1 //===- AddDiscriminators.cpp - Insert DWARF path discriminators -----------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file adds DWARF discriminators to the IR. Path discriminators are
11 // used to decide what CFG path was taken inside sub-graphs whose instructions
12 // share the same line and column number information.
13 //
14 // The main user of this is the sample profiler. Instruction samples are
15 // mapped to line number information. Since a single line may be spread
16 // out over several basic blocks, discriminators add more precise location
17 // for the samples.
18 //
19 // For example,
20 //
21 //   1  #define ASSERT(P)
22 //   2      if (!(P))
23 //   3        abort()
24 //   ...
25 //   100   while (true) {
26 //   101     ASSERT (sum < 0);
27 //   102     ...
28 //   130   }
29 //
30 // when converted to IR, this snippet looks something like:
31 //
32 // while.body:                                       ; preds = %entry, %if.end
33 //   %0 = load i32* %sum, align 4, !dbg !15
34 //   %cmp = icmp slt i32 %0, 0, !dbg !15
35 //   br i1 %cmp, label %if.end, label %if.then, !dbg !15
36 //
37 // if.then:                                          ; preds = %while.body
38 //   call void @abort(), !dbg !15
39 //   br label %if.end, !dbg !15
40 //
41 // Notice that all the instructions in blocks 'while.body' and 'if.then'
42 // have exactly the same debug information. When this program is sampled
43 // at runtime, the profiler will assume that all these instructions are
44 // equally frequent. This, in turn, will consider the edge while.body->if.then
45 // to be frequently taken (which is incorrect).
46 //
47 // By adding a discriminator value to the instructions in block 'if.then',
48 // we can distinguish instructions at line 101 with discriminator 0 from
49 // the instructions at line 101 with discriminator 1.
50 //
51 // For more details about DWARF discriminators, please visit
52 // http://wiki.dwarfstd.org/index.php?title=Path_Discriminators
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/IR/BasicBlock.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DIBuilder.h"
59 #include "llvm/IR/DebugInfo.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "add-discriminators"
73 
74 namespace {
75 struct AddDiscriminators : public FunctionPass {
76   static char ID; // Pass identification, replacement for typeid
AddDiscriminators__anonb00c4c840111::AddDiscriminators77   AddDiscriminators() : FunctionPass(ID) {
78     initializeAddDiscriminatorsPass(*PassRegistry::getPassRegistry());
79   }
80 
81   bool runOnFunction(Function &F) override;
82 };
83 }
84 
85 char AddDiscriminators::ID = 0;
86 INITIALIZE_PASS_BEGIN(AddDiscriminators, "add-discriminators",
87                       "Add DWARF path discriminators", false, false)
88 INITIALIZE_PASS_END(AddDiscriminators, "add-discriminators",
89                     "Add DWARF path discriminators", false, false)
90 
91 // Command line option to disable discriminator generation even in the
92 // presence of debug information. This is only needed when debugging
93 // debug info generation issues.
94 static cl::opt<bool> NoDiscriminators(
95     "no-discriminators", cl::init(false),
96     cl::desc("Disable generation of discriminator information."));
97 
createAddDiscriminatorsPass()98 FunctionPass *llvm::createAddDiscriminatorsPass() {
99   return new AddDiscriminators();
100 }
101 
hasDebugInfo(const Function & F)102 static bool hasDebugInfo(const Function &F) {
103   DISubprogram *S = getDISubprogram(&F);
104   return S != nullptr;
105 }
106 
107 /// \brief Assign DWARF discriminators.
108 ///
109 /// To assign discriminators, we examine the boundaries of every
110 /// basic block and its successors. Suppose there is a basic block B1
111 /// with successor B2. The last instruction I1 in B1 and the first
112 /// instruction I2 in B2 are located at the same file and line number.
113 /// This situation is illustrated in the following code snippet:
114 ///
115 ///       if (i < 10) x = i;
116 ///
117 ///     entry:
118 ///       br i1 %cmp, label %if.then, label %if.end, !dbg !10
119 ///     if.then:
120 ///       %1 = load i32* %i.addr, align 4, !dbg !10
121 ///       store i32 %1, i32* %x, align 4, !dbg !10
122 ///       br label %if.end, !dbg !10
123 ///     if.end:
124 ///       ret void, !dbg !12
125 ///
126 /// Notice how the branch instruction in block 'entry' and all the
127 /// instructions in block 'if.then' have the exact same debug location
128 /// information (!dbg !10).
129 ///
130 /// To distinguish instructions in block 'entry' from instructions in
131 /// block 'if.then', we generate a new lexical block for all the
132 /// instruction in block 'if.then' that share the same file and line
133 /// location with the last instruction of block 'entry'.
134 ///
135 /// This new lexical block will have the same location information as
136 /// the previous one, but with a new DWARF discriminator value.
137 ///
138 /// One of the main uses of this discriminator value is in runtime
139 /// sample profilers. It allows the profiler to distinguish instructions
140 /// at location !dbg !10 that execute on different basic blocks. This is
141 /// important because while the predicate 'if (x < 10)' may have been
142 /// executed millions of times, the assignment 'x = i' may have only
143 /// executed a handful of times (meaning that the entry->if.then edge is
144 /// seldom taken).
145 ///
146 /// If we did not have discriminator information, the profiler would
147 /// assign the same weight to both blocks 'entry' and 'if.then', which
148 /// in turn will make it conclude that the entry->if.then edge is very
149 /// hot.
150 ///
151 /// To decide where to create new discriminator values, this function
152 /// traverses the CFG and examines instruction at basic block boundaries.
153 /// If the last instruction I1 of a block B1 is at the same file and line
154 /// location as instruction I2 of successor B2, then it creates a new
155 /// lexical block for I2 and all the instruction in B2 that share the same
156 /// file and line location as I2. This new lexical block will have a
157 /// different discriminator number than I1.
runOnFunction(Function & F)158 bool AddDiscriminators::runOnFunction(Function &F) {
159   // If the function has debug information, but the user has disabled
160   // discriminators, do nothing.
161   // Simlarly, if the function has no debug info, do nothing.
162   // Finally, if this module is built with dwarf versions earlier than 4,
163   // do nothing (discriminator support is a DWARF 4 feature).
164   if (NoDiscriminators || !hasDebugInfo(F) ||
165       F.getParent()->getDwarfVersion() < 4)
166     return false;
167 
168   bool Changed = false;
169   Module *M = F.getParent();
170   LLVMContext &Ctx = M->getContext();
171   DIBuilder Builder(*M, /*AllowUnresolved*/ false);
172 
173   typedef std::pair<StringRef, unsigned> Location;
174   typedef DenseMap<const BasicBlock *, Metadata *> BBScopeMap;
175   typedef DenseMap<Location, BBScopeMap> LocationBBMap;
176 
177   LocationBBMap LBM;
178 
179   // Traverse all instructions in the function. If the source line location
180   // of the instruction appears in other basic block, assign a new
181   // discriminator for this instruction.
182   for (BasicBlock &B : F) {
183     for (auto &I : B.getInstList()) {
184       if (isa<DbgInfoIntrinsic>(&I))
185         continue;
186       const DILocation *DIL = I.getDebugLoc();
187       if (!DIL)
188         continue;
189       Location L = std::make_pair(DIL->getFilename(), DIL->getLine());
190       auto &BBMap = LBM[L];
191       auto R = BBMap.insert(std::make_pair(&B, (Metadata *)nullptr));
192       if (BBMap.size() == 1)
193         continue;
194       bool InsertSuccess = R.second;
195       Metadata *&NewScope = R.first->second;
196       // If we could insert a different block in the same location, a
197       // discriminator is needed to distinguish both instructions.
198       if (InsertSuccess) {
199         auto *Scope = DIL->getScope();
200         auto *File =
201             Builder.createFile(DIL->getFilename(), Scope->getDirectory());
202         NewScope = Builder.createLexicalBlockFile(
203             Scope, File, DIL->computeNewDiscriminator());
204       }
205       I.setDebugLoc(DILocation::get(Ctx, DIL->getLine(), DIL->getColumn(),
206                                     NewScope, DIL->getInlinedAt()));
207       DEBUG(dbgs() << DIL->getFilename() << ":" << DIL->getLine() << ":"
208                    << DIL->getColumn() << ":"
209                    << dyn_cast<DILexicalBlockFile>(NewScope)->getDiscriminator()
210                    << I << "\n");
211       Changed = true;
212     }
213   }
214 
215   // Traverse all instructions and assign new discriminators to call
216   // instructions with the same lineno that are in the same basic block.
217   // Sample base profile needs to distinguish different function calls within
218   // a same source line for correct profile annotation.
219   for (BasicBlock &B : F) {
220     const DILocation *FirstDIL = NULL;
221     for (auto &I : B.getInstList()) {
222       CallInst *Current = dyn_cast<CallInst>(&I);
223       if (!Current || isa<DbgInfoIntrinsic>(&I))
224         continue;
225 
226       DILocation *CurrentDIL = Current->getDebugLoc();
227       if (FirstDIL) {
228         if (CurrentDIL && CurrentDIL->getLine() == FirstDIL->getLine() &&
229             CurrentDIL->getFilename() == FirstDIL->getFilename()) {
230           auto *Scope = FirstDIL->getScope();
231           auto *File = Builder.createFile(FirstDIL->getFilename(),
232                                           Scope->getDirectory());
233           auto *NewScope = Builder.createLexicalBlockFile(
234               Scope, File, FirstDIL->computeNewDiscriminator());
235           Current->setDebugLoc(DILocation::get(
236               Ctx, CurrentDIL->getLine(), CurrentDIL->getColumn(), NewScope,
237               CurrentDIL->getInlinedAt()));
238           Changed = true;
239         } else {
240           FirstDIL = CurrentDIL;
241         }
242       } else {
243         FirstDIL = CurrentDIL;
244       }
245     }
246   }
247   return Changed;
248 }
249