1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass deletes dead arguments from internal functions. Dead argument
11 // elimination removes arguments which are directly dead, as well as arguments
12 // only passed into function calls as dead arguments of other functions. This
13 // pass also deletes dead return values in a similar way.
14 //
15 // This pass is often useful as a cleanup pass to run after aggressive
16 // interprocedural passes, which add possibly-dead arguments or return values.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Transforms/IPO.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/DIBuilder.h"
29 #include "llvm/IR/DebugInfo.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include <map>
40 #include <set>
41 #include <tuple>
42 using namespace llvm;
43
44 #define DEBUG_TYPE "deadargelim"
45
46 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
47 STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
48 STATISTIC(NumArgumentsReplacedWithUndef,
49 "Number of unread args replaced with undef");
50 namespace {
51 /// DAE - The dead argument elimination pass.
52 ///
53 class DAE : public ModulePass {
54 public:
55
56 /// Struct that represents (part of) either a return value or a function
57 /// argument. Used so that arguments and return values can be used
58 /// interchangeably.
59 struct RetOrArg {
RetOrArg__anon021bdbd10111::DAE::RetOrArg60 RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
61 IsArg(IsArg) {}
62 const Function *F;
63 unsigned Idx;
64 bool IsArg;
65
66 /// Make RetOrArg comparable, so we can put it into a map.
operator <__anon021bdbd10111::DAE::RetOrArg67 bool operator<(const RetOrArg &O) const {
68 return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
69 }
70
71 /// Make RetOrArg comparable, so we can easily iterate the multimap.
operator ==__anon021bdbd10111::DAE::RetOrArg72 bool operator==(const RetOrArg &O) const {
73 return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
74 }
75
getDescription__anon021bdbd10111::DAE::RetOrArg76 std::string getDescription() const {
77 return (Twine(IsArg ? "Argument #" : "Return value #") + utostr(Idx) +
78 " of function " + F->getName()).str();
79 }
80 };
81
82 /// Liveness enum - During our initial pass over the program, we determine
83 /// that things are either alive or maybe alive. We don't mark anything
84 /// explicitly dead (even if we know they are), since anything not alive
85 /// with no registered uses (in Uses) will never be marked alive and will
86 /// thus become dead in the end.
87 enum Liveness { Live, MaybeLive };
88
89 /// Convenience wrapper
CreateRet(const Function * F,unsigned Idx)90 RetOrArg CreateRet(const Function *F, unsigned Idx) {
91 return RetOrArg(F, Idx, false);
92 }
93 /// Convenience wrapper
CreateArg(const Function * F,unsigned Idx)94 RetOrArg CreateArg(const Function *F, unsigned Idx) {
95 return RetOrArg(F, Idx, true);
96 }
97
98 typedef std::multimap<RetOrArg, RetOrArg> UseMap;
99 /// This maps a return value or argument to any MaybeLive return values or
100 /// arguments it uses. This allows the MaybeLive values to be marked live
101 /// when any of its users is marked live.
102 /// For example (indices are left out for clarity):
103 /// - Uses[ret F] = ret G
104 /// This means that F calls G, and F returns the value returned by G.
105 /// - Uses[arg F] = ret G
106 /// This means that some function calls G and passes its result as an
107 /// argument to F.
108 /// - Uses[ret F] = arg F
109 /// This means that F returns one of its own arguments.
110 /// - Uses[arg F] = arg G
111 /// This means that G calls F and passes one of its own (G's) arguments
112 /// directly to F.
113 UseMap Uses;
114
115 typedef std::set<RetOrArg> LiveSet;
116 typedef std::set<const Function*> LiveFuncSet;
117
118 /// This set contains all values that have been determined to be live.
119 LiveSet LiveValues;
120 /// This set contains all values that are cannot be changed in any way.
121 LiveFuncSet LiveFunctions;
122
123 typedef SmallVector<RetOrArg, 5> UseVector;
124
125 protected:
126 // DAH uses this to specify a different ID.
DAE(char & ID)127 explicit DAE(char &ID) : ModulePass(ID) {}
128
129 public:
130 static char ID; // Pass identification, replacement for typeid
DAE()131 DAE() : ModulePass(ID) {
132 initializeDAEPass(*PassRegistry::getPassRegistry());
133 }
134
135 bool runOnModule(Module &M) override;
136
ShouldHackArguments() const137 virtual bool ShouldHackArguments() const { return false; }
138
139 private:
140 Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
141 Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
142 unsigned RetValNum = -1U);
143 Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
144
145 void SurveyFunction(const Function &F);
146 void MarkValue(const RetOrArg &RA, Liveness L,
147 const UseVector &MaybeLiveUses);
148 void MarkLive(const RetOrArg &RA);
149 void MarkLive(const Function &F);
150 void PropagateLiveness(const RetOrArg &RA);
151 bool RemoveDeadStuffFromFunction(Function *F);
152 bool DeleteDeadVarargs(Function &Fn);
153 bool RemoveDeadArgumentsFromCallers(Function &Fn);
154 };
155 }
156
157
158 char DAE::ID = 0;
159 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
160
161 namespace {
162 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
163 /// deletes arguments to functions which are external. This is only for use
164 /// by bugpoint.
165 struct DAH : public DAE {
166 static char ID;
DAH__anon021bdbd10211::DAH167 DAH() : DAE(ID) {}
168
ShouldHackArguments__anon021bdbd10211::DAH169 bool ShouldHackArguments() const override { return true; }
170 };
171 }
172
173 char DAH::ID = 0;
174 INITIALIZE_PASS(DAH, "deadarghaX0r",
175 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
176 false, false)
177
178 /// createDeadArgEliminationPass - This pass removes arguments from functions
179 /// which are not used by the body of the function.
180 ///
createDeadArgEliminationPass()181 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
createDeadArgHackingPass()182 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
183
184 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
185 /// llvm.vastart is never called, the varargs list is dead for the function.
DeleteDeadVarargs(Function & Fn)186 bool DAE::DeleteDeadVarargs(Function &Fn) {
187 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
188 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
189
190 // Ensure that the function is only directly called.
191 if (Fn.hasAddressTaken())
192 return false;
193
194 // Don't touch naked functions. The assembly might be using an argument, or
195 // otherwise rely on the frame layout in a way that this analysis will not
196 // see.
197 if (Fn.hasFnAttribute(Attribute::Naked)) {
198 return false;
199 }
200
201 // Okay, we know we can transform this function if safe. Scan its body
202 // looking for calls marked musttail or calls to llvm.vastart.
203 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
204 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
205 CallInst *CI = dyn_cast<CallInst>(I);
206 if (!CI)
207 continue;
208 if (CI->isMustTailCall())
209 return false;
210 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
211 if (II->getIntrinsicID() == Intrinsic::vastart)
212 return false;
213 }
214 }
215 }
216
217 // If we get here, there are no calls to llvm.vastart in the function body,
218 // remove the "..." and adjust all the calls.
219
220 // Start by computing a new prototype for the function, which is the same as
221 // the old function, but doesn't have isVarArg set.
222 FunctionType *FTy = Fn.getFunctionType();
223
224 std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
225 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
226 Params, false);
227 unsigned NumArgs = Params.size();
228
229 // Create the new function body and insert it into the module...
230 Function *NF = Function::Create(NFTy, Fn.getLinkage());
231 NF->copyAttributesFrom(&Fn);
232 Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
233 NF->takeName(&Fn);
234
235 // Loop over all of the callers of the function, transforming the call sites
236 // to pass in a smaller number of arguments into the new function.
237 //
238 std::vector<Value*> Args;
239 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
240 CallSite CS(*I++);
241 if (!CS)
242 continue;
243 Instruction *Call = CS.getInstruction();
244
245 // Pass all the same arguments.
246 Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
247
248 // Drop any attributes that were on the vararg arguments.
249 AttributeSet PAL = CS.getAttributes();
250 if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
251 SmallVector<AttributeSet, 8> AttributesVec;
252 for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
253 AttributesVec.push_back(PAL.getSlotAttributes(i));
254 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
255 AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
256 PAL.getFnAttributes()));
257 PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
258 }
259
260 Instruction *New;
261 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
262 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
263 Args, "", Call);
264 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
265 cast<InvokeInst>(New)->setAttributes(PAL);
266 } else {
267 New = CallInst::Create(NF, Args, "", Call);
268 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
269 cast<CallInst>(New)->setAttributes(PAL);
270 if (cast<CallInst>(Call)->isTailCall())
271 cast<CallInst>(New)->setTailCall();
272 }
273 New->setDebugLoc(Call->getDebugLoc());
274
275 Args.clear();
276
277 if (!Call->use_empty())
278 Call->replaceAllUsesWith(New);
279
280 New->takeName(Call);
281
282 // Finally, remove the old call from the program, reducing the use-count of
283 // F.
284 Call->eraseFromParent();
285 }
286
287 // Since we have now created the new function, splice the body of the old
288 // function right into the new function, leaving the old rotting hulk of the
289 // function empty.
290 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
291
292 // Loop over the argument list, transferring uses of the old arguments over to
293 // the new arguments, also transferring over the names as well. While we're at
294 // it, remove the dead arguments from the DeadArguments list.
295 //
296 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
297 I2 = NF->arg_begin(); I != E; ++I, ++I2) {
298 // Move the name and users over to the new version.
299 I->replaceAllUsesWith(&*I2);
300 I2->takeName(&*I);
301 }
302
303 // Patch the pointer to LLVM function in debug info descriptor.
304 NF->setSubprogram(Fn.getSubprogram());
305
306 // Fix up any BlockAddresses that refer to the function.
307 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
308 // Delete the bitcast that we just created, so that NF does not
309 // appear to be address-taken.
310 NF->removeDeadConstantUsers();
311 // Finally, nuke the old function.
312 Fn.eraseFromParent();
313 return true;
314 }
315
316 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
317 /// arguments that are unused, and changes the caller parameters to be undefined
318 /// instead.
RemoveDeadArgumentsFromCallers(Function & Fn)319 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
320 {
321 // We cannot change the arguments if this TU does not define the function or
322 // if the linker may choose a function body from another TU, even if the
323 // nominal linkage indicates that other copies of the function have the same
324 // semantics. In the below example, the dead load from %p may not have been
325 // eliminated from the linker-chosen copy of f, so replacing %p with undef
326 // in callers may introduce undefined behavior.
327 //
328 // define linkonce_odr void @f(i32* %p) {
329 // %v = load i32 %p
330 // ret void
331 // }
332 if (!Fn.isStrongDefinitionForLinker())
333 return false;
334
335 // Functions with local linkage should already have been handled, except the
336 // fragile (variadic) ones which we can improve here.
337 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
338 return false;
339
340 // Don't touch naked functions. The assembly might be using an argument, or
341 // otherwise rely on the frame layout in a way that this analysis will not
342 // see.
343 if (Fn.hasFnAttribute(Attribute::Naked))
344 return false;
345
346 if (Fn.use_empty())
347 return false;
348
349 SmallVector<unsigned, 8> UnusedArgs;
350 for (Argument &Arg : Fn.args()) {
351 if (Arg.use_empty() && !Arg.hasByValOrInAllocaAttr())
352 UnusedArgs.push_back(Arg.getArgNo());
353 }
354
355 if (UnusedArgs.empty())
356 return false;
357
358 bool Changed = false;
359
360 for (Use &U : Fn.uses()) {
361 CallSite CS(U.getUser());
362 if (!CS || !CS.isCallee(&U))
363 continue;
364
365 // Now go through all unused args and replace them with "undef".
366 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
367 unsigned ArgNo = UnusedArgs[I];
368
369 Value *Arg = CS.getArgument(ArgNo);
370 CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
371 ++NumArgumentsReplacedWithUndef;
372 Changed = true;
373 }
374 }
375
376 return Changed;
377 }
378
379 /// Convenience function that returns the number of return values. It returns 0
380 /// for void functions and 1 for functions not returning a struct. It returns
381 /// the number of struct elements for functions returning a struct.
NumRetVals(const Function * F)382 static unsigned NumRetVals(const Function *F) {
383 Type *RetTy = F->getReturnType();
384 if (RetTy->isVoidTy())
385 return 0;
386 else if (StructType *STy = dyn_cast<StructType>(RetTy))
387 return STy->getNumElements();
388 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
389 return ATy->getNumElements();
390 else
391 return 1;
392 }
393
394 /// Returns the sub-type a function will return at a given Idx. Should
395 /// correspond to the result type of an ExtractValue instruction executed with
396 /// just that one Idx (i.e. only top-level structure is considered).
getRetComponentType(const Function * F,unsigned Idx)397 static Type *getRetComponentType(const Function *F, unsigned Idx) {
398 Type *RetTy = F->getReturnType();
399 assert(!RetTy->isVoidTy() && "void type has no subtype");
400
401 if (StructType *STy = dyn_cast<StructType>(RetTy))
402 return STy->getElementType(Idx);
403 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
404 return ATy->getElementType();
405 else
406 return RetTy;
407 }
408
409 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
410 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
411 /// liveness of Use.
MarkIfNotLive(RetOrArg Use,UseVector & MaybeLiveUses)412 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
413 // We're live if our use or its Function is already marked as live.
414 if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
415 return Live;
416
417 // We're maybe live otherwise, but remember that we must become live if
418 // Use becomes live.
419 MaybeLiveUses.push_back(Use);
420 return MaybeLive;
421 }
422
423
424 /// SurveyUse - This looks at a single use of an argument or return value
425 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
426 /// if it causes the used value to become MaybeLive.
427 ///
428 /// RetValNum is the return value number to use when this use is used in a
429 /// return instruction. This is used in the recursion, you should always leave
430 /// it at 0.
SurveyUse(const Use * U,UseVector & MaybeLiveUses,unsigned RetValNum)431 DAE::Liveness DAE::SurveyUse(const Use *U,
432 UseVector &MaybeLiveUses, unsigned RetValNum) {
433 const User *V = U->getUser();
434 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
435 // The value is returned from a function. It's only live when the
436 // function's return value is live. We use RetValNum here, for the case
437 // that U is really a use of an insertvalue instruction that uses the
438 // original Use.
439 const Function *F = RI->getParent()->getParent();
440 if (RetValNum != -1U) {
441 RetOrArg Use = CreateRet(F, RetValNum);
442 // We might be live, depending on the liveness of Use.
443 return MarkIfNotLive(Use, MaybeLiveUses);
444 } else {
445 DAE::Liveness Result = MaybeLive;
446 for (unsigned i = 0; i < NumRetVals(F); ++i) {
447 RetOrArg Use = CreateRet(F, i);
448 // We might be live, depending on the liveness of Use. If any
449 // sub-value is live, then the entire value is considered live. This
450 // is a conservative choice, and better tracking is possible.
451 DAE::Liveness SubResult = MarkIfNotLive(Use, MaybeLiveUses);
452 if (Result != Live)
453 Result = SubResult;
454 }
455 return Result;
456 }
457 }
458 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
459 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
460 && IV->hasIndices())
461 // The use we are examining is inserted into an aggregate. Our liveness
462 // depends on all uses of that aggregate, but if it is used as a return
463 // value, only index at which we were inserted counts.
464 RetValNum = *IV->idx_begin();
465
466 // Note that if we are used as the aggregate operand to the insertvalue,
467 // we don't change RetValNum, but do survey all our uses.
468
469 Liveness Result = MaybeLive;
470 for (const Use &UU : IV->uses()) {
471 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
472 if (Result == Live)
473 break;
474 }
475 return Result;
476 }
477
478 if (auto CS = ImmutableCallSite(V)) {
479 const Function *F = CS.getCalledFunction();
480 if (F) {
481 // Used in a direct call.
482
483 // Find the argument number. We know for sure that this use is an
484 // argument, since if it was the function argument this would be an
485 // indirect call and the we know can't be looking at a value of the
486 // label type (for the invoke instruction).
487 unsigned ArgNo = CS.getArgumentNo(U);
488
489 if (ArgNo >= F->getFunctionType()->getNumParams())
490 // The value is passed in through a vararg! Must be live.
491 return Live;
492
493 assert(CS.getArgument(ArgNo)
494 == CS->getOperand(U->getOperandNo())
495 && "Argument is not where we expected it");
496
497 // Value passed to a normal call. It's only live when the corresponding
498 // argument to the called function turns out live.
499 RetOrArg Use = CreateArg(F, ArgNo);
500 return MarkIfNotLive(Use, MaybeLiveUses);
501 }
502 }
503 // Used in any other way? Value must be live.
504 return Live;
505 }
506
507 /// SurveyUses - This looks at all the uses of the given value
508 /// Returns the Liveness deduced from the uses of this value.
509 ///
510 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
511 /// the result is Live, MaybeLiveUses might be modified but its content should
512 /// be ignored (since it might not be complete).
SurveyUses(const Value * V,UseVector & MaybeLiveUses)513 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
514 // Assume it's dead (which will only hold if there are no uses at all..).
515 Liveness Result = MaybeLive;
516 // Check each use.
517 for (const Use &U : V->uses()) {
518 Result = SurveyUse(&U, MaybeLiveUses);
519 if (Result == Live)
520 break;
521 }
522 return Result;
523 }
524
525 // SurveyFunction - This performs the initial survey of the specified function,
526 // checking out whether or not it uses any of its incoming arguments or whether
527 // any callers use the return value. This fills in the LiveValues set and Uses
528 // map.
529 //
530 // We consider arguments of non-internal functions to be intrinsically alive as
531 // well as arguments to functions which have their "address taken".
532 //
SurveyFunction(const Function & F)533 void DAE::SurveyFunction(const Function &F) {
534 // Functions with inalloca parameters are expecting args in a particular
535 // register and memory layout.
536 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
537 MarkLive(F);
538 return;
539 }
540
541 // Don't touch naked functions. The assembly might be using an argument, or
542 // otherwise rely on the frame layout in a way that this analysis will not
543 // see.
544 if (F.hasFnAttribute(Attribute::Naked)) {
545 MarkLive(F);
546 return;
547 }
548
549 unsigned RetCount = NumRetVals(&F);
550 // Assume all return values are dead
551 typedef SmallVector<Liveness, 5> RetVals;
552 RetVals RetValLiveness(RetCount, MaybeLive);
553
554 typedef SmallVector<UseVector, 5> RetUses;
555 // These vectors map each return value to the uses that make it MaybeLive, so
556 // we can add those to the Uses map if the return value really turns out to be
557 // MaybeLive. Initialized to a list of RetCount empty lists.
558 RetUses MaybeLiveRetUses(RetCount);
559
560 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
561 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
562 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
563 != F.getFunctionType()->getReturnType()) {
564 // We don't support old style multiple return values.
565 MarkLive(F);
566 return;
567 }
568
569 if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
570 MarkLive(F);
571 return;
572 }
573
574 DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
575 // Keep track of the number of live retvals, so we can skip checks once all
576 // of them turn out to be live.
577 unsigned NumLiveRetVals = 0;
578 // Loop all uses of the function.
579 for (const Use &U : F.uses()) {
580 // If the function is PASSED IN as an argument, its address has been
581 // taken.
582 ImmutableCallSite CS(U.getUser());
583 if (!CS || !CS.isCallee(&U)) {
584 MarkLive(F);
585 return;
586 }
587
588 // If this use is anything other than a call site, the function is alive.
589 const Instruction *TheCall = CS.getInstruction();
590 if (!TheCall) { // Not a direct call site?
591 MarkLive(F);
592 return;
593 }
594
595 // If we end up here, we are looking at a direct call to our function.
596
597 // Now, check how our return value(s) is/are used in this caller. Don't
598 // bother checking return values if all of them are live already.
599 if (NumLiveRetVals == RetCount)
600 continue;
601
602 // Check all uses of the return value.
603 for (const Use &U : TheCall->uses()) {
604 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
605 // This use uses a part of our return value, survey the uses of
606 // that part and store the results for this index only.
607 unsigned Idx = *Ext->idx_begin();
608 if (RetValLiveness[Idx] != Live) {
609 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
610 if (RetValLiveness[Idx] == Live)
611 NumLiveRetVals++;
612 }
613 } else {
614 // Used by something else than extractvalue. Survey, but assume that the
615 // result applies to all sub-values.
616 UseVector MaybeLiveAggregateUses;
617 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
618 NumLiveRetVals = RetCount;
619 RetValLiveness.assign(RetCount, Live);
620 break;
621 } else {
622 for (unsigned i = 0; i != RetCount; ++i) {
623 if (RetValLiveness[i] != Live)
624 MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
625 MaybeLiveAggregateUses.end());
626 }
627 }
628 }
629 }
630 }
631
632 // Now we've inspected all callers, record the liveness of our return values.
633 for (unsigned i = 0; i != RetCount; ++i)
634 MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
635
636 DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
637
638 // Now, check all of our arguments.
639 unsigned i = 0;
640 UseVector MaybeLiveArgUses;
641 for (Function::const_arg_iterator AI = F.arg_begin(),
642 E = F.arg_end(); AI != E; ++AI, ++i) {
643 Liveness Result;
644 if (F.getFunctionType()->isVarArg()) {
645 // Variadic functions will already have a va_arg function expanded inside
646 // them, making them potentially very sensitive to ABI changes resulting
647 // from removing arguments entirely, so don't. For example AArch64 handles
648 // register and stack HFAs very differently, and this is reflected in the
649 // IR which has already been generated.
650 Result = Live;
651 } else {
652 // See what the effect of this use is (recording any uses that cause
653 // MaybeLive in MaybeLiveArgUses).
654 Result = SurveyUses(&*AI, MaybeLiveArgUses);
655 }
656
657 // Mark the result.
658 MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
659 // Clear the vector again for the next iteration.
660 MaybeLiveArgUses.clear();
661 }
662 }
663
664 /// MarkValue - This function marks the liveness of RA depending on L. If L is
665 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
666 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
667 /// live later on.
MarkValue(const RetOrArg & RA,Liveness L,const UseVector & MaybeLiveUses)668 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
669 const UseVector &MaybeLiveUses) {
670 switch (L) {
671 case Live: MarkLive(RA); break;
672 case MaybeLive:
673 {
674 // Note any uses of this value, so this return value can be
675 // marked live whenever one of the uses becomes live.
676 for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
677 UE = MaybeLiveUses.end(); UI != UE; ++UI)
678 Uses.insert(std::make_pair(*UI, RA));
679 break;
680 }
681 }
682 }
683
684 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
685 /// changed in any way. Additionally,
686 /// mark any values that are used as this function's parameters or by its return
687 /// values (according to Uses) live as well.
MarkLive(const Function & F)688 void DAE::MarkLive(const Function &F) {
689 DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
690 // Mark the function as live.
691 LiveFunctions.insert(&F);
692 // Mark all arguments as live.
693 for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
694 PropagateLiveness(CreateArg(&F, i));
695 // Mark all return values as live.
696 for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
697 PropagateLiveness(CreateRet(&F, i));
698 }
699
700 /// MarkLive - Mark the given return value or argument as live. Additionally,
701 /// mark any values that are used by this value (according to Uses) live as
702 /// well.
MarkLive(const RetOrArg & RA)703 void DAE::MarkLive(const RetOrArg &RA) {
704 if (LiveFunctions.count(RA.F))
705 return; // Function was already marked Live.
706
707 if (!LiveValues.insert(RA).second)
708 return; // We were already marked Live.
709
710 DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
711 PropagateLiveness(RA);
712 }
713
714 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
715 /// to any other values it uses (according to Uses).
PropagateLiveness(const RetOrArg & RA)716 void DAE::PropagateLiveness(const RetOrArg &RA) {
717 // We don't use upper_bound (or equal_range) here, because our recursive call
718 // to ourselves is likely to cause the upper_bound (which is the first value
719 // not belonging to RA) to become erased and the iterator invalidated.
720 UseMap::iterator Begin = Uses.lower_bound(RA);
721 UseMap::iterator E = Uses.end();
722 UseMap::iterator I;
723 for (I = Begin; I != E && I->first == RA; ++I)
724 MarkLive(I->second);
725
726 // Erase RA from the Uses map (from the lower bound to wherever we ended up
727 // after the loop).
728 Uses.erase(Begin, I);
729 }
730
731 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
732 // that are not in LiveValues. Transform the function and all of the callees of
733 // the function to not have these arguments and return values.
734 //
RemoveDeadStuffFromFunction(Function * F)735 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
736 // Don't modify fully live functions
737 if (LiveFunctions.count(F))
738 return false;
739
740 // Start by computing a new prototype for the function, which is the same as
741 // the old function, but has fewer arguments and a different return type.
742 FunctionType *FTy = F->getFunctionType();
743 std::vector<Type*> Params;
744
745 // Keep track of if we have a live 'returned' argument
746 bool HasLiveReturnedArg = false;
747
748 // Set up to build a new list of parameter attributes.
749 SmallVector<AttributeSet, 8> AttributesVec;
750 const AttributeSet &PAL = F->getAttributes();
751
752 // Remember which arguments are still alive.
753 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
754 // Construct the new parameter list from non-dead arguments. Also construct
755 // a new set of parameter attributes to correspond. Skip the first parameter
756 // attribute, since that belongs to the return value.
757 unsigned i = 0;
758 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
759 I != E; ++I, ++i) {
760 RetOrArg Arg = CreateArg(F, i);
761 if (LiveValues.erase(Arg)) {
762 Params.push_back(I->getType());
763 ArgAlive[i] = true;
764
765 // Get the original parameter attributes (skipping the first one, that is
766 // for the return value.
767 if (PAL.hasAttributes(i + 1)) {
768 AttrBuilder B(PAL, i + 1);
769 if (B.contains(Attribute::Returned))
770 HasLiveReturnedArg = true;
771 AttributesVec.
772 push_back(AttributeSet::get(F->getContext(), Params.size(), B));
773 }
774 } else {
775 ++NumArgumentsEliminated;
776 DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
777 << ") from " << F->getName() << "\n");
778 }
779 }
780
781 // Find out the new return value.
782 Type *RetTy = FTy->getReturnType();
783 Type *NRetTy = nullptr;
784 unsigned RetCount = NumRetVals(F);
785
786 // -1 means unused, other numbers are the new index
787 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
788 std::vector<Type*> RetTypes;
789
790 // If there is a function with a live 'returned' argument but a dead return
791 // value, then there are two possible actions:
792 // 1) Eliminate the return value and take off the 'returned' attribute on the
793 // argument.
794 // 2) Retain the 'returned' attribute and treat the return value (but not the
795 // entire function) as live so that it is not eliminated.
796 //
797 // It's not clear in the general case which option is more profitable because,
798 // even in the absence of explicit uses of the return value, code generation
799 // is free to use the 'returned' attribute to do things like eliding
800 // save/restores of registers across calls. Whether or not this happens is
801 // target and ABI-specific as well as depending on the amount of register
802 // pressure, so there's no good way for an IR-level pass to figure this out.
803 //
804 // Fortunately, the only places where 'returned' is currently generated by
805 // the FE are places where 'returned' is basically free and almost always a
806 // performance win, so the second option can just be used always for now.
807 //
808 // This should be revisited if 'returned' is ever applied more liberally.
809 if (RetTy->isVoidTy() || HasLiveReturnedArg) {
810 NRetTy = RetTy;
811 } else {
812 // Look at each of the original return values individually.
813 for (unsigned i = 0; i != RetCount; ++i) {
814 RetOrArg Ret = CreateRet(F, i);
815 if (LiveValues.erase(Ret)) {
816 RetTypes.push_back(getRetComponentType(F, i));
817 NewRetIdxs[i] = RetTypes.size() - 1;
818 } else {
819 ++NumRetValsEliminated;
820 DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
821 << F->getName() << "\n");
822 }
823 }
824 if (RetTypes.size() > 1) {
825 // More than one return type? Reduce it down to size.
826 if (StructType *STy = dyn_cast<StructType>(RetTy)) {
827 // Make the new struct packed if we used to return a packed struct
828 // already.
829 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
830 } else {
831 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
832 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
833 }
834 } else if (RetTypes.size() == 1)
835 // One return type? Just a simple value then, but only if we didn't use to
836 // return a struct with that simple value before.
837 NRetTy = RetTypes.front();
838 else if (RetTypes.size() == 0)
839 // No return types? Make it void, but only if we didn't use to return {}.
840 NRetTy = Type::getVoidTy(F->getContext());
841 }
842
843 assert(NRetTy && "No new return type found?");
844
845 // The existing function return attributes.
846 AttributeSet RAttrs = PAL.getRetAttributes();
847
848 // Remove any incompatible attributes, but only if we removed all return
849 // values. Otherwise, ensure that we don't have any conflicting attributes
850 // here. Currently, this should not be possible, but special handling might be
851 // required when new return value attributes are added.
852 if (NRetTy->isVoidTy())
853 RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
854 AttributeSet::ReturnIndex,
855 AttributeFuncs::typeIncompatible(NRetTy));
856 else
857 assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
858 overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
859 "Return attributes no longer compatible?");
860
861 if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
862 AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
863
864 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
865 AttributesVec.push_back(AttributeSet::get(F->getContext(),
866 PAL.getFnAttributes()));
867
868 // Reconstruct the AttributesList based on the vector we constructed.
869 AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
870
871 // Create the new function type based on the recomputed parameters.
872 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
873
874 // No change?
875 if (NFTy == FTy)
876 return false;
877
878 // Create the new function body and insert it into the module...
879 Function *NF = Function::Create(NFTy, F->getLinkage());
880 NF->copyAttributesFrom(F);
881 NF->setAttributes(NewPAL);
882 // Insert the new function before the old function, so we won't be processing
883 // it again.
884 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
885 NF->takeName(F);
886
887 // Loop over all of the callers of the function, transforming the call sites
888 // to pass in a smaller number of arguments into the new function.
889 //
890 std::vector<Value*> Args;
891 while (!F->use_empty()) {
892 CallSite CS(F->user_back());
893 Instruction *Call = CS.getInstruction();
894
895 AttributesVec.clear();
896 const AttributeSet &CallPAL = CS.getAttributes();
897
898 // The call return attributes.
899 AttributeSet RAttrs = CallPAL.getRetAttributes();
900
901 // Adjust in case the function was changed to return void.
902 RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
903 AttributeSet::ReturnIndex,
904 AttributeFuncs::typeIncompatible(NF->getReturnType()));
905 if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
906 AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
907
908 // Declare these outside of the loops, so we can reuse them for the second
909 // loop, which loops the varargs.
910 CallSite::arg_iterator I = CS.arg_begin();
911 unsigned i = 0;
912 // Loop over those operands, corresponding to the normal arguments to the
913 // original function, and add those that are still alive.
914 for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
915 if (ArgAlive[i]) {
916 Args.push_back(*I);
917 // Get original parameter attributes, but skip return attributes.
918 if (CallPAL.hasAttributes(i + 1)) {
919 AttrBuilder B(CallPAL, i + 1);
920 // If the return type has changed, then get rid of 'returned' on the
921 // call site. The alternative is to make all 'returned' attributes on
922 // call sites keep the return value alive just like 'returned'
923 // attributes on function declaration but it's less clearly a win
924 // and this is not an expected case anyway
925 if (NRetTy != RetTy && B.contains(Attribute::Returned))
926 B.removeAttribute(Attribute::Returned);
927 AttributesVec.
928 push_back(AttributeSet::get(F->getContext(), Args.size(), B));
929 }
930 }
931
932 // Push any varargs arguments on the list. Don't forget their attributes.
933 for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
934 Args.push_back(*I);
935 if (CallPAL.hasAttributes(i + 1)) {
936 AttrBuilder B(CallPAL, i + 1);
937 AttributesVec.
938 push_back(AttributeSet::get(F->getContext(), Args.size(), B));
939 }
940 }
941
942 if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
943 AttributesVec.push_back(AttributeSet::get(Call->getContext(),
944 CallPAL.getFnAttributes()));
945
946 // Reconstruct the AttributesList based on the vector we constructed.
947 AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
948
949 Instruction *New;
950 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
951 New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
952 Args, "", Call->getParent());
953 cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
954 cast<InvokeInst>(New)->setAttributes(NewCallPAL);
955 } else {
956 New = CallInst::Create(NF, Args, "", Call);
957 cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
958 cast<CallInst>(New)->setAttributes(NewCallPAL);
959 if (cast<CallInst>(Call)->isTailCall())
960 cast<CallInst>(New)->setTailCall();
961 }
962 New->setDebugLoc(Call->getDebugLoc());
963
964 Args.clear();
965
966 if (!Call->use_empty()) {
967 if (New->getType() == Call->getType()) {
968 // Return type not changed? Just replace users then.
969 Call->replaceAllUsesWith(New);
970 New->takeName(Call);
971 } else if (New->getType()->isVoidTy()) {
972 // Our return value has uses, but they will get removed later on.
973 // Replace by null for now.
974 if (!Call->getType()->isX86_MMXTy())
975 Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
976 } else {
977 assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
978 "Return type changed, but not into a void. The old return type"
979 " must have been a struct or an array!");
980 Instruction *InsertPt = Call;
981 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
982 BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest());
983 InsertPt = &*NewEdge->getFirstInsertionPt();
984 }
985
986 // We used to return a struct or array. Instead of doing smart stuff
987 // with all the uses, we will just rebuild it using extract/insertvalue
988 // chaining and let instcombine clean that up.
989 //
990 // Start out building up our return value from undef
991 Value *RetVal = UndefValue::get(RetTy);
992 for (unsigned i = 0; i != RetCount; ++i)
993 if (NewRetIdxs[i] != -1) {
994 Value *V;
995 if (RetTypes.size() > 1)
996 // We are still returning a struct, so extract the value from our
997 // return value
998 V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
999 InsertPt);
1000 else
1001 // We are now returning a single element, so just insert that
1002 V = New;
1003 // Insert the value at the old position
1004 RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
1005 }
1006 // Now, replace all uses of the old call instruction with the return
1007 // struct we built
1008 Call->replaceAllUsesWith(RetVal);
1009 New->takeName(Call);
1010 }
1011 }
1012
1013 // Finally, remove the old call from the program, reducing the use-count of
1014 // F.
1015 Call->eraseFromParent();
1016 }
1017
1018 // Since we have now created the new function, splice the body of the old
1019 // function right into the new function, leaving the old rotting hulk of the
1020 // function empty.
1021 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1022
1023 // Loop over the argument list, transferring uses of the old arguments over to
1024 // the new arguments, also transferring over the names as well.
1025 i = 0;
1026 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1027 I2 = NF->arg_begin(); I != E; ++I, ++i)
1028 if (ArgAlive[i]) {
1029 // If this is a live argument, move the name and users over to the new
1030 // version.
1031 I->replaceAllUsesWith(&*I2);
1032 I2->takeName(&*I);
1033 ++I2;
1034 } else {
1035 // If this argument is dead, replace any uses of it with null constants
1036 // (these are guaranteed to become unused later on).
1037 if (!I->getType()->isX86_MMXTy())
1038 I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
1039 }
1040
1041 // If we change the return value of the function we must rewrite any return
1042 // instructions. Check this now.
1043 if (F->getReturnType() != NF->getReturnType())
1044 for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
1045 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1046 Value *RetVal;
1047
1048 if (NFTy->getReturnType()->isVoidTy()) {
1049 RetVal = nullptr;
1050 } else {
1051 assert(RetTy->isStructTy() || RetTy->isArrayTy());
1052 // The original return value was a struct or array, insert
1053 // extractvalue/insertvalue chains to extract only the values we need
1054 // to return and insert them into our new result.
1055 // This does generate messy code, but we'll let it to instcombine to
1056 // clean that up.
1057 Value *OldRet = RI->getOperand(0);
1058 // Start out building up our return value from undef
1059 RetVal = UndefValue::get(NRetTy);
1060 for (unsigned i = 0; i != RetCount; ++i)
1061 if (NewRetIdxs[i] != -1) {
1062 ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1063 "oldret", RI);
1064 if (RetTypes.size() > 1) {
1065 // We're still returning a struct, so reinsert the value into
1066 // our new return value at the new index
1067
1068 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1069 "newret", RI);
1070 } else {
1071 // We are now only returning a simple value, so just return the
1072 // extracted value.
1073 RetVal = EV;
1074 }
1075 }
1076 }
1077 // Replace the return instruction with one returning the new return
1078 // value (possibly 0 if we became void).
1079 ReturnInst::Create(F->getContext(), RetVal, RI);
1080 BB->getInstList().erase(RI);
1081 }
1082
1083 // Patch the pointer to LLVM function in debug info descriptor.
1084 NF->setSubprogram(F->getSubprogram());
1085
1086 // Now that the old function is dead, delete it.
1087 F->eraseFromParent();
1088
1089 return true;
1090 }
1091
runOnModule(Module & M)1092 bool DAE::runOnModule(Module &M) {
1093 bool Changed = false;
1094
1095 // First pass: Do a simple check to see if any functions can have their "..."
1096 // removed. We can do this if they never call va_start. This loop cannot be
1097 // fused with the next loop, because deleting a function invalidates
1098 // information computed while surveying other functions.
1099 DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
1100 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1101 Function &F = *I++;
1102 if (F.getFunctionType()->isVarArg())
1103 Changed |= DeleteDeadVarargs(F);
1104 }
1105
1106 // Second phase:loop through the module, determining which arguments are live.
1107 // We assume all arguments are dead unless proven otherwise (allowing us to
1108 // determine that dead arguments passed into recursive functions are dead).
1109 //
1110 DEBUG(dbgs() << "DAE - Determining liveness\n");
1111 for (auto &F : M)
1112 SurveyFunction(F);
1113
1114 // Now, remove all dead arguments and return values from each function in
1115 // turn.
1116 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1117 // Increment now, because the function will probably get removed (ie.
1118 // replaced by a new one).
1119 Function *F = &*I++;
1120 Changed |= RemoveDeadStuffFromFunction(F);
1121 }
1122
1123 // Finally, look for any unused parameters in functions with non-local
1124 // linkage and replace the passed in parameters with undef.
1125 for (auto &F : M)
1126 Changed |= RemoveDeadArgumentsFromCallers(F);
1127
1128 return Changed;
1129 }
1130