1 /*
2 *******************************************************************************
3 * Copyright (C) 2013-2015, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 *******************************************************************************
6 * collationdatawriter.cpp
7 *
8 * created on: 2013aug06
9 * created by: Markus W. Scherer
10 */
11
12 #include "unicode/utypes.h"
13
14 #if !UCONFIG_NO_COLLATION
15
16 #include "unicode/tblcoll.h"
17 #include "unicode/udata.h"
18 #include "unicode/uniset.h"
19 #include "cmemory.h"
20 #include "collationdata.h"
21 #include "collationdatabuilder.h"
22 #include "collationdatareader.h"
23 #include "collationdatawriter.h"
24 #include "collationfastlatin.h"
25 #include "collationsettings.h"
26 #include "collationtailoring.h"
27 #include "uassert.h"
28 #include "ucmndata.h"
29
30 U_NAMESPACE_BEGIN
31
32 uint8_t *
cloneRuleData(int32_t & length,UErrorCode & errorCode) const33 RuleBasedCollator::cloneRuleData(int32_t &length, UErrorCode &errorCode) const {
34 if(U_FAILURE(errorCode)) { return NULL; }
35 LocalMemory<uint8_t> buffer((uint8_t *)uprv_malloc(20000));
36 if(buffer.isNull()) {
37 errorCode = U_MEMORY_ALLOCATION_ERROR;
38 return NULL;
39 }
40 length = cloneBinary(buffer.getAlias(), 20000, errorCode);
41 if(errorCode == U_BUFFER_OVERFLOW_ERROR) {
42 if(buffer.allocateInsteadAndCopy(length, 0) == NULL) {
43 errorCode = U_MEMORY_ALLOCATION_ERROR;
44 return NULL;
45 }
46 errorCode = U_ZERO_ERROR;
47 length = cloneBinary(buffer.getAlias(), length, errorCode);
48 }
49 if(U_FAILURE(errorCode)) { return NULL; }
50 return buffer.orphan();
51 }
52
53 int32_t
cloneBinary(uint8_t * dest,int32_t capacity,UErrorCode & errorCode) const54 RuleBasedCollator::cloneBinary(uint8_t *dest, int32_t capacity, UErrorCode &errorCode) const {
55 int32_t indexes[CollationDataReader::IX_TOTAL_SIZE + 1];
56 return CollationDataWriter::writeTailoring(
57 *tailoring, *settings, indexes, dest, capacity,
58 errorCode);
59 }
60
61 static const UDataInfo dataInfo = {
62 sizeof(UDataInfo),
63 0,
64
65 U_IS_BIG_ENDIAN,
66 U_CHARSET_FAMILY,
67 U_SIZEOF_UCHAR,
68 0,
69
70 { 0x55, 0x43, 0x6f, 0x6c }, // dataFormat="UCol"
71 { 5, 0, 0, 0 }, // formatVersion
72 { 6, 3, 0, 0 } // dataVersion
73 };
74
75 int32_t
writeBase(const CollationData & data,const CollationSettings & settings,const void * rootElements,int32_t rootElementsLength,int32_t indexes[],uint8_t * dest,int32_t capacity,UErrorCode & errorCode)76 CollationDataWriter::writeBase(const CollationData &data, const CollationSettings &settings,
77 const void *rootElements, int32_t rootElementsLength,
78 int32_t indexes[], uint8_t *dest, int32_t capacity,
79 UErrorCode &errorCode) {
80 return write(TRUE, NULL,
81 data, settings,
82 rootElements, rootElementsLength,
83 indexes, dest, capacity, errorCode);
84 }
85
86 int32_t
writeTailoring(const CollationTailoring & t,const CollationSettings & settings,int32_t indexes[],uint8_t * dest,int32_t capacity,UErrorCode & errorCode)87 CollationDataWriter::writeTailoring(const CollationTailoring &t, const CollationSettings &settings,
88 int32_t indexes[], uint8_t *dest, int32_t capacity,
89 UErrorCode &errorCode) {
90 return write(FALSE, t.version,
91 *t.data, settings,
92 NULL, 0,
93 indexes, dest, capacity, errorCode);
94 }
95
96 int32_t
write(UBool isBase,const UVersionInfo dataVersion,const CollationData & data,const CollationSettings & settings,const void * rootElements,int32_t rootElementsLength,int32_t indexes[],uint8_t * dest,int32_t capacity,UErrorCode & errorCode)97 CollationDataWriter::write(UBool isBase, const UVersionInfo dataVersion,
98 const CollationData &data, const CollationSettings &settings,
99 const void *rootElements, int32_t rootElementsLength,
100 int32_t indexes[], uint8_t *dest, int32_t capacity,
101 UErrorCode &errorCode) {
102 if(U_FAILURE(errorCode)) { return 0; }
103 if(capacity < 0 || (capacity > 0 && dest == NULL)) {
104 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
105 return 0;
106 }
107
108 // Figure out which data items to write before settling on
109 // the indexes length and writing offsets.
110 // For any data item, we need to write the start and limit offsets,
111 // so the indexes length must be at least index-of-start-offset + 2.
112 int32_t indexesLength;
113 UBool hasMappings;
114 UnicodeSet unsafeBackwardSet;
115 const CollationData *baseData = data.base;
116
117 int32_t fastLatinVersion;
118 if(data.fastLatinTable != NULL) {
119 fastLatinVersion = (int32_t)CollationFastLatin::VERSION << 16;
120 } else {
121 fastLatinVersion = 0;
122 }
123 int32_t fastLatinTableLength = 0;
124
125 if(isBase) {
126 // For the root collator, we write an even number of indexes
127 // so that we start with an 8-aligned offset.
128 indexesLength = CollationDataReader::IX_TOTAL_SIZE + 1;
129 U_ASSERT(settings.reorderCodesLength == 0);
130 hasMappings = TRUE;
131 unsafeBackwardSet = *data.unsafeBackwardSet;
132 fastLatinTableLength = data.fastLatinTableLength;
133 } else if(baseData == NULL) {
134 hasMappings = FALSE;
135 if(settings.reorderCodesLength == 0) {
136 // only options
137 indexesLength = CollationDataReader::IX_OPTIONS + 1; // no limit offset here
138 } else {
139 // only options, reorder codes, and the reorder table
140 indexesLength = CollationDataReader::IX_REORDER_TABLE_OFFSET + 2;
141 }
142 } else {
143 hasMappings = TRUE;
144 // Tailored mappings, and what else?
145 // Check in ascending order of optional tailoring data items.
146 indexesLength = CollationDataReader::IX_CE32S_OFFSET + 2;
147 if(data.contextsLength != 0) {
148 indexesLength = CollationDataReader::IX_CONTEXTS_OFFSET + 2;
149 }
150 unsafeBackwardSet.addAll(*data.unsafeBackwardSet).removeAll(*baseData->unsafeBackwardSet);
151 if(!unsafeBackwardSet.isEmpty()) {
152 indexesLength = CollationDataReader::IX_UNSAFE_BWD_OFFSET + 2;
153 }
154 if(data.fastLatinTable != baseData->fastLatinTable) {
155 fastLatinTableLength = data.fastLatinTableLength;
156 indexesLength = CollationDataReader::IX_FAST_LATIN_TABLE_OFFSET + 2;
157 }
158 }
159
160 UVector32 codesAndRanges(errorCode);
161 const int32_t *reorderCodes = settings.reorderCodes;
162 int32_t reorderCodesLength = settings.reorderCodesLength;
163 if(settings.hasReordering() &&
164 CollationSettings::reorderTableHasSplitBytes(settings.reorderTable)) {
165 // Rebuild the full list of reorder ranges.
166 // The list in the settings is truncated for efficiency.
167 data.makeReorderRanges(reorderCodes, reorderCodesLength, codesAndRanges, errorCode);
168 // Write the codes, then the ranges.
169 for(int32_t i = 0; i < reorderCodesLength; ++i) {
170 codesAndRanges.insertElementAt(reorderCodes[i], i, errorCode);
171 }
172 if(U_FAILURE(errorCode)) { return 0; }
173 reorderCodes = codesAndRanges.getBuffer();
174 reorderCodesLength = codesAndRanges.size();
175 }
176
177 int32_t headerSize;
178 if(isBase) {
179 headerSize = 0; // udata_create() writes the header
180 } else {
181 DataHeader header;
182 header.dataHeader.magic1 = 0xda;
183 header.dataHeader.magic2 = 0x27;
184 uprv_memcpy(&header.info, &dataInfo, sizeof(UDataInfo));
185 uprv_memcpy(header.info.dataVersion, dataVersion, sizeof(UVersionInfo));
186 headerSize = (int32_t)sizeof(header);
187 U_ASSERT((headerSize & 3) == 0); // multiple of 4 bytes
188 if(hasMappings && data.cesLength != 0) {
189 // Sum of the sizes of the data items which are
190 // not automatically multiples of 8 bytes and which are placed before the CEs.
191 int32_t sum = headerSize + (indexesLength + reorderCodesLength) * 4;
192 if((sum & 7) != 0) {
193 // We need to add padding somewhere so that the 64-bit CEs are 8-aligned.
194 // We add to the header size here.
195 // Alternatively, we could increment the indexesLength
196 // or add a few bytes to the reorderTable.
197 headerSize += 4;
198 }
199 }
200 header.dataHeader.headerSize = (uint16_t)headerSize;
201 if(headerSize <= capacity) {
202 uprv_memcpy(dest, &header, sizeof(header));
203 // Write 00 bytes so that the padding is not mistaken for a copyright string.
204 uprv_memset(dest + sizeof(header), 0, headerSize - (int32_t)sizeof(header));
205 dest += headerSize;
206 capacity -= headerSize;
207 } else {
208 dest = NULL;
209 capacity = 0;
210 }
211 }
212
213 indexes[CollationDataReader::IX_INDEXES_LENGTH] = indexesLength;
214 U_ASSERT((settings.options & ~0xffff) == 0);
215 indexes[CollationDataReader::IX_OPTIONS] =
216 data.numericPrimary | fastLatinVersion | settings.options;
217 indexes[CollationDataReader::IX_RESERVED2] = 0;
218 indexes[CollationDataReader::IX_RESERVED3] = 0;
219
220 // Byte offsets of data items all start from the start of the indexes.
221 // We add the headerSize at the very end.
222 int32_t totalSize = indexesLength * 4;
223
224 if(hasMappings && (isBase || data.jamoCE32s != baseData->jamoCE32s)) {
225 indexes[CollationDataReader::IX_JAMO_CE32S_START] = data.jamoCE32s - data.ce32s;
226 } else {
227 indexes[CollationDataReader::IX_JAMO_CE32S_START] = -1;
228 }
229
230 indexes[CollationDataReader::IX_REORDER_CODES_OFFSET] = totalSize;
231 totalSize += reorderCodesLength * 4;
232
233 indexes[CollationDataReader::IX_REORDER_TABLE_OFFSET] = totalSize;
234 if(settings.reorderTable != NULL) {
235 totalSize += 256;
236 }
237
238 indexes[CollationDataReader::IX_TRIE_OFFSET] = totalSize;
239 if(hasMappings) {
240 UErrorCode errorCode2 = U_ZERO_ERROR;
241 int32_t length;
242 if(totalSize < capacity) {
243 length = utrie2_serialize(data.trie, dest + totalSize,
244 capacity - totalSize, &errorCode2);
245 } else {
246 length = utrie2_serialize(data.trie, NULL, 0, &errorCode2);
247 }
248 if(U_FAILURE(errorCode2) && errorCode2 != U_BUFFER_OVERFLOW_ERROR) {
249 errorCode = errorCode2;
250 return 0;
251 }
252 // The trie size should be a multiple of 8 bytes due to the way
253 // compactIndex2(UNewTrie2 *trie) currently works.
254 U_ASSERT((length & 7) == 0);
255 totalSize += length;
256 }
257
258 indexes[CollationDataReader::IX_RESERVED8_OFFSET] = totalSize;
259 indexes[CollationDataReader::IX_CES_OFFSET] = totalSize;
260 if(hasMappings && data.cesLength != 0) {
261 U_ASSERT(((headerSize + totalSize) & 7) == 0);
262 totalSize += data.cesLength * 8;
263 }
264
265 indexes[CollationDataReader::IX_RESERVED10_OFFSET] = totalSize;
266 indexes[CollationDataReader::IX_CE32S_OFFSET] = totalSize;
267 if(hasMappings) {
268 totalSize += data.ce32sLength * 4;
269 }
270
271 indexes[CollationDataReader::IX_ROOT_ELEMENTS_OFFSET] = totalSize;
272 totalSize += rootElementsLength * 4;
273
274 indexes[CollationDataReader::IX_CONTEXTS_OFFSET] = totalSize;
275 if(hasMappings) {
276 totalSize += data.contextsLength * 2;
277 }
278
279 indexes[CollationDataReader::IX_UNSAFE_BWD_OFFSET] = totalSize;
280 if(hasMappings && !unsafeBackwardSet.isEmpty()) {
281 UErrorCode errorCode2 = U_ZERO_ERROR;
282 int32_t length;
283 if(totalSize < capacity) {
284 uint16_t *p = reinterpret_cast<uint16_t *>(dest + totalSize);
285 length = unsafeBackwardSet.serialize(
286 p, (capacity - totalSize) / 2, errorCode2);
287 } else {
288 length = unsafeBackwardSet.serialize(NULL, 0, errorCode2);
289 }
290 if(U_FAILURE(errorCode2) && errorCode2 != U_BUFFER_OVERFLOW_ERROR) {
291 errorCode = errorCode2;
292 return 0;
293 }
294 totalSize += length * 2;
295 }
296
297 indexes[CollationDataReader::IX_FAST_LATIN_TABLE_OFFSET] = totalSize;
298 totalSize += fastLatinTableLength * 2;
299
300 UnicodeString scripts;
301 indexes[CollationDataReader::IX_SCRIPTS_OFFSET] = totalSize;
302 if(isBase) {
303 scripts.append((UChar)data.numScripts);
304 scripts.append(reinterpret_cast<const UChar *>(data.scriptsIndex), data.numScripts + 16);
305 scripts.append(reinterpret_cast<const UChar *>(data.scriptStarts), data.scriptStartsLength);
306 totalSize += scripts.length() * 2;
307 }
308
309 indexes[CollationDataReader::IX_COMPRESSIBLE_BYTES_OFFSET] = totalSize;
310 if(isBase) {
311 totalSize += 256;
312 }
313
314 indexes[CollationDataReader::IX_RESERVED18_OFFSET] = totalSize;
315 indexes[CollationDataReader::IX_TOTAL_SIZE] = totalSize;
316
317 if(totalSize > capacity) {
318 errorCode = U_BUFFER_OVERFLOW_ERROR;
319 return headerSize + totalSize;
320 }
321
322 uprv_memcpy(dest, indexes, indexesLength * 4);
323 copyData(indexes, CollationDataReader::IX_REORDER_CODES_OFFSET, reorderCodes, dest);
324 copyData(indexes, CollationDataReader::IX_REORDER_TABLE_OFFSET, settings.reorderTable, dest);
325 // The trie has already been serialized into the dest buffer.
326 copyData(indexes, CollationDataReader::IX_CES_OFFSET, data.ces, dest);
327 copyData(indexes, CollationDataReader::IX_CE32S_OFFSET, data.ce32s, dest);
328 copyData(indexes, CollationDataReader::IX_ROOT_ELEMENTS_OFFSET, rootElements, dest);
329 copyData(indexes, CollationDataReader::IX_CONTEXTS_OFFSET, data.contexts, dest);
330 // The unsafeBackwardSet has already been serialized into the dest buffer.
331 copyData(indexes, CollationDataReader::IX_FAST_LATIN_TABLE_OFFSET, data.fastLatinTable, dest);
332 copyData(indexes, CollationDataReader::IX_SCRIPTS_OFFSET, scripts.getBuffer(), dest);
333 copyData(indexes, CollationDataReader::IX_COMPRESSIBLE_BYTES_OFFSET, data.compressibleBytes, dest);
334
335 return headerSize + totalSize;
336 }
337
338 void
copyData(const int32_t indexes[],int32_t startIndex,const void * src,uint8_t * dest)339 CollationDataWriter::copyData(const int32_t indexes[], int32_t startIndex,
340 const void *src, uint8_t *dest) {
341 int32_t start = indexes[startIndex];
342 int32_t limit = indexes[startIndex + 1];
343 if(start < limit) {
344 uprv_memcpy(dest + start, src, limit - start);
345 }
346 }
347
348 U_NAMESPACE_END
349
350 #endif // !UCONFIG_NO_COLLATION
351