1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ScheduleDAGSDNodes.h"
16 #include "InstrEmitter.h"
17 #include "SDNodeDbgValue.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/MC/MCInstrItineraries.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetInstrInfo.h"
31 #include "llvm/Target/TargetLowering.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetSubtargetInfo.h"
34 using namespace llvm;
35
36 #define DEBUG_TYPE "pre-RA-sched"
37
38 STATISTIC(LoadsClustered, "Number of loads clustered together");
39
40 // This allows the latency-based scheduler to notice high latency instructions
41 // without a target itinerary. The choice of number here has more to do with
42 // balancing scheduler heuristics than with the actual machine latency.
43 static cl::opt<int> HighLatencyCycles(
44 "sched-high-latency-cycles", cl::Hidden, cl::init(10),
45 cl::desc("Roughly estimate the number of cycles that 'long latency'"
46 "instructions take for targets with no itinerary"));
47
ScheduleDAGSDNodes(MachineFunction & mf)48 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
49 : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
50 InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
51
52 /// Run - perform scheduling.
53 ///
Run(SelectionDAG * dag,MachineBasicBlock * bb)54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55 BB = bb;
56 DAG = dag;
57
58 // Clear the scheduler's SUnit DAG.
59 ScheduleDAG::clearDAG();
60 Sequence.clear();
61
62 // Invoke the target's selection of scheduler.
63 Schedule();
64 }
65
66 /// NewSUnit - Creates a new SUnit and return a ptr to it.
67 ///
newSUnit(SDNode * N)68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
69 #ifndef NDEBUG
70 const SUnit *Addr = nullptr;
71 if (!SUnits.empty())
72 Addr = &SUnits[0];
73 #endif
74 SUnits.emplace_back(N, (unsigned)SUnits.size());
75 assert((Addr == nullptr || Addr == &SUnits[0]) &&
76 "SUnits std::vector reallocated on the fly!");
77 SUnits.back().OrigNode = &SUnits.back();
78 SUnit *SU = &SUnits.back();
79 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80 if (!N ||
81 (N->isMachineOpcode() &&
82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83 SU->SchedulingPref = Sched::None;
84 else
85 SU->SchedulingPref = TLI.getSchedulingPreference(N);
86 return SU;
87 }
88
Clone(SUnit * Old)89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90 SUnit *SU = newSUnit(Old->getNode());
91 SU->OrigNode = Old->OrigNode;
92 SU->Latency = Old->Latency;
93 SU->isVRegCycle = Old->isVRegCycle;
94 SU->isCall = Old->isCall;
95 SU->isCallOp = Old->isCallOp;
96 SU->isTwoAddress = Old->isTwoAddress;
97 SU->isCommutable = Old->isCommutable;
98 SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100 SU->isScheduleHigh = Old->isScheduleHigh;
101 SU->isScheduleLow = Old->isScheduleLow;
102 SU->SchedulingPref = Old->SchedulingPref;
103 Old->isCloned = true;
104 return SU;
105 }
106
107 /// CheckForPhysRegDependency - Check if the dependency between def and use of
108 /// a specified operand is a physical register dependency. If so, returns the
109 /// register and the cost of copying the register.
CheckForPhysRegDependency(SDNode * Def,SDNode * User,unsigned Op,const TargetRegisterInfo * TRI,const TargetInstrInfo * TII,unsigned & PhysReg,int & Cost)110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111 const TargetRegisterInfo *TRI,
112 const TargetInstrInfo *TII,
113 unsigned &PhysReg, int &Cost) {
114 if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
115 return;
116
117 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118 if (TargetRegisterInfo::isVirtualRegister(Reg))
119 return;
120
121 unsigned ResNo = User->getOperand(2).getResNo();
122 if (Def->getOpcode() == ISD::CopyFromReg &&
123 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
124 PhysReg = Reg;
125 } else if (Def->isMachineOpcode()) {
126 const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
127 if (ResNo >= II.getNumDefs() &&
128 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg)
129 PhysReg = Reg;
130 }
131
132 if (PhysReg != 0) {
133 const TargetRegisterClass *RC =
134 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
135 Cost = RC->getCopyCost();
136 }
137 }
138
139 // Helper for AddGlue to clone node operands.
CloneNodeWithValues(SDNode * N,SelectionDAG * DAG,ArrayRef<EVT> VTs,SDValue ExtraOper=SDValue ())140 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
141 SDValue ExtraOper = SDValue()) {
142 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
143 if (ExtraOper.getNode())
144 Ops.push_back(ExtraOper);
145
146 SDVTList VTList = DAG->getVTList(VTs);
147 MachineSDNode::mmo_iterator Begin = nullptr, End = nullptr;
148 MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
149
150 // Store memory references.
151 if (MN) {
152 Begin = MN->memoperands_begin();
153 End = MN->memoperands_end();
154 }
155
156 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
157
158 // Reset the memory references
159 if (MN)
160 MN->setMemRefs(Begin, End);
161 }
162
AddGlue(SDNode * N,SDValue Glue,bool AddGlue,SelectionDAG * DAG)163 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
164 SDNode *GlueDestNode = Glue.getNode();
165
166 // Don't add glue from a node to itself.
167 if (GlueDestNode == N) return false;
168
169 // Don't add a glue operand to something that already uses glue.
170 if (GlueDestNode &&
171 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
172 return false;
173 }
174 // Don't add glue to something that already has a glue value.
175 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
176
177 SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end());
178 if (AddGlue)
179 VTs.push_back(MVT::Glue);
180
181 CloneNodeWithValues(N, DAG, VTs, Glue);
182
183 return true;
184 }
185
186 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
187 // node even though simply shrinking the value list is sufficient.
RemoveUnusedGlue(SDNode * N,SelectionDAG * DAG)188 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
189 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
190 !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
191 "expected an unused glue value");
192
193 CloneNodeWithValues(N, DAG,
194 makeArrayRef(N->value_begin(), N->getNumValues() - 1));
195 }
196
197 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
198 /// This function finds loads of the same base and different offsets. If the
199 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
200 /// outputs to ensure they are scheduled together and in order. This
201 /// optimization may benefit some targets by improving cache locality.
ClusterNeighboringLoads(SDNode * Node)202 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
203 SDNode *Chain = nullptr;
204 unsigned NumOps = Node->getNumOperands();
205 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
206 Chain = Node->getOperand(NumOps-1).getNode();
207 if (!Chain)
208 return;
209
210 // Look for other loads of the same chain. Find loads that are loading from
211 // the same base pointer and different offsets.
212 SmallPtrSet<SDNode*, 16> Visited;
213 SmallVector<int64_t, 4> Offsets;
214 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
215 bool Cluster = false;
216 SDNode *Base = Node;
217 // This algorithm requires a reasonably low use count before finding a match
218 // to avoid uselessly blowing up compile time in large blocks.
219 unsigned UseCount = 0;
220 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
221 I != E && UseCount < 100; ++I, ++UseCount) {
222 SDNode *User = *I;
223 if (User == Node || !Visited.insert(User).second)
224 continue;
225 int64_t Offset1, Offset2;
226 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
227 Offset1 == Offset2)
228 // FIXME: Should be ok if they addresses are identical. But earlier
229 // optimizations really should have eliminated one of the loads.
230 continue;
231 if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
232 Offsets.push_back(Offset1);
233 O2SMap.insert(std::make_pair(Offset2, User));
234 Offsets.push_back(Offset2);
235 if (Offset2 < Offset1)
236 Base = User;
237 Cluster = true;
238 // Reset UseCount to allow more matches.
239 UseCount = 0;
240 }
241
242 if (!Cluster)
243 return;
244
245 // Sort them in increasing order.
246 std::sort(Offsets.begin(), Offsets.end());
247
248 // Check if the loads are close enough.
249 SmallVector<SDNode*, 4> Loads;
250 unsigned NumLoads = 0;
251 int64_t BaseOff = Offsets[0];
252 SDNode *BaseLoad = O2SMap[BaseOff];
253 Loads.push_back(BaseLoad);
254 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
255 int64_t Offset = Offsets[i];
256 SDNode *Load = O2SMap[Offset];
257 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
258 break; // Stop right here. Ignore loads that are further away.
259 Loads.push_back(Load);
260 ++NumLoads;
261 }
262
263 if (NumLoads == 0)
264 return;
265
266 // Cluster loads by adding MVT::Glue outputs and inputs. This also
267 // ensure they are scheduled in order of increasing addresses.
268 SDNode *Lead = Loads[0];
269 SDValue InGlue = SDValue(nullptr, 0);
270 if (AddGlue(Lead, InGlue, true, DAG))
271 InGlue = SDValue(Lead, Lead->getNumValues() - 1);
272 for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
273 bool OutGlue = I < E - 1;
274 SDNode *Load = Loads[I];
275
276 // If AddGlue fails, we could leave an unsused glue value. This should not
277 // cause any
278 if (AddGlue(Load, InGlue, OutGlue, DAG)) {
279 if (OutGlue)
280 InGlue = SDValue(Load, Load->getNumValues() - 1);
281
282 ++LoadsClustered;
283 }
284 else if (!OutGlue && InGlue.getNode())
285 RemoveUnusedGlue(InGlue.getNode(), DAG);
286 }
287 }
288
289 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
290 ///
ClusterNodes()291 void ScheduleDAGSDNodes::ClusterNodes() {
292 for (SDNode &NI : DAG->allnodes()) {
293 SDNode *Node = &NI;
294 if (!Node || !Node->isMachineOpcode())
295 continue;
296
297 unsigned Opc = Node->getMachineOpcode();
298 const MCInstrDesc &MCID = TII->get(Opc);
299 if (MCID.mayLoad())
300 // Cluster loads from "near" addresses into combined SUnits.
301 ClusterNeighboringLoads(Node);
302 }
303 }
304
BuildSchedUnits()305 void ScheduleDAGSDNodes::BuildSchedUnits() {
306 // During scheduling, the NodeId field of SDNode is used to map SDNodes
307 // to their associated SUnits by holding SUnits table indices. A value
308 // of -1 means the SDNode does not yet have an associated SUnit.
309 unsigned NumNodes = 0;
310 for (SDNode &NI : DAG->allnodes()) {
311 NI.setNodeId(-1);
312 ++NumNodes;
313 }
314
315 // Reserve entries in the vector for each of the SUnits we are creating. This
316 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
317 // invalidated.
318 // FIXME: Multiply by 2 because we may clone nodes during scheduling.
319 // This is a temporary workaround.
320 SUnits.reserve(NumNodes * 2);
321
322 // Add all nodes in depth first order.
323 SmallVector<SDNode*, 64> Worklist;
324 SmallPtrSet<SDNode*, 64> Visited;
325 Worklist.push_back(DAG->getRoot().getNode());
326 Visited.insert(DAG->getRoot().getNode());
327
328 SmallVector<SUnit*, 8> CallSUnits;
329 while (!Worklist.empty()) {
330 SDNode *NI = Worklist.pop_back_val();
331
332 // Add all operands to the worklist unless they've already been added.
333 for (const SDValue &Op : NI->op_values())
334 if (Visited.insert(Op.getNode()).second)
335 Worklist.push_back(Op.getNode());
336
337 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
338 continue;
339
340 // If this node has already been processed, stop now.
341 if (NI->getNodeId() != -1) continue;
342
343 SUnit *NodeSUnit = newSUnit(NI);
344
345 // See if anything is glued to this node, if so, add them to glued
346 // nodes. Nodes can have at most one glue input and one glue output. Glue
347 // is required to be the last operand and result of a node.
348
349 // Scan up to find glued preds.
350 SDNode *N = NI;
351 while (N->getNumOperands() &&
352 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
353 N = N->getOperand(N->getNumOperands()-1).getNode();
354 assert(N->getNodeId() == -1 && "Node already inserted!");
355 N->setNodeId(NodeSUnit->NodeNum);
356 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
357 NodeSUnit->isCall = true;
358 }
359
360 // Scan down to find any glued succs.
361 N = NI;
362 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
363 SDValue GlueVal(N, N->getNumValues()-1);
364
365 // There are either zero or one users of the Glue result.
366 bool HasGlueUse = false;
367 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
368 UI != E; ++UI)
369 if (GlueVal.isOperandOf(*UI)) {
370 HasGlueUse = true;
371 assert(N->getNodeId() == -1 && "Node already inserted!");
372 N->setNodeId(NodeSUnit->NodeNum);
373 N = *UI;
374 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
375 NodeSUnit->isCall = true;
376 break;
377 }
378 if (!HasGlueUse) break;
379 }
380
381 if (NodeSUnit->isCall)
382 CallSUnits.push_back(NodeSUnit);
383
384 // Schedule zero-latency TokenFactor below any nodes that may increase the
385 // schedule height. Otherwise, ancestors of the TokenFactor may appear to
386 // have false stalls.
387 if (NI->getOpcode() == ISD::TokenFactor)
388 NodeSUnit->isScheduleLow = true;
389
390 // If there are glue operands involved, N is now the bottom-most node
391 // of the sequence of nodes that are glued together.
392 // Update the SUnit.
393 NodeSUnit->setNode(N);
394 assert(N->getNodeId() == -1 && "Node already inserted!");
395 N->setNodeId(NodeSUnit->NodeNum);
396
397 // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
398 InitNumRegDefsLeft(NodeSUnit);
399
400 // Assign the Latency field of NodeSUnit using target-provided information.
401 computeLatency(NodeSUnit);
402 }
403
404 // Find all call operands.
405 while (!CallSUnits.empty()) {
406 SUnit *SU = CallSUnits.pop_back_val();
407 for (const SDNode *SUNode = SU->getNode(); SUNode;
408 SUNode = SUNode->getGluedNode()) {
409 if (SUNode->getOpcode() != ISD::CopyToReg)
410 continue;
411 SDNode *SrcN = SUNode->getOperand(2).getNode();
412 if (isPassiveNode(SrcN)) continue; // Not scheduled.
413 SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
414 SrcSU->isCallOp = true;
415 }
416 }
417 }
418
AddSchedEdges()419 void ScheduleDAGSDNodes::AddSchedEdges() {
420 const TargetSubtargetInfo &ST = MF.getSubtarget();
421
422 // Check to see if the scheduler cares about latencies.
423 bool UnitLatencies = forceUnitLatencies();
424
425 // Pass 2: add the preds, succs, etc.
426 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
427 SUnit *SU = &SUnits[su];
428 SDNode *MainNode = SU->getNode();
429
430 if (MainNode->isMachineOpcode()) {
431 unsigned Opc = MainNode->getMachineOpcode();
432 const MCInstrDesc &MCID = TII->get(Opc);
433 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
434 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
435 SU->isTwoAddress = true;
436 break;
437 }
438 }
439 if (MCID.isCommutable())
440 SU->isCommutable = true;
441 }
442
443 // Find all predecessors and successors of the group.
444 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
445 if (N->isMachineOpcode() &&
446 TII->get(N->getMachineOpcode()).getImplicitDefs()) {
447 SU->hasPhysRegClobbers = true;
448 unsigned NumUsed = InstrEmitter::CountResults(N);
449 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
450 --NumUsed; // Skip over unused values at the end.
451 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
452 SU->hasPhysRegDefs = true;
453 }
454
455 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
456 SDNode *OpN = N->getOperand(i).getNode();
457 if (isPassiveNode(OpN)) continue; // Not scheduled.
458 SUnit *OpSU = &SUnits[OpN->getNodeId()];
459 assert(OpSU && "Node has no SUnit!");
460 if (OpSU == SU) continue; // In the same group.
461
462 EVT OpVT = N->getOperand(i).getValueType();
463 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
464 bool isChain = OpVT == MVT::Other;
465
466 unsigned PhysReg = 0;
467 int Cost = 1;
468 // Determine if this is a physical register dependency.
469 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
470 assert((PhysReg == 0 || !isChain) &&
471 "Chain dependence via physreg data?");
472 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
473 // emits a copy from the physical register to a virtual register unless
474 // it requires a cross class copy (cost < 0). That means we are only
475 // treating "expensive to copy" register dependency as physical register
476 // dependency. This may change in the future though.
477 if (Cost >= 0 && !StressSched)
478 PhysReg = 0;
479
480 // If this is a ctrl dep, latency is 1.
481 unsigned OpLatency = isChain ? 1 : OpSU->Latency;
482 // Special-case TokenFactor chains as zero-latency.
483 if(isChain && OpN->getOpcode() == ISD::TokenFactor)
484 OpLatency = 0;
485
486 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
487 : SDep(OpSU, SDep::Data, PhysReg);
488 Dep.setLatency(OpLatency);
489 if (!isChain && !UnitLatencies) {
490 computeOperandLatency(OpN, N, i, Dep);
491 ST.adjustSchedDependency(OpSU, SU, Dep);
492 }
493
494 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
495 // Multiple register uses are combined in the same SUnit. For example,
496 // we could have a set of glued nodes with all their defs consumed by
497 // another set of glued nodes. Register pressure tracking sees this as
498 // a single use, so to keep pressure balanced we reduce the defs.
499 //
500 // We can't tell (without more book-keeping) if this results from
501 // glued nodes or duplicate operands. As long as we don't reduce
502 // NumRegDefsLeft to zero, we handle the common cases well.
503 --OpSU->NumRegDefsLeft;
504 }
505 }
506 }
507 }
508 }
509
510 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
511 /// are input. This SUnit graph is similar to the SelectionDAG, but
512 /// excludes nodes that aren't interesting to scheduling, and represents
513 /// glued together nodes with a single SUnit.
BuildSchedGraph(AliasAnalysis * AA)514 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
515 // Cluster certain nodes which should be scheduled together.
516 ClusterNodes();
517 // Populate the SUnits array.
518 BuildSchedUnits();
519 // Compute all the scheduling dependencies between nodes.
520 AddSchedEdges();
521 }
522
523 // Initialize NumNodeDefs for the current Node's opcode.
InitNodeNumDefs()524 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
525 // Check for phys reg copy.
526 if (!Node)
527 return;
528
529 if (!Node->isMachineOpcode()) {
530 if (Node->getOpcode() == ISD::CopyFromReg)
531 NodeNumDefs = 1;
532 else
533 NodeNumDefs = 0;
534 return;
535 }
536 unsigned POpc = Node->getMachineOpcode();
537 if (POpc == TargetOpcode::IMPLICIT_DEF) {
538 // No register need be allocated for this.
539 NodeNumDefs = 0;
540 return;
541 }
542 if (POpc == TargetOpcode::PATCHPOINT &&
543 Node->getValueType(0) == MVT::Other) {
544 // PATCHPOINT is defined to have one result, but it might really have none
545 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
546 // real definition.
547 NodeNumDefs = 0;
548 return;
549 }
550 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
551 // Some instructions define regs that are not represented in the selection DAG
552 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
553 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
554 DefIdx = 0;
555 }
556
557 // Construct a RegDefIter for this SUnit and find the first valid value.
RegDefIter(const SUnit * SU,const ScheduleDAGSDNodes * SD)558 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
559 const ScheduleDAGSDNodes *SD)
560 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
561 InitNodeNumDefs();
562 Advance();
563 }
564
565 // Advance to the next valid value defined by the SUnit.
Advance()566 void ScheduleDAGSDNodes::RegDefIter::Advance() {
567 for (;Node;) { // Visit all glued nodes.
568 for (;DefIdx < NodeNumDefs; ++DefIdx) {
569 if (!Node->hasAnyUseOfValue(DefIdx))
570 continue;
571 ValueType = Node->getSimpleValueType(DefIdx);
572 ++DefIdx;
573 return; // Found a normal regdef.
574 }
575 Node = Node->getGluedNode();
576 if (!Node) {
577 return; // No values left to visit.
578 }
579 InitNodeNumDefs();
580 }
581 }
582
InitNumRegDefsLeft(SUnit * SU)583 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
584 assert(SU->NumRegDefsLeft == 0 && "expect a new node");
585 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
586 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
587 ++SU->NumRegDefsLeft;
588 }
589 }
590
computeLatency(SUnit * SU)591 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
592 SDNode *N = SU->getNode();
593
594 // TokenFactor operands are considered zero latency, and some schedulers
595 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
596 // whenever node latency is nonzero.
597 if (N && N->getOpcode() == ISD::TokenFactor) {
598 SU->Latency = 0;
599 return;
600 }
601
602 // Check to see if the scheduler cares about latencies.
603 if (forceUnitLatencies()) {
604 SU->Latency = 1;
605 return;
606 }
607
608 if (!InstrItins || InstrItins->isEmpty()) {
609 if (N && N->isMachineOpcode() &&
610 TII->isHighLatencyDef(N->getMachineOpcode()))
611 SU->Latency = HighLatencyCycles;
612 else
613 SU->Latency = 1;
614 return;
615 }
616
617 // Compute the latency for the node. We use the sum of the latencies for
618 // all nodes glued together into this SUnit.
619 SU->Latency = 0;
620 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
621 if (N->isMachineOpcode())
622 SU->Latency += TII->getInstrLatency(InstrItins, N);
623 }
624
computeOperandLatency(SDNode * Def,SDNode * Use,unsigned OpIdx,SDep & dep) const625 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
626 unsigned OpIdx, SDep& dep) const{
627 // Check to see if the scheduler cares about latencies.
628 if (forceUnitLatencies())
629 return;
630
631 if (dep.getKind() != SDep::Data)
632 return;
633
634 unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
635 if (Use->isMachineOpcode())
636 // Adjust the use operand index by num of defs.
637 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
638 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
639 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
640 !BB->succ_empty()) {
641 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
642 if (TargetRegisterInfo::isVirtualRegister(Reg))
643 // This copy is a liveout value. It is likely coalesced, so reduce the
644 // latency so not to penalize the def.
645 // FIXME: need target specific adjustment here?
646 Latency = (Latency > 1) ? Latency - 1 : 1;
647 }
648 if (Latency >= 0)
649 dep.setLatency(Latency);
650 }
651
dumpNode(const SUnit * SU) const652 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
653 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
654 if (!SU->getNode()) {
655 dbgs() << "PHYS REG COPY\n";
656 return;
657 }
658
659 SU->getNode()->dump(DAG);
660 dbgs() << "\n";
661 SmallVector<SDNode *, 4> GluedNodes;
662 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
663 GluedNodes.push_back(N);
664 while (!GluedNodes.empty()) {
665 dbgs() << " ";
666 GluedNodes.back()->dump(DAG);
667 dbgs() << "\n";
668 GluedNodes.pop_back();
669 }
670 #endif
671 }
672
673 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpSchedule() const674 void ScheduleDAGSDNodes::dumpSchedule() const {
675 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
676 if (SUnit *SU = Sequence[i])
677 SU->dump(this);
678 else
679 dbgs() << "**** NOOP ****\n";
680 }
681 }
682 #endif
683
684 #ifndef NDEBUG
685 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
686 /// their state is consistent with the nodes listed in Sequence.
687 ///
VerifyScheduledSequence(bool isBottomUp)688 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
689 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
690 unsigned Noops = 0;
691 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
692 if (!Sequence[i])
693 ++Noops;
694 assert(Sequence.size() - Noops == ScheduledNodes &&
695 "The number of nodes scheduled doesn't match the expected number!");
696 }
697 #endif // NDEBUG
698
699 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
700 static void
ProcessSDDbgValues(SDNode * N,SelectionDAG * DAG,InstrEmitter & Emitter,SmallVectorImpl<std::pair<unsigned,MachineInstr * >> & Orders,DenseMap<SDValue,unsigned> & VRBaseMap,unsigned Order)701 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
702 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
703 DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
704 if (!N->getHasDebugValue())
705 return;
706
707 // Opportunistically insert immediate dbg_value uses, i.e. those with source
708 // order number right after the N.
709 MachineBasicBlock *BB = Emitter.getBlock();
710 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
711 ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
712 for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
713 if (DVs[i]->isInvalidated())
714 continue;
715 unsigned DVOrder = DVs[i]->getOrder();
716 if (!Order || DVOrder == ++Order) {
717 MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
718 if (DbgMI) {
719 Orders.push_back(std::make_pair(DVOrder, DbgMI));
720 BB->insert(InsertPos, DbgMI);
721 }
722 DVs[i]->setIsInvalidated();
723 }
724 }
725 }
726
727 // ProcessSourceNode - Process nodes with source order numbers. These are added
728 // to a vector which EmitSchedule uses to determine how to insert dbg_value
729 // instructions in the right order.
730 static void
ProcessSourceNode(SDNode * N,SelectionDAG * DAG,InstrEmitter & Emitter,DenseMap<SDValue,unsigned> & VRBaseMap,SmallVectorImpl<std::pair<unsigned,MachineInstr * >> & Orders,SmallSet<unsigned,8> & Seen)731 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
732 DenseMap<SDValue, unsigned> &VRBaseMap,
733 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
734 SmallSet<unsigned, 8> &Seen) {
735 unsigned Order = N->getIROrder();
736 if (!Order || !Seen.insert(Order).second) {
737 // Process any valid SDDbgValues even if node does not have any order
738 // assigned.
739 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
740 return;
741 }
742
743 MachineBasicBlock *BB = Emitter.getBlock();
744 if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI() ||
745 // Fast-isel may have inserted some instructions, in which case the
746 // BB->back().isPHI() test will not fire when we want it to.
747 std::prev(Emitter.getInsertPos())->isPHI()) {
748 // Did not insert any instruction.
749 Orders.push_back(std::make_pair(Order, (MachineInstr*)nullptr));
750 return;
751 }
752
753 Orders.push_back(std::make_pair(Order, std::prev(Emitter.getInsertPos())));
754 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
755 }
756
757 void ScheduleDAGSDNodes::
EmitPhysRegCopy(SUnit * SU,DenseMap<SUnit *,unsigned> & VRBaseMap,MachineBasicBlock::iterator InsertPos)758 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
759 MachineBasicBlock::iterator InsertPos) {
760 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
761 I != E; ++I) {
762 if (I->isCtrl()) continue; // ignore chain preds
763 if (I->getSUnit()->CopyDstRC) {
764 // Copy to physical register.
765 DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
766 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
767 // Find the destination physical register.
768 unsigned Reg = 0;
769 for (SUnit::const_succ_iterator II = SU->Succs.begin(),
770 EE = SU->Succs.end(); II != EE; ++II) {
771 if (II->isCtrl()) continue; // ignore chain preds
772 if (II->getReg()) {
773 Reg = II->getReg();
774 break;
775 }
776 }
777 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
778 .addReg(VRI->second);
779 } else {
780 // Copy from physical register.
781 assert(I->getReg() && "Unknown physical register!");
782 unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
783 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
784 (void)isNew; // Silence compiler warning.
785 assert(isNew && "Node emitted out of order - early");
786 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
787 .addReg(I->getReg());
788 }
789 break;
790 }
791 }
792
793 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
794 /// InsertPos and MachineBasicBlock that contains this insertion
795 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
796 /// not necessarily refer to returned BB. The emitter may split blocks.
797 MachineBasicBlock *ScheduleDAGSDNodes::
EmitSchedule(MachineBasicBlock::iterator & InsertPos)798 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
799 InstrEmitter Emitter(BB, InsertPos);
800 DenseMap<SDValue, unsigned> VRBaseMap;
801 DenseMap<SUnit*, unsigned> CopyVRBaseMap;
802 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
803 SmallSet<unsigned, 8> Seen;
804 bool HasDbg = DAG->hasDebugValues();
805
806 // If this is the first BB, emit byval parameter dbg_value's.
807 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
808 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
809 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
810 for (; PDI != PDE; ++PDI) {
811 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
812 if (DbgMI)
813 BB->insert(InsertPos, DbgMI);
814 }
815 }
816
817 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
818 SUnit *SU = Sequence[i];
819 if (!SU) {
820 // Null SUnit* is a noop.
821 TII->insertNoop(*Emitter.getBlock(), InsertPos);
822 continue;
823 }
824
825 // For pre-regalloc scheduling, create instructions corresponding to the
826 // SDNode and any glued SDNodes and append them to the block.
827 if (!SU->getNode()) {
828 // Emit a copy.
829 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
830 continue;
831 }
832
833 SmallVector<SDNode *, 4> GluedNodes;
834 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
835 GluedNodes.push_back(N);
836 while (!GluedNodes.empty()) {
837 SDNode *N = GluedNodes.back();
838 Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
839 VRBaseMap);
840 // Remember the source order of the inserted instruction.
841 if (HasDbg)
842 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
843 GluedNodes.pop_back();
844 }
845 Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
846 VRBaseMap);
847 // Remember the source order of the inserted instruction.
848 if (HasDbg)
849 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
850 Seen);
851 }
852
853 // Insert all the dbg_values which have not already been inserted in source
854 // order sequence.
855 if (HasDbg) {
856 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
857
858 // Sort the source order instructions and use the order to insert debug
859 // values.
860 std::sort(Orders.begin(), Orders.end(), less_first());
861
862 SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
863 SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
864 // Now emit the rest according to source order.
865 unsigned LastOrder = 0;
866 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
867 unsigned Order = Orders[i].first;
868 MachineInstr *MI = Orders[i].second;
869 // Insert all SDDbgValue's whose order(s) are before "Order".
870 if (!MI)
871 continue;
872 for (; DI != DE &&
873 (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
874 if ((*DI)->isInvalidated())
875 continue;
876 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
877 if (DbgMI) {
878 if (!LastOrder)
879 // Insert to start of the BB (after PHIs).
880 BB->insert(BBBegin, DbgMI);
881 else {
882 // Insert at the instruction, which may be in a different
883 // block, if the block was split by a custom inserter.
884 MachineBasicBlock::iterator Pos = MI;
885 MI->getParent()->insert(Pos, DbgMI);
886 }
887 }
888 }
889 LastOrder = Order;
890 }
891 // Add trailing DbgValue's before the terminator. FIXME: May want to add
892 // some of them before one or more conditional branches?
893 SmallVector<MachineInstr*, 8> DbgMIs;
894 while (DI != DE) {
895 if (!(*DI)->isInvalidated())
896 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
897 DbgMIs.push_back(DbgMI);
898 ++DI;
899 }
900
901 MachineBasicBlock *InsertBB = Emitter.getBlock();
902 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
903 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
904 }
905
906 InsertPos = Emitter.getInsertPos();
907 return Emitter.getBlock();
908 }
909
910 /// Return the basic block label.
getDAGName() const911 std::string ScheduleDAGSDNodes::getDAGName() const {
912 return "sunit-dag." + BB->getFullName();
913 }
914