1 /*
2 By downloading, copying, installing or using the software you agree to this license.
3 If you do not agree to this license, do not download, install,
4 copy or use the software.
5 
6 
7                           License Agreement
8                For Open Source Computer Vision Library
9                        (3-clause BSD License)
10 
11 Redistribution and use in source and binary forms, with or without modification,
12 are permitted provided that the following conditions are met:
13 
14   * Redistributions of source code must retain the above copyright notice,
15     this list of conditions and the following disclaimer.
16 
17   * Redistributions in binary form must reproduce the above copyright notice,
18     this list of conditions and the following disclaimer in the documentation
19     and/or other materials provided with the distribution.
20 
21   * Neither the names of the copyright holders nor the names of the contributors
22     may be used to endorse or promote products derived from this software
23     without specific prior written permission.
24 
25 This software is provided by the copyright holders and contributors "as is" and
26 any express or implied warranties, including, but not limited to, the implied
27 warranties of merchantability and fitness for a particular purpose are disclaimed.
28 In no event shall copyright holders or contributors be liable for any direct,
29 indirect, incidental, special, exemplary, or consequential damages
30 (including, but not limited to, procurement of substitute goods or services;
31 loss of use, data, or profits; or business interruption) however caused
32 and on any theory of liability, whether in contract, strict liability,
33 or tort (including negligence or otherwise) arising in any way out of
34 the use of this software, even if advised of the possibility of such damage.
35 */
36 
37 #ifndef __OPENCV_IMGPROC_FILTERENGINE_HPP__
38 #define __OPENCV_IMGPROC_FILTERENGINE_HPP__
39 
40 namespace cv
41 {
42 
43 //! type of the kernel
44 enum
45 {
46     KERNEL_GENERAL      = 0, // the kernel is generic. No any type of symmetry or other properties.
47     KERNEL_SYMMETRICAL  = 1, // kernel[i] == kernel[ksize-i-1] , and the anchor is at the center
48     KERNEL_ASYMMETRICAL = 2, // kernel[i] == -kernel[ksize-i-1] , and the anchor is at the center
49     KERNEL_SMOOTH       = 4, // all the kernel elements are non-negative and summed to 1
50     KERNEL_INTEGER      = 8  // all the kernel coefficients are integer numbers
51 };
52 
53 /*!
54  The Base Class for 1D or Row-wise Filters
55 
56  This is the base class for linear or non-linear filters that process 1D data.
57  In particular, such filters are used for the "horizontal" filtering parts in separable filters.
58 
59  Several functions in OpenCV return Ptr<BaseRowFilter> for the specific types of filters,
60  and those pointers can be used directly or within cv::FilterEngine.
61 */
62 class BaseRowFilter
63 {
64 public:
65     //! the default constructor
66     BaseRowFilter();
67     //! the destructor
68     virtual ~BaseRowFilter();
69     //! the filtering operator. Must be overridden in the derived classes. The horizontal border interpolation is done outside of the class.
70     virtual void operator()(const uchar* src, uchar* dst, int width, int cn) = 0;
71 
72     int ksize;
73     int anchor;
74 };
75 
76 
77 /*!
78  The Base Class for Column-wise Filters
79 
80  This is the base class for linear or non-linear filters that process columns of 2D arrays.
81  Such filters are used for the "vertical" filtering parts in separable filters.
82 
83  Several functions in OpenCV return Ptr<BaseColumnFilter> for the specific types of filters,
84  and those pointers can be used directly or within cv::FilterEngine.
85 
86  Unlike cv::BaseRowFilter, cv::BaseColumnFilter may have some context information,
87  i.e. box filter keeps the sliding sum of elements. To reset the state BaseColumnFilter::reset()
88  must be called (e.g. the method is called by cv::FilterEngine)
89  */
90 class BaseColumnFilter
91 {
92 public:
93     //! the default constructor
94     BaseColumnFilter();
95     //! the destructor
96     virtual ~BaseColumnFilter();
97     //! the filtering operator. Must be overridden in the derived classes. The vertical border interpolation is done outside of the class.
98     virtual void operator()(const uchar** src, uchar* dst, int dststep, int dstcount, int width) = 0;
99     //! resets the internal buffers, if any
100     virtual void reset();
101 
102     int ksize;
103     int anchor;
104 };
105 
106 
107 /*!
108  The Base Class for Non-Separable 2D Filters.
109 
110  This is the base class for linear or non-linear 2D filters.
111 
112  Several functions in OpenCV return Ptr<BaseFilter> for the specific types of filters,
113  and those pointers can be used directly or within cv::FilterEngine.
114 
115  Similar to cv::BaseColumnFilter, the class may have some context information,
116  that should be reset using BaseFilter::reset() method before processing the new array.
117 */
118 class BaseFilter
119 {
120 public:
121     //! the default constructor
122     BaseFilter();
123     //! the destructor
124     virtual ~BaseFilter();
125     //! the filtering operator. The horizontal and the vertical border interpolation is done outside of the class.
126     virtual void operator()(const uchar** src, uchar* dst, int dststep, int dstcount, int width, int cn) = 0;
127     //! resets the internal buffers, if any
128     virtual void reset();
129 
130     Size ksize;
131     Point anchor;
132 };
133 
134 
135 /*!
136  The Main Class for Image Filtering.
137 
138  The class can be used to apply an arbitrary filtering operation to an image.
139  It contains all the necessary intermediate buffers, it computes extrapolated values
140  of the "virtual" pixels outside of the image etc.
141  Pointers to the initialized cv::FilterEngine instances
142  are returned by various OpenCV functions, such as cv::createSeparableLinearFilter(),
143  cv::createLinearFilter(), cv::createGaussianFilter(), cv::createDerivFilter(),
144  cv::createBoxFilter() and cv::createMorphologyFilter().
145 
146  Using the class you can process large images by parts and build complex pipelines
147  that include filtering as some of the stages. If all you need is to apply some pre-defined
148  filtering operation, you may use cv::filter2D(), cv::erode(), cv::dilate() etc.
149  functions that create FilterEngine internally.
150 
151  Here is the example on how to use the class to implement Laplacian operator, which is the sum of
152  second-order derivatives. More complex variant for different types is implemented in cv::Laplacian().
153 
154  \code
155  void laplace_f(const Mat& src, Mat& dst)
156  {
157      CV_Assert( src.type() == CV_32F );
158      // make sure the destination array has the proper size and type
159      dst.create(src.size(), src.type());
160 
161      // get the derivative and smooth kernels for d2I/dx2.
162      // for d2I/dy2 we could use the same kernels, just swapped
163      Mat kd, ks;
164      getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
165 
166      // let's process 10 source rows at once
167      int DELTA = std::min(10, src.rows);
168      Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(),
169      dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
170      Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(),
171      dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
172 
173      int y = Fxx->start(src), dsty = 0, dy = 0;
174      Fyy->start(src);
175      const uchar* sptr = src.data + y*src.step;
176 
177      // allocate the buffers for the spatial image derivatives;
178      // the buffers need to have more than DELTA rows, because at the
179      // last iteration the output may take max(kd.rows-1,ks.rows-1)
180      // rows more than the input.
181      Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() );
182      Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() );
183 
184      // inside the loop we always pass DELTA rows to the filter
185      // (note that the "proceed" method takes care of possibe overflow, since
186      // it was given the actual image height in the "start" method)
187      // on output we can get:
188      //  * < DELTA rows (the initial buffer accumulation stage)
189      //  * = DELTA rows (settled state in the middle)
190      //  * > DELTA rows (then the input image is over, but we generate
191      //                  "virtual" rows using the border mode and filter them)
192      // this variable number of output rows is dy.
193      // dsty is the current output row.
194      // sptr is the pointer to the first input row in the portion to process
195      for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy )
196      {
197          Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step );
198          dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step );
199          if( dy > 0 )
200          {
201              Mat dstripe = dst.rowRange(dsty, dsty + dy);
202              add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe);
203          }
204      }
205  }
206  \endcode
207 */
208 class FilterEngine
209 {
210 public:
211     //! the default constructor
212     FilterEngine();
213     //! the full constructor. Either _filter2D or both _rowFilter and _columnFilter must be non-empty.
214     FilterEngine(const Ptr<BaseFilter>& _filter2D,
215                  const Ptr<BaseRowFilter>& _rowFilter,
216                  const Ptr<BaseColumnFilter>& _columnFilter,
217                  int srcType, int dstType, int bufType,
218                  int _rowBorderType = BORDER_REPLICATE,
219                  int _columnBorderType = -1,
220                  const Scalar& _borderValue = Scalar());
221     //! the destructor
222     virtual ~FilterEngine();
223     //! reinitializes the engine. The previously assigned filters are released.
224     void init(const Ptr<BaseFilter>& _filter2D,
225               const Ptr<BaseRowFilter>& _rowFilter,
226               const Ptr<BaseColumnFilter>& _columnFilter,
227               int srcType, int dstType, int bufType,
228               int _rowBorderType = BORDER_REPLICATE,
229               int _columnBorderType = -1,
230               const Scalar& _borderValue = Scalar());
231     //! starts filtering of the specified ROI of an image of size wholeSize.
232     virtual int start(Size wholeSize, Rect roi, int maxBufRows = -1);
233     //! starts filtering of the specified ROI of the specified image.
234     virtual int start(const Mat& src, const Rect& srcRoi = Rect(0,0,-1,-1),
235                       bool isolated = false, int maxBufRows = -1);
236     //! processes the next srcCount rows of the image.
237     virtual int proceed(const uchar* src, int srcStep, int srcCount,
238                         uchar* dst, int dstStep);
239     //! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered.
240     virtual void apply( const Mat& src, Mat& dst,
241                         const Rect& srcRoi = Rect(0,0,-1,-1),
242                         Point dstOfs = Point(0,0),
243                         bool isolated = false);
244     //! returns true if the filter is separable
isSeparable() const245     bool isSeparable() const { return !filter2D; }
246     //! returns the number
247     int remainingInputRows() const;
248     int remainingOutputRows() const;
249 
250     int srcType;
251     int dstType;
252     int bufType;
253     Size ksize;
254     Point anchor;
255     int maxWidth;
256     Size wholeSize;
257     Rect roi;
258     int dx1;
259     int dx2;
260     int rowBorderType;
261     int columnBorderType;
262     std::vector<int> borderTab;
263     int borderElemSize;
264     std::vector<uchar> ringBuf;
265     std::vector<uchar> srcRow;
266     std::vector<uchar> constBorderValue;
267     std::vector<uchar> constBorderRow;
268     int bufStep;
269     int startY;
270     int startY0;
271     int endY;
272     int rowCount;
273     int dstY;
274     std::vector<uchar*> rows;
275 
276     Ptr<BaseFilter> filter2D;
277     Ptr<BaseRowFilter> rowFilter;
278     Ptr<BaseColumnFilter> columnFilter;
279 };
280 
281 
282 //! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients.
283 int getKernelType(InputArray kernel, Point anchor);
284 
285 //! returns the primitive row filter with the specified kernel
286 Ptr<BaseRowFilter> getLinearRowFilter(int srcType, int bufType,
287                                             InputArray kernel, int anchor,
288                                             int symmetryType);
289 
290 //! returns the primitive column filter with the specified kernel
291 Ptr<BaseColumnFilter> getLinearColumnFilter(int bufType, int dstType,
292                                             InputArray kernel, int anchor,
293                                             int symmetryType, double delta = 0,
294                                             int bits = 0);
295 
296 //! returns 2D filter with the specified kernel
297 Ptr<BaseFilter> getLinearFilter(int srcType, int dstType,
298                                            InputArray kernel,
299                                            Point anchor = Point(-1,-1),
300                                            double delta = 0, int bits = 0);
301 
302 //! returns the separable linear filter engine
303 Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstType,
304                           InputArray rowKernel, InputArray columnKernel,
305                           Point anchor = Point(-1,-1), double delta = 0,
306                           int rowBorderType = BORDER_DEFAULT,
307                           int columnBorderType = -1,
308                           const Scalar& borderValue = Scalar());
309 
310 //! returns the non-separable linear filter engine
311 Ptr<FilterEngine> createLinearFilter(int srcType, int dstType,
312                  InputArray kernel, Point _anchor = Point(-1,-1),
313                  double delta = 0, int rowBorderType = BORDER_DEFAULT,
314                  int columnBorderType = -1, const Scalar& borderValue = Scalar());
315 
316 //! returns the Gaussian filter engine
317 Ptr<FilterEngine> createGaussianFilter( int type, Size ksize,
318                                     double sigma1, double sigma2 = 0,
319                                     int borderType = BORDER_DEFAULT);
320 
321 //! returns filter engine for the generalized Sobel operator
322 Ptr<FilterEngine> createDerivFilter( int srcType, int dstType,
323                                         int dx, int dy, int ksize,
324                                         int borderType = BORDER_DEFAULT );
325 
326 //! returns horizontal 1D box filter
327 Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType,
328                                               int ksize, int anchor = -1);
329 
330 //! returns vertical 1D box filter
331 Ptr<BaseColumnFilter> getColumnSumFilter( int sumType, int dstType,
332                                                      int ksize, int anchor = -1,
333                                                      double scale = 1);
334 //! returns box filter engine
335 Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize,
336                                               Point anchor = Point(-1,-1),
337                                               bool normalize = true,
338                                               int borderType = BORDER_DEFAULT);
339 
340 
341 //! returns horizontal 1D morphological filter
342 Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int anchor = -1);
343 
344 //! returns vertical 1D morphological filter
345 Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor = -1);
346 
347 //! returns 2D morphological filter
348 Ptr<BaseFilter> getMorphologyFilter(int op, int type, InputArray kernel,
349                                                Point anchor = Point(-1,-1));
350 
351 //! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
352 CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, InputArray kernel,
353                                                     Point anchor = Point(-1,-1), int rowBorderType = BORDER_CONSTANT,
354                                                     int columnBorderType = -1,
355                                                     const Scalar& borderValue = morphologyDefaultBorderValue());
356 
normalizeAnchor(Point anchor,Size ksize)357 static inline Point normalizeAnchor( Point anchor, Size ksize )
358 {
359    if( anchor.x == -1 )
360        anchor.x = ksize.width/2;
361    if( anchor.y == -1 )
362        anchor.y = ksize.height/2;
363    CV_Assert( anchor.inside(Rect(0, 0, ksize.width, ksize.height)) );
364    return anchor;
365 }
366 
367 void preprocess2DKernel( const Mat& kernel, std::vector<Point>& coords, std::vector<uchar>& coeffs );
368 void crossCorr( const Mat& src, const Mat& templ, Mat& dst,
369                Size corrsize, int ctype,
370                Point anchor=Point(0,0), double delta=0,
371                int borderType=BORDER_REFLECT_101 );
372 
373 }
374 
375 #endif
376