1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkAtomics.h"
9 #include "SkCanvas.h"
10 #include "SkClipStack.h"
11 #include "SkPath.h"
12 #include "SkPathOps.h"
13
14 #include <new>
15
16
17 // 0-2 are reserved for invalid, empty & wide-open
18 static const int32_t kFirstUnreservedGenID = 3;
19 int32_t SkClipStack::gGenID = kFirstUnreservedGenID;
20
Element(const Element & that)21 SkClipStack::Element::Element(const Element& that) {
22 switch (that.getType()) {
23 case kEmpty_Type:
24 fPath.reset();
25 break;
26 case kRect_Type: // Rect uses rrect
27 case kRRect_Type:
28 fPath.reset();
29 fRRect = that.fRRect;
30 break;
31 case kPath_Type:
32 fPath.set(that.getPath());
33 break;
34 }
35
36 fSaveCount = that.fSaveCount;
37 fOp = that.fOp;
38 fType = that.fType;
39 fDoAA = that.fDoAA;
40 fFiniteBoundType = that.fFiniteBoundType;
41 fFiniteBound = that.fFiniteBound;
42 fIsIntersectionOfRects = that.fIsIntersectionOfRects;
43 fGenID = that.fGenID;
44 }
45
operator ==(const Element & element) const46 bool SkClipStack::Element::operator== (const Element& element) const {
47 if (this == &element) {
48 return true;
49 }
50 if (fOp != element.fOp ||
51 fType != element.fType ||
52 fDoAA != element.fDoAA ||
53 fSaveCount != element.fSaveCount) {
54 return false;
55 }
56 switch (fType) {
57 case kPath_Type:
58 return this->getPath() == element.getPath();
59 case kRRect_Type:
60 return fRRect == element.fRRect;
61 case kRect_Type:
62 return this->getRect() == element.getRect();
63 case kEmpty_Type:
64 return true;
65 default:
66 SkDEBUGFAIL("Unexpected type.");
67 return false;
68 }
69 }
70
replay(SkCanvasClipVisitor * visitor) const71 void SkClipStack::Element::replay(SkCanvasClipVisitor* visitor) const {
72 static const SkRect kEmptyRect = { 0, 0, 0, 0 };
73
74 switch (fType) {
75 case kPath_Type:
76 visitor->clipPath(this->getPath(), this->getOp(), this->isAA());
77 break;
78 case kRRect_Type:
79 visitor->clipRRect(this->getRRect(), this->getOp(), this->isAA());
80 break;
81 case kRect_Type:
82 visitor->clipRect(this->getRect(), this->getOp(), this->isAA());
83 break;
84 case kEmpty_Type:
85 visitor->clipRect(kEmptyRect, SkRegion::kIntersect_Op, false);
86 break;
87 }
88 }
89
invertShapeFillType()90 void SkClipStack::Element::invertShapeFillType() {
91 switch (fType) {
92 case kRect_Type:
93 fPath.init();
94 fPath.get()->addRect(this->getRect());
95 fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
96 fType = kPath_Type;
97 break;
98 case kRRect_Type:
99 fPath.init();
100 fPath.get()->addRRect(fRRect);
101 fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
102 fType = kPath_Type;
103 break;
104 case kPath_Type:
105 fPath.get()->toggleInverseFillType();
106 break;
107 case kEmpty_Type:
108 // Should this set to an empty, inverse filled path?
109 break;
110 }
111 }
112
initPath(int saveCount,const SkPath & path,SkRegion::Op op,bool doAA)113 void SkClipStack::Element::initPath(int saveCount, const SkPath& path, SkRegion::Op op,
114 bool doAA) {
115 if (!path.isInverseFillType()) {
116 SkRect r;
117 if (path.isRect(&r)) {
118 this->initRect(saveCount, r, op, doAA);
119 return;
120 }
121 SkRect ovalRect;
122 if (path.isOval(&ovalRect)) {
123 SkRRect rrect;
124 rrect.setOval(ovalRect);
125 this->initRRect(saveCount, rrect, op, doAA);
126 return;
127 }
128 }
129 fPath.set(path);
130 fPath.get()->setIsVolatile(true);
131 fType = kPath_Type;
132 this->initCommon(saveCount, op, doAA);
133 }
134
asPath(SkPath * path) const135 void SkClipStack::Element::asPath(SkPath* path) const {
136 switch (fType) {
137 case kEmpty_Type:
138 path->reset();
139 path->setIsVolatile(true);
140 break;
141 case kRect_Type:
142 path->reset();
143 path->addRect(this->getRect());
144 path->setIsVolatile(true);
145 break;
146 case kRRect_Type:
147 path->reset();
148 path->addRRect(fRRect);
149 path->setIsVolatile(true);
150 break;
151 case kPath_Type:
152 *path = *fPath.get();
153 break;
154 }
155 path->setIsVolatile(true);
156 }
157
setEmpty()158 void SkClipStack::Element::setEmpty() {
159 fType = kEmpty_Type;
160 fFiniteBound.setEmpty();
161 fFiniteBoundType = kNormal_BoundsType;
162 fIsIntersectionOfRects = false;
163 fRRect.setEmpty();
164 fPath.reset();
165 fGenID = kEmptyGenID;
166 SkDEBUGCODE(this->checkEmpty();)
167 }
168
checkEmpty() const169 void SkClipStack::Element::checkEmpty() const {
170 SkASSERT(fFiniteBound.isEmpty());
171 SkASSERT(kNormal_BoundsType == fFiniteBoundType);
172 SkASSERT(!fIsIntersectionOfRects);
173 SkASSERT(kEmptyGenID == fGenID);
174 SkASSERT(!fPath.isValid());
175 }
176
canBeIntersectedInPlace(int saveCount,SkRegion::Op op) const177 bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const {
178 if (kEmpty_Type == fType &&
179 (SkRegion::kDifference_Op == op || SkRegion::kIntersect_Op == op)) {
180 return true;
181 }
182 // Only clips within the same save/restore frame (as captured by
183 // the save count) can be merged
184 return fSaveCount == saveCount &&
185 SkRegion::kIntersect_Op == op &&
186 (SkRegion::kIntersect_Op == fOp || SkRegion::kReplace_Op == fOp);
187 }
188
rectRectIntersectAllowed(const SkRect & newR,bool newAA) const189 bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const {
190 SkASSERT(kRect_Type == fType);
191
192 if (fDoAA == newAA) {
193 // if the AA setting is the same there is no issue
194 return true;
195 }
196
197 if (!SkRect::Intersects(this->getRect(), newR)) {
198 // The calling code will correctly set the result to the empty clip
199 return true;
200 }
201
202 if (this->getRect().contains(newR)) {
203 // if the new rect carves out a portion of the old one there is no
204 // issue
205 return true;
206 }
207
208 // So either the two overlap in some complex manner or newR contains oldR.
209 // In the first, case the edges will require different AA. In the second,
210 // the AA setting that would be carried forward is incorrect (e.g., oldR
211 // is AA while newR is BW but since newR contains oldR, oldR will be
212 // drawn BW) since the new AA setting will predominate.
213 return false;
214 }
215
216 // a mirror of combineBoundsRevDiff
combineBoundsDiff(FillCombo combination,const SkRect & prevFinite)217 void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) {
218 switch (combination) {
219 case kInvPrev_InvCur_FillCombo:
220 // In this case the only pixels that can remain set
221 // are inside the current clip rect since the extensions
222 // to infinity of both clips cancel out and whatever
223 // is outside of the current clip is removed
224 fFiniteBoundType = kNormal_BoundsType;
225 break;
226 case kInvPrev_Cur_FillCombo:
227 // In this case the current op is finite so the only pixels
228 // that aren't set are whatever isn't set in the previous
229 // clip and whatever this clip carves out
230 fFiniteBound.join(prevFinite);
231 fFiniteBoundType = kInsideOut_BoundsType;
232 break;
233 case kPrev_InvCur_FillCombo:
234 // In this case everything outside of this clip's bound
235 // is erased, so the only pixels that can remain set
236 // occur w/in the intersection of the two finite bounds
237 if (!fFiniteBound.intersect(prevFinite)) {
238 this->setEmpty();
239 } else {
240 fFiniteBoundType = kNormal_BoundsType;
241 }
242 break;
243 case kPrev_Cur_FillCombo:
244 // The most conservative result bound is that of the
245 // prior clip. This could be wildly incorrect if the
246 // second clip either exactly matches the first clip
247 // (which should yield the empty set) or reduces the
248 // size of the prior bound (e.g., if the second clip
249 // exactly matched the bottom half of the prior clip).
250 // We ignore these two possibilities.
251 fFiniteBound = prevFinite;
252 break;
253 default:
254 SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination");
255 break;
256 }
257 }
258
combineBoundsXOR(int combination,const SkRect & prevFinite)259 void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) {
260
261 switch (combination) {
262 case kInvPrev_Cur_FillCombo: // fall through
263 case kPrev_InvCur_FillCombo:
264 // With only one of the clips inverted the result will always
265 // extend to infinity. The only pixels that may be un-writeable
266 // lie within the union of the two finite bounds
267 fFiniteBound.join(prevFinite);
268 fFiniteBoundType = kInsideOut_BoundsType;
269 break;
270 case kInvPrev_InvCur_FillCombo:
271 // The only pixels that can survive are within the
272 // union of the two bounding boxes since the extensions
273 // to infinity of both clips cancel out
274 // fall through!
275 case kPrev_Cur_FillCombo:
276 // The most conservative bound for xor is the
277 // union of the two bounds. If the two clips exactly overlapped
278 // the xor could yield the empty set. Similarly the xor
279 // could reduce the size of the original clip's bound (e.g.,
280 // if the second clip exactly matched the bottom half of the
281 // first clip). We ignore these two cases.
282 fFiniteBound.join(prevFinite);
283 fFiniteBoundType = kNormal_BoundsType;
284 break;
285 default:
286 SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination");
287 break;
288 }
289 }
290
291 // a mirror of combineBoundsIntersection
combineBoundsUnion(int combination,const SkRect & prevFinite)292 void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) {
293
294 switch (combination) {
295 case kInvPrev_InvCur_FillCombo:
296 if (!fFiniteBound.intersect(prevFinite)) {
297 fFiniteBound.setEmpty();
298 fGenID = kWideOpenGenID;
299 }
300 fFiniteBoundType = kInsideOut_BoundsType;
301 break;
302 case kInvPrev_Cur_FillCombo:
303 // The only pixels that won't be drawable are inside
304 // the prior clip's finite bound
305 fFiniteBound = prevFinite;
306 fFiniteBoundType = kInsideOut_BoundsType;
307 break;
308 case kPrev_InvCur_FillCombo:
309 // The only pixels that won't be drawable are inside
310 // this clip's finite bound
311 break;
312 case kPrev_Cur_FillCombo:
313 fFiniteBound.join(prevFinite);
314 break;
315 default:
316 SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination");
317 break;
318 }
319 }
320
321 // a mirror of combineBoundsUnion
combineBoundsIntersection(int combination,const SkRect & prevFinite)322 void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) {
323
324 switch (combination) {
325 case kInvPrev_InvCur_FillCombo:
326 // The only pixels that aren't writable in this case
327 // occur in the union of the two finite bounds
328 fFiniteBound.join(prevFinite);
329 fFiniteBoundType = kInsideOut_BoundsType;
330 break;
331 case kInvPrev_Cur_FillCombo:
332 // In this case the only pixels that will remain writeable
333 // are within the current clip
334 break;
335 case kPrev_InvCur_FillCombo:
336 // In this case the only pixels that will remain writeable
337 // are with the previous clip
338 fFiniteBound = prevFinite;
339 fFiniteBoundType = kNormal_BoundsType;
340 break;
341 case kPrev_Cur_FillCombo:
342 if (!fFiniteBound.intersect(prevFinite)) {
343 this->setEmpty();
344 }
345 break;
346 default:
347 SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination");
348 break;
349 }
350 }
351
352 // a mirror of combineBoundsDiff
combineBoundsRevDiff(int combination,const SkRect & prevFinite)353 void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) {
354
355 switch (combination) {
356 case kInvPrev_InvCur_FillCombo:
357 // The only pixels that can survive are in the
358 // previous bound since the extensions to infinity in
359 // both clips cancel out
360 fFiniteBound = prevFinite;
361 fFiniteBoundType = kNormal_BoundsType;
362 break;
363 case kInvPrev_Cur_FillCombo:
364 if (!fFiniteBound.intersect(prevFinite)) {
365 this->setEmpty();
366 } else {
367 fFiniteBoundType = kNormal_BoundsType;
368 }
369 break;
370 case kPrev_InvCur_FillCombo:
371 fFiniteBound.join(prevFinite);
372 fFiniteBoundType = kInsideOut_BoundsType;
373 break;
374 case kPrev_Cur_FillCombo:
375 // Fall through - as with the kDifference_Op case, the
376 // most conservative result bound is the bound of the
377 // current clip. The prior clip could reduce the size of this
378 // bound (as in the kDifference_Op case) but we are ignoring
379 // those cases.
380 break;
381 default:
382 SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination");
383 break;
384 }
385 }
386
updateBoundAndGenID(const Element * prior)387 void SkClipStack::Element::updateBoundAndGenID(const Element* prior) {
388 // We set this first here but we may overwrite it later if we determine that the clip is
389 // either wide-open or empty.
390 fGenID = GetNextGenID();
391
392 // First, optimistically update the current Element's bound information
393 // with the current clip's bound
394 fIsIntersectionOfRects = false;
395 switch (fType) {
396 case kRect_Type:
397 fFiniteBound = this->getRect();
398 fFiniteBoundType = kNormal_BoundsType;
399
400 if (SkRegion::kReplace_Op == fOp ||
401 (SkRegion::kIntersect_Op == fOp && nullptr == prior) ||
402 (SkRegion::kIntersect_Op == fOp && prior->fIsIntersectionOfRects &&
403 prior->rectRectIntersectAllowed(this->getRect(), fDoAA))) {
404 fIsIntersectionOfRects = true;
405 }
406 break;
407 case kRRect_Type:
408 fFiniteBound = fRRect.getBounds();
409 fFiniteBoundType = kNormal_BoundsType;
410 break;
411 case kPath_Type:
412 fFiniteBound = fPath.get()->getBounds();
413
414 if (fPath.get()->isInverseFillType()) {
415 fFiniteBoundType = kInsideOut_BoundsType;
416 } else {
417 fFiniteBoundType = kNormal_BoundsType;
418 }
419 break;
420 case kEmpty_Type:
421 SkDEBUGFAIL("We shouldn't get here with an empty element.");
422 break;
423 }
424
425 if (!fDoAA) {
426 fFiniteBound.set(SkScalarFloorToScalar(fFiniteBound.fLeft+0.45f),
427 SkScalarRoundToScalar(fFiniteBound.fTop),
428 SkScalarRoundToScalar(fFiniteBound.fRight),
429 SkScalarRoundToScalar(fFiniteBound.fBottom));
430 }
431
432 // Now determine the previous Element's bound information taking into
433 // account that there may be no previous clip
434 SkRect prevFinite;
435 SkClipStack::BoundsType prevType;
436
437 if (nullptr == prior) {
438 // no prior clip means the entire plane is writable
439 prevFinite.setEmpty(); // there are no pixels that cannot be drawn to
440 prevType = kInsideOut_BoundsType;
441 } else {
442 prevFinite = prior->fFiniteBound;
443 prevType = prior->fFiniteBoundType;
444 }
445
446 FillCombo combination = kPrev_Cur_FillCombo;
447 if (kInsideOut_BoundsType == fFiniteBoundType) {
448 combination = (FillCombo) (combination | 0x01);
449 }
450 if (kInsideOut_BoundsType == prevType) {
451 combination = (FillCombo) (combination | 0x02);
452 }
453
454 SkASSERT(kInvPrev_InvCur_FillCombo == combination ||
455 kInvPrev_Cur_FillCombo == combination ||
456 kPrev_InvCur_FillCombo == combination ||
457 kPrev_Cur_FillCombo == combination);
458
459 // Now integrate with clip with the prior clips
460 switch (fOp) {
461 case SkRegion::kDifference_Op:
462 this->combineBoundsDiff(combination, prevFinite);
463 break;
464 case SkRegion::kXOR_Op:
465 this->combineBoundsXOR(combination, prevFinite);
466 break;
467 case SkRegion::kUnion_Op:
468 this->combineBoundsUnion(combination, prevFinite);
469 break;
470 case SkRegion::kIntersect_Op:
471 this->combineBoundsIntersection(combination, prevFinite);
472 break;
473 case SkRegion::kReverseDifference_Op:
474 this->combineBoundsRevDiff(combination, prevFinite);
475 break;
476 case SkRegion::kReplace_Op:
477 // Replace just ignores everything prior
478 // The current clip's bound information is already filled in
479 // so nothing to do
480 break;
481 default:
482 SkDebugf("SkRegion::Op error\n");
483 SkASSERT(0);
484 break;
485 }
486 }
487
488 // This constant determines how many Element's are allocated together as a block in
489 // the deque. As such it needs to balance allocating too much memory vs.
490 // incurring allocation/deallocation thrashing. It should roughly correspond to
491 // the deepest save/restore stack we expect to see.
492 static const int kDefaultElementAllocCnt = 8;
493
SkClipStack()494 SkClipStack::SkClipStack()
495 : fDeque(sizeof(Element), kDefaultElementAllocCnt)
496 , fSaveCount(0) {
497 }
498
SkClipStack(const SkClipStack & b)499 SkClipStack::SkClipStack(const SkClipStack& b)
500 : fDeque(sizeof(Element), kDefaultElementAllocCnt) {
501 *this = b;
502 }
503
SkClipStack(const SkRect & r)504 SkClipStack::SkClipStack(const SkRect& r)
505 : fDeque(sizeof(Element), kDefaultElementAllocCnt)
506 , fSaveCount(0) {
507 if (!r.isEmpty()) {
508 this->clipDevRect(r, SkRegion::kReplace_Op, false);
509 }
510 }
511
SkClipStack(const SkIRect & r)512 SkClipStack::SkClipStack(const SkIRect& r)
513 : fDeque(sizeof(Element), kDefaultElementAllocCnt)
514 , fSaveCount(0) {
515 if (!r.isEmpty()) {
516 SkRect temp;
517 temp.set(r);
518 this->clipDevRect(temp, SkRegion::kReplace_Op, false);
519 }
520 }
521
~SkClipStack()522 SkClipStack::~SkClipStack() {
523 reset();
524 }
525
operator =(const SkClipStack & b)526 SkClipStack& SkClipStack::operator=(const SkClipStack& b) {
527 if (this == &b) {
528 return *this;
529 }
530 reset();
531
532 fSaveCount = b.fSaveCount;
533 SkDeque::F2BIter recIter(b.fDeque);
534 for (const Element* element = (const Element*)recIter.next();
535 element != nullptr;
536 element = (const Element*)recIter.next()) {
537 new (fDeque.push_back()) Element(*element);
538 }
539
540 return *this;
541 }
542
operator ==(const SkClipStack & b) const543 bool SkClipStack::operator==(const SkClipStack& b) const {
544 if (this->getTopmostGenID() == b.getTopmostGenID()) {
545 return true;
546 }
547 if (fSaveCount != b.fSaveCount ||
548 fDeque.count() != b.fDeque.count()) {
549 return false;
550 }
551 SkDeque::F2BIter myIter(fDeque);
552 SkDeque::F2BIter bIter(b.fDeque);
553 const Element* myElement = (const Element*)myIter.next();
554 const Element* bElement = (const Element*)bIter.next();
555
556 while (myElement != nullptr && bElement != nullptr) {
557 if (*myElement != *bElement) {
558 return false;
559 }
560 myElement = (const Element*)myIter.next();
561 bElement = (const Element*)bIter.next();
562 }
563 return myElement == nullptr && bElement == nullptr;
564 }
565
reset()566 void SkClipStack::reset() {
567 // We used a placement new for each object in fDeque, so we're responsible
568 // for calling the destructor on each of them as well.
569 while (!fDeque.empty()) {
570 Element* element = (Element*)fDeque.back();
571 element->~Element();
572 fDeque.pop_back();
573 }
574
575 fSaveCount = 0;
576 }
577
save()578 void SkClipStack::save() {
579 fSaveCount += 1;
580 }
581
restore()582 void SkClipStack::restore() {
583 fSaveCount -= 1;
584 restoreTo(fSaveCount);
585 }
586
restoreTo(int saveCount)587 void SkClipStack::restoreTo(int saveCount) {
588 while (!fDeque.empty()) {
589 Element* element = (Element*)fDeque.back();
590 if (element->fSaveCount <= saveCount) {
591 break;
592 }
593 element->~Element();
594 fDeque.pop_back();
595 }
596 }
597
getBounds(SkRect * canvFiniteBound,BoundsType * boundType,bool * isIntersectionOfRects) const598 void SkClipStack::getBounds(SkRect* canvFiniteBound,
599 BoundsType* boundType,
600 bool* isIntersectionOfRects) const {
601 SkASSERT(canvFiniteBound && boundType);
602
603 Element* element = (Element*)fDeque.back();
604
605 if (nullptr == element) {
606 // the clip is wide open - the infinite plane w/ no pixels un-writeable
607 canvFiniteBound->setEmpty();
608 *boundType = kInsideOut_BoundsType;
609 if (isIntersectionOfRects) {
610 *isIntersectionOfRects = false;
611 }
612 return;
613 }
614
615 *canvFiniteBound = element->fFiniteBound;
616 *boundType = element->fFiniteBoundType;
617 if (isIntersectionOfRects) {
618 *isIntersectionOfRects = element->fIsIntersectionOfRects;
619 }
620 }
621
quickContains(const SkRect & rect) const622 bool SkClipStack::quickContains(const SkRect& rect) const {
623
624 Iter iter(*this, Iter::kTop_IterStart);
625 const Element* element = iter.prev();
626 while (element != nullptr) {
627 if (SkRegion::kIntersect_Op != element->getOp() && SkRegion::kReplace_Op != element->getOp())
628 return false;
629 if (element->isInverseFilled()) {
630 // Part of 'rect' could be trimmed off by the inverse-filled clip element
631 if (SkRect::Intersects(element->getBounds(), rect)) {
632 return false;
633 }
634 } else {
635 if (!element->contains(rect)) {
636 return false;
637 }
638 }
639 if (SkRegion::kReplace_Op == element->getOp()) {
640 break;
641 }
642 element = iter.prev();
643 }
644 return true;
645 }
646
asPath(SkPath * path) const647 bool SkClipStack::asPath(SkPath *path) const {
648 bool isAA = false;
649
650 path->reset();
651 path->setFillType(SkPath::kInverseEvenOdd_FillType);
652
653 SkClipStack::Iter iter(*this, SkClipStack::Iter::kBottom_IterStart);
654 while (const SkClipStack::Element* element = iter.next()) {
655 SkPath operand;
656 if (element->getType() != SkClipStack::Element::kEmpty_Type) {
657 element->asPath(&operand);
658 }
659
660 SkRegion::Op elementOp = element->getOp();
661 if (elementOp == SkRegion::kReplace_Op) {
662 *path = operand;
663 } else {
664 Op(*path, operand, (SkPathOp)elementOp, path);
665 }
666
667 // if the prev and curr clips disagree about aa -vs- not, favor the aa request.
668 // perhaps we need an API change to avoid this sort of mixed-signals about
669 // clipping.
670 isAA = (isAA || element->isAA());
671 }
672
673 return isAA;
674 }
675
pushElement(const Element & element)676 void SkClipStack::pushElement(const Element& element) {
677 // Use reverse iterator instead of back because Rect path may need previous
678 SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart);
679 Element* prior = (Element*) iter.prev();
680
681 if (prior) {
682 if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) {
683 switch (prior->fType) {
684 case Element::kEmpty_Type:
685 SkDEBUGCODE(prior->checkEmpty();)
686 return;
687 case Element::kRect_Type:
688 if (Element::kRect_Type == element.getType()) {
689 if (prior->rectRectIntersectAllowed(element.getRect(), element.isAA())) {
690 SkRect isectRect;
691 if (!isectRect.intersect(prior->getRect(), element.getRect())) {
692 prior->setEmpty();
693 return;
694 }
695
696 prior->fRRect.setRect(isectRect);
697 prior->fDoAA = element.isAA();
698 Element* priorPrior = (Element*) iter.prev();
699 prior->updateBoundAndGenID(priorPrior);
700 return;
701 }
702 break;
703 }
704 // fallthrough
705 default:
706 if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) {
707 prior->setEmpty();
708 return;
709 }
710 break;
711 }
712 } else if (SkRegion::kReplace_Op == element.getOp()) {
713 this->restoreTo(fSaveCount - 1);
714 prior = (Element*) fDeque.back();
715 }
716 }
717 Element* newElement = new (fDeque.push_back()) Element(element);
718 newElement->updateBoundAndGenID(prior);
719 }
720
clipDevRRect(const SkRRect & rrect,SkRegion::Op op,bool doAA)721 void SkClipStack::clipDevRRect(const SkRRect& rrect, SkRegion::Op op, bool doAA) {
722 Element element(fSaveCount, rrect, op, doAA);
723 this->pushElement(element);
724 }
725
clipDevRect(const SkRect & rect,SkRegion::Op op,bool doAA)726 void SkClipStack::clipDevRect(const SkRect& rect, SkRegion::Op op, bool doAA) {
727 Element element(fSaveCount, rect, op, doAA);
728 this->pushElement(element);
729 }
730
clipDevPath(const SkPath & path,SkRegion::Op op,bool doAA)731 void SkClipStack::clipDevPath(const SkPath& path, SkRegion::Op op, bool doAA) {
732 Element element(fSaveCount, path, op, doAA);
733 this->pushElement(element);
734 }
735
clipEmpty()736 void SkClipStack::clipEmpty() {
737 Element* element = (Element*) fDeque.back();
738
739 if (element && element->canBeIntersectedInPlace(fSaveCount, SkRegion::kIntersect_Op)) {
740 element->setEmpty();
741 }
742 new (fDeque.push_back()) Element(fSaveCount);
743
744 ((Element*)fDeque.back())->fGenID = kEmptyGenID;
745 }
746
isWideOpen() const747 bool SkClipStack::isWideOpen() const {
748 return this->getTopmostGenID() == kWideOpenGenID;
749 }
750
751 ///////////////////////////////////////////////////////////////////////////////
752
Iter()753 SkClipStack::Iter::Iter() : fStack(nullptr) {
754 }
755
Iter(const SkClipStack & stack,IterStart startLoc)756 SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc)
757 : fStack(&stack) {
758 this->reset(stack, startLoc);
759 }
760
next()761 const SkClipStack::Element* SkClipStack::Iter::next() {
762 return (const SkClipStack::Element*)fIter.next();
763 }
764
prev()765 const SkClipStack::Element* SkClipStack::Iter::prev() {
766 return (const SkClipStack::Element*)fIter.prev();
767 }
768
skipToTopmost(SkRegion::Op op)769 const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkRegion::Op op) {
770
771 if (nullptr == fStack) {
772 return nullptr;
773 }
774
775 fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart);
776
777 const SkClipStack::Element* element = nullptr;
778
779 for (element = (const SkClipStack::Element*) fIter.prev();
780 element;
781 element = (const SkClipStack::Element*) fIter.prev()) {
782
783 if (op == element->fOp) {
784 // The Deque's iterator is actually one pace ahead of the
785 // returned value. So while "element" is the element we want to
786 // return, the iterator is actually pointing at (and will
787 // return on the next "next" or "prev" call) the element
788 // in front of it in the deque. Bump the iterator forward a
789 // step so we get the expected result.
790 if (nullptr == fIter.next()) {
791 // The reverse iterator has run off the front of the deque
792 // (i.e., the "op" clip is the first clip) and can't
793 // recover. Reset the iterator to start at the front.
794 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
795 }
796 break;
797 }
798 }
799
800 if (nullptr == element) {
801 // There were no "op" clips
802 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
803 }
804
805 return this->next();
806 }
807
reset(const SkClipStack & stack,IterStart startLoc)808 void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) {
809 fStack = &stack;
810 fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc));
811 }
812
813 // helper method
getConservativeBounds(int offsetX,int offsetY,int maxWidth,int maxHeight,SkRect * devBounds,bool * isIntersectionOfRects) const814 void SkClipStack::getConservativeBounds(int offsetX,
815 int offsetY,
816 int maxWidth,
817 int maxHeight,
818 SkRect* devBounds,
819 bool* isIntersectionOfRects) const {
820 SkASSERT(devBounds);
821
822 devBounds->setLTRB(0, 0,
823 SkIntToScalar(maxWidth), SkIntToScalar(maxHeight));
824
825 SkRect temp;
826 SkClipStack::BoundsType boundType;
827
828 // temp starts off in canvas space here
829 this->getBounds(&temp, &boundType, isIntersectionOfRects);
830 if (SkClipStack::kInsideOut_BoundsType == boundType) {
831 return;
832 }
833
834 // but is converted to device space here
835 temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY));
836
837 if (!devBounds->intersect(temp)) {
838 devBounds->setEmpty();
839 }
840 }
841
GetNextGenID()842 int32_t SkClipStack::GetNextGenID() {
843 // TODO: handle overflow.
844 return sk_atomic_inc(&gGenID);
845 }
846
getTopmostGenID() const847 int32_t SkClipStack::getTopmostGenID() const {
848 if (fDeque.empty()) {
849 return kWideOpenGenID;
850 }
851
852 const Element* back = static_cast<const Element*>(fDeque.back());
853 if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty()) {
854 return kWideOpenGenID;
855 }
856
857 return back->getGenID();
858 }
859
860 #ifdef SK_DEVELOPER
dump() const861 void SkClipStack::Element::dump() const {
862 static const char* kTypeStrings[] = {
863 "empty",
864 "rect",
865 "rrect",
866 "path"
867 };
868 static_assert(0 == kEmpty_Type, "type_str");
869 static_assert(1 == kRect_Type, "type_str");
870 static_assert(2 == kRRect_Type, "type_str");
871 static_assert(3 == kPath_Type, "type_str");
872 static_assert(SK_ARRAY_COUNT(kTypeStrings) == kTypeCnt, "type_str");
873
874 static const char* kOpStrings[] = {
875 "difference",
876 "intersect",
877 "union",
878 "xor",
879 "reverse-difference",
880 "replace",
881 };
882 static_assert(0 == SkRegion::kDifference_Op, "op_str");
883 static_assert(1 == SkRegion::kIntersect_Op, "op_str");
884 static_assert(2 == SkRegion::kUnion_Op, "op_str");
885 static_assert(3 == SkRegion::kXOR_Op, "op_str");
886 static_assert(4 == SkRegion::kReverseDifference_Op, "op_str");
887 static_assert(5 == SkRegion::kReplace_Op, "op_str");
888 static_assert(SK_ARRAY_COUNT(kOpStrings) == SkRegion::kOpCnt, "op_str");
889
890 SkDebugf("Type: %s, Op: %s, AA: %s, Save Count: %d\n", kTypeStrings[fType],
891 kOpStrings[fOp], (fDoAA ? "yes" : "no"), fSaveCount);
892 switch (fType) {
893 case kEmpty_Type:
894 SkDebugf("\n");
895 break;
896 case kRect_Type:
897 this->getRect().dump();
898 SkDebugf("\n");
899 break;
900 case kRRect_Type:
901 this->getRRect().dump();
902 SkDebugf("\n");
903 break;
904 case kPath_Type:
905 this->getPath().dump(nullptr, true, false);
906 break;
907 }
908 }
909
dump() const910 void SkClipStack::dump() const {
911 B2TIter iter(*this);
912 const Element* e;
913 while ((e = iter.next())) {
914 e->dump();
915 SkDebugf("\n");
916 }
917 }
918 #endif
919