32_t nr_setting_up;
198
199 uint32_t files_open;
200
201 uint32_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT];
202 uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT];
203 uint32_t rate[DDIR_RWDIR_CNT];
204 uint32_t iops[DDIR_RWDIR_CNT];
205 uint64_t elapsed_sec;
206 uint64_t eta_sec;
207 uint32_t is_pow2;
208 uint32_t unit_base;
209
210 /*
211 * Network 'copy' of run_str[]
212 */
213 uint32_t nr_threads;
214 uint8_t run_str[];
215 } __attribute__((packed));
216
217 extern struct fio_mutex *stat_mutex;
218
219 extern struct jobs_eta *get_jobs_eta(int force, size_t *size);
220
221 extern void stat_init(void);
222 extern void stat_exit(void);
223
224 extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs);
225 extern void show_group_stats(struct group_run_stats *rs);
226 extern int calc_thread_status(struct jobs_eta *je, int force);
227 extern void display_thread_status(struct jobs_eta *je);
228 extern void show_run_stats(void);
229 extern void __show_run_stats(void);
230 extern void __show_running_run_stats(void);
231 extern void show_running_run_stats(void);
232 extern void check_for_running_stats(void);
233 extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, int nr);
234 extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src);
235 extern void init_thread_stat(struct thread_stat *ts);
236 extern void init_group_run_stat(struct group_run_stats *gs);
237 extern void eta_to_str(char *str, unsigned long eta_sec);
238 extern int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev);
239 extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv);
240 extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat);
241 extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat);
242 extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist);
243 extern void reset_io_stats(struct thread_data *);
244
usec_to_msec(unsigned long * min,unsigned long * max,double * mean,double * dev)245 static inline int usec_to_msec(unsigned long *min, unsigned long *max,
246 double *mean, double *dev)
247 {
248 if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) {
249 *min /= 1000;
250 *max /= 1000;
251 *mean /= 1000.0;
252 *dev /= 1000.0;
253 return 0;
254 }
255
256 return 1;
257 }
258 /*
259 * Worst level condensing would be 1:5, so allow enough room for that
260 */
261 #define __THREAD_RUNSTR_SZ(nr) ((nr) * 5)
262 #define THREAD_RUNSTR_SZ __THREAD_RUNSTR_SZ(thread_number)
263
264 #endif
265