1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar/EarlyCSE.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/RecyclingAllocator.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include <deque>
36 using namespace llvm;
37 using namespace llvm::PatternMatch;
38
39 #define DEBUG_TYPE "early-cse"
40
41 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
42 STATISTIC(NumCSE, "Number of instructions CSE'd");
43 STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
44 STATISTIC(NumCSECall, "Number of call instructions CSE'd");
45 STATISTIC(NumDSE, "Number of trivial dead stores removed");
46
47 //===----------------------------------------------------------------------===//
48 // SimpleValue
49 //===----------------------------------------------------------------------===//
50
51 namespace {
52 /// \brief Struct representing the available values in the scoped hash table.
53 struct SimpleValue {
54 Instruction *Inst;
55
SimpleValue__anoncdf6c96d0111::SimpleValue56 SimpleValue(Instruction *I) : Inst(I) {
57 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
58 }
59
isSentinel__anoncdf6c96d0111::SimpleValue60 bool isSentinel() const {
61 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
62 Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
63 }
64
canHandle__anoncdf6c96d0111::SimpleValue65 static bool canHandle(Instruction *Inst) {
66 // This can only handle non-void readnone functions.
67 if (CallInst *CI = dyn_cast<CallInst>(Inst))
68 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
69 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
70 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
71 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
72 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
73 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
74 }
75 };
76 }
77
78 namespace llvm {
79 template <> struct DenseMapInfo<SimpleValue> {
getEmptyKeyllvm::DenseMapInfo80 static inline SimpleValue getEmptyKey() {
81 return DenseMapInfo<Instruction *>::getEmptyKey();
82 }
getTombstoneKeyllvm::DenseMapInfo83 static inline SimpleValue getTombstoneKey() {
84 return DenseMapInfo<Instruction *>::getTombstoneKey();
85 }
86 static unsigned getHashValue(SimpleValue Val);
87 static bool isEqual(SimpleValue LHS, SimpleValue RHS);
88 };
89 }
90
getHashValue(SimpleValue Val)91 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
92 Instruction *Inst = Val.Inst;
93 // Hash in all of the operands as pointers.
94 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
95 Value *LHS = BinOp->getOperand(0);
96 Value *RHS = BinOp->getOperand(1);
97 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
98 std::swap(LHS, RHS);
99
100 if (isa<OverflowingBinaryOperator>(BinOp)) {
101 // Hash the overflow behavior
102 unsigned Overflow =
103 BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
104 BinOp->hasNoUnsignedWrap() *
105 OverflowingBinaryOperator::NoUnsignedWrap;
106 return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
107 }
108
109 return hash_combine(BinOp->getOpcode(), LHS, RHS);
110 }
111
112 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
113 Value *LHS = CI->getOperand(0);
114 Value *RHS = CI->getOperand(1);
115 CmpInst::Predicate Pred = CI->getPredicate();
116 if (Inst->getOperand(0) > Inst->getOperand(1)) {
117 std::swap(LHS, RHS);
118 Pred = CI->getSwappedPredicate();
119 }
120 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
121 }
122
123 if (CastInst *CI = dyn_cast<CastInst>(Inst))
124 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
125
126 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
127 return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
128 hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
129
130 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
131 return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
132 IVI->getOperand(1),
133 hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
134
135 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
136 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
137 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
138 isa<ShuffleVectorInst>(Inst)) &&
139 "Invalid/unknown instruction");
140
141 // Mix in the opcode.
142 return hash_combine(
143 Inst->getOpcode(),
144 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
145 }
146
isEqual(SimpleValue LHS,SimpleValue RHS)147 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
148 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
149
150 if (LHS.isSentinel() || RHS.isSentinel())
151 return LHSI == RHSI;
152
153 if (LHSI->getOpcode() != RHSI->getOpcode())
154 return false;
155 if (LHSI->isIdenticalTo(RHSI))
156 return true;
157
158 // If we're not strictly identical, we still might be a commutable instruction
159 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
160 if (!LHSBinOp->isCommutative())
161 return false;
162
163 assert(isa<BinaryOperator>(RHSI) &&
164 "same opcode, but different instruction type?");
165 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
166
167 // Check overflow attributes
168 if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
169 assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
170 "same opcode, but different operator type?");
171 if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
172 LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
173 return false;
174 }
175
176 // Commuted equality
177 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
178 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
179 }
180 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
181 assert(isa<CmpInst>(RHSI) &&
182 "same opcode, but different instruction type?");
183 CmpInst *RHSCmp = cast<CmpInst>(RHSI);
184 // Commuted equality
185 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
186 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
187 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
188 }
189
190 return false;
191 }
192
193 //===----------------------------------------------------------------------===//
194 // CallValue
195 //===----------------------------------------------------------------------===//
196
197 namespace {
198 /// \brief Struct representing the available call values in the scoped hash
199 /// table.
200 struct CallValue {
201 Instruction *Inst;
202
CallValue__anoncdf6c96d0211::CallValue203 CallValue(Instruction *I) : Inst(I) {
204 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
205 }
206
isSentinel__anoncdf6c96d0211::CallValue207 bool isSentinel() const {
208 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
209 Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
210 }
211
canHandle__anoncdf6c96d0211::CallValue212 static bool canHandle(Instruction *Inst) {
213 // Don't value number anything that returns void.
214 if (Inst->getType()->isVoidTy())
215 return false;
216
217 CallInst *CI = dyn_cast<CallInst>(Inst);
218 if (!CI || !CI->onlyReadsMemory())
219 return false;
220 return true;
221 }
222 };
223 }
224
225 namespace llvm {
226 template <> struct DenseMapInfo<CallValue> {
getEmptyKeyllvm::DenseMapInfo227 static inline CallValue getEmptyKey() {
228 return DenseMapInfo<Instruction *>::getEmptyKey();
229 }
getTombstoneKeyllvm::DenseMapInfo230 static inline CallValue getTombstoneKey() {
231 return DenseMapInfo<Instruction *>::getTombstoneKey();
232 }
233 static unsigned getHashValue(CallValue Val);
234 static bool isEqual(CallValue LHS, CallValue RHS);
235 };
236 }
237
getHashValue(CallValue Val)238 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
239 Instruction *Inst = Val.Inst;
240 // Hash all of the operands as pointers and mix in the opcode.
241 return hash_combine(
242 Inst->getOpcode(),
243 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
244 }
245
isEqual(CallValue LHS,CallValue RHS)246 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
247 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
248 if (LHS.isSentinel() || RHS.isSentinel())
249 return LHSI == RHSI;
250 return LHSI->isIdenticalTo(RHSI);
251 }
252
253 //===----------------------------------------------------------------------===//
254 // EarlyCSE implementation
255 //===----------------------------------------------------------------------===//
256
257 namespace {
258 /// \brief A simple and fast domtree-based CSE pass.
259 ///
260 /// This pass does a simple depth-first walk over the dominator tree,
261 /// eliminating trivially redundant instructions and using instsimplify to
262 /// canonicalize things as it goes. It is intended to be fast and catch obvious
263 /// cases so that instcombine and other passes are more effective. It is
264 /// expected that a later pass of GVN will catch the interesting/hard cases.
265 class EarlyCSE {
266 public:
267 const TargetLibraryInfo &TLI;
268 const TargetTransformInfo &TTI;
269 DominatorTree &DT;
270 AssumptionCache &AC;
271 typedef RecyclingAllocator<
272 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
273 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
274 AllocatorTy> ScopedHTType;
275
276 /// \brief A scoped hash table of the current values of all of our simple
277 /// scalar expressions.
278 ///
279 /// As we walk down the domtree, we look to see if instructions are in this:
280 /// if so, we replace them with what we find, otherwise we insert them so
281 /// that dominated values can succeed in their lookup.
282 ScopedHTType AvailableValues;
283
284 /// A scoped hash table of the current values of previously encounted memory
285 /// locations.
286 ///
287 /// This allows us to get efficient access to dominating loads or stores when
288 /// we have a fully redundant load. In addition to the most recent load, we
289 /// keep track of a generation count of the read, which is compared against
290 /// the current generation count. The current generation count is incremented
291 /// after every possibly writing memory operation, which ensures that we only
292 /// CSE loads with other loads that have no intervening store. Ordering
293 /// events (such as fences or atomic instructions) increment the generation
294 /// count as well; essentially, we model these as writes to all possible
295 /// locations. Note that atomic and/or volatile loads and stores can be
296 /// present the table; it is the responsibility of the consumer to inspect
297 /// the atomicity/volatility if needed.
298 struct LoadValue {
299 Value *Data;
300 unsigned Generation;
301 int MatchingId;
302 bool IsAtomic;
LoadValue__anoncdf6c96d0311::EarlyCSE::LoadValue303 LoadValue()
304 : Data(nullptr), Generation(0), MatchingId(-1), IsAtomic(false) {}
LoadValue__anoncdf6c96d0311::EarlyCSE::LoadValue305 LoadValue(Value *Data, unsigned Generation, unsigned MatchingId,
306 bool IsAtomic)
307 : Data(Data), Generation(Generation), MatchingId(MatchingId),
308 IsAtomic(IsAtomic) {}
309 };
310 typedef RecyclingAllocator<BumpPtrAllocator,
311 ScopedHashTableVal<Value *, LoadValue>>
312 LoadMapAllocator;
313 typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
314 LoadMapAllocator> LoadHTType;
315 LoadHTType AvailableLoads;
316
317 /// \brief A scoped hash table of the current values of read-only call
318 /// values.
319 ///
320 /// It uses the same generation count as loads.
321 typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
322 CallHTType AvailableCalls;
323
324 /// \brief This is the current generation of the memory value.
325 unsigned CurrentGeneration;
326
327 /// \brief Set up the EarlyCSE runner for a particular function.
EarlyCSE(const TargetLibraryInfo & TLI,const TargetTransformInfo & TTI,DominatorTree & DT,AssumptionCache & AC)328 EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI,
329 DominatorTree &DT, AssumptionCache &AC)
330 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
331
332 bool run();
333
334 private:
335 // Almost a POD, but needs to call the constructors for the scoped hash
336 // tables so that a new scope gets pushed on. These are RAII so that the
337 // scope gets popped when the NodeScope is destroyed.
338 class NodeScope {
339 public:
NodeScope(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,CallHTType & AvailableCalls)340 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
341 CallHTType &AvailableCalls)
342 : Scope(AvailableValues), LoadScope(AvailableLoads),
343 CallScope(AvailableCalls) {}
344
345 private:
346 NodeScope(const NodeScope &) = delete;
347 void operator=(const NodeScope &) = delete;
348
349 ScopedHTType::ScopeTy Scope;
350 LoadHTType::ScopeTy LoadScope;
351 CallHTType::ScopeTy CallScope;
352 };
353
354 // Contains all the needed information to create a stack for doing a depth
355 // first tranversal of the tree. This includes scopes for values, loads, and
356 // calls as well as the generation. There is a child iterator so that the
357 // children do not need to be store spearately.
358 class StackNode {
359 public:
StackNode(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,CallHTType & AvailableCalls,unsigned cg,DomTreeNode * n,DomTreeNode::iterator child,DomTreeNode::iterator end)360 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
361 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
362 DomTreeNode::iterator child, DomTreeNode::iterator end)
363 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
364 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls),
365 Processed(false) {}
366
367 // Accessors.
currentGeneration()368 unsigned currentGeneration() { return CurrentGeneration; }
childGeneration()369 unsigned childGeneration() { return ChildGeneration; }
childGeneration(unsigned generation)370 void childGeneration(unsigned generation) { ChildGeneration = generation; }
node()371 DomTreeNode *node() { return Node; }
childIter()372 DomTreeNode::iterator childIter() { return ChildIter; }
nextChild()373 DomTreeNode *nextChild() {
374 DomTreeNode *child = *ChildIter;
375 ++ChildIter;
376 return child;
377 }
end()378 DomTreeNode::iterator end() { return EndIter; }
isProcessed()379 bool isProcessed() { return Processed; }
process()380 void process() { Processed = true; }
381
382 private:
383 StackNode(const StackNode &) = delete;
384 void operator=(const StackNode &) = delete;
385
386 // Members.
387 unsigned CurrentGeneration;
388 unsigned ChildGeneration;
389 DomTreeNode *Node;
390 DomTreeNode::iterator ChildIter;
391 DomTreeNode::iterator EndIter;
392 NodeScope Scopes;
393 bool Processed;
394 };
395
396 /// \brief Wrapper class to handle memory instructions, including loads,
397 /// stores and intrinsic loads and stores defined by the target.
398 class ParseMemoryInst {
399 public:
ParseMemoryInst(Instruction * Inst,const TargetTransformInfo & TTI)400 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
401 : IsTargetMemInst(false), Inst(Inst) {
402 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
403 if (TTI.getTgtMemIntrinsic(II, Info) && Info.NumMemRefs == 1)
404 IsTargetMemInst = true;
405 }
isLoad() const406 bool isLoad() const {
407 if (IsTargetMemInst) return Info.ReadMem;
408 return isa<LoadInst>(Inst);
409 }
isStore() const410 bool isStore() const {
411 if (IsTargetMemInst) return Info.WriteMem;
412 return isa<StoreInst>(Inst);
413 }
isAtomic() const414 bool isAtomic() const {
415 if (IsTargetMemInst) {
416 assert(Info.IsSimple && "need to refine IsSimple in TTI");
417 return false;
418 }
419 return Inst->isAtomic();
420 }
isUnordered() const421 bool isUnordered() const {
422 if (IsTargetMemInst) {
423 assert(Info.IsSimple && "need to refine IsSimple in TTI");
424 return true;
425 }
426 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
427 return LI->isUnordered();
428 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
429 return SI->isUnordered();
430 }
431 // Conservative answer
432 return !Inst->isAtomic();
433 }
434
isVolatile() const435 bool isVolatile() const {
436 if (IsTargetMemInst) {
437 assert(Info.IsSimple && "need to refine IsSimple in TTI");
438 return false;
439 }
440 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
441 return LI->isVolatile();
442 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
443 return SI->isVolatile();
444 }
445 // Conservative answer
446 return true;
447 }
448
449
isMatchingMemLoc(const ParseMemoryInst & Inst) const450 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
451 return (getPointerOperand() == Inst.getPointerOperand() &&
452 getMatchingId() == Inst.getMatchingId());
453 }
isValid() const454 bool isValid() const { return getPointerOperand() != nullptr; }
455
456 // For regular (non-intrinsic) loads/stores, this is set to -1. For
457 // intrinsic loads/stores, the id is retrieved from the corresponding
458 // field in the MemIntrinsicInfo structure. That field contains
459 // non-negative values only.
getMatchingId() const460 int getMatchingId() const {
461 if (IsTargetMemInst) return Info.MatchingId;
462 return -1;
463 }
getPointerOperand() const464 Value *getPointerOperand() const {
465 if (IsTargetMemInst) return Info.PtrVal;
466 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
467 return LI->getPointerOperand();
468 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
469 return SI->getPointerOperand();
470 }
471 return nullptr;
472 }
mayReadFromMemory() const473 bool mayReadFromMemory() const {
474 if (IsTargetMemInst) return Info.ReadMem;
475 return Inst->mayReadFromMemory();
476 }
mayWriteToMemory() const477 bool mayWriteToMemory() const {
478 if (IsTargetMemInst) return Info.WriteMem;
479 return Inst->mayWriteToMemory();
480 }
481
482 private:
483 bool IsTargetMemInst;
484 MemIntrinsicInfo Info;
485 Instruction *Inst;
486 };
487
488 bool processNode(DomTreeNode *Node);
489
getOrCreateResult(Value * Inst,Type * ExpectedType) const490 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
491 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
492 return LI;
493 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
494 return SI->getValueOperand();
495 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
496 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
497 ExpectedType);
498 }
499 };
500 }
501
processNode(DomTreeNode * Node)502 bool EarlyCSE::processNode(DomTreeNode *Node) {
503 BasicBlock *BB = Node->getBlock();
504
505 // If this block has a single predecessor, then the predecessor is the parent
506 // of the domtree node and all of the live out memory values are still current
507 // in this block. If this block has multiple predecessors, then they could
508 // have invalidated the live-out memory values of our parent value. For now,
509 // just be conservative and invalidate memory if this block has multiple
510 // predecessors.
511 if (!BB->getSinglePredecessor())
512 ++CurrentGeneration;
513
514 // If this node has a single predecessor which ends in a conditional branch,
515 // we can infer the value of the branch condition given that we took this
516 // path. We need the single predeccesor to ensure there's not another path
517 // which reaches this block where the condition might hold a different
518 // value. Since we're adding this to the scoped hash table (like any other
519 // def), it will have been popped if we encounter a future merge block.
520 if (BasicBlock *Pred = BB->getSinglePredecessor())
521 if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
522 if (BI->isConditional())
523 if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition()))
524 if (SimpleValue::canHandle(CondInst)) {
525 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
526 auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ?
527 ConstantInt::getTrue(BB->getContext()) :
528 ConstantInt::getFalse(BB->getContext());
529 AvailableValues.insert(CondInst, ConditionalConstant);
530 DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
531 << CondInst->getName() << "' as " << *ConditionalConstant
532 << " in " << BB->getName() << "\n");
533 // Replace all dominated uses with the known value
534 replaceDominatedUsesWith(CondInst, ConditionalConstant, DT,
535 BasicBlockEdge(Pred, BB));
536 }
537
538 /// LastStore - Keep track of the last non-volatile store that we saw... for
539 /// as long as there in no instruction that reads memory. If we see a store
540 /// to the same location, we delete the dead store. This zaps trivial dead
541 /// stores which can occur in bitfield code among other things.
542 Instruction *LastStore = nullptr;
543
544 bool Changed = false;
545 const DataLayout &DL = BB->getModule()->getDataLayout();
546
547 // See if any instructions in the block can be eliminated. If so, do it. If
548 // not, add them to AvailableValues.
549 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
550 Instruction *Inst = &*I++;
551
552 // Dead instructions should just be removed.
553 if (isInstructionTriviallyDead(Inst, &TLI)) {
554 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
555 Inst->eraseFromParent();
556 Changed = true;
557 ++NumSimplify;
558 continue;
559 }
560
561 // Skip assume intrinsics, they don't really have side effects (although
562 // they're marked as such to ensure preservation of control dependencies),
563 // and this pass will not disturb any of the assumption's control
564 // dependencies.
565 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
566 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
567 continue;
568 }
569
570 // If the instruction can be simplified (e.g. X+0 = X) then replace it with
571 // its simpler value.
572 if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) {
573 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
574 Inst->replaceAllUsesWith(V);
575 Inst->eraseFromParent();
576 Changed = true;
577 ++NumSimplify;
578 continue;
579 }
580
581 // If this is a simple instruction that we can value number, process it.
582 if (SimpleValue::canHandle(Inst)) {
583 // See if the instruction has an available value. If so, use it.
584 if (Value *V = AvailableValues.lookup(Inst)) {
585 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
586 Inst->replaceAllUsesWith(V);
587 Inst->eraseFromParent();
588 Changed = true;
589 ++NumCSE;
590 continue;
591 }
592
593 // Otherwise, just remember that this value is available.
594 AvailableValues.insert(Inst, Inst);
595 continue;
596 }
597
598 ParseMemoryInst MemInst(Inst, TTI);
599 // If this is a non-volatile load, process it.
600 if (MemInst.isValid() && MemInst.isLoad()) {
601 // (conservatively) we can't peak past the ordering implied by this
602 // operation, but we can add this load to our set of available values
603 if (MemInst.isVolatile() || !MemInst.isUnordered()) {
604 LastStore = nullptr;
605 ++CurrentGeneration;
606 }
607
608 // If we have an available version of this load, and if it is the right
609 // generation, replace this instruction.
610 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
611 if (InVal.Data != nullptr && InVal.Generation == CurrentGeneration &&
612 InVal.MatchingId == MemInst.getMatchingId() &&
613 // We don't yet handle removing loads with ordering of any kind.
614 !MemInst.isVolatile() && MemInst.isUnordered() &&
615 // We can't replace an atomic load with one which isn't also atomic.
616 InVal.IsAtomic >= MemInst.isAtomic()) {
617 Value *Op = getOrCreateResult(InVal.Data, Inst->getType());
618 if (Op != nullptr) {
619 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
620 << " to: " << *InVal.Data << '\n');
621 if (!Inst->use_empty())
622 Inst->replaceAllUsesWith(Op);
623 Inst->eraseFromParent();
624 Changed = true;
625 ++NumCSELoad;
626 continue;
627 }
628 }
629
630 // Otherwise, remember that we have this instruction.
631 AvailableLoads.insert(
632 MemInst.getPointerOperand(),
633 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
634 MemInst.isAtomic()));
635 LastStore = nullptr;
636 continue;
637 }
638
639 // If this instruction may read from memory, forget LastStore.
640 // Load/store intrinsics will indicate both a read and a write to
641 // memory. The target may override this (e.g. so that a store intrinsic
642 // does not read from memory, and thus will be treated the same as a
643 // regular store for commoning purposes).
644 if (Inst->mayReadFromMemory() &&
645 !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
646 LastStore = nullptr;
647
648 // If this is a read-only call, process it.
649 if (CallValue::canHandle(Inst)) {
650 // If we have an available version of this call, and if it is the right
651 // generation, replace this instruction.
652 std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst);
653 if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
654 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
655 << " to: " << *InVal.first << '\n');
656 if (!Inst->use_empty())
657 Inst->replaceAllUsesWith(InVal.first);
658 Inst->eraseFromParent();
659 Changed = true;
660 ++NumCSECall;
661 continue;
662 }
663
664 // Otherwise, remember that we have this instruction.
665 AvailableCalls.insert(
666 Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
667 continue;
668 }
669
670 // A release fence requires that all stores complete before it, but does
671 // not prevent the reordering of following loads 'before' the fence. As a
672 // result, we don't need to consider it as writing to memory and don't need
673 // to advance the generation. We do need to prevent DSE across the fence,
674 // but that's handled above.
675 if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
676 if (FI->getOrdering() == Release) {
677 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
678 continue;
679 }
680
681 // write back DSE - If we write back the same value we just loaded from
682 // the same location and haven't passed any intervening writes or ordering
683 // operations, we can remove the write. The primary benefit is in allowing
684 // the available load table to remain valid and value forward past where
685 // the store originally was.
686 if (MemInst.isValid() && MemInst.isStore()) {
687 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
688 if (InVal.Data &&
689 InVal.Data == getOrCreateResult(Inst, InVal.Data->getType()) &&
690 InVal.Generation == CurrentGeneration &&
691 InVal.MatchingId == MemInst.getMatchingId() &&
692 // We don't yet handle removing stores with ordering of any kind.
693 !MemInst.isVolatile() && MemInst.isUnordered()) {
694 assert((!LastStore ||
695 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
696 MemInst.getPointerOperand()) &&
697 "can't have an intervening store!");
698 DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
699 Inst->eraseFromParent();
700 Changed = true;
701 ++NumDSE;
702 // We can avoid incrementing the generation count since we were able
703 // to eliminate this store.
704 continue;
705 }
706 }
707
708 // Okay, this isn't something we can CSE at all. Check to see if it is
709 // something that could modify memory. If so, our available memory values
710 // cannot be used so bump the generation count.
711 if (Inst->mayWriteToMemory()) {
712 ++CurrentGeneration;
713
714 if (MemInst.isValid() && MemInst.isStore()) {
715 // We do a trivial form of DSE if there are two stores to the same
716 // location with no intervening loads. Delete the earlier store.
717 // At the moment, we don't remove ordered stores, but do remove
718 // unordered atomic stores. There's no special requirement (for
719 // unordered atomics) about removing atomic stores only in favor of
720 // other atomic stores since we we're going to execute the non-atomic
721 // one anyway and the atomic one might never have become visible.
722 if (LastStore) {
723 ParseMemoryInst LastStoreMemInst(LastStore, TTI);
724 assert(LastStoreMemInst.isUnordered() &&
725 !LastStoreMemInst.isVolatile() &&
726 "Violated invariant");
727 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
728 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
729 << " due to: " << *Inst << '\n');
730 LastStore->eraseFromParent();
731 Changed = true;
732 ++NumDSE;
733 LastStore = nullptr;
734 }
735 // fallthrough - we can exploit information about this store
736 }
737
738 // Okay, we just invalidated anything we knew about loaded values. Try
739 // to salvage *something* by remembering that the stored value is a live
740 // version of the pointer. It is safe to forward from volatile stores
741 // to non-volatile loads, so we don't have to check for volatility of
742 // the store.
743 AvailableLoads.insert(
744 MemInst.getPointerOperand(),
745 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
746 MemInst.isAtomic()));
747
748 // Remember that this was the last unordered store we saw for DSE. We
749 // don't yet handle DSE on ordered or volatile stores since we don't
750 // have a good way to model the ordering requirement for following
751 // passes once the store is removed. We could insert a fence, but
752 // since fences are slightly stronger than stores in their ordering,
753 // it's not clear this is a profitable transform. Another option would
754 // be to merge the ordering with that of the post dominating store.
755 if (MemInst.isUnordered() && !MemInst.isVolatile())
756 LastStore = Inst;
757 else
758 LastStore = nullptr;
759 }
760 }
761 }
762
763 return Changed;
764 }
765
run()766 bool EarlyCSE::run() {
767 // Note, deque is being used here because there is significant performance
768 // gains over vector when the container becomes very large due to the
769 // specific access patterns. For more information see the mailing list
770 // discussion on this:
771 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
772 std::deque<StackNode *> nodesToProcess;
773
774 bool Changed = false;
775
776 // Process the root node.
777 nodesToProcess.push_back(new StackNode(
778 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
779 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
780
781 // Save the current generation.
782 unsigned LiveOutGeneration = CurrentGeneration;
783
784 // Process the stack.
785 while (!nodesToProcess.empty()) {
786 // Grab the first item off the stack. Set the current generation, remove
787 // the node from the stack, and process it.
788 StackNode *NodeToProcess = nodesToProcess.back();
789
790 // Initialize class members.
791 CurrentGeneration = NodeToProcess->currentGeneration();
792
793 // Check if the node needs to be processed.
794 if (!NodeToProcess->isProcessed()) {
795 // Process the node.
796 Changed |= processNode(NodeToProcess->node());
797 NodeToProcess->childGeneration(CurrentGeneration);
798 NodeToProcess->process();
799 } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
800 // Push the next child onto the stack.
801 DomTreeNode *child = NodeToProcess->nextChild();
802 nodesToProcess.push_back(
803 new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
804 NodeToProcess->childGeneration(), child, child->begin(),
805 child->end()));
806 } else {
807 // It has been processed, and there are no more children to process,
808 // so delete it and pop it off the stack.
809 delete NodeToProcess;
810 nodesToProcess.pop_back();
811 }
812 } // while (!nodes...)
813
814 // Reset the current generation.
815 CurrentGeneration = LiveOutGeneration;
816
817 return Changed;
818 }
819
run(Function & F,AnalysisManager<Function> * AM)820 PreservedAnalyses EarlyCSEPass::run(Function &F,
821 AnalysisManager<Function> *AM) {
822 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
823 auto &TTI = AM->getResult<TargetIRAnalysis>(F);
824 auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
825 auto &AC = AM->getResult<AssumptionAnalysis>(F);
826
827 EarlyCSE CSE(TLI, TTI, DT, AC);
828
829 if (!CSE.run())
830 return PreservedAnalyses::all();
831
832 // CSE preserves the dominator tree because it doesn't mutate the CFG.
833 // FIXME: Bundle this with other CFG-preservation.
834 PreservedAnalyses PA;
835 PA.preserve<DominatorTreeAnalysis>();
836 return PA;
837 }
838
839 namespace {
840 /// \brief A simple and fast domtree-based CSE pass.
841 ///
842 /// This pass does a simple depth-first walk over the dominator tree,
843 /// eliminating trivially redundant instructions and using instsimplify to
844 /// canonicalize things as it goes. It is intended to be fast and catch obvious
845 /// cases so that instcombine and other passes are more effective. It is
846 /// expected that a later pass of GVN will catch the interesting/hard cases.
847 class EarlyCSELegacyPass : public FunctionPass {
848 public:
849 static char ID;
850
EarlyCSELegacyPass()851 EarlyCSELegacyPass() : FunctionPass(ID) {
852 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
853 }
854
runOnFunction(Function & F)855 bool runOnFunction(Function &F) override {
856 if (skipOptnoneFunction(F))
857 return false;
858
859 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
860 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
861 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
862 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
863
864 EarlyCSE CSE(TLI, TTI, DT, AC);
865
866 return CSE.run();
867 }
868
getAnalysisUsage(AnalysisUsage & AU) const869 void getAnalysisUsage(AnalysisUsage &AU) const override {
870 AU.addRequired<AssumptionCacheTracker>();
871 AU.addRequired<DominatorTreeWrapperPass>();
872 AU.addRequired<TargetLibraryInfoWrapperPass>();
873 AU.addRequired<TargetTransformInfoWrapperPass>();
874 AU.addPreserved<GlobalsAAWrapperPass>();
875 AU.setPreservesCFG();
876 }
877 };
878 }
879
880 char EarlyCSELegacyPass::ID = 0;
881
createEarlyCSEPass()882 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); }
883
884 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
885 false)
886 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
887 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
888 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
889 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
890 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
891