1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifdef _MSC_VER
16 // Provide M_PI.
17 #define _USE_MATH_DEFINES
18 #include <cmath>
19 #endif
20
21 #include "SIISelLowering.h"
22 #include "AMDGPU.h"
23 #include "AMDGPUDiagnosticInfoUnsupported.h"
24 #include "AMDGPUIntrinsicInfo.h"
25 #include "AMDGPUSubtarget.h"
26 #include "SIInstrInfo.h"
27 #include "SIMachineFunctionInfo.h"
28 #include "SIRegisterInfo.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SelectionDAG.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/ADT/SmallString.h"
36
37 using namespace llvm;
38
SITargetLowering(TargetMachine & TM,const AMDGPUSubtarget & STI)39 SITargetLowering::SITargetLowering(TargetMachine &TM,
40 const AMDGPUSubtarget &STI)
41 : AMDGPUTargetLowering(TM, STI) {
42 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
43 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
44
45 addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
46 addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
47
48 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
49 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
50
51 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
52 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
53 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
54
55 addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
56 addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
57
58 addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
59 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
60
61 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
62 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
63
64 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
65 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
66
67 computeRegisterProperties(STI.getRegisterInfo());
68
69 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
70 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
71 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
72 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
73
74 setOperationAction(ISD::ADD, MVT::i32, Legal);
75 setOperationAction(ISD::ADDC, MVT::i32, Legal);
76 setOperationAction(ISD::ADDE, MVT::i32, Legal);
77 setOperationAction(ISD::SUBC, MVT::i32, Legal);
78 setOperationAction(ISD::SUBE, MVT::i32, Legal);
79
80 setOperationAction(ISD::FSIN, MVT::f32, Custom);
81 setOperationAction(ISD::FCOS, MVT::f32, Custom);
82
83 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
84 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
85
86 // We need to custom lower vector stores from local memory
87 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
88 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
89 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
90
91 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
92 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
93
94 setOperationAction(ISD::STORE, MVT::i1, Custom);
95 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
96
97 setOperationAction(ISD::SELECT, MVT::i64, Custom);
98 setOperationAction(ISD::SELECT, MVT::f64, Promote);
99 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
100
101 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
102 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
103 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
104 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
105
106 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
107 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
108
109 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
110 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
111
112 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
113 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
114 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
115
116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
119
120 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
121 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
122 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
123
124 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
125 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
126
127 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
128 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
129 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
130 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
131
132 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
133 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
134
135 for (MVT VT : MVT::integer_valuetypes()) {
136 if (VT == MVT::i64)
137 continue;
138
139 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
140 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
141 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
142 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
143
144 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
145 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
146 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
147 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
148
149 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
150 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
151 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
152 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
153 }
154
155 for (MVT VT : MVT::integer_vector_valuetypes()) {
156 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
157 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
158 }
159
160 for (MVT VT : MVT::fp_valuetypes())
161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
162
163 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
164 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
165
166 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
167 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
168 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
169 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
170
171
172 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
173
174 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
175 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
176
177 setOperationAction(ISD::LOAD, MVT::i1, Custom);
178
179 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
180 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
181
182 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
183 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
184
185 setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
186
187 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
188 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
189 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
190
191 // These should use UDIVREM, so set them to expand
192 setOperationAction(ISD::UDIV, MVT::i64, Expand);
193 setOperationAction(ISD::UREM, MVT::i64, Expand);
194
195 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
196 setOperationAction(ISD::SELECT, MVT::i1, Promote);
197
198 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
199
200
201 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
202
203 // We only support LOAD/STORE and vector manipulation ops for vectors
204 // with > 4 elements.
205 for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
206 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
207 switch(Op) {
208 case ISD::LOAD:
209 case ISD::STORE:
210 case ISD::BUILD_VECTOR:
211 case ISD::BITCAST:
212 case ISD::EXTRACT_VECTOR_ELT:
213 case ISD::INSERT_VECTOR_ELT:
214 case ISD::INSERT_SUBVECTOR:
215 case ISD::EXTRACT_SUBVECTOR:
216 case ISD::SCALAR_TO_VECTOR:
217 break;
218 case ISD::CONCAT_VECTORS:
219 setOperationAction(Op, VT, Custom);
220 break;
221 default:
222 setOperationAction(Op, VT, Expand);
223 break;
224 }
225 }
226 }
227
228 // Most operations are naturally 32-bit vector operations. We only support
229 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
230 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
231 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
232 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
233
234 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
235 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
236
237 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
238 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
239
240 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
241 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
242 }
243
244 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
245 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
246 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
247 setOperationAction(ISD::FRINT, MVT::f64, Legal);
248 }
249
250 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
251 setOperationAction(ISD::FDIV, MVT::f32, Custom);
252 setOperationAction(ISD::FDIV, MVT::f64, Custom);
253
254 setTargetDAGCombine(ISD::FADD);
255 setTargetDAGCombine(ISD::FSUB);
256 setTargetDAGCombine(ISD::FMINNUM);
257 setTargetDAGCombine(ISD::FMAXNUM);
258 setTargetDAGCombine(ISD::SMIN);
259 setTargetDAGCombine(ISD::SMAX);
260 setTargetDAGCombine(ISD::UMIN);
261 setTargetDAGCombine(ISD::UMAX);
262 setTargetDAGCombine(ISD::SELECT_CC);
263 setTargetDAGCombine(ISD::SETCC);
264 setTargetDAGCombine(ISD::AND);
265 setTargetDAGCombine(ISD::OR);
266 setTargetDAGCombine(ISD::UINT_TO_FP);
267
268 // All memory operations. Some folding on the pointer operand is done to help
269 // matching the constant offsets in the addressing modes.
270 setTargetDAGCombine(ISD::LOAD);
271 setTargetDAGCombine(ISD::STORE);
272 setTargetDAGCombine(ISD::ATOMIC_LOAD);
273 setTargetDAGCombine(ISD::ATOMIC_STORE);
274 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
275 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
276 setTargetDAGCombine(ISD::ATOMIC_SWAP);
277 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
278 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
279 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
280 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
281 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
282 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
283 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
284 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
285 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
286 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
287
288 setSchedulingPreference(Sched::RegPressure);
289 }
290
291 //===----------------------------------------------------------------------===//
292 // TargetLowering queries
293 //===----------------------------------------------------------------------===//
294
isShuffleMaskLegal(const SmallVectorImpl<int> &,EVT) const295 bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
296 EVT) const {
297 // SI has some legal vector types, but no legal vector operations. Say no
298 // shuffles are legal in order to prefer scalarizing some vector operations.
299 return false;
300 }
301
isLegalFlatAddressingMode(const AddrMode & AM) const302 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
303 // Flat instructions do not have offsets, and only have the register
304 // address.
305 return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
306 }
307
isLegalMUBUFAddressingMode(const AddrMode & AM) const308 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
309 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
310 // additionally can do r + r + i with addr64. 32-bit has more addressing
311 // mode options. Depending on the resource constant, it can also do
312 // (i64 r0) + (i32 r1) * (i14 i).
313 //
314 // Private arrays end up using a scratch buffer most of the time, so also
315 // assume those use MUBUF instructions. Scratch loads / stores are currently
316 // implemented as mubuf instructions with offen bit set, so slightly
317 // different than the normal addr64.
318 if (!isUInt<12>(AM.BaseOffs))
319 return false;
320
321 // FIXME: Since we can split immediate into soffset and immediate offset,
322 // would it make sense to allow any immediate?
323
324 switch (AM.Scale) {
325 case 0: // r + i or just i, depending on HasBaseReg.
326 return true;
327 case 1:
328 return true; // We have r + r or r + i.
329 case 2:
330 if (AM.HasBaseReg) {
331 // Reject 2 * r + r.
332 return false;
333 }
334
335 // Allow 2 * r as r + r
336 // Or 2 * r + i is allowed as r + r + i.
337 return true;
338 default: // Don't allow n * r
339 return false;
340 }
341 }
342
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const343 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
344 const AddrMode &AM, Type *Ty,
345 unsigned AS) const {
346 // No global is ever allowed as a base.
347 if (AM.BaseGV)
348 return false;
349
350 switch (AS) {
351 case AMDGPUAS::GLOBAL_ADDRESS: {
352 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
353 // Assume the we will use FLAT for all global memory accesses
354 // on VI.
355 // FIXME: This assumption is currently wrong. On VI we still use
356 // MUBUF instructions for the r + i addressing mode. As currently
357 // implemented, the MUBUF instructions only work on buffer < 4GB.
358 // It may be possible to support > 4GB buffers with MUBUF instructions,
359 // by setting the stride value in the resource descriptor which would
360 // increase the size limit to (stride * 4GB). However, this is risky,
361 // because it has never been validated.
362 return isLegalFlatAddressingMode(AM);
363 }
364
365 return isLegalMUBUFAddressingMode(AM);
366 }
367 case AMDGPUAS::CONSTANT_ADDRESS: {
368 // If the offset isn't a multiple of 4, it probably isn't going to be
369 // correctly aligned.
370 if (AM.BaseOffs % 4 != 0)
371 return isLegalMUBUFAddressingMode(AM);
372
373 // There are no SMRD extloads, so if we have to do a small type access we
374 // will use a MUBUF load.
375 // FIXME?: We also need to do this if unaligned, but we don't know the
376 // alignment here.
377 if (DL.getTypeStoreSize(Ty) < 4)
378 return isLegalMUBUFAddressingMode(AM);
379
380 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
381 // SMRD instructions have an 8-bit, dword offset on SI.
382 if (!isUInt<8>(AM.BaseOffs / 4))
383 return false;
384 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
385 // On CI+, this can also be a 32-bit literal constant offset. If it fits
386 // in 8-bits, it can use a smaller encoding.
387 if (!isUInt<32>(AM.BaseOffs / 4))
388 return false;
389 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) {
390 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
391 if (!isUInt<20>(AM.BaseOffs))
392 return false;
393 } else
394 llvm_unreachable("unhandled generation");
395
396 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
397 return true;
398
399 if (AM.Scale == 1 && AM.HasBaseReg)
400 return true;
401
402 return false;
403 }
404
405 case AMDGPUAS::PRIVATE_ADDRESS:
406 case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
407 return isLegalMUBUFAddressingMode(AM);
408
409 case AMDGPUAS::LOCAL_ADDRESS:
410 case AMDGPUAS::REGION_ADDRESS: {
411 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
412 // field.
413 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
414 // an 8-bit dword offset but we don't know the alignment here.
415 if (!isUInt<16>(AM.BaseOffs))
416 return false;
417
418 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
419 return true;
420
421 if (AM.Scale == 1 && AM.HasBaseReg)
422 return true;
423
424 return false;
425 }
426 case AMDGPUAS::FLAT_ADDRESS:
427 return isLegalFlatAddressingMode(AM);
428
429 default:
430 llvm_unreachable("unhandled address space");
431 }
432 }
433
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Align,bool * IsFast) const434 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
435 unsigned AddrSpace,
436 unsigned Align,
437 bool *IsFast) const {
438 if (IsFast)
439 *IsFast = false;
440
441 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
442 // which isn't a simple VT.
443 if (!VT.isSimple() || VT == MVT::Other)
444 return false;
445
446 // TODO - CI+ supports unaligned memory accesses, but this requires driver
447 // support.
448
449 // XXX - The only mention I see of this in the ISA manual is for LDS direct
450 // reads the "byte address and must be dword aligned". Is it also true for the
451 // normal loads and stores?
452 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
453 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
454 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
455 // with adjacent offsets.
456 bool AlignedBy4 = (Align % 4 == 0);
457 if (IsFast)
458 *IsFast = AlignedBy4;
459 return AlignedBy4;
460 }
461
462 // Smaller than dword value must be aligned.
463 // FIXME: This should be allowed on CI+
464 if (VT.bitsLT(MVT::i32))
465 return false;
466
467 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
468 // byte-address are ignored, thus forcing Dword alignment.
469 // This applies to private, global, and constant memory.
470 if (IsFast)
471 *IsFast = true;
472
473 return VT.bitsGT(MVT::i32) && Align % 4 == 0;
474 }
475
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const476 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
477 unsigned SrcAlign, bool IsMemset,
478 bool ZeroMemset,
479 bool MemcpyStrSrc,
480 MachineFunction &MF) const {
481 // FIXME: Should account for address space here.
482
483 // The default fallback uses the private pointer size as a guess for a type to
484 // use. Make sure we switch these to 64-bit accesses.
485
486 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
487 return MVT::v4i32;
488
489 if (Size >= 8 && DstAlign >= 4)
490 return MVT::v2i32;
491
492 // Use the default.
493 return MVT::Other;
494 }
495
isFlatGlobalAddrSpace(unsigned AS)496 static bool isFlatGlobalAddrSpace(unsigned AS) {
497 return AS == AMDGPUAS::GLOBAL_ADDRESS ||
498 AS == AMDGPUAS::FLAT_ADDRESS ||
499 AS == AMDGPUAS::CONSTANT_ADDRESS;
500 }
501
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS) const502 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
503 unsigned DestAS) const {
504 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
505 }
506
507
isMemOpUniform(const SDNode * N) const508 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
509 const MemSDNode *MemNode = cast<MemSDNode>(N);
510 const Value *Ptr = MemNode->getMemOperand()->getValue();
511
512 // UndefValue means this is a load of a kernel input. These are uniform.
513 // Sometimes LDS instructions have constant pointers
514 if (isa<UndefValue>(Ptr) || isa<Argument>(Ptr) || isa<Constant>(Ptr) ||
515 isa<GlobalValue>(Ptr))
516 return true;
517
518 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
519 return I && I->getMetadata("amdgpu.uniform");
520 }
521
522 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const523 SITargetLowering::getPreferredVectorAction(EVT VT) const {
524 if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
525 return TypeSplitVector;
526
527 return TargetLoweringBase::getPreferredVectorAction(VT);
528 }
529
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const530 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
531 Type *Ty) const {
532 const SIInstrInfo *TII =
533 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
534 return TII->isInlineConstant(Imm);
535 }
536
LowerParameter(SelectionDAG & DAG,EVT VT,EVT MemVT,SDLoc SL,SDValue Chain,unsigned Offset,bool Signed) const537 SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
538 SDLoc SL, SDValue Chain,
539 unsigned Offset, bool Signed) const {
540 const DataLayout &DL = DAG.getDataLayout();
541 MachineFunction &MF = DAG.getMachineFunction();
542 const SIRegisterInfo *TRI =
543 static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
544 unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
545
546 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
547
548 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
549 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
550 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
551 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
552 MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
553 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
554 DAG.getConstant(Offset, SL, PtrVT));
555 SDValue PtrOffset = DAG.getUNDEF(PtrVT);
556 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
557
558 unsigned Align = DL.getABITypeAlignment(Ty);
559
560 ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
561 if (MemVT.isFloatingPoint())
562 ExtTy = ISD::EXTLOAD;
563
564 return DAG.getLoad(ISD::UNINDEXED, ExtTy,
565 VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
566 false, // isVolatile
567 true, // isNonTemporal
568 true, // isInvariant
569 Align); // Alignment
570 }
571
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const572 SDValue SITargetLowering::LowerFormalArguments(
573 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
574 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
575 SmallVectorImpl<SDValue> &InVals) const {
576 const SIRegisterInfo *TRI =
577 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
578
579 MachineFunction &MF = DAG.getMachineFunction();
580 FunctionType *FType = MF.getFunction()->getFunctionType();
581 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
582 const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
583
584 if (Subtarget->isAmdHsaOS() && Info->getShaderType() != ShaderType::COMPUTE) {
585 const Function *Fn = MF.getFunction();
586 DiagnosticInfoUnsupported NoGraphicsHSA(*Fn, "non-compute shaders with HSA");
587 DAG.getContext()->diagnose(NoGraphicsHSA);
588 return SDValue();
589 }
590
591 // FIXME: We currently assume all calling conventions are kernels.
592
593 SmallVector<ISD::InputArg, 16> Splits;
594 BitVector Skipped(Ins.size());
595
596 for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
597 const ISD::InputArg &Arg = Ins[i];
598
599 // First check if it's a PS input addr
600 if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
601 !Arg.Flags.isByVal()) {
602
603 assert((PSInputNum <= 15) && "Too many PS inputs!");
604
605 if (!Arg.Used) {
606 // We can safely skip PS inputs
607 Skipped.set(i);
608 ++PSInputNum;
609 continue;
610 }
611
612 Info->PSInputAddr |= 1 << PSInputNum++;
613 }
614
615 // Second split vertices into their elements
616 if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
617 ISD::InputArg NewArg = Arg;
618 NewArg.Flags.setSplit();
619 NewArg.VT = Arg.VT.getVectorElementType();
620
621 // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
622 // three or five element vertex only needs three or five registers,
623 // NOT four or eight.
624 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
625 unsigned NumElements = ParamType->getVectorNumElements();
626
627 for (unsigned j = 0; j != NumElements; ++j) {
628 Splits.push_back(NewArg);
629 NewArg.PartOffset += NewArg.VT.getStoreSize();
630 }
631
632 } else if (Info->getShaderType() != ShaderType::COMPUTE) {
633 Splits.push_back(Arg);
634 }
635 }
636
637 SmallVector<CCValAssign, 16> ArgLocs;
638 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
639 *DAG.getContext());
640
641 // At least one interpolation mode must be enabled or else the GPU will hang.
642 if (Info->getShaderType() == ShaderType::PIXEL &&
643 (Info->PSInputAddr & 0x7F) == 0) {
644 Info->PSInputAddr |= 1;
645 CCInfo.AllocateReg(AMDGPU::VGPR0);
646 CCInfo.AllocateReg(AMDGPU::VGPR1);
647 }
648
649 if (Info->getShaderType() == ShaderType::COMPUTE) {
650 getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
651 Splits);
652 }
653
654 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
655 if (Info->hasPrivateSegmentBuffer()) {
656 unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
657 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
658 CCInfo.AllocateReg(PrivateSegmentBufferReg);
659 }
660
661 if (Info->hasDispatchPtr()) {
662 unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
663 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass);
664 CCInfo.AllocateReg(DispatchPtrReg);
665 }
666
667 if (Info->hasKernargSegmentPtr()) {
668 unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
669 MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
670 CCInfo.AllocateReg(InputPtrReg);
671 }
672
673 AnalyzeFormalArguments(CCInfo, Splits);
674
675 SmallVector<SDValue, 16> Chains;
676
677 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
678
679 const ISD::InputArg &Arg = Ins[i];
680 if (Skipped[i]) {
681 InVals.push_back(DAG.getUNDEF(Arg.VT));
682 continue;
683 }
684
685 CCValAssign &VA = ArgLocs[ArgIdx++];
686 MVT VT = VA.getLocVT();
687
688 if (VA.isMemLoc()) {
689 VT = Ins[i].VT;
690 EVT MemVT = Splits[i].VT;
691 const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
692 VA.getLocMemOffset();
693 // The first 36 bytes of the input buffer contains information about
694 // thread group and global sizes.
695 SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, Chain,
696 Offset, Ins[i].Flags.isSExt());
697 Chains.push_back(Arg.getValue(1));
698
699 auto *ParamTy =
700 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
701 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
702 ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
703 // On SI local pointers are just offsets into LDS, so they are always
704 // less than 16-bits. On CI and newer they could potentially be
705 // real pointers, so we can't guarantee their size.
706 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
707 DAG.getValueType(MVT::i16));
708 }
709
710 InVals.push_back(Arg);
711 Info->ABIArgOffset = Offset + MemVT.getStoreSize();
712 continue;
713 }
714 assert(VA.isRegLoc() && "Parameter must be in a register!");
715
716 unsigned Reg = VA.getLocReg();
717
718 if (VT == MVT::i64) {
719 // For now assume it is a pointer
720 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
721 &AMDGPU::SReg_64RegClass);
722 Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
723 SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
724 InVals.push_back(Copy);
725 continue;
726 }
727
728 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
729
730 Reg = MF.addLiveIn(Reg, RC);
731 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
732
733 if (Arg.VT.isVector()) {
734
735 // Build a vector from the registers
736 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
737 unsigned NumElements = ParamType->getVectorNumElements();
738
739 SmallVector<SDValue, 4> Regs;
740 Regs.push_back(Val);
741 for (unsigned j = 1; j != NumElements; ++j) {
742 Reg = ArgLocs[ArgIdx++].getLocReg();
743 Reg = MF.addLiveIn(Reg, RC);
744
745 SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
746 Regs.push_back(Copy);
747 }
748
749 // Fill up the missing vector elements
750 NumElements = Arg.VT.getVectorNumElements() - NumElements;
751 Regs.append(NumElements, DAG.getUNDEF(VT));
752
753 InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
754 continue;
755 }
756
757 InVals.push_back(Val);
758 }
759
760 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
761 // these from the dispatch pointer.
762
763 // Start adding system SGPRs.
764 if (Info->hasWorkGroupIDX()) {
765 unsigned Reg = Info->addWorkGroupIDX();
766 MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
767 CCInfo.AllocateReg(Reg);
768 } else
769 llvm_unreachable("work group id x is always enabled");
770
771 if (Info->hasWorkGroupIDY()) {
772 unsigned Reg = Info->addWorkGroupIDY();
773 MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
774 CCInfo.AllocateReg(Reg);
775 }
776
777 if (Info->hasWorkGroupIDZ()) {
778 unsigned Reg = Info->addWorkGroupIDZ();
779 MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
780 CCInfo.AllocateReg(Reg);
781 }
782
783 if (Info->hasWorkGroupInfo()) {
784 unsigned Reg = Info->addWorkGroupInfo();
785 MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
786 CCInfo.AllocateReg(Reg);
787 }
788
789 if (Info->hasPrivateSegmentWaveByteOffset()) {
790 // Scratch wave offset passed in system SGPR.
791 unsigned PrivateSegmentWaveByteOffsetReg
792 = Info->addPrivateSegmentWaveByteOffset();
793
794 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
795 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
796 }
797
798 // Now that we've figured out where the scratch register inputs are, see if
799 // should reserve the arguments and use them directly.
800
801 bool HasStackObjects = MF.getFrameInfo()->hasStackObjects();
802
803 if (ST.isAmdHsaOS()) {
804 // TODO: Assume we will spill without optimizations.
805 if (HasStackObjects) {
806 // If we have stack objects, we unquestionably need the private buffer
807 // resource. For the HSA ABI, this will be the first 4 user SGPR
808 // inputs. We can reserve those and use them directly.
809
810 unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
811 MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
812 Info->setScratchRSrcReg(PrivateSegmentBufferReg);
813
814 unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
815 MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
816 Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
817 } else {
818 unsigned ReservedBufferReg
819 = TRI->reservedPrivateSegmentBufferReg(MF);
820 unsigned ReservedOffsetReg
821 = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
822
823 // We tentatively reserve the last registers (skipping the last two
824 // which may contain VCC). After register allocation, we'll replace
825 // these with the ones immediately after those which were really
826 // allocated. In the prologue copies will be inserted from the argument
827 // to these reserved registers.
828 Info->setScratchRSrcReg(ReservedBufferReg);
829 Info->setScratchWaveOffsetReg(ReservedOffsetReg);
830 }
831 } else {
832 unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
833
834 // Without HSA, relocations are used for the scratch pointer and the
835 // buffer resource setup is always inserted in the prologue. Scratch wave
836 // offset is still in an input SGPR.
837 Info->setScratchRSrcReg(ReservedBufferReg);
838
839 if (HasStackObjects) {
840 unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
841 MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
842 Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
843 } else {
844 unsigned ReservedOffsetReg
845 = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
846 Info->setScratchWaveOffsetReg(ReservedOffsetReg);
847 }
848 }
849
850 if (Info->hasWorkItemIDX()) {
851 unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
852 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
853 CCInfo.AllocateReg(Reg);
854 } else
855 llvm_unreachable("workitem id x should always be enabled");
856
857 if (Info->hasWorkItemIDY()) {
858 unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
859 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
860 CCInfo.AllocateReg(Reg);
861 }
862
863 if (Info->hasWorkItemIDZ()) {
864 unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
865 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
866 CCInfo.AllocateReg(Reg);
867 }
868
869 if (Chains.empty())
870 return Chain;
871
872 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
873 }
874
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const875 MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
876 MachineInstr * MI, MachineBasicBlock * BB) const {
877
878 switch (MI->getOpcode()) {
879 default:
880 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
881 case AMDGPU::BRANCH:
882 return BB;
883 }
884 return BB;
885 }
886
enableAggressiveFMAFusion(EVT VT) const887 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
888 // This currently forces unfolding various combinations of fsub into fma with
889 // free fneg'd operands. As long as we have fast FMA (controlled by
890 // isFMAFasterThanFMulAndFAdd), we should perform these.
891
892 // When fma is quarter rate, for f64 where add / sub are at best half rate,
893 // most of these combines appear to be cycle neutral but save on instruction
894 // count / code size.
895 return true;
896 }
897
getSetCCResultType(const DataLayout & DL,LLVMContext & Ctx,EVT VT) const898 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
899 EVT VT) const {
900 if (!VT.isVector()) {
901 return MVT::i1;
902 }
903 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
904 }
905
getScalarShiftAmountTy(const DataLayout &,EVT) const906 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const {
907 return MVT::i32;
908 }
909
910 // Answering this is somewhat tricky and depends on the specific device which
911 // have different rates for fma or all f64 operations.
912 //
913 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
914 // regardless of which device (although the number of cycles differs between
915 // devices), so it is always profitable for f64.
916 //
917 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
918 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
919 // which we can always do even without fused FP ops since it returns the same
920 // result as the separate operations and since it is always full
921 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
922 // however does not support denormals, so we do report fma as faster if we have
923 // a fast fma device and require denormals.
924 //
isFMAFasterThanFMulAndFAdd(EVT VT) const925 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
926 VT = VT.getScalarType();
927
928 if (!VT.isSimple())
929 return false;
930
931 switch (VT.getSimpleVT().SimpleTy) {
932 case MVT::f32:
933 // This is as fast on some subtargets. However, we always have full rate f32
934 // mad available which returns the same result as the separate operations
935 // which we should prefer over fma. We can't use this if we want to support
936 // denormals, so only report this in these cases.
937 return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
938 case MVT::f64:
939 return true;
940 default:
941 break;
942 }
943
944 return false;
945 }
946
947 //===----------------------------------------------------------------------===//
948 // Custom DAG Lowering Operations
949 //===----------------------------------------------------------------------===//
950
LowerOperation(SDValue Op,SelectionDAG & DAG) const951 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
952 switch (Op.getOpcode()) {
953 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
954 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
955 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
956 case ISD::LOAD: {
957 SDValue Result = LowerLOAD(Op, DAG);
958 assert((!Result.getNode() ||
959 Result.getNode()->getNumValues() == 2) &&
960 "Load should return a value and a chain");
961 return Result;
962 }
963
964 case ISD::FSIN:
965 case ISD::FCOS:
966 return LowerTrig(Op, DAG);
967 case ISD::SELECT: return LowerSELECT(Op, DAG);
968 case ISD::FDIV: return LowerFDIV(Op, DAG);
969 case ISD::STORE: return LowerSTORE(Op, DAG);
970 case ISD::GlobalAddress: {
971 MachineFunction &MF = DAG.getMachineFunction();
972 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
973 return LowerGlobalAddress(MFI, Op, DAG);
974 }
975 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
976 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
977 }
978 return SDValue();
979 }
980
981 /// \brief Helper function for LowerBRCOND
findUser(SDValue Value,unsigned Opcode)982 static SDNode *findUser(SDValue Value, unsigned Opcode) {
983
984 SDNode *Parent = Value.getNode();
985 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
986 I != E; ++I) {
987
988 if (I.getUse().get() != Value)
989 continue;
990
991 if (I->getOpcode() == Opcode)
992 return *I;
993 }
994 return nullptr;
995 }
996
LowerFrameIndex(SDValue Op,SelectionDAG & DAG) const997 SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
998
999 SDLoc SL(Op);
1000 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
1001 unsigned FrameIndex = FINode->getIndex();
1002
1003 // A FrameIndex node represents a 32-bit offset into scratch memory. If
1004 // the high bit of a frame index offset were to be set, this would mean
1005 // that it represented an offset of ~2GB * 64 = ~128GB from the start of the
1006 // scratch buffer, with 64 being the number of threads per wave.
1007 //
1008 // If we know the machine uses less than 128GB of scratch, then we can
1009 // amrk the high bit of the FrameIndex node as known zero,
1010 // which is important, because it means in most situations we can
1011 // prove that values derived from FrameIndex nodes are non-negative.
1012 // This enables us to take advantage of more addressing modes when
1013 // accessing scratch buffers, since for scratch reads/writes, the register
1014 // offset must always be positive.
1015
1016 SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
1017 if (Subtarget->enableHugeScratchBuffer())
1018 return TFI;
1019
1020 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI,
1021 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 31)));
1022 }
1023
1024 /// This transforms the control flow intrinsics to get the branch destination as
1025 /// last parameter, also switches branch target with BR if the need arise
LowerBRCOND(SDValue BRCOND,SelectionDAG & DAG) const1026 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
1027 SelectionDAG &DAG) const {
1028
1029 SDLoc DL(BRCOND);
1030
1031 SDNode *Intr = BRCOND.getOperand(1).getNode();
1032 SDValue Target = BRCOND.getOperand(2);
1033 SDNode *BR = nullptr;
1034
1035 if (Intr->getOpcode() == ISD::SETCC) {
1036 // As long as we negate the condition everything is fine
1037 SDNode *SetCC = Intr;
1038 assert(SetCC->getConstantOperandVal(1) == 1);
1039 assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
1040 ISD::SETNE);
1041 Intr = SetCC->getOperand(0).getNode();
1042
1043 } else {
1044 // Get the target from BR if we don't negate the condition
1045 BR = findUser(BRCOND, ISD::BR);
1046 Target = BR->getOperand(1);
1047 }
1048
1049 assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
1050
1051 // Build the result and
1052 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
1053
1054 // operands of the new intrinsic call
1055 SmallVector<SDValue, 4> Ops;
1056 Ops.push_back(BRCOND.getOperand(0));
1057 Ops.append(Intr->op_begin() + 1, Intr->op_end());
1058 Ops.push_back(Target);
1059
1060 // build the new intrinsic call
1061 SDNode *Result = DAG.getNode(
1062 Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
1063 DAG.getVTList(Res), Ops).getNode();
1064
1065 if (BR) {
1066 // Give the branch instruction our target
1067 SDValue Ops[] = {
1068 BR->getOperand(0),
1069 BRCOND.getOperand(2)
1070 };
1071 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
1072 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
1073 BR = NewBR.getNode();
1074 }
1075
1076 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
1077
1078 // Copy the intrinsic results to registers
1079 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
1080 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
1081 if (!CopyToReg)
1082 continue;
1083
1084 Chain = DAG.getCopyToReg(
1085 Chain, DL,
1086 CopyToReg->getOperand(1),
1087 SDValue(Result, i - 1),
1088 SDValue());
1089
1090 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
1091 }
1092
1093 // Remove the old intrinsic from the chain
1094 DAG.ReplaceAllUsesOfValueWith(
1095 SDValue(Intr, Intr->getNumValues() - 1),
1096 Intr->getOperand(0));
1097
1098 return Chain;
1099 }
1100
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const1101 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
1102 SDValue Op,
1103 SelectionDAG &DAG) const {
1104 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
1105
1106 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
1107 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
1108
1109 SDLoc DL(GSD);
1110 const GlobalValue *GV = GSD->getGlobal();
1111 MVT PtrVT = getPointerTy(DAG.getDataLayout(), GSD->getAddressSpace());
1112
1113 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
1114 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT, GA);
1115 }
1116
copyToM0(SelectionDAG & DAG,SDValue Chain,SDLoc DL,SDValue V) const1117 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL,
1118 SDValue V) const {
1119 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
1120 // so we will end up with redundant moves to m0.
1121 //
1122 // We can't use S_MOV_B32, because there is no way to specify m0 as the
1123 // destination register.
1124 //
1125 // We have to use them both. Machine cse will combine all the S_MOV_B32
1126 // instructions and the register coalescer eliminate the extra copies.
1127 SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V);
1128 return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32),
1129 SDValue(M0, 0), SDValue()); // Glue
1130 // A Null SDValue creates
1131 // a glue result.
1132 }
1133
lowerImplicitZextParam(SelectionDAG & DAG,SDValue Op,MVT VT,unsigned Offset) const1134 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
1135 SDValue Op,
1136 MVT VT,
1137 unsigned Offset) const {
1138 SDLoc SL(Op);
1139 SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
1140 DAG.getEntryNode(), Offset, false);
1141 // The local size values will have the hi 16-bits as zero.
1142 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
1143 DAG.getValueType(VT));
1144 }
1145
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const1146 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
1147 SelectionDAG &DAG) const {
1148 MachineFunction &MF = DAG.getMachineFunction();
1149 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
1150 const SIRegisterInfo *TRI =
1151 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
1152
1153 EVT VT = Op.getValueType();
1154 SDLoc DL(Op);
1155 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1156
1157 // TODO: Should this propagate fast-math-flags?
1158
1159 switch (IntrinsicID) {
1160 case Intrinsic::amdgcn_dispatch_ptr:
1161 return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
1162 TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_PTR), VT);
1163
1164 case Intrinsic::r600_read_ngroups_x:
1165 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1166 SI::KernelInputOffsets::NGROUPS_X, false);
1167 case Intrinsic::r600_read_ngroups_y:
1168 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1169 SI::KernelInputOffsets::NGROUPS_Y, false);
1170 case Intrinsic::r600_read_ngroups_z:
1171 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1172 SI::KernelInputOffsets::NGROUPS_Z, false);
1173 case Intrinsic::r600_read_global_size_x:
1174 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1175 SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
1176 case Intrinsic::r600_read_global_size_y:
1177 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1178 SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
1179 case Intrinsic::r600_read_global_size_z:
1180 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1181 SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
1182 case Intrinsic::r600_read_local_size_x:
1183 return lowerImplicitZextParam(DAG, Op, MVT::i16,
1184 SI::KernelInputOffsets::LOCAL_SIZE_X);
1185 case Intrinsic::r600_read_local_size_y:
1186 return lowerImplicitZextParam(DAG, Op, MVT::i16,
1187 SI::KernelInputOffsets::LOCAL_SIZE_Y);
1188 case Intrinsic::r600_read_local_size_z:
1189 return lowerImplicitZextParam(DAG, Op, MVT::i16,
1190 SI::KernelInputOffsets::LOCAL_SIZE_Z);
1191 case Intrinsic::AMDGPU_read_workdim:
1192 // Really only 2 bits.
1193 return lowerImplicitZextParam(DAG, Op, MVT::i8,
1194 getImplicitParameterOffset(MFI, GRID_DIM));
1195 case Intrinsic::r600_read_tgid_x:
1196 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1197 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
1198 case Intrinsic::r600_read_tgid_y:
1199 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1200 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
1201 case Intrinsic::r600_read_tgid_z:
1202 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1203 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
1204 case Intrinsic::r600_read_tidig_x:
1205 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1206 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
1207 case Intrinsic::r600_read_tidig_y:
1208 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1209 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
1210 case Intrinsic::r600_read_tidig_z:
1211 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1212 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
1213 case AMDGPUIntrinsic::SI_load_const: {
1214 SDValue Ops[] = {
1215 Op.getOperand(1),
1216 Op.getOperand(2)
1217 };
1218
1219 MachineMemOperand *MMO = MF.getMachineMemOperand(
1220 MachinePointerInfo(),
1221 MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
1222 VT.getStoreSize(), 4);
1223 return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
1224 Op->getVTList(), Ops, VT, MMO);
1225 }
1226 case AMDGPUIntrinsic::SI_sample:
1227 return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
1228 case AMDGPUIntrinsic::SI_sampleb:
1229 return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
1230 case AMDGPUIntrinsic::SI_sampled:
1231 return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
1232 case AMDGPUIntrinsic::SI_samplel:
1233 return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
1234 case AMDGPUIntrinsic::SI_vs_load_input:
1235 return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
1236 Op.getOperand(1),
1237 Op.getOperand(2),
1238 Op.getOperand(3));
1239
1240 case AMDGPUIntrinsic::AMDGPU_fract:
1241 case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
1242 return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1),
1243 DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1)));
1244 case AMDGPUIntrinsic::SI_fs_constant: {
1245 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1246 SDValue Glue = M0.getValue(1);
1247 return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
1248 DAG.getConstant(2, DL, MVT::i32), // P0
1249 Op.getOperand(1), Op.getOperand(2), Glue);
1250 }
1251 case AMDGPUIntrinsic::SI_packf16:
1252 if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
1253 return DAG.getUNDEF(MVT::i32);
1254 return Op;
1255 case AMDGPUIntrinsic::SI_fs_interp: {
1256 SDValue IJ = Op.getOperand(4);
1257 SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1258 DAG.getConstant(0, DL, MVT::i32));
1259 SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1260 DAG.getConstant(1, DL, MVT::i32));
1261 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1262 SDValue Glue = M0.getValue(1);
1263 SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
1264 DAG.getVTList(MVT::f32, MVT::Glue),
1265 I, Op.getOperand(1), Op.getOperand(2), Glue);
1266 Glue = SDValue(P1.getNode(), 1);
1267 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
1268 Op.getOperand(1), Op.getOperand(2), Glue);
1269 }
1270 case Intrinsic::amdgcn_interp_p1: {
1271 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
1272 SDValue Glue = M0.getValue(1);
1273 return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
1274 Op.getOperand(2), Op.getOperand(3), Glue);
1275 }
1276 case Intrinsic::amdgcn_interp_p2: {
1277 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
1278 SDValue Glue = SDValue(M0.getNode(), 1);
1279 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
1280 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
1281 Glue);
1282 }
1283 default:
1284 return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1285 }
1286 }
1287
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const1288 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
1289 SelectionDAG &DAG) const {
1290 MachineFunction &MF = DAG.getMachineFunction();
1291 SDLoc DL(Op);
1292 SDValue Chain = Op.getOperand(0);
1293 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1294
1295 switch (IntrinsicID) {
1296 case AMDGPUIntrinsic::SI_sendmsg: {
1297 Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
1298 SDValue Glue = Chain.getValue(1);
1299 return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
1300 Op.getOperand(2), Glue);
1301 }
1302 case AMDGPUIntrinsic::SI_tbuffer_store: {
1303 SDValue Ops[] = {
1304 Chain,
1305 Op.getOperand(2),
1306 Op.getOperand(3),
1307 Op.getOperand(4),
1308 Op.getOperand(5),
1309 Op.getOperand(6),
1310 Op.getOperand(7),
1311 Op.getOperand(8),
1312 Op.getOperand(9),
1313 Op.getOperand(10),
1314 Op.getOperand(11),
1315 Op.getOperand(12),
1316 Op.getOperand(13),
1317 Op.getOperand(14)
1318 };
1319
1320 EVT VT = Op.getOperand(3).getValueType();
1321
1322 MachineMemOperand *MMO = MF.getMachineMemOperand(
1323 MachinePointerInfo(),
1324 MachineMemOperand::MOStore,
1325 VT.getStoreSize(), 4);
1326 return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
1327 Op->getVTList(), Ops, VT, MMO);
1328 }
1329 default:
1330 return SDValue();
1331 }
1332 }
1333
LowerLOAD(SDValue Op,SelectionDAG & DAG) const1334 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1335 SDLoc DL(Op);
1336 LoadSDNode *Load = cast<LoadSDNode>(Op);
1337
1338 if (Op.getValueType().isVector()) {
1339 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
1340 "Custom lowering for non-i32 vectors hasn't been implemented.");
1341 unsigned NumElements = Op.getValueType().getVectorNumElements();
1342 assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
1343
1344 switch (Load->getAddressSpace()) {
1345 default: break;
1346 case AMDGPUAS::CONSTANT_ADDRESS:
1347 if (isMemOpUniform(Load))
1348 break;
1349 // Non-uniform loads will be selected to MUBUF instructions, so they
1350 // have the same legalization requires ments as global and private
1351 // loads.
1352 //
1353 // Fall-through
1354 case AMDGPUAS::GLOBAL_ADDRESS:
1355 case AMDGPUAS::PRIVATE_ADDRESS:
1356 if (NumElements >= 8)
1357 return SplitVectorLoad(Op, DAG);
1358
1359 // v4 loads are supported for private and global memory.
1360 if (NumElements <= 4)
1361 break;
1362 // fall-through
1363 case AMDGPUAS::LOCAL_ADDRESS:
1364 // If properly aligned, if we split we might be able to use ds_read_b64.
1365 return SplitVectorLoad(Op, DAG);
1366 }
1367 }
1368
1369 return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
1370 }
1371
LowerSampleIntrinsic(unsigned Opcode,const SDValue & Op,SelectionDAG & DAG) const1372 SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
1373 const SDValue &Op,
1374 SelectionDAG &DAG) const {
1375 return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
1376 Op.getOperand(2),
1377 Op.getOperand(3),
1378 Op.getOperand(4));
1379 }
1380
LowerSELECT(SDValue Op,SelectionDAG & DAG) const1381 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1382 if (Op.getValueType() != MVT::i64)
1383 return SDValue();
1384
1385 SDLoc DL(Op);
1386 SDValue Cond = Op.getOperand(0);
1387
1388 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
1389 SDValue One = DAG.getConstant(1, DL, MVT::i32);
1390
1391 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
1392 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
1393
1394 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
1395 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
1396
1397 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
1398
1399 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
1400 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
1401
1402 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
1403
1404 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
1405 return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
1406 }
1407
1408 // Catch division cases where we can use shortcuts with rcp and rsq
1409 // instructions.
LowerFastFDIV(SDValue Op,SelectionDAG & DAG) const1410 SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
1411 SDLoc SL(Op);
1412 SDValue LHS = Op.getOperand(0);
1413 SDValue RHS = Op.getOperand(1);
1414 EVT VT = Op.getValueType();
1415 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
1416
1417 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
1418 if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
1419 CLHS->isExactlyValue(1.0)) {
1420 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
1421 // the CI documentation has a worst case error of 1 ulp.
1422 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
1423 // use it as long as we aren't trying to use denormals.
1424
1425 // 1.0 / sqrt(x) -> rsq(x)
1426 //
1427 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
1428 // error seems really high at 2^29 ULP.
1429 if (RHS.getOpcode() == ISD::FSQRT)
1430 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
1431
1432 // 1.0 / x -> rcp(x)
1433 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1434 }
1435 }
1436
1437 if (Unsafe) {
1438 // Turn into multiply by the reciprocal.
1439 // x / y -> x * (1.0 / y)
1440 SDNodeFlags Flags;
1441 Flags.setUnsafeAlgebra(true);
1442 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1443 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
1444 }
1445
1446 return SDValue();
1447 }
1448
LowerFDIV32(SDValue Op,SelectionDAG & DAG) const1449 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
1450 SDValue FastLowered = LowerFastFDIV(Op, DAG);
1451 if (FastLowered.getNode())
1452 return FastLowered;
1453
1454 // This uses v_rcp_f32 which does not handle denormals. Let this hit a
1455 // selection error for now rather than do something incorrect.
1456 if (Subtarget->hasFP32Denormals())
1457 return SDValue();
1458
1459 SDLoc SL(Op);
1460 SDValue LHS = Op.getOperand(0);
1461 SDValue RHS = Op.getOperand(1);
1462
1463 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
1464
1465 const APFloat K0Val(BitsToFloat(0x6f800000));
1466 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
1467
1468 const APFloat K1Val(BitsToFloat(0x2f800000));
1469 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
1470
1471 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1472
1473 EVT SetCCVT =
1474 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1475
1476 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
1477
1478 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
1479
1480 // TODO: Should this propagate fast-math-flags?
1481
1482 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
1483
1484 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
1485
1486 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
1487
1488 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
1489 }
1490
LowerFDIV64(SDValue Op,SelectionDAG & DAG) const1491 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
1492 if (DAG.getTarget().Options.UnsafeFPMath)
1493 return LowerFastFDIV(Op, DAG);
1494
1495 SDLoc SL(Op);
1496 SDValue X = Op.getOperand(0);
1497 SDValue Y = Op.getOperand(1);
1498
1499 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1500
1501 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
1502
1503 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
1504
1505 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
1506
1507 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
1508
1509 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
1510
1511 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
1512
1513 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
1514
1515 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
1516
1517 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
1518 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
1519
1520 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
1521 NegDivScale0, Mul, DivScale1);
1522
1523 SDValue Scale;
1524
1525 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1526 // Workaround a hardware bug on SI where the condition output from div_scale
1527 // is not usable.
1528
1529 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
1530
1531 // Figure out if the scale to use for div_fmas.
1532 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1533 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
1534 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
1535 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
1536
1537 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
1538 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
1539
1540 SDValue Scale0Hi
1541 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
1542 SDValue Scale1Hi
1543 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
1544
1545 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
1546 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
1547 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
1548 } else {
1549 Scale = DivScale1.getValue(1);
1550 }
1551
1552 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
1553 Fma4, Fma3, Mul, Scale);
1554
1555 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
1556 }
1557
LowerFDIV(SDValue Op,SelectionDAG & DAG) const1558 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
1559 EVT VT = Op.getValueType();
1560
1561 if (VT == MVT::f32)
1562 return LowerFDIV32(Op, DAG);
1563
1564 if (VT == MVT::f64)
1565 return LowerFDIV64(Op, DAG);
1566
1567 llvm_unreachable("Unexpected type for fdiv");
1568 }
1569
LowerSTORE(SDValue Op,SelectionDAG & DAG) const1570 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1571 SDLoc DL(Op);
1572 StoreSDNode *Store = cast<StoreSDNode>(Op);
1573 EVT VT = Store->getMemoryVT();
1574
1575 // These stores are legal.
1576 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1577 if (VT.isVector() && VT.getVectorNumElements() > 4)
1578 return ScalarizeVectorStore(Op, DAG);
1579 return SDValue();
1580 }
1581
1582 SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
1583 if (Ret.getNode())
1584 return Ret;
1585
1586 if (VT.isVector() && VT.getVectorNumElements() >= 8)
1587 return SplitVectorStore(Op, DAG);
1588
1589 if (VT == MVT::i1)
1590 return DAG.getTruncStore(Store->getChain(), DL,
1591 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
1592 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
1593
1594 return SDValue();
1595 }
1596
LowerTrig(SDValue Op,SelectionDAG & DAG) const1597 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
1598 SDLoc DL(Op);
1599 EVT VT = Op.getValueType();
1600 SDValue Arg = Op.getOperand(0);
1601 // TODO: Should this propagate fast-math-flags?
1602 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
1603 DAG.getNode(ISD::FMUL, DL, VT, Arg,
1604 DAG.getConstantFP(0.5/M_PI, DL,
1605 VT)));
1606
1607 switch (Op.getOpcode()) {
1608 case ISD::FCOS:
1609 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
1610 case ISD::FSIN:
1611 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
1612 default:
1613 llvm_unreachable("Wrong trig opcode");
1614 }
1615 }
1616
1617 //===----------------------------------------------------------------------===//
1618 // Custom DAG optimizations
1619 //===----------------------------------------------------------------------===//
1620
performUCharToFloatCombine(SDNode * N,DAGCombinerInfo & DCI) const1621 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
1622 DAGCombinerInfo &DCI) const {
1623 EVT VT = N->getValueType(0);
1624 EVT ScalarVT = VT.getScalarType();
1625 if (ScalarVT != MVT::f32)
1626 return SDValue();
1627
1628 SelectionDAG &DAG = DCI.DAG;
1629 SDLoc DL(N);
1630
1631 SDValue Src = N->getOperand(0);
1632 EVT SrcVT = Src.getValueType();
1633
1634 // TODO: We could try to match extracting the higher bytes, which would be
1635 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
1636 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
1637 // about in practice.
1638 if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
1639 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
1640 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
1641 DCI.AddToWorklist(Cvt.getNode());
1642 return Cvt;
1643 }
1644 }
1645
1646 // We are primarily trying to catch operations on illegal vector types
1647 // before they are expanded.
1648 // For scalars, we can use the more flexible method of checking masked bits
1649 // after legalization.
1650 if (!DCI.isBeforeLegalize() ||
1651 !SrcVT.isVector() ||
1652 SrcVT.getVectorElementType() != MVT::i8) {
1653 return SDValue();
1654 }
1655
1656 assert(DCI.isBeforeLegalize() && "Unexpected legal type");
1657
1658 // Weird sized vectors are a pain to handle, but we know 3 is really the same
1659 // size as 4.
1660 unsigned NElts = SrcVT.getVectorNumElements();
1661 if (!SrcVT.isSimple() && NElts != 3)
1662 return SDValue();
1663
1664 // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
1665 // prevent a mess from expanding to v4i32 and repacking.
1666 if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
1667 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
1668 EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
1669 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
1670 LoadSDNode *Load = cast<LoadSDNode>(Src);
1671
1672 unsigned AS = Load->getAddressSpace();
1673 unsigned Align = Load->getAlignment();
1674 Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
1675 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
1676
1677 // Don't try to replace the load if we have to expand it due to alignment
1678 // problems. Otherwise we will end up scalarizing the load, and trying to
1679 // repack into the vector for no real reason.
1680 if (Align < ABIAlignment &&
1681 !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
1682 return SDValue();
1683 }
1684
1685 SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
1686 Load->getChain(),
1687 Load->getBasePtr(),
1688 LoadVT,
1689 Load->getMemOperand());
1690
1691 // Make sure successors of the original load stay after it by updating
1692 // them to use the new Chain.
1693 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
1694
1695 SmallVector<SDValue, 4> Elts;
1696 if (RegVT.isVector())
1697 DAG.ExtractVectorElements(NewLoad, Elts);
1698 else
1699 Elts.push_back(NewLoad);
1700
1701 SmallVector<SDValue, 4> Ops;
1702
1703 unsigned EltIdx = 0;
1704 for (SDValue Elt : Elts) {
1705 unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
1706 for (unsigned I = 0; I < ComponentsInElt; ++I) {
1707 unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
1708 SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
1709 DCI.AddToWorklist(Cvt.getNode());
1710 Ops.push_back(Cvt);
1711 }
1712
1713 ++EltIdx;
1714 }
1715
1716 assert(Ops.size() == NElts);
1717
1718 return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
1719 }
1720
1721 return SDValue();
1722 }
1723
1724 /// \brief Return true if the given offset Size in bytes can be folded into
1725 /// the immediate offsets of a memory instruction for the given address space.
canFoldOffset(unsigned OffsetSize,unsigned AS,const AMDGPUSubtarget & STI)1726 static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
1727 const AMDGPUSubtarget &STI) {
1728 switch (AS) {
1729 case AMDGPUAS::GLOBAL_ADDRESS: {
1730 // MUBUF instructions a 12-bit offset in bytes.
1731 return isUInt<12>(OffsetSize);
1732 }
1733 case AMDGPUAS::CONSTANT_ADDRESS: {
1734 // SMRD instructions have an 8-bit offset in dwords on SI and
1735 // a 20-bit offset in bytes on VI.
1736 if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1737 return isUInt<20>(OffsetSize);
1738 else
1739 return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
1740 }
1741 case AMDGPUAS::LOCAL_ADDRESS:
1742 case AMDGPUAS::REGION_ADDRESS: {
1743 // The single offset versions have a 16-bit offset in bytes.
1744 return isUInt<16>(OffsetSize);
1745 }
1746 case AMDGPUAS::PRIVATE_ADDRESS:
1747 // Indirect register addressing does not use any offsets.
1748 default:
1749 return 0;
1750 }
1751 }
1752
1753 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
1754
1755 // This is a variant of
1756 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
1757 //
1758 // The normal DAG combiner will do this, but only if the add has one use since
1759 // that would increase the number of instructions.
1760 //
1761 // This prevents us from seeing a constant offset that can be folded into a
1762 // memory instruction's addressing mode. If we know the resulting add offset of
1763 // a pointer can be folded into an addressing offset, we can replace the pointer
1764 // operand with the add of new constant offset. This eliminates one of the uses,
1765 // and may allow the remaining use to also be simplified.
1766 //
performSHLPtrCombine(SDNode * N,unsigned AddrSpace,DAGCombinerInfo & DCI) const1767 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
1768 unsigned AddrSpace,
1769 DAGCombinerInfo &DCI) const {
1770 SDValue N0 = N->getOperand(0);
1771 SDValue N1 = N->getOperand(1);
1772
1773 if (N0.getOpcode() != ISD::ADD)
1774 return SDValue();
1775
1776 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
1777 if (!CN1)
1778 return SDValue();
1779
1780 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1781 if (!CAdd)
1782 return SDValue();
1783
1784 // If the resulting offset is too large, we can't fold it into the addressing
1785 // mode offset.
1786 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
1787 if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
1788 return SDValue();
1789
1790 SelectionDAG &DAG = DCI.DAG;
1791 SDLoc SL(N);
1792 EVT VT = N->getValueType(0);
1793
1794 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
1795 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
1796
1797 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
1798 }
1799
performAndCombine(SDNode * N,DAGCombinerInfo & DCI) const1800 SDValue SITargetLowering::performAndCombine(SDNode *N,
1801 DAGCombinerInfo &DCI) const {
1802 if (DCI.isBeforeLegalize())
1803 return SDValue();
1804
1805 SelectionDAG &DAG = DCI.DAG;
1806
1807 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
1808 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
1809 SDValue LHS = N->getOperand(0);
1810 SDValue RHS = N->getOperand(1);
1811
1812 if (LHS.getOpcode() == ISD::SETCC &&
1813 RHS.getOpcode() == ISD::SETCC) {
1814 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
1815 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
1816
1817 SDValue X = LHS.getOperand(0);
1818 SDValue Y = RHS.getOperand(0);
1819 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
1820 return SDValue();
1821
1822 if (LCC == ISD::SETO) {
1823 if (X != LHS.getOperand(1))
1824 return SDValue();
1825
1826 if (RCC == ISD::SETUNE) {
1827 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
1828 if (!C1 || !C1->isInfinity() || C1->isNegative())
1829 return SDValue();
1830
1831 const uint32_t Mask = SIInstrFlags::N_NORMAL |
1832 SIInstrFlags::N_SUBNORMAL |
1833 SIInstrFlags::N_ZERO |
1834 SIInstrFlags::P_ZERO |
1835 SIInstrFlags::P_SUBNORMAL |
1836 SIInstrFlags::P_NORMAL;
1837
1838 static_assert(((~(SIInstrFlags::S_NAN |
1839 SIInstrFlags::Q_NAN |
1840 SIInstrFlags::N_INFINITY |
1841 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
1842 "mask not equal");
1843
1844 SDLoc DL(N);
1845 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
1846 X, DAG.getConstant(Mask, DL, MVT::i32));
1847 }
1848 }
1849 }
1850
1851 return SDValue();
1852 }
1853
performOrCombine(SDNode * N,DAGCombinerInfo & DCI) const1854 SDValue SITargetLowering::performOrCombine(SDNode *N,
1855 DAGCombinerInfo &DCI) const {
1856 SelectionDAG &DAG = DCI.DAG;
1857 SDValue LHS = N->getOperand(0);
1858 SDValue RHS = N->getOperand(1);
1859
1860 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
1861 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
1862 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
1863 SDValue Src = LHS.getOperand(0);
1864 if (Src != RHS.getOperand(0))
1865 return SDValue();
1866
1867 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
1868 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
1869 if (!CLHS || !CRHS)
1870 return SDValue();
1871
1872 // Only 10 bits are used.
1873 static const uint32_t MaxMask = 0x3ff;
1874
1875 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
1876 SDLoc DL(N);
1877 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
1878 Src, DAG.getConstant(NewMask, DL, MVT::i32));
1879 }
1880
1881 return SDValue();
1882 }
1883
performClassCombine(SDNode * N,DAGCombinerInfo & DCI) const1884 SDValue SITargetLowering::performClassCombine(SDNode *N,
1885 DAGCombinerInfo &DCI) const {
1886 SelectionDAG &DAG = DCI.DAG;
1887 SDValue Mask = N->getOperand(1);
1888
1889 // fp_class x, 0 -> false
1890 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
1891 if (CMask->isNullValue())
1892 return DAG.getConstant(0, SDLoc(N), MVT::i1);
1893 }
1894
1895 return SDValue();
1896 }
1897
minMaxOpcToMin3Max3Opc(unsigned Opc)1898 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
1899 switch (Opc) {
1900 case ISD::FMAXNUM:
1901 return AMDGPUISD::FMAX3;
1902 case ISD::SMAX:
1903 return AMDGPUISD::SMAX3;
1904 case ISD::UMAX:
1905 return AMDGPUISD::UMAX3;
1906 case ISD::FMINNUM:
1907 return AMDGPUISD::FMIN3;
1908 case ISD::SMIN:
1909 return AMDGPUISD::SMIN3;
1910 case ISD::UMIN:
1911 return AMDGPUISD::UMIN3;
1912 default:
1913 llvm_unreachable("Not a min/max opcode");
1914 }
1915 }
1916
performMin3Max3Combine(SDNode * N,DAGCombinerInfo & DCI) const1917 SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
1918 DAGCombinerInfo &DCI) const {
1919 SelectionDAG &DAG = DCI.DAG;
1920
1921 unsigned Opc = N->getOpcode();
1922 SDValue Op0 = N->getOperand(0);
1923 SDValue Op1 = N->getOperand(1);
1924
1925 // Only do this if the inner op has one use since this will just increases
1926 // register pressure for no benefit.
1927
1928 // max(max(a, b), c)
1929 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
1930 SDLoc DL(N);
1931 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1932 DL,
1933 N->getValueType(0),
1934 Op0.getOperand(0),
1935 Op0.getOperand(1),
1936 Op1);
1937 }
1938
1939 // max(a, max(b, c))
1940 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
1941 SDLoc DL(N);
1942 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1943 DL,
1944 N->getValueType(0),
1945 Op0,
1946 Op1.getOperand(0),
1947 Op1.getOperand(1));
1948 }
1949
1950 return SDValue();
1951 }
1952
performSetCCCombine(SDNode * N,DAGCombinerInfo & DCI) const1953 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
1954 DAGCombinerInfo &DCI) const {
1955 SelectionDAG &DAG = DCI.DAG;
1956 SDLoc SL(N);
1957
1958 SDValue LHS = N->getOperand(0);
1959 SDValue RHS = N->getOperand(1);
1960 EVT VT = LHS.getValueType();
1961
1962 if (VT != MVT::f32 && VT != MVT::f64)
1963 return SDValue();
1964
1965 // Match isinf pattern
1966 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
1967 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
1968 if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
1969 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
1970 if (!CRHS)
1971 return SDValue();
1972
1973 const APFloat &APF = CRHS->getValueAPF();
1974 if (APF.isInfinity() && !APF.isNegative()) {
1975 unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
1976 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
1977 DAG.getConstant(Mask, SL, MVT::i32));
1978 }
1979 }
1980
1981 return SDValue();
1982 }
1983
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1984 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
1985 DAGCombinerInfo &DCI) const {
1986 SelectionDAG &DAG = DCI.DAG;
1987 SDLoc DL(N);
1988
1989 switch (N->getOpcode()) {
1990 default:
1991 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1992 case ISD::SETCC:
1993 return performSetCCCombine(N, DCI);
1994 case ISD::FMAXNUM: // TODO: What about fmax_legacy?
1995 case ISD::FMINNUM:
1996 case ISD::SMAX:
1997 case ISD::SMIN:
1998 case ISD::UMAX:
1999 case ISD::UMIN: {
2000 if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
2001 N->getValueType(0) != MVT::f64 &&
2002 getTargetMachine().getOptLevel() > CodeGenOpt::None)
2003 return performMin3Max3Combine(N, DCI);
2004 break;
2005 }
2006
2007 case AMDGPUISD::CVT_F32_UBYTE0:
2008 case AMDGPUISD::CVT_F32_UBYTE1:
2009 case AMDGPUISD::CVT_F32_UBYTE2:
2010 case AMDGPUISD::CVT_F32_UBYTE3: {
2011 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
2012
2013 SDValue Src = N->getOperand(0);
2014 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
2015
2016 APInt KnownZero, KnownOne;
2017 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2018 !DCI.isBeforeLegalizeOps());
2019 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2020 if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
2021 TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
2022 DCI.CommitTargetLoweringOpt(TLO);
2023 }
2024
2025 break;
2026 }
2027
2028 case ISD::UINT_TO_FP: {
2029 return performUCharToFloatCombine(N, DCI);
2030
2031 case ISD::FADD: {
2032 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2033 break;
2034
2035 EVT VT = N->getValueType(0);
2036 if (VT != MVT::f32)
2037 break;
2038
2039 // Only do this if we are not trying to support denormals. v_mad_f32 does
2040 // not support denormals ever.
2041 if (Subtarget->hasFP32Denormals())
2042 break;
2043
2044 SDValue LHS = N->getOperand(0);
2045 SDValue RHS = N->getOperand(1);
2046
2047 // These should really be instruction patterns, but writing patterns with
2048 // source modiifiers is a pain.
2049
2050 // fadd (fadd (a, a), b) -> mad 2.0, a, b
2051 if (LHS.getOpcode() == ISD::FADD) {
2052 SDValue A = LHS.getOperand(0);
2053 if (A == LHS.getOperand(1)) {
2054 const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2055 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
2056 }
2057 }
2058
2059 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
2060 if (RHS.getOpcode() == ISD::FADD) {
2061 SDValue A = RHS.getOperand(0);
2062 if (A == RHS.getOperand(1)) {
2063 const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2064 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
2065 }
2066 }
2067
2068 return SDValue();
2069 }
2070 case ISD::FSUB: {
2071 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2072 break;
2073
2074 EVT VT = N->getValueType(0);
2075
2076 // Try to get the fneg to fold into the source modifier. This undoes generic
2077 // DAG combines and folds them into the mad.
2078 //
2079 // Only do this if we are not trying to support denormals. v_mad_f32 does
2080 // not support denormals ever.
2081 if (VT == MVT::f32 &&
2082 !Subtarget->hasFP32Denormals()) {
2083 SDValue LHS = N->getOperand(0);
2084 SDValue RHS = N->getOperand(1);
2085 if (LHS.getOpcode() == ISD::FADD) {
2086 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
2087
2088 SDValue A = LHS.getOperand(0);
2089 if (A == LHS.getOperand(1)) {
2090 const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2091 SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
2092
2093 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
2094 }
2095 }
2096
2097 if (RHS.getOpcode() == ISD::FADD) {
2098 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
2099
2100 SDValue A = RHS.getOperand(0);
2101 if (A == RHS.getOperand(1)) {
2102 const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
2103 return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
2104 }
2105 }
2106
2107 return SDValue();
2108 }
2109
2110 break;
2111 }
2112 }
2113 case ISD::LOAD:
2114 case ISD::STORE:
2115 case ISD::ATOMIC_LOAD:
2116 case ISD::ATOMIC_STORE:
2117 case ISD::ATOMIC_CMP_SWAP:
2118 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2119 case ISD::ATOMIC_SWAP:
2120 case ISD::ATOMIC_LOAD_ADD:
2121 case ISD::ATOMIC_LOAD_SUB:
2122 case ISD::ATOMIC_LOAD_AND:
2123 case ISD::ATOMIC_LOAD_OR:
2124 case ISD::ATOMIC_LOAD_XOR:
2125 case ISD::ATOMIC_LOAD_NAND:
2126 case ISD::ATOMIC_LOAD_MIN:
2127 case ISD::ATOMIC_LOAD_MAX:
2128 case ISD::ATOMIC_LOAD_UMIN:
2129 case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
2130 if (DCI.isBeforeLegalize())
2131 break;
2132
2133 MemSDNode *MemNode = cast<MemSDNode>(N);
2134 SDValue Ptr = MemNode->getBasePtr();
2135
2136 // TODO: We could also do this for multiplies.
2137 unsigned AS = MemNode->getAddressSpace();
2138 if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
2139 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
2140 if (NewPtr) {
2141 SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
2142
2143 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
2144 return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
2145 }
2146 }
2147 break;
2148 }
2149 case ISD::AND:
2150 return performAndCombine(N, DCI);
2151 case ISD::OR:
2152 return performOrCombine(N, DCI);
2153 case AMDGPUISD::FP_CLASS:
2154 return performClassCombine(N, DCI);
2155 }
2156 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2157 }
2158
2159 /// \brief Analyze the possible immediate value Op
2160 ///
2161 /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
2162 /// and the immediate value if it's a literal immediate
analyzeImmediate(const SDNode * N) const2163 int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
2164
2165 const SIInstrInfo *TII =
2166 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2167
2168 if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
2169 if (TII->isInlineConstant(Node->getAPIntValue()))
2170 return 0;
2171
2172 uint64_t Val = Node->getZExtValue();
2173 return isUInt<32>(Val) ? Val : -1;
2174 }
2175
2176 if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
2177 if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
2178 return 0;
2179
2180 if (Node->getValueType(0) == MVT::f32)
2181 return FloatToBits(Node->getValueAPF().convertToFloat());
2182
2183 return -1;
2184 }
2185
2186 return -1;
2187 }
2188
2189 /// \brief Helper function for adjustWritemask
SubIdx2Lane(unsigned Idx)2190 static unsigned SubIdx2Lane(unsigned Idx) {
2191 switch (Idx) {
2192 default: return 0;
2193 case AMDGPU::sub0: return 0;
2194 case AMDGPU::sub1: return 1;
2195 case AMDGPU::sub2: return 2;
2196 case AMDGPU::sub3: return 3;
2197 }
2198 }
2199
2200 /// \brief Adjust the writemask of MIMG instructions
adjustWritemask(MachineSDNode * & Node,SelectionDAG & DAG) const2201 void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
2202 SelectionDAG &DAG) const {
2203 SDNode *Users[4] = { };
2204 unsigned Lane = 0;
2205 unsigned OldDmask = Node->getConstantOperandVal(0);
2206 unsigned NewDmask = 0;
2207
2208 // Try to figure out the used register components
2209 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
2210 I != E; ++I) {
2211
2212 // Abort if we can't understand the usage
2213 if (!I->isMachineOpcode() ||
2214 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
2215 return;
2216
2217 // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
2218 // Note that subregs are packed, i.e. Lane==0 is the first bit set
2219 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
2220 // set, etc.
2221 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
2222
2223 // Set which texture component corresponds to the lane.
2224 unsigned Comp;
2225 for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
2226 assert(Dmask);
2227 Comp = countTrailingZeros(Dmask);
2228 Dmask &= ~(1 << Comp);
2229 }
2230
2231 // Abort if we have more than one user per component
2232 if (Users[Lane])
2233 return;
2234
2235 Users[Lane] = *I;
2236 NewDmask |= 1 << Comp;
2237 }
2238
2239 // Abort if there's no change
2240 if (NewDmask == OldDmask)
2241 return;
2242
2243 // Adjust the writemask in the node
2244 std::vector<SDValue> Ops;
2245 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
2246 Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
2247 Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
2248
2249 // If we only got one lane, replace it with a copy
2250 // (if NewDmask has only one bit set...)
2251 if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
2252 SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
2253 MVT::i32);
2254 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
2255 SDLoc(), Users[Lane]->getValueType(0),
2256 SDValue(Node, 0), RC);
2257 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
2258 return;
2259 }
2260
2261 // Update the users of the node with the new indices
2262 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
2263
2264 SDNode *User = Users[i];
2265 if (!User)
2266 continue;
2267
2268 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
2269 DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
2270
2271 switch (Idx) {
2272 default: break;
2273 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
2274 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
2275 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
2276 }
2277 }
2278 }
2279
isFrameIndexOp(SDValue Op)2280 static bool isFrameIndexOp(SDValue Op) {
2281 if (Op.getOpcode() == ISD::AssertZext)
2282 Op = Op.getOperand(0);
2283
2284 return isa<FrameIndexSDNode>(Op);
2285 }
2286
2287 /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
2288 /// with frame index operands.
2289 /// LLVM assumes that inputs are to these instructions are registers.
legalizeTargetIndependentNode(SDNode * Node,SelectionDAG & DAG) const2290 void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
2291 SelectionDAG &DAG) const {
2292
2293 SmallVector<SDValue, 8> Ops;
2294 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
2295 if (!isFrameIndexOp(Node->getOperand(i))) {
2296 Ops.push_back(Node->getOperand(i));
2297 continue;
2298 }
2299
2300 SDLoc DL(Node);
2301 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
2302 Node->getOperand(i).getValueType(),
2303 Node->getOperand(i)), 0));
2304 }
2305
2306 DAG.UpdateNodeOperands(Node, Ops);
2307 }
2308
2309 /// \brief Fold the instructions after selecting them.
PostISelFolding(MachineSDNode * Node,SelectionDAG & DAG) const2310 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
2311 SelectionDAG &DAG) const {
2312 const SIInstrInfo *TII =
2313 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2314
2315 if (TII->isMIMG(Node->getMachineOpcode()))
2316 adjustWritemask(Node, DAG);
2317
2318 if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
2319 Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
2320 legalizeTargetIndependentNode(Node, DAG);
2321 return Node;
2322 }
2323 return Node;
2324 }
2325
2326 /// \brief Assign the register class depending on the number of
2327 /// bits set in the writemask
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const2328 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
2329 SDNode *Node) const {
2330 const SIInstrInfo *TII =
2331 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2332
2333 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
2334
2335 if (TII->isVOP3(MI->getOpcode())) {
2336 // Make sure constant bus requirements are respected.
2337 TII->legalizeOperandsVOP3(MRI, MI);
2338 return;
2339 }
2340
2341 if (TII->isMIMG(*MI)) {
2342 unsigned VReg = MI->getOperand(0).getReg();
2343 unsigned Writemask = MI->getOperand(1).getImm();
2344 unsigned BitsSet = 0;
2345 for (unsigned i = 0; i < 4; ++i)
2346 BitsSet += Writemask & (1 << i) ? 1 : 0;
2347
2348 const TargetRegisterClass *RC;
2349 switch (BitsSet) {
2350 default: return;
2351 case 1: RC = &AMDGPU::VGPR_32RegClass; break;
2352 case 2: RC = &AMDGPU::VReg_64RegClass; break;
2353 case 3: RC = &AMDGPU::VReg_96RegClass; break;
2354 }
2355
2356 unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
2357 MI->setDesc(TII->get(NewOpcode));
2358 MRI.setRegClass(VReg, RC);
2359 return;
2360 }
2361
2362 // Replace unused atomics with the no return version.
2363 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
2364 if (NoRetAtomicOp != -1) {
2365 if (!Node->hasAnyUseOfValue(0)) {
2366 MI->setDesc(TII->get(NoRetAtomicOp));
2367 MI->RemoveOperand(0);
2368 }
2369
2370 return;
2371 }
2372 }
2373
buildSMovImm32(SelectionDAG & DAG,SDLoc DL,uint64_t Val)2374 static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
2375 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
2376 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
2377 }
2378
wrapAddr64Rsrc(SelectionDAG & DAG,SDLoc DL,SDValue Ptr) const2379 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
2380 SDLoc DL,
2381 SDValue Ptr) const {
2382 const SIInstrInfo *TII =
2383 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2384
2385 // Build the half of the subregister with the constants before building the
2386 // full 128-bit register. If we are building multiple resource descriptors,
2387 // this will allow CSEing of the 2-component register.
2388 const SDValue Ops0[] = {
2389 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
2390 buildSMovImm32(DAG, DL, 0),
2391 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
2392 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
2393 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
2394 };
2395
2396 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
2397 MVT::v2i32, Ops0), 0);
2398
2399 // Combine the constants and the pointer.
2400 const SDValue Ops1[] = {
2401 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
2402 Ptr,
2403 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
2404 SubRegHi,
2405 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
2406 };
2407
2408 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
2409 }
2410
2411 /// \brief Return a resource descriptor with the 'Add TID' bit enabled
2412 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
2413 /// of the resource descriptor) to create an offset, which is added to
2414 /// the resource pointer.
buildRSRC(SelectionDAG & DAG,SDLoc DL,SDValue Ptr,uint32_t RsrcDword1,uint64_t RsrcDword2And3) const2415 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
2416 SDLoc DL,
2417 SDValue Ptr,
2418 uint32_t RsrcDword1,
2419 uint64_t RsrcDword2And3) const {
2420 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
2421 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
2422 if (RsrcDword1) {
2423 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
2424 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
2425 0);
2426 }
2427
2428 SDValue DataLo = buildSMovImm32(DAG, DL,
2429 RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
2430 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
2431
2432 const SDValue Ops[] = {
2433 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
2434 PtrLo,
2435 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
2436 PtrHi,
2437 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
2438 DataLo,
2439 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
2440 DataHi,
2441 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
2442 };
2443
2444 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2445 }
2446
CreateLiveInRegister(SelectionDAG & DAG,const TargetRegisterClass * RC,unsigned Reg,EVT VT) const2447 SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2448 const TargetRegisterClass *RC,
2449 unsigned Reg, EVT VT) const {
2450 SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
2451
2452 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
2453 cast<RegisterSDNode>(VReg)->getReg(), VT);
2454 }
2455
2456 //===----------------------------------------------------------------------===//
2457 // SI Inline Assembly Support
2458 //===----------------------------------------------------------------------===//
2459
2460 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const2461 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2462 StringRef Constraint,
2463 MVT VT) const {
2464
2465 if (Constraint.size() == 1) {
2466 switch (Constraint[0]) {
2467 case 's':
2468 case 'r':
2469 switch (VT.getSizeInBits()) {
2470 default:
2471 return std::make_pair(0U, nullptr);
2472 case 32:
2473 return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
2474 case 64:
2475 return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
2476 case 128:
2477 return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
2478 case 256:
2479 return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
2480 }
2481
2482 case 'v':
2483 switch (VT.getSizeInBits()) {
2484 default:
2485 return std::make_pair(0U, nullptr);
2486 case 32:
2487 return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
2488 case 64:
2489 return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
2490 case 96:
2491 return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
2492 case 128:
2493 return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
2494 case 256:
2495 return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
2496 case 512:
2497 return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
2498 }
2499 }
2500 }
2501
2502 if (Constraint.size() > 1) {
2503 const TargetRegisterClass *RC = nullptr;
2504 if (Constraint[1] == 'v') {
2505 RC = &AMDGPU::VGPR_32RegClass;
2506 } else if (Constraint[1] == 's') {
2507 RC = &AMDGPU::SGPR_32RegClass;
2508 }
2509
2510 if (RC) {
2511 uint32_t Idx;
2512 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
2513 if (!Failed && Idx < RC->getNumRegs())
2514 return std::make_pair(RC->getRegister(Idx), RC);
2515 }
2516 }
2517 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2518 }
2519
2520 SITargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const2521 SITargetLowering::getConstraintType(StringRef Constraint) const {
2522 if (Constraint.size() == 1) {
2523 switch (Constraint[0]) {
2524 default: break;
2525 case 's':
2526 case 'v':
2527 return C_RegisterClass;
2528 }
2529 }
2530 return TargetLowering::getConstraintType(Constraint);
2531 }
2532