1 //===--- HexagonBitSimplify.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "hexbit"
11 
12 #include "llvm/CodeGen/Passes.h"
13 #include "llvm/CodeGen/MachineDominators.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/Support/CommandLine.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/raw_ostream.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "HexagonTargetMachine.h"
23 #include "HexagonBitTracker.h"
24 
25 using namespace llvm;
26 
27 namespace llvm {
28   void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
29   FunctionPass *createHexagonBitSimplify();
30 }
31 
32 namespace {
33   // Set of virtual registers, based on BitVector.
34   struct RegisterSet : private BitVector {
RegisterSet__anon3f9b49d70111::RegisterSet35     RegisterSet() : BitVector() {}
RegisterSet__anon3f9b49d70111::RegisterSet36     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
RegisterSet__anon3f9b49d70111::RegisterSet37     RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
38 
39     using BitVector::clear;
40     using BitVector::count;
41 
find_first__anon3f9b49d70111::RegisterSet42     unsigned find_first() const {
43       int First = BitVector::find_first();
44       if (First < 0)
45         return 0;
46       return x2v(First);
47     }
48 
find_next__anon3f9b49d70111::RegisterSet49     unsigned find_next(unsigned Prev) const {
50       int Next = BitVector::find_next(v2x(Prev));
51       if (Next < 0)
52         return 0;
53       return x2v(Next);
54     }
55 
insert__anon3f9b49d70111::RegisterSet56     RegisterSet &insert(unsigned R) {
57       unsigned Idx = v2x(R);
58       ensure(Idx);
59       return static_cast<RegisterSet&>(BitVector::set(Idx));
60     }
remove__anon3f9b49d70111::RegisterSet61     RegisterSet &remove(unsigned R) {
62       unsigned Idx = v2x(R);
63       if (Idx >= size())
64         return *this;
65       return static_cast<RegisterSet&>(BitVector::reset(Idx));
66     }
67 
insert__anon3f9b49d70111::RegisterSet68     RegisterSet &insert(const RegisterSet &Rs) {
69       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
70     }
remove__anon3f9b49d70111::RegisterSet71     RegisterSet &remove(const RegisterSet &Rs) {
72       return static_cast<RegisterSet&>(BitVector::reset(Rs));
73     }
74 
operator []__anon3f9b49d70111::RegisterSet75     reference operator[](unsigned R) {
76       unsigned Idx = v2x(R);
77       ensure(Idx);
78       return BitVector::operator[](Idx);
79     }
operator []__anon3f9b49d70111::RegisterSet80     bool operator[](unsigned R) const {
81       unsigned Idx = v2x(R);
82       assert(Idx < size());
83       return BitVector::operator[](Idx);
84     }
has__anon3f9b49d70111::RegisterSet85     bool has(unsigned R) const {
86       unsigned Idx = v2x(R);
87       if (Idx >= size())
88         return false;
89       return BitVector::test(Idx);
90     }
91 
empty__anon3f9b49d70111::RegisterSet92     bool empty() const {
93       return !BitVector::any();
94     }
includes__anon3f9b49d70111::RegisterSet95     bool includes(const RegisterSet &Rs) const {
96       // A.BitVector::test(B)  <=>  A-B != {}
97       return !Rs.BitVector::test(*this);
98     }
intersects__anon3f9b49d70111::RegisterSet99     bool intersects(const RegisterSet &Rs) const {
100       return BitVector::anyCommon(Rs);
101     }
102 
103   private:
ensure__anon3f9b49d70111::RegisterSet104     void ensure(unsigned Idx) {
105       if (size() <= Idx)
106         resize(std::max(Idx+1, 32U));
107     }
v2x__anon3f9b49d70111::RegisterSet108     static inline unsigned v2x(unsigned v) {
109       return TargetRegisterInfo::virtReg2Index(v);
110     }
x2v__anon3f9b49d70111::RegisterSet111     static inline unsigned x2v(unsigned x) {
112       return TargetRegisterInfo::index2VirtReg(x);
113     }
114   };
115 
116 
117   struct PrintRegSet {
PrintRegSet__anon3f9b49d70111::PrintRegSet118     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
119       : RS(S), TRI(RI) {}
120     friend raw_ostream &operator<< (raw_ostream &OS,
121           const PrintRegSet &P);
122   private:
123     const RegisterSet &RS;
124     const TargetRegisterInfo *TRI;
125   };
126 
127   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
128     LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const PrintRegSet & P)129   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
130     OS << '{';
131     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
132       OS << ' ' << PrintReg(R, P.TRI);
133     OS << " }";
134     return OS;
135   }
136 }
137 
138 
139 namespace {
140   class Transformation;
141 
142   class HexagonBitSimplify : public MachineFunctionPass {
143   public:
144     static char ID;
HexagonBitSimplify()145     HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
146       initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
147     }
getPassName() const148     virtual const char *getPassName() const {
149       return "Hexagon bit simplification";
150     }
getAnalysisUsage(AnalysisUsage & AU) const151     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
152       AU.addRequired<MachineDominatorTree>();
153       AU.addPreserved<MachineDominatorTree>();
154       MachineFunctionPass::getAnalysisUsage(AU);
155     }
156     virtual bool runOnMachineFunction(MachineFunction &MF);
157 
158     static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
159     static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
160     static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
161         const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
162     static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B,
163         uint16_t W);
164     static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
165         uint16_t W);
166     static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
167         uint16_t W, uint64_t &U);
168     static bool replaceReg(unsigned OldR, unsigned NewR,
169         MachineRegisterInfo &MRI);
170     static bool getSubregMask(const BitTracker::RegisterRef &RR,
171         unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
172     static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
173         unsigned NewSR, MachineRegisterInfo &MRI);
174     static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
175         unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
176     static bool parseRegSequence(const MachineInstr &I,
177         BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
178 
179     static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
180         uint16_t Begin);
181     static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
182         uint16_t Begin, const HexagonInstrInfo &HII);
183 
184     static const TargetRegisterClass *getFinalVRegClass(
185         const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
186     static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
187         const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
188 
189   private:
190     MachineDominatorTree *MDT;
191 
192     bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
193   };
194 
195   char HexagonBitSimplify::ID = 0;
196   typedef HexagonBitSimplify HBS;
197 
198 
199   // The purpose of this class is to provide a common facility to traverse
200   // the function top-down or bottom-up via the dominator tree, and keep
201   // track of the available registers.
202   class Transformation {
203   public:
204     bool TopDown;
Transformation(bool TD)205     Transformation(bool TD) : TopDown(TD) {}
206     virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
~Transformation()207     virtual ~Transformation() {}
208   };
209 }
210 
211 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
212       "Hexagon bit simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)213 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
214 INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
215       "Hexagon bit simplification", false, false)
216 
217 
218 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
219       RegisterSet &AVs) {
220   MachineDomTreeNode *N = MDT->getNode(&B);
221   typedef GraphTraits<MachineDomTreeNode*> GTN;
222   bool Changed = false;
223 
224   if (T.TopDown)
225     Changed = T.processBlock(B, AVs);
226 
227   RegisterSet Defs;
228   for (auto &I : B)
229     getInstrDefs(I, Defs);
230   RegisterSet NewAVs = AVs;
231   NewAVs.insert(Defs);
232 
233   for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
234     MachineBasicBlock *SB = (*I)->getBlock();
235     Changed |= visitBlock(*SB, T, NewAVs);
236   }
237   if (!T.TopDown)
238     Changed |= T.processBlock(B, AVs);
239 
240   return Changed;
241 }
242 
243 //
244 // Utility functions:
245 //
getInstrDefs(const MachineInstr & MI,RegisterSet & Defs)246 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
247       RegisterSet &Defs) {
248   for (auto &Op : MI.operands()) {
249     if (!Op.isReg() || !Op.isDef())
250       continue;
251     unsigned R = Op.getReg();
252     if (!TargetRegisterInfo::isVirtualRegister(R))
253       continue;
254     Defs.insert(R);
255   }
256 }
257 
getInstrUses(const MachineInstr & MI,RegisterSet & Uses)258 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
259       RegisterSet &Uses) {
260   for (auto &Op : MI.operands()) {
261     if (!Op.isReg() || !Op.isUse())
262       continue;
263     unsigned R = Op.getReg();
264     if (!TargetRegisterInfo::isVirtualRegister(R))
265       continue;
266     Uses.insert(R);
267   }
268 }
269 
270 // Check if all the bits in range [B, E) in both cells are equal.
isEqual(const BitTracker::RegisterCell & RC1,uint16_t B1,const BitTracker::RegisterCell & RC2,uint16_t B2,uint16_t W)271 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
272       uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
273       uint16_t W) {
274   for (uint16_t i = 0; i < W; ++i) {
275     // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
276     if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
277       return false;
278     // Same for RC2[i].
279     if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
280       return false;
281     if (RC1[B1+i] != RC2[B2+i])
282       return false;
283   }
284   return true;
285 }
286 
287 
isConst(const BitTracker::RegisterCell & RC,uint16_t B,uint16_t W)288 bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC,
289       uint16_t B, uint16_t W) {
290   assert(B < RC.width() && B+W <= RC.width());
291   for (uint16_t i = B; i < B+W; ++i)
292     if (!RC[i].num())
293       return false;
294   return true;
295 }
296 
297 
isZero(const BitTracker::RegisterCell & RC,uint16_t B,uint16_t W)298 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
299       uint16_t B, uint16_t W) {
300   assert(B < RC.width() && B+W <= RC.width());
301   for (uint16_t i = B; i < B+W; ++i)
302     if (!RC[i].is(0))
303       return false;
304   return true;
305 }
306 
307 
getConst(const BitTracker::RegisterCell & RC,uint16_t B,uint16_t W,uint64_t & U)308 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
309         uint16_t B, uint16_t W, uint64_t &U) {
310   assert(B < RC.width() && B+W <= RC.width());
311   int64_t T = 0;
312   for (uint16_t i = B+W; i > B; --i) {
313     const BitTracker::BitValue &BV = RC[i-1];
314     T <<= 1;
315     if (BV.is(1))
316       T |= 1;
317     else if (!BV.is(0))
318       return false;
319   }
320   U = T;
321   return true;
322 }
323 
324 
replaceReg(unsigned OldR,unsigned NewR,MachineRegisterInfo & MRI)325 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
326       MachineRegisterInfo &MRI) {
327   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
328       !TargetRegisterInfo::isVirtualRegister(NewR))
329     return false;
330   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
331   decltype(End) NextI;
332   for (auto I = Begin; I != End; I = NextI) {
333     NextI = std::next(I);
334     I->setReg(NewR);
335   }
336   return Begin != End;
337 }
338 
339 
replaceRegWithSub(unsigned OldR,unsigned NewR,unsigned NewSR,MachineRegisterInfo & MRI)340 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
341       unsigned NewSR, MachineRegisterInfo &MRI) {
342   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
343       !TargetRegisterInfo::isVirtualRegister(NewR))
344     return false;
345   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
346   decltype(End) NextI;
347   for (auto I = Begin; I != End; I = NextI) {
348     NextI = std::next(I);
349     I->setReg(NewR);
350     I->setSubReg(NewSR);
351   }
352   return Begin != End;
353 }
354 
355 
replaceSubWithSub(unsigned OldR,unsigned OldSR,unsigned NewR,unsigned NewSR,MachineRegisterInfo & MRI)356 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
357       unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
358   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
359       !TargetRegisterInfo::isVirtualRegister(NewR))
360     return false;
361   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
362   decltype(End) NextI;
363   for (auto I = Begin; I != End; I = NextI) {
364     NextI = std::next(I);
365     if (I->getSubReg() != OldSR)
366       continue;
367     I->setReg(NewR);
368     I->setSubReg(NewSR);
369   }
370   return Begin != End;
371 }
372 
373 
374 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
375 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
376 // if this succeeded, otherwise return false.
getSubregMask(const BitTracker::RegisterRef & RR,unsigned & Begin,unsigned & Width,MachineRegisterInfo & MRI)377 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
378       unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
379   const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
380   if (RC == &Hexagon::IntRegsRegClass) {
381     assert(RR.Sub == 0);
382     Begin = 0;
383     Width = 32;
384     return true;
385   }
386   if (RC == &Hexagon::DoubleRegsRegClass) {
387     if (RR.Sub == 0) {
388       Begin = 0;
389       Width = 64;
390       return true;
391     }
392     assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
393     Width = 32;
394     Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
395     return true;
396   }
397   return false;
398 }
399 
400 
401 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
402 // subregister.
parseRegSequence(const MachineInstr & I,BitTracker::RegisterRef & SL,BitTracker::RegisterRef & SH)403 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
404       BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
405   assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
406   unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
407   assert(Sub1 != Sub2);
408   if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
409     SL = I.getOperand(1);
410     SH = I.getOperand(3);
411     return true;
412   }
413   if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
414     SH = I.getOperand(1);
415     SL = I.getOperand(3);
416     return true;
417   }
418   return false;
419 }
420 
421 
422 // All stores (except 64-bit stores) take a 32-bit register as the source
423 // of the value to be stored. If the instruction stores into a location
424 // that is shorter than 32 bits, some bits of the source register are not
425 // used. For each store instruction, calculate the set of used bits in
426 // the source register, and set appropriate bits in Bits. Return true if
427 // the bits are calculated, false otherwise.
getUsedBitsInStore(unsigned Opc,BitVector & Bits,uint16_t Begin)428 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
429       uint16_t Begin) {
430   using namespace Hexagon;
431 
432   switch (Opc) {
433     // Store byte
434     case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
435     case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
436     case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
437     case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
438     case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
439     case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
440     case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
441     case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
442     case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
443     case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
444     case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
445     case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
446     case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
447     case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
448     case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
449     case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
450     case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
451     case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
452     case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
453     case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
454     case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
455     case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
456     case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
457     case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
458     case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
459     case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
460     case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
461     case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
462     case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
463     case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
464     case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
465     case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
466     case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
467     case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
468     case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
469     case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
470     case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
471     case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
472     case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
473     case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
474     case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
475     case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
476     case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
477     case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
478     case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
479     case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
480     case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
481     case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
482     case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
483     case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
484     case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
485     case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
486       Bits.set(Begin, Begin+8);
487       return true;
488 
489     // Store low half
490     case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
491     case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
492     case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
493     case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
494     case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
495     case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
496     case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
497     case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
498     case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
499     case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
500     case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
501     case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
502     case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
503     case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
504     case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
505     case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
506     case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
507     case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
508     case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
509     case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
510     case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
511     case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
512     case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
513     case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
514     case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
515     case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
516     case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
517     case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
518     case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
519     case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
520     case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
521     case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
522     case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
523     case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
524     case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
525     case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
526     case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
527     case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
528     case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
529     case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
530     case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
531     case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
532     case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
533     case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
534     case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
535     case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
536     case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
537     case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
538     case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
539     case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
540     case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
541     case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
542       Bits.set(Begin, Begin+16);
543       return true;
544 
545     // Store high half
546     case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
547     case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
548     case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
549     case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
550     case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
551     case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
552     case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
553     case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
554     case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
555     case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
556     case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
557     case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
558     case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
559     case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
560     case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
561     case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
562     case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
563     case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
564     case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
565     case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
566     case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
567     case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
568     case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
569     case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
570     case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
571     case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
572       Bits.set(Begin+16, Begin+32);
573       return true;
574   }
575 
576   return false;
577 }
578 
579 
580 // For an instruction with opcode Opc, calculate the set of bits that it
581 // uses in a register in operand OpN. This only calculates the set of used
582 // bits for cases where it does not depend on any operands (as is the case
583 // in shifts, for example). For concrete instructions from a program, the
584 // operand may be a subregister of a larger register, while Bits would
585 // correspond to the larger register in its entirety. Because of that,
586 // the parameter Begin can be used to indicate which bit of Bits should be
587 // considered the LSB of of the operand.
getUsedBits(unsigned Opc,unsigned OpN,BitVector & Bits,uint16_t Begin,const HexagonInstrInfo & HII)588 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
589       BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
590   using namespace Hexagon;
591 
592   const MCInstrDesc &D = HII.get(Opc);
593   if (D.mayStore()) {
594     if (OpN == D.getNumOperands()-1)
595       return getUsedBitsInStore(Opc, Bits, Begin);
596     return false;
597   }
598 
599   switch (Opc) {
600     // One register source. Used bits: R1[0-7].
601     case A2_sxtb:
602     case A2_zxtb:
603     case A4_cmpbeqi:
604     case A4_cmpbgti:
605     case A4_cmpbgtui:
606       if (OpN == 1) {
607         Bits.set(Begin, Begin+8);
608         return true;
609       }
610       break;
611 
612     // One register source. Used bits: R1[0-15].
613     case A2_aslh:
614     case A2_sxth:
615     case A2_zxth:
616     case A4_cmpheqi:
617     case A4_cmphgti:
618     case A4_cmphgtui:
619       if (OpN == 1) {
620         Bits.set(Begin, Begin+16);
621         return true;
622       }
623       break;
624 
625     // One register source. Used bits: R1[16-31].
626     case A2_asrh:
627       if (OpN == 1) {
628         Bits.set(Begin+16, Begin+32);
629         return true;
630       }
631       break;
632 
633     // Two register sources. Used bits: R1[0-7], R2[0-7].
634     case A4_cmpbeq:
635     case A4_cmpbgt:
636     case A4_cmpbgtu:
637       if (OpN == 1) {
638         Bits.set(Begin, Begin+8);
639         return true;
640       }
641       break;
642 
643     // Two register sources. Used bits: R1[0-15], R2[0-15].
644     case A4_cmpheq:
645     case A4_cmphgt:
646     case A4_cmphgtu:
647     case A2_addh_h16_ll:
648     case A2_addh_h16_sat_ll:
649     case A2_addh_l16_ll:
650     case A2_addh_l16_sat_ll:
651     case A2_combine_ll:
652     case A2_subh_h16_ll:
653     case A2_subh_h16_sat_ll:
654     case A2_subh_l16_ll:
655     case A2_subh_l16_sat_ll:
656     case M2_mpy_acc_ll_s0:
657     case M2_mpy_acc_ll_s1:
658     case M2_mpy_acc_sat_ll_s0:
659     case M2_mpy_acc_sat_ll_s1:
660     case M2_mpy_ll_s0:
661     case M2_mpy_ll_s1:
662     case M2_mpy_nac_ll_s0:
663     case M2_mpy_nac_ll_s1:
664     case M2_mpy_nac_sat_ll_s0:
665     case M2_mpy_nac_sat_ll_s1:
666     case M2_mpy_rnd_ll_s0:
667     case M2_mpy_rnd_ll_s1:
668     case M2_mpy_sat_ll_s0:
669     case M2_mpy_sat_ll_s1:
670     case M2_mpy_sat_rnd_ll_s0:
671     case M2_mpy_sat_rnd_ll_s1:
672     case M2_mpyd_acc_ll_s0:
673     case M2_mpyd_acc_ll_s1:
674     case M2_mpyd_ll_s0:
675     case M2_mpyd_ll_s1:
676     case M2_mpyd_nac_ll_s0:
677     case M2_mpyd_nac_ll_s1:
678     case M2_mpyd_rnd_ll_s0:
679     case M2_mpyd_rnd_ll_s1:
680     case M2_mpyu_acc_ll_s0:
681     case M2_mpyu_acc_ll_s1:
682     case M2_mpyu_ll_s0:
683     case M2_mpyu_ll_s1:
684     case M2_mpyu_nac_ll_s0:
685     case M2_mpyu_nac_ll_s1:
686     case M2_mpyud_acc_ll_s0:
687     case M2_mpyud_acc_ll_s1:
688     case M2_mpyud_ll_s0:
689     case M2_mpyud_ll_s1:
690     case M2_mpyud_nac_ll_s0:
691     case M2_mpyud_nac_ll_s1:
692       if (OpN == 1 || OpN == 2) {
693         Bits.set(Begin, Begin+16);
694         return true;
695       }
696       break;
697 
698     // Two register sources. Used bits: R1[0-15], R2[16-31].
699     case A2_addh_h16_lh:
700     case A2_addh_h16_sat_lh:
701     case A2_combine_lh:
702     case A2_subh_h16_lh:
703     case A2_subh_h16_sat_lh:
704     case M2_mpy_acc_lh_s0:
705     case M2_mpy_acc_lh_s1:
706     case M2_mpy_acc_sat_lh_s0:
707     case M2_mpy_acc_sat_lh_s1:
708     case M2_mpy_lh_s0:
709     case M2_mpy_lh_s1:
710     case M2_mpy_nac_lh_s0:
711     case M2_mpy_nac_lh_s1:
712     case M2_mpy_nac_sat_lh_s0:
713     case M2_mpy_nac_sat_lh_s1:
714     case M2_mpy_rnd_lh_s0:
715     case M2_mpy_rnd_lh_s1:
716     case M2_mpy_sat_lh_s0:
717     case M2_mpy_sat_lh_s1:
718     case M2_mpy_sat_rnd_lh_s0:
719     case M2_mpy_sat_rnd_lh_s1:
720     case M2_mpyd_acc_lh_s0:
721     case M2_mpyd_acc_lh_s1:
722     case M2_mpyd_lh_s0:
723     case M2_mpyd_lh_s1:
724     case M2_mpyd_nac_lh_s0:
725     case M2_mpyd_nac_lh_s1:
726     case M2_mpyd_rnd_lh_s0:
727     case M2_mpyd_rnd_lh_s1:
728     case M2_mpyu_acc_lh_s0:
729     case M2_mpyu_acc_lh_s1:
730     case M2_mpyu_lh_s0:
731     case M2_mpyu_lh_s1:
732     case M2_mpyu_nac_lh_s0:
733     case M2_mpyu_nac_lh_s1:
734     case M2_mpyud_acc_lh_s0:
735     case M2_mpyud_acc_lh_s1:
736     case M2_mpyud_lh_s0:
737     case M2_mpyud_lh_s1:
738     case M2_mpyud_nac_lh_s0:
739     case M2_mpyud_nac_lh_s1:
740     // These four are actually LH.
741     case A2_addh_l16_hl:
742     case A2_addh_l16_sat_hl:
743     case A2_subh_l16_hl:
744     case A2_subh_l16_sat_hl:
745       if (OpN == 1) {
746         Bits.set(Begin, Begin+16);
747         return true;
748       }
749       if (OpN == 2) {
750         Bits.set(Begin+16, Begin+32);
751         return true;
752       }
753       break;
754 
755     // Two register sources, used bits: R1[16-31], R2[0-15].
756     case A2_addh_h16_hl:
757     case A2_addh_h16_sat_hl:
758     case A2_combine_hl:
759     case A2_subh_h16_hl:
760     case A2_subh_h16_sat_hl:
761     case M2_mpy_acc_hl_s0:
762     case M2_mpy_acc_hl_s1:
763     case M2_mpy_acc_sat_hl_s0:
764     case M2_mpy_acc_sat_hl_s1:
765     case M2_mpy_hl_s0:
766     case M2_mpy_hl_s1:
767     case M2_mpy_nac_hl_s0:
768     case M2_mpy_nac_hl_s1:
769     case M2_mpy_nac_sat_hl_s0:
770     case M2_mpy_nac_sat_hl_s1:
771     case M2_mpy_rnd_hl_s0:
772     case M2_mpy_rnd_hl_s1:
773     case M2_mpy_sat_hl_s0:
774     case M2_mpy_sat_hl_s1:
775     case M2_mpy_sat_rnd_hl_s0:
776     case M2_mpy_sat_rnd_hl_s1:
777     case M2_mpyd_acc_hl_s0:
778     case M2_mpyd_acc_hl_s1:
779     case M2_mpyd_hl_s0:
780     case M2_mpyd_hl_s1:
781     case M2_mpyd_nac_hl_s0:
782     case M2_mpyd_nac_hl_s1:
783     case M2_mpyd_rnd_hl_s0:
784     case M2_mpyd_rnd_hl_s1:
785     case M2_mpyu_acc_hl_s0:
786     case M2_mpyu_acc_hl_s1:
787     case M2_mpyu_hl_s0:
788     case M2_mpyu_hl_s1:
789     case M2_mpyu_nac_hl_s0:
790     case M2_mpyu_nac_hl_s1:
791     case M2_mpyud_acc_hl_s0:
792     case M2_mpyud_acc_hl_s1:
793     case M2_mpyud_hl_s0:
794     case M2_mpyud_hl_s1:
795     case M2_mpyud_nac_hl_s0:
796     case M2_mpyud_nac_hl_s1:
797       if (OpN == 1) {
798         Bits.set(Begin+16, Begin+32);
799         return true;
800       }
801       if (OpN == 2) {
802         Bits.set(Begin, Begin+16);
803         return true;
804       }
805       break;
806 
807     // Two register sources, used bits: R1[16-31], R2[16-31].
808     case A2_addh_h16_hh:
809     case A2_addh_h16_sat_hh:
810     case A2_combine_hh:
811     case A2_subh_h16_hh:
812     case A2_subh_h16_sat_hh:
813     case M2_mpy_acc_hh_s0:
814     case M2_mpy_acc_hh_s1:
815     case M2_mpy_acc_sat_hh_s0:
816     case M2_mpy_acc_sat_hh_s1:
817     case M2_mpy_hh_s0:
818     case M2_mpy_hh_s1:
819     case M2_mpy_nac_hh_s0:
820     case M2_mpy_nac_hh_s1:
821     case M2_mpy_nac_sat_hh_s0:
822     case M2_mpy_nac_sat_hh_s1:
823     case M2_mpy_rnd_hh_s0:
824     case M2_mpy_rnd_hh_s1:
825     case M2_mpy_sat_hh_s0:
826     case M2_mpy_sat_hh_s1:
827     case M2_mpy_sat_rnd_hh_s0:
828     case M2_mpy_sat_rnd_hh_s1:
829     case M2_mpyd_acc_hh_s0:
830     case M2_mpyd_acc_hh_s1:
831     case M2_mpyd_hh_s0:
832     case M2_mpyd_hh_s1:
833     case M2_mpyd_nac_hh_s0:
834     case M2_mpyd_nac_hh_s1:
835     case M2_mpyd_rnd_hh_s0:
836     case M2_mpyd_rnd_hh_s1:
837     case M2_mpyu_acc_hh_s0:
838     case M2_mpyu_acc_hh_s1:
839     case M2_mpyu_hh_s0:
840     case M2_mpyu_hh_s1:
841     case M2_mpyu_nac_hh_s0:
842     case M2_mpyu_nac_hh_s1:
843     case M2_mpyud_acc_hh_s0:
844     case M2_mpyud_acc_hh_s1:
845     case M2_mpyud_hh_s0:
846     case M2_mpyud_hh_s1:
847     case M2_mpyud_nac_hh_s0:
848     case M2_mpyud_nac_hh_s1:
849       if (OpN == 1 || OpN == 2) {
850         Bits.set(Begin+16, Begin+32);
851         return true;
852       }
853       break;
854   }
855 
856   return false;
857 }
858 
859 
860 // Calculate the register class that matches Reg:Sub. For example, if
861 // vreg1 is a double register, then vreg1:subreg_hireg would match "int"
862 // register class.
getFinalVRegClass(const BitTracker::RegisterRef & RR,MachineRegisterInfo & MRI)863 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
864       const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
865   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
866     return nullptr;
867   auto *RC = MRI.getRegClass(RR.Reg);
868   if (RR.Sub == 0)
869     return RC;
870 
871   auto VerifySR = [] (unsigned Sub) -> void {
872     assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
873   };
874 
875   switch (RC->getID()) {
876     case Hexagon::DoubleRegsRegClassID:
877       VerifySR(RR.Sub);
878       return &Hexagon::IntRegsRegClass;
879   }
880   return nullptr;
881 }
882 
883 
884 // Check if RD could be replaced with RS at any possible use of RD.
885 // For example a predicate register cannot be replaced with a integer
886 // register, but a 64-bit register with a subregister can be replaced
887 // with a 32-bit register.
isTransparentCopy(const BitTracker::RegisterRef & RD,const BitTracker::RegisterRef & RS,MachineRegisterInfo & MRI)888 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
889       const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
890   if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
891       !TargetRegisterInfo::isVirtualRegister(RS.Reg))
892     return false;
893   // Return false if one (or both) classes are nullptr.
894   auto *DRC = getFinalVRegClass(RD, MRI);
895   if (!DRC)
896     return false;
897 
898   return DRC == getFinalVRegClass(RS, MRI);
899 }
900 
901 
902 //
903 // Dead code elimination
904 //
905 namespace {
906   class DeadCodeElimination {
907   public:
DeadCodeElimination(MachineFunction & mf,MachineDominatorTree & mdt)908     DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
909       : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
910         MDT(mdt), MRI(mf.getRegInfo()) {}
911 
run()912     bool run() {
913       return runOnNode(MDT.getRootNode());
914     }
915 
916   private:
917     bool isDead(unsigned R) const;
918     bool runOnNode(MachineDomTreeNode *N);
919 
920     MachineFunction &MF;
921     const HexagonInstrInfo &HII;
922     MachineDominatorTree &MDT;
923     MachineRegisterInfo &MRI;
924   };
925 }
926 
927 
isDead(unsigned R) const928 bool DeadCodeElimination::isDead(unsigned R) const {
929   for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
930     MachineInstr *UseI = I->getParent();
931     if (UseI->isDebugValue())
932       continue;
933     if (UseI->isPHI()) {
934       assert(!UseI->getOperand(0).getSubReg());
935       unsigned DR = UseI->getOperand(0).getReg();
936       if (DR == R)
937         continue;
938     }
939     return false;
940   }
941   return true;
942 }
943 
944 
runOnNode(MachineDomTreeNode * N)945 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
946   bool Changed = false;
947   typedef GraphTraits<MachineDomTreeNode*> GTN;
948   for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
949     Changed |= runOnNode(*I);
950 
951   MachineBasicBlock *B = N->getBlock();
952   std::vector<MachineInstr*> Instrs;
953   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
954     Instrs.push_back(&*I);
955 
956   for (auto MI : Instrs) {
957     unsigned Opc = MI->getOpcode();
958     // Do not touch lifetime markers. This is why the target-independent DCE
959     // cannot be used.
960     if (Opc == TargetOpcode::LIFETIME_START ||
961         Opc == TargetOpcode::LIFETIME_END)
962       continue;
963     bool Store = false;
964     if (MI->isInlineAsm())
965       continue;
966     // Delete PHIs if possible.
967     if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
968       continue;
969 
970     bool AllDead = true;
971     SmallVector<unsigned,2> Regs;
972     for (auto &Op : MI->operands()) {
973       if (!Op.isReg() || !Op.isDef())
974         continue;
975       unsigned R = Op.getReg();
976       if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
977         AllDead = false;
978         break;
979       }
980       Regs.push_back(R);
981     }
982     if (!AllDead)
983       continue;
984 
985     B->erase(MI);
986     for (unsigned i = 0, n = Regs.size(); i != n; ++i)
987       MRI.markUsesInDebugValueAsUndef(Regs[i]);
988     Changed = true;
989   }
990 
991   return Changed;
992 }
993 
994 
995 //
996 // Eliminate redundant instructions
997 //
998 // This transformation will identify instructions where the output register
999 // is the same as one of its input registers. This only works on instructions
1000 // that define a single register (unlike post-increment loads, for example).
1001 // The equality check is actually more detailed: the code calculates which
1002 // bits of the output are used, and only compares these bits with the input
1003 // registers.
1004 // If the output matches an input, the instruction is replaced with COPY.
1005 // The copies will be removed by another transformation.
1006 namespace {
1007   class RedundantInstrElimination : public Transformation {
1008   public:
RedundantInstrElimination(BitTracker & bt,const HexagonInstrInfo & hii,MachineRegisterInfo & mri)1009     RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1010           MachineRegisterInfo &mri)
1011         : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1012     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1013   private:
1014     bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1015           unsigned &LostB, unsigned &LostE);
1016     bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1017           unsigned &LostB, unsigned &LostE);
1018     bool computeUsedBits(unsigned Reg, BitVector &Bits);
1019     bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1020           uint16_t Begin);
1021     bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1022 
1023     const HexagonInstrInfo &HII;
1024     MachineRegisterInfo &MRI;
1025     BitTracker &BT;
1026   };
1027 }
1028 
1029 
1030 // Check if the instruction is a lossy shift left, where the input being
1031 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1032 // of bit indices that are lost.
isLossyShiftLeft(const MachineInstr & MI,unsigned OpN,unsigned & LostB,unsigned & LostE)1033 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1034       unsigned OpN, unsigned &LostB, unsigned &LostE) {
1035   using namespace Hexagon;
1036   unsigned Opc = MI.getOpcode();
1037   unsigned ImN, RegN, Width;
1038   switch (Opc) {
1039     case S2_asl_i_p:
1040       ImN = 2;
1041       RegN = 1;
1042       Width = 64;
1043       break;
1044     case S2_asl_i_p_acc:
1045     case S2_asl_i_p_and:
1046     case S2_asl_i_p_nac:
1047     case S2_asl_i_p_or:
1048     case S2_asl_i_p_xacc:
1049       ImN = 3;
1050       RegN = 2;
1051       Width = 64;
1052       break;
1053     case S2_asl_i_r:
1054       ImN = 2;
1055       RegN = 1;
1056       Width = 32;
1057       break;
1058     case S2_addasl_rrri:
1059     case S4_andi_asl_ri:
1060     case S4_ori_asl_ri:
1061     case S4_addi_asl_ri:
1062     case S4_subi_asl_ri:
1063     case S2_asl_i_r_acc:
1064     case S2_asl_i_r_and:
1065     case S2_asl_i_r_nac:
1066     case S2_asl_i_r_or:
1067     case S2_asl_i_r_sat:
1068     case S2_asl_i_r_xacc:
1069       ImN = 3;
1070       RegN = 2;
1071       Width = 32;
1072       break;
1073     default:
1074       return false;
1075   }
1076 
1077   if (RegN != OpN)
1078     return false;
1079 
1080   assert(MI.getOperand(ImN).isImm());
1081   unsigned S = MI.getOperand(ImN).getImm();
1082   if (S == 0)
1083     return false;
1084   LostB = Width-S;
1085   LostE = Width;
1086   return true;
1087 }
1088 
1089 
1090 // Check if the instruction is a lossy shift right, where the input being
1091 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1092 // of bit indices that are lost.
isLossyShiftRight(const MachineInstr & MI,unsigned OpN,unsigned & LostB,unsigned & LostE)1093 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1094       unsigned OpN, unsigned &LostB, unsigned &LostE) {
1095   using namespace Hexagon;
1096   unsigned Opc = MI.getOpcode();
1097   unsigned ImN, RegN;
1098   switch (Opc) {
1099     case S2_asr_i_p:
1100     case S2_lsr_i_p:
1101       ImN = 2;
1102       RegN = 1;
1103       break;
1104     case S2_asr_i_p_acc:
1105     case S2_asr_i_p_and:
1106     case S2_asr_i_p_nac:
1107     case S2_asr_i_p_or:
1108     case S2_lsr_i_p_acc:
1109     case S2_lsr_i_p_and:
1110     case S2_lsr_i_p_nac:
1111     case S2_lsr_i_p_or:
1112     case S2_lsr_i_p_xacc:
1113       ImN = 3;
1114       RegN = 2;
1115       break;
1116     case S2_asr_i_r:
1117     case S2_lsr_i_r:
1118       ImN = 2;
1119       RegN = 1;
1120       break;
1121     case S4_andi_lsr_ri:
1122     case S4_ori_lsr_ri:
1123     case S4_addi_lsr_ri:
1124     case S4_subi_lsr_ri:
1125     case S2_asr_i_r_acc:
1126     case S2_asr_i_r_and:
1127     case S2_asr_i_r_nac:
1128     case S2_asr_i_r_or:
1129     case S2_lsr_i_r_acc:
1130     case S2_lsr_i_r_and:
1131     case S2_lsr_i_r_nac:
1132     case S2_lsr_i_r_or:
1133     case S2_lsr_i_r_xacc:
1134       ImN = 3;
1135       RegN = 2;
1136       break;
1137 
1138     default:
1139       return false;
1140   }
1141 
1142   if (RegN != OpN)
1143     return false;
1144 
1145   assert(MI.getOperand(ImN).isImm());
1146   unsigned S = MI.getOperand(ImN).getImm();
1147   LostB = 0;
1148   LostE = S;
1149   return true;
1150 }
1151 
1152 
1153 // Calculate the bit vector that corresponds to the used bits of register Reg.
1154 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
1155 // culation fails (i.e. the used bits are unknown), it returns false. Other-
1156 // wise, it returns true and sets the corresponding bits in Bits.
computeUsedBits(unsigned Reg,BitVector & Bits)1157 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1158   BitVector Used(Bits.size());
1159   RegisterSet Visited;
1160   std::vector<unsigned> Pending;
1161   Pending.push_back(Reg);
1162 
1163   for (unsigned i = 0; i < Pending.size(); ++i) {
1164     unsigned R = Pending[i];
1165     if (Visited.has(R))
1166       continue;
1167     Visited.insert(R);
1168     for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1169       BitTracker::RegisterRef UR = *I;
1170       unsigned B, W;
1171       if (!HBS::getSubregMask(UR, B, W, MRI))
1172         return false;
1173       MachineInstr &UseI = *I->getParent();
1174       if (UseI.isPHI() || UseI.isCopy()) {
1175         unsigned DefR = UseI.getOperand(0).getReg();
1176         if (!TargetRegisterInfo::isVirtualRegister(DefR))
1177           return false;
1178         Pending.push_back(DefR);
1179       } else {
1180         if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1181           return false;
1182       }
1183     }
1184   }
1185   Bits |= Used;
1186   return true;
1187 }
1188 
1189 
1190 // Calculate the bits used by instruction MI in a register in operand OpN.
1191 // Return true/false if the calculation succeeds/fails. If is succeeds, set
1192 // used bits in Bits. This function does not reset any bits in Bits, so
1193 // subsequent calls over different instructions will result in the union
1194 // of the used bits in all these instructions.
1195 // The register in question may be used with a sub-register, whereas Bits
1196 // holds the bits for the entire register. To keep track of that, the
1197 // argument Begin indicates where in Bits is the lowest-significant bit
1198 // of the register used in operand OpN. For example, in instruction:
1199 //   vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
1200 // the operand 1 is a 32-bit register, which happens to be a subregister
1201 // of the 64-bit register vreg2, and that subregister starts at position 32.
1202 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
1203 // of vreg2:subreg_hireg.
computeUsedBits(const MachineInstr & MI,unsigned OpN,BitVector & Bits,uint16_t Begin)1204 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1205       unsigned OpN, BitVector &Bits, uint16_t Begin) {
1206   unsigned Opc = MI.getOpcode();
1207   BitVector T(Bits.size());
1208   bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1209   // Even if we don't have bits yet, we could still provide some information
1210   // if the instruction is a lossy shift: the lost bits will be marked as
1211   // not used.
1212   unsigned LB, LE;
1213   if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1214     assert(MI.getOperand(OpN).isReg());
1215     BitTracker::RegisterRef RR = MI.getOperand(OpN);
1216     const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1217     uint16_t Width = RC->getSize()*8;
1218 
1219     if (!GotBits)
1220       T.set(Begin, Begin+Width);
1221     assert(LB <= LE && LB < Width && LE <= Width);
1222     T.reset(Begin+LB, Begin+LE);
1223     GotBits = true;
1224   }
1225   if (GotBits)
1226     Bits |= T;
1227   return GotBits;
1228 }
1229 
1230 
1231 // Calculates the used bits in RD ("defined register"), and checks if these
1232 // bits in RS ("used register") and RD are identical.
usedBitsEqual(BitTracker::RegisterRef RD,BitTracker::RegisterRef RS)1233 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1234       BitTracker::RegisterRef RS) {
1235   const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1236   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1237 
1238   unsigned DB, DW;
1239   if (!HBS::getSubregMask(RD, DB, DW, MRI))
1240     return false;
1241   unsigned SB, SW;
1242   if (!HBS::getSubregMask(RS, SB, SW, MRI))
1243     return false;
1244   if (SW != DW)
1245     return false;
1246 
1247   BitVector Used(DC.width());
1248   if (!computeUsedBits(RD.Reg, Used))
1249     return false;
1250 
1251   for (unsigned i = 0; i != DW; ++i)
1252     if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1253       return false;
1254   return true;
1255 }
1256 
1257 
processBlock(MachineBasicBlock & B,const RegisterSet &)1258 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1259       const RegisterSet&) {
1260   bool Changed = false;
1261 
1262   for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1263     NextI = std::next(I);
1264     MachineInstr *MI = &*I;
1265 
1266     if (MI->getOpcode() == TargetOpcode::COPY)
1267       continue;
1268     if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1269       continue;
1270     unsigned NumD = MI->getDesc().getNumDefs();
1271     if (NumD != 1)
1272       continue;
1273 
1274     BitTracker::RegisterRef RD = MI->getOperand(0);
1275     if (!BT.has(RD.Reg))
1276       continue;
1277     const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1278 
1279     // Find a source operand that is equal to the result.
1280     for (auto &Op : MI->uses()) {
1281       if (!Op.isReg())
1282         continue;
1283       BitTracker::RegisterRef RS = Op;
1284       if (!BT.has(RS.Reg))
1285         continue;
1286       if (!HBS::isTransparentCopy(RD, RS, MRI))
1287         continue;
1288 
1289       unsigned BN, BW;
1290       if (!HBS::getSubregMask(RS, BN, BW, MRI))
1291         continue;
1292 
1293       const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1294       if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1295         continue;
1296 
1297       // If found, replace the instruction with a COPY.
1298       DebugLoc DL = MI->getDebugLoc();
1299       const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1300       unsigned NewR = MRI.createVirtualRegister(FRC);
1301       BuildMI(B, I, DL, HII.get(TargetOpcode::COPY), NewR)
1302           .addReg(RS.Reg, 0, RS.Sub);
1303       HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1304       BT.put(BitTracker::RegisterRef(NewR), SC);
1305       Changed = true;
1306       break;
1307     }
1308   }
1309 
1310   return Changed;
1311 }
1312 
1313 
1314 //
1315 // Const generation
1316 //
1317 // Recognize instructions that produce constant values known at compile-time.
1318 // Replace them with register definitions that load these constants directly.
1319 namespace {
1320   class ConstGeneration : public Transformation {
1321   public:
ConstGeneration(BitTracker & bt,const HexagonInstrInfo & hii,MachineRegisterInfo & mri)1322     ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1323         MachineRegisterInfo &mri)
1324       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1325     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1326   private:
1327     bool isTfrConst(const MachineInstr *MI) const;
1328     bool isConst(unsigned R, int64_t &V) const;
1329     unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1330         MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1331 
1332     const HexagonInstrInfo &HII;
1333     MachineRegisterInfo &MRI;
1334     BitTracker &BT;
1335   };
1336 }
1337 
isConst(unsigned R,int64_t & C) const1338 bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
1339   if (!BT.has(R))
1340     return false;
1341   const BitTracker::RegisterCell &RC = BT.lookup(R);
1342   int64_t T = 0;
1343   for (unsigned i = RC.width(); i > 0; --i) {
1344     const BitTracker::BitValue &V = RC[i-1];
1345     T <<= 1;
1346     if (V.is(1))
1347       T |= 1;
1348     else if (!V.is(0))
1349       return false;
1350   }
1351   C = T;
1352   return true;
1353 }
1354 
1355 
isTfrConst(const MachineInstr * MI) const1356 bool ConstGeneration::isTfrConst(const MachineInstr *MI) const {
1357   unsigned Opc = MI->getOpcode();
1358   switch (Opc) {
1359     case Hexagon::A2_combineii:
1360     case Hexagon::A4_combineii:
1361     case Hexagon::A2_tfrsi:
1362     case Hexagon::A2_tfrpi:
1363     case Hexagon::TFR_PdTrue:
1364     case Hexagon::TFR_PdFalse:
1365     case Hexagon::CONST32_Int_Real:
1366     case Hexagon::CONST64_Int_Real:
1367       return true;
1368   }
1369   return false;
1370 }
1371 
1372 
1373 // Generate a transfer-immediate instruction that is appropriate for the
1374 // register class and the actual value being transferred.
genTfrConst(const TargetRegisterClass * RC,int64_t C,MachineBasicBlock & B,MachineBasicBlock::iterator At,DebugLoc & DL)1375 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1376       MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1377   unsigned Reg = MRI.createVirtualRegister(RC);
1378   if (RC == &Hexagon::IntRegsRegClass) {
1379     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1380         .addImm(int32_t(C));
1381     return Reg;
1382   }
1383 
1384   if (RC == &Hexagon::DoubleRegsRegClass) {
1385     if (isInt<8>(C)) {
1386       BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1387           .addImm(C);
1388       return Reg;
1389     }
1390 
1391     unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1392     if (isInt<8>(Lo) || isInt<8>(Hi)) {
1393       unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1394                                   : Hexagon::A4_combineii;
1395       BuildMI(B, At, DL, HII.get(Opc), Reg)
1396           .addImm(int32_t(Hi))
1397           .addImm(int32_t(Lo));
1398       return Reg;
1399     }
1400 
1401     BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
1402         .addImm(C);
1403     return Reg;
1404   }
1405 
1406   if (RC == &Hexagon::PredRegsRegClass) {
1407     unsigned Opc;
1408     if (C == 0)
1409       Opc = Hexagon::TFR_PdFalse;
1410     else if ((C & 0xFF) == 0xFF)
1411       Opc = Hexagon::TFR_PdTrue;
1412     else
1413       return 0;
1414     BuildMI(B, At, DL, HII.get(Opc), Reg);
1415     return Reg;
1416   }
1417 
1418   return 0;
1419 }
1420 
1421 
processBlock(MachineBasicBlock & B,const RegisterSet &)1422 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1423   bool Changed = false;
1424   RegisterSet Defs;
1425 
1426   for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1427     if (isTfrConst(I))
1428       continue;
1429     Defs.clear();
1430     HBS::getInstrDefs(*I, Defs);
1431     if (Defs.count() != 1)
1432       continue;
1433     unsigned DR = Defs.find_first();
1434     if (!TargetRegisterInfo::isVirtualRegister(DR))
1435       continue;
1436     int64_t C;
1437     if (isConst(DR, C)) {
1438       DebugLoc DL = I->getDebugLoc();
1439       auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1440       unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1441       if (ImmReg) {
1442         HBS::replaceReg(DR, ImmReg, MRI);
1443         BT.put(ImmReg, BT.lookup(DR));
1444         Changed = true;
1445       }
1446     }
1447   }
1448   return Changed;
1449 }
1450 
1451 
1452 //
1453 // Copy generation
1454 //
1455 // Identify pairs of available registers which hold identical values.
1456 // In such cases, only one of them needs to be calculated, the other one
1457 // will be defined as a copy of the first.
1458 //
1459 // Copy propagation
1460 //
1461 // Eliminate register copies RD = RS, by replacing the uses of RD with
1462 // with uses of RS.
1463 namespace {
1464   class CopyGeneration : public Transformation {
1465   public:
CopyGeneration(BitTracker & bt,const HexagonInstrInfo & hii,MachineRegisterInfo & mri)1466     CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1467         MachineRegisterInfo &mri)
1468       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1469     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1470   private:
1471     bool findMatch(const BitTracker::RegisterRef &Inp,
1472         BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1473 
1474     const HexagonInstrInfo &HII;
1475     MachineRegisterInfo &MRI;
1476     BitTracker &BT;
1477   };
1478 
1479   class CopyPropagation : public Transformation {
1480   public:
CopyPropagation(const HexagonRegisterInfo & hri,MachineRegisterInfo & mri)1481     CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1482         : Transformation(false), MRI(mri) {}
1483     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1484     static bool isCopyReg(unsigned Opc);
1485   private:
1486     bool propagateRegCopy(MachineInstr &MI);
1487 
1488     MachineRegisterInfo &MRI;
1489   };
1490 
1491 }
1492 
1493 
1494 /// Check if there is a register in AVs that is identical to Inp. If so,
1495 /// set Out to the found register. The output may be a pair Reg:Sub.
findMatch(const BitTracker::RegisterRef & Inp,BitTracker::RegisterRef & Out,const RegisterSet & AVs)1496 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1497       BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1498   if (!BT.has(Inp.Reg))
1499     return false;
1500   const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1501   unsigned B, W;
1502   if (!HBS::getSubregMask(Inp, B, W, MRI))
1503     return false;
1504 
1505   for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1506     if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI))
1507       continue;
1508     const BitTracker::RegisterCell &RC = BT.lookup(R);
1509     unsigned RW = RC.width();
1510     if (W == RW) {
1511       if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R))
1512         continue;
1513       if (!HBS::isEqual(InpRC, B, RC, 0, W))
1514         continue;
1515       Out.Reg = R;
1516       Out.Sub = 0;
1517       return true;
1518     }
1519     // Check if there is a super-register, whose part (with a subregister)
1520     // is equal to the input.
1521     // Only do double registers for now.
1522     if (W*2 != RW)
1523       continue;
1524     if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1525       continue;
1526 
1527     if (HBS::isEqual(InpRC, B, RC, 0, W))
1528       Out.Sub = Hexagon::subreg_loreg;
1529     else if (HBS::isEqual(InpRC, B, RC, W, W))
1530       Out.Sub = Hexagon::subreg_hireg;
1531     else
1532       continue;
1533     Out.Reg = R;
1534     return true;
1535   }
1536   return false;
1537 }
1538 
1539 
processBlock(MachineBasicBlock & B,const RegisterSet & AVs)1540 bool CopyGeneration::processBlock(MachineBasicBlock &B,
1541       const RegisterSet &AVs) {
1542   RegisterSet AVB(AVs);
1543   bool Changed = false;
1544   RegisterSet Defs;
1545 
1546   for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1547        ++I, AVB.insert(Defs)) {
1548     NextI = std::next(I);
1549     Defs.clear();
1550     HBS::getInstrDefs(*I, Defs);
1551 
1552     unsigned Opc = I->getOpcode();
1553     if (CopyPropagation::isCopyReg(Opc))
1554       continue;
1555 
1556     for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1557       BitTracker::RegisterRef MR;
1558       if (!findMatch(R, MR, AVB))
1559         continue;
1560       DebugLoc DL = I->getDebugLoc();
1561       auto *FRC = HBS::getFinalVRegClass(MR, MRI);
1562       unsigned NewR = MRI.createVirtualRegister(FRC);
1563       auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1564       BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1565         .addReg(MR.Reg, 0, MR.Sub);
1566       BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1567     }
1568   }
1569 
1570   return Changed;
1571 }
1572 
1573 
isCopyReg(unsigned Opc)1574 bool CopyPropagation::isCopyReg(unsigned Opc) {
1575   switch (Opc) {
1576     case TargetOpcode::COPY:
1577     case TargetOpcode::REG_SEQUENCE:
1578     case Hexagon::A2_tfr:
1579     case Hexagon::A2_tfrp:
1580     case Hexagon::A2_combinew:
1581     case Hexagon::A4_combineir:
1582     case Hexagon::A4_combineri:
1583       return true;
1584     default:
1585       break;
1586   }
1587   return false;
1588 }
1589 
1590 
propagateRegCopy(MachineInstr & MI)1591 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1592   bool Changed = false;
1593   unsigned Opc = MI.getOpcode();
1594   BitTracker::RegisterRef RD = MI.getOperand(0);
1595   assert(MI.getOperand(0).getSubReg() == 0);
1596 
1597   switch (Opc) {
1598     case TargetOpcode::COPY:
1599     case Hexagon::A2_tfr:
1600     case Hexagon::A2_tfrp: {
1601       BitTracker::RegisterRef RS = MI.getOperand(1);
1602       if (!HBS::isTransparentCopy(RD, RS, MRI))
1603         break;
1604       if (RS.Sub != 0)
1605         Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1606       else
1607         Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1608       break;
1609     }
1610     case TargetOpcode::REG_SEQUENCE: {
1611       BitTracker::RegisterRef SL, SH;
1612       if (HBS::parseRegSequence(MI, SL, SH)) {
1613         Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1614                                          SL.Reg, SL.Sub, MRI);
1615         Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1616                                           SH.Reg, SH.Sub, MRI);
1617       }
1618       break;
1619     }
1620     case Hexagon::A2_combinew: {
1621       BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1622       Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1623                                        RL.Reg, RL.Sub, MRI);
1624       Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1625                                         RH.Reg, RH.Sub, MRI);
1626       break;
1627     }
1628     case Hexagon::A4_combineir:
1629     case Hexagon::A4_combineri: {
1630       unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1631       unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
1632                                                     : Hexagon::subreg_hireg;
1633       BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1634       Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1635       break;
1636     }
1637   }
1638   return Changed;
1639 }
1640 
1641 
processBlock(MachineBasicBlock & B,const RegisterSet &)1642 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1643   std::vector<MachineInstr*> Instrs;
1644   for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1645     Instrs.push_back(&*I);
1646 
1647   bool Changed = false;
1648   for (auto I : Instrs) {
1649     unsigned Opc = I->getOpcode();
1650     if (!CopyPropagation::isCopyReg(Opc))
1651       continue;
1652     Changed |= propagateRegCopy(*I);
1653   }
1654 
1655   return Changed;
1656 }
1657 
1658 
1659 //
1660 // Bit simplification
1661 //
1662 // Recognize patterns that can be simplified and replace them with the
1663 // simpler forms.
1664 // This is by no means complete
1665 namespace {
1666   class BitSimplification : public Transformation {
1667   public:
BitSimplification(BitTracker & bt,const HexagonInstrInfo & hii,MachineRegisterInfo & mri)1668     BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
1669         MachineRegisterInfo &mri)
1670       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1671     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1672   private:
1673     struct RegHalf : public BitTracker::RegisterRef {
1674       bool Low;  // Low/High halfword.
1675     };
1676 
1677     bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1678           unsigned B, RegHalf &RH);
1679 
1680     bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1681           BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1682     unsigned getCombineOpcode(bool HLow, bool LLow);
1683 
1684     bool genStoreUpperHalf(MachineInstr *MI);
1685     bool genStoreImmediate(MachineInstr *MI);
1686     bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1687           const BitTracker::RegisterCell &RC);
1688     bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1689           const BitTracker::RegisterCell &RC);
1690     bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1691           const BitTracker::RegisterCell &RC);
1692     bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1693           const BitTracker::RegisterCell &RC);
1694     bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1695           const BitTracker::RegisterCell &RC);
1696 
1697     const HexagonInstrInfo &HII;
1698     MachineRegisterInfo &MRI;
1699     BitTracker &BT;
1700   };
1701 }
1702 
1703 
1704 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
1705 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
1706 // set the information about the found register in RH.
matchHalf(unsigned SelfR,const BitTracker::RegisterCell & RC,unsigned B,RegHalf & RH)1707 bool BitSimplification::matchHalf(unsigned SelfR,
1708       const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1709   // XXX This could be searching in the set of available registers, in case
1710   // the match is not exact.
1711 
1712   // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1713   // register and all the bits B..B+15 match between RC and the register.
1714   // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1715   // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1716   bool Low = false;
1717   unsigned I = B;
1718   while (I < B+16 && RC[I].num())
1719     I++;
1720   if (I == B+16)
1721     return false;
1722 
1723   unsigned Reg = RC[I].RefI.Reg;
1724   unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
1725   if (P < I-B)
1726     return false;
1727   unsigned Pos = P - (I-B);
1728 
1729   if (Reg == 0 || Reg == SelfR)    // Don't match "self".
1730     return false;
1731   if (!TargetRegisterInfo::isVirtualRegister(Reg))
1732     return false;
1733   if (!BT.has(Reg))
1734     return false;
1735 
1736   const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1737   if (Pos+16 > SC.width())
1738     return false;
1739 
1740   for (unsigned i = 0; i < 16; ++i) {
1741     const BitTracker::BitValue &RV = RC[i+B];
1742     if (RV.Type == BitTracker::BitValue::Ref) {
1743       if (RV.RefI.Reg != Reg)
1744         return false;
1745       if (RV.RefI.Pos != i+Pos)
1746         return false;
1747       continue;
1748     }
1749     if (RC[i+B] != SC[i+Pos])
1750       return false;
1751   }
1752 
1753   unsigned Sub = 0;
1754   switch (Pos) {
1755     case 0:
1756       Sub = Hexagon::subreg_loreg;
1757       Low = true;
1758       break;
1759     case 16:
1760       Sub = Hexagon::subreg_loreg;
1761       Low = false;
1762       break;
1763     case 32:
1764       Sub = Hexagon::subreg_hireg;
1765       Low = true;
1766       break;
1767     case 48:
1768       Sub = Hexagon::subreg_hireg;
1769       Low = false;
1770       break;
1771     default:
1772       return false;
1773   }
1774 
1775   RH.Reg = Reg;
1776   RH.Sub = Sub;
1777   RH.Low = Low;
1778   // If the subregister is not valid with the register, set it to 0.
1779   if (!HBS::getFinalVRegClass(RH, MRI))
1780     RH.Sub = 0;
1781 
1782   return true;
1783 }
1784 
1785 
1786 // Check if RC matches the pattern of a S2_packhl. If so, return true and
1787 // set the inputs Rs and Rt.
matchPackhl(unsigned SelfR,const BitTracker::RegisterCell & RC,BitTracker::RegisterRef & Rs,BitTracker::RegisterRef & Rt)1788 bool BitSimplification::matchPackhl(unsigned SelfR,
1789       const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1790       BitTracker::RegisterRef &Rt) {
1791   RegHalf L1, H1, L2, H2;
1792 
1793   if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
1794     return false;
1795   if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1796     return false;
1797 
1798   // Rs = H1.L1, Rt = H2.L2
1799   if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1800     return false;
1801   if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1802     return false;
1803 
1804   Rs = H1;
1805   Rt = H2;
1806   return true;
1807 }
1808 
1809 
getCombineOpcode(bool HLow,bool LLow)1810 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1811   return HLow ? LLow ? Hexagon::A2_combine_ll
1812                      : Hexagon::A2_combine_lh
1813               : LLow ? Hexagon::A2_combine_hl
1814                      : Hexagon::A2_combine_hh;
1815 }
1816 
1817 
1818 // If MI stores the upper halfword of a register (potentially obtained via
1819 // shifts or extracts), replace it with a storerf instruction. This could
1820 // cause the "extraction" code to become dead.
genStoreUpperHalf(MachineInstr * MI)1821 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1822   unsigned Opc = MI->getOpcode();
1823   if (Opc != Hexagon::S2_storerh_io)
1824     return false;
1825 
1826   MachineOperand &ValOp = MI->getOperand(2);
1827   BitTracker::RegisterRef RS = ValOp;
1828   if (!BT.has(RS.Reg))
1829     return false;
1830   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1831   RegHalf H;
1832   if (!matchHalf(0, RC, 0, H))
1833     return false;
1834   if (H.Low)
1835     return false;
1836   MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1837   ValOp.setReg(H.Reg);
1838   ValOp.setSubReg(H.Sub);
1839   return true;
1840 }
1841 
1842 
1843 // If MI stores a value known at compile-time, and the value is within a range
1844 // that avoids using constant-extenders, replace it with a store-immediate.
genStoreImmediate(MachineInstr * MI)1845 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1846   unsigned Opc = MI->getOpcode();
1847   unsigned Align = 0;
1848   switch (Opc) {
1849     case Hexagon::S2_storeri_io:
1850       Align++;
1851     case Hexagon::S2_storerh_io:
1852       Align++;
1853     case Hexagon::S2_storerb_io:
1854       break;
1855     default:
1856       return false;
1857   }
1858 
1859   // Avoid stores to frame-indices (due to an unknown offset).
1860   if (!MI->getOperand(0).isReg())
1861     return false;
1862   MachineOperand &OffOp = MI->getOperand(1);
1863   if (!OffOp.isImm())
1864     return false;
1865 
1866   int64_t Off = OffOp.getImm();
1867   // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1868   if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1869     return false;
1870   // Source register:
1871   BitTracker::RegisterRef RS = MI->getOperand(2);
1872   if (!BT.has(RS.Reg))
1873     return false;
1874   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1875   uint64_t U;
1876   if (!HBS::getConst(RC, 0, RC.width(), U))
1877     return false;
1878 
1879   // Only consider 8-bit values to avoid constant-extenders.
1880   int V;
1881   switch (Opc) {
1882     case Hexagon::S2_storerb_io:
1883       V = int8_t(U);
1884       break;
1885     case Hexagon::S2_storerh_io:
1886       V = int16_t(U);
1887       break;
1888     case Hexagon::S2_storeri_io:
1889       V = int32_t(U);
1890       break;
1891   }
1892   if (!isInt<8>(V))
1893     return false;
1894 
1895   MI->RemoveOperand(2);
1896   switch (Opc) {
1897     case Hexagon::S2_storerb_io:
1898       MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1899       break;
1900     case Hexagon::S2_storerh_io:
1901       MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
1902       break;
1903     case Hexagon::S2_storeri_io:
1904       MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
1905       break;
1906   }
1907   MI->addOperand(MachineOperand::CreateImm(V));
1908   return true;
1909 }
1910 
1911 
1912 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
1913 // last instruction in a sequence that results in something equivalent to
1914 // the pack-halfwords. The intent is to cause the entire sequence to become
1915 // dead.
genPackhl(MachineInstr * MI,BitTracker::RegisterRef RD,const BitTracker::RegisterCell & RC)1916 bool BitSimplification::genPackhl(MachineInstr *MI,
1917       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1918   unsigned Opc = MI->getOpcode();
1919   if (Opc == Hexagon::S2_packhl)
1920     return false;
1921   BitTracker::RegisterRef Rs, Rt;
1922   if (!matchPackhl(RD.Reg, RC, Rs, Rt))
1923     return false;
1924 
1925   MachineBasicBlock &B = *MI->getParent();
1926   unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1927   DebugLoc DL = MI->getDebugLoc();
1928   BuildMI(B, MI, DL, HII.get(Hexagon::S2_packhl), NewR)
1929       .addReg(Rs.Reg, 0, Rs.Sub)
1930       .addReg(Rt.Reg, 0, Rt.Sub);
1931   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1932   BT.put(BitTracker::RegisterRef(NewR), RC);
1933   return true;
1934 }
1935 
1936 
1937 // If MI produces halfword of the input in the low half of the output,
1938 // replace it with zero-extend or extractu.
genExtractHalf(MachineInstr * MI,BitTracker::RegisterRef RD,const BitTracker::RegisterCell & RC)1939 bool BitSimplification::genExtractHalf(MachineInstr *MI,
1940       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1941   RegHalf L;
1942   // Check for halfword in low 16 bits, zeros elsewhere.
1943   if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
1944     return false;
1945 
1946   unsigned Opc = MI->getOpcode();
1947   MachineBasicBlock &B = *MI->getParent();
1948   DebugLoc DL = MI->getDebugLoc();
1949 
1950   // Prefer zxth, since zxth can go in any slot, while extractu only in
1951   // slots 2 and 3.
1952   unsigned NewR = 0;
1953   if (L.Low && Opc != Hexagon::A2_zxth) {
1954     NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1955     BuildMI(B, MI, DL, HII.get(Hexagon::A2_zxth), NewR)
1956         .addReg(L.Reg, 0, L.Sub);
1957   } else if (!L.Low && Opc != Hexagon::S2_extractu) {
1958     NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1959     BuildMI(B, MI, DL, HII.get(Hexagon::S2_extractu), NewR)
1960         .addReg(L.Reg, 0, L.Sub)
1961         .addImm(16)
1962         .addImm(16);
1963   }
1964   if (NewR == 0)
1965     return false;
1966   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1967   BT.put(BitTracker::RegisterRef(NewR), RC);
1968   return true;
1969 }
1970 
1971 
1972 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
1973 // combine.
genCombineHalf(MachineInstr * MI,BitTracker::RegisterRef RD,const BitTracker::RegisterCell & RC)1974 bool BitSimplification::genCombineHalf(MachineInstr *MI,
1975       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1976   RegHalf L, H;
1977   // Check for combine h/l
1978   if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
1979     return false;
1980   // Do nothing if this is just a reg copy.
1981   if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
1982     return false;
1983 
1984   unsigned Opc = MI->getOpcode();
1985   unsigned COpc = getCombineOpcode(H.Low, L.Low);
1986   if (COpc == Opc)
1987     return false;
1988 
1989   MachineBasicBlock &B = *MI->getParent();
1990   DebugLoc DL = MI->getDebugLoc();
1991   unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1992   BuildMI(B, MI, DL, HII.get(COpc), NewR)
1993       .addReg(H.Reg, 0, H.Sub)
1994       .addReg(L.Reg, 0, L.Sub);
1995   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1996   BT.put(BitTracker::RegisterRef(NewR), RC);
1997   return true;
1998 }
1999 
2000 
2001 // If MI resets high bits of a register and keeps the lower ones, replace it
2002 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
genExtractLow(MachineInstr * MI,BitTracker::RegisterRef RD,const BitTracker::RegisterCell & RC)2003 bool BitSimplification::genExtractLow(MachineInstr *MI,
2004       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2005   unsigned Opc = MI->getOpcode();
2006   switch (Opc) {
2007     case Hexagon::A2_zxtb:
2008     case Hexagon::A2_zxth:
2009     case Hexagon::S2_extractu:
2010       return false;
2011   }
2012   if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2013     int32_t Imm = MI->getOperand(2).getImm();
2014     if (isInt<10>(Imm))
2015       return false;
2016   }
2017 
2018   if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2019     return false;
2020   unsigned W = RC.width();
2021   while (W > 0 && RC[W-1].is(0))
2022     W--;
2023   if (W == 0 || W == RC.width())
2024     return false;
2025   unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
2026                   : (W == 16) ? Hexagon::A2_zxth
2027                   : (W < 10)  ? Hexagon::A2_andir
2028                   : Hexagon::S2_extractu;
2029   MachineBasicBlock &B = *MI->getParent();
2030   DebugLoc DL = MI->getDebugLoc();
2031 
2032   for (auto &Op : MI->uses()) {
2033     if (!Op.isReg())
2034       continue;
2035     BitTracker::RegisterRef RS = Op;
2036     if (!BT.has(RS.Reg))
2037       continue;
2038     const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2039     unsigned BN, BW;
2040     if (!HBS::getSubregMask(RS, BN, BW, MRI))
2041       continue;
2042     if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2043       continue;
2044 
2045     unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2046     auto MIB = BuildMI(B, MI, DL, HII.get(NewOpc), NewR)
2047                   .addReg(RS.Reg, 0, RS.Sub);
2048     if (NewOpc == Hexagon::A2_andir)
2049       MIB.addImm((1 << W) - 1);
2050     else if (NewOpc == Hexagon::S2_extractu)
2051       MIB.addImm(W).addImm(0);
2052     HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2053     BT.put(BitTracker::RegisterRef(NewR), RC);
2054     return true;
2055   }
2056   return false;
2057 }
2058 
2059 
2060 // Check for tstbit simplification opportunity, where the bit being checked
2061 // can be tracked back to another register. For example:
2062 //   vreg2 = S2_lsr_i_r  vreg1, 5
2063 //   vreg3 = S2_tstbit_i vreg2, 0
2064 // =>
2065 //   vreg3 = S2_tstbit_i vreg1, 5
simplifyTstbit(MachineInstr * MI,BitTracker::RegisterRef RD,const BitTracker::RegisterCell & RC)2066 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2067       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2068   unsigned Opc = MI->getOpcode();
2069   if (Opc != Hexagon::S2_tstbit_i)
2070     return false;
2071 
2072   unsigned BN = MI->getOperand(2).getImm();
2073   BitTracker::RegisterRef RS = MI->getOperand(1);
2074   unsigned F, W;
2075   DebugLoc DL = MI->getDebugLoc();
2076   if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2077     return false;
2078   MachineBasicBlock &B = *MI->getParent();
2079 
2080   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2081   const BitTracker::BitValue &V = SC[F+BN];
2082   if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2083     const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2084     // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2085     // a double register, need to use a subregister and adjust bit
2086     // number.
2087     unsigned P = UINT_MAX;
2088     BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2089     if (TC == &Hexagon::DoubleRegsRegClass) {
2090       P = V.RefI.Pos;
2091       RR.Sub = Hexagon::subreg_loreg;
2092       if (P >= 32) {
2093         P -= 32;
2094         RR.Sub = Hexagon::subreg_hireg;
2095       }
2096     } else if (TC == &Hexagon::IntRegsRegClass) {
2097       P = V.RefI.Pos;
2098     }
2099     if (P != UINT_MAX) {
2100       unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2101       BuildMI(B, MI, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2102           .addReg(RR.Reg, 0, RR.Sub)
2103           .addImm(P);
2104       HBS::replaceReg(RD.Reg, NewR, MRI);
2105       BT.put(NewR, RC);
2106       return true;
2107     }
2108   } else if (V.is(0) || V.is(1)) {
2109     unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2110     unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
2111     BuildMI(B, MI, DL, HII.get(NewOpc), NewR);
2112     HBS::replaceReg(RD.Reg, NewR, MRI);
2113     return true;
2114   }
2115 
2116   return false;
2117 }
2118 
2119 
processBlock(MachineBasicBlock & B,const RegisterSet & AVs)2120 bool BitSimplification::processBlock(MachineBasicBlock &B,
2121       const RegisterSet &AVs) {
2122   bool Changed = false;
2123   RegisterSet AVB = AVs;
2124   RegisterSet Defs;
2125 
2126   for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2127     MachineInstr *MI = &*I;
2128     Defs.clear();
2129     HBS::getInstrDefs(*MI, Defs);
2130 
2131     unsigned Opc = MI->getOpcode();
2132     if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2133       continue;
2134 
2135     if (MI->mayStore()) {
2136       bool T = genStoreUpperHalf(MI);
2137       T = T || genStoreImmediate(MI);
2138       Changed |= T;
2139       continue;
2140     }
2141 
2142     if (Defs.count() != 1)
2143       continue;
2144     const MachineOperand &Op0 = MI->getOperand(0);
2145     if (!Op0.isReg() || !Op0.isDef())
2146       continue;
2147     BitTracker::RegisterRef RD = Op0;
2148     if (!BT.has(RD.Reg))
2149       continue;
2150     const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2151     const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2152 
2153     if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2154       bool T = genPackhl(MI, RD, RC);
2155       Changed |= T;
2156       continue;
2157     }
2158 
2159     if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2160       bool T = genExtractHalf(MI, RD, RC);
2161       T = T || genCombineHalf(MI, RD, RC);
2162       T = T || genExtractLow(MI, RD, RC);
2163       Changed |= T;
2164       continue;
2165     }
2166 
2167     if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2168       bool T = simplifyTstbit(MI, RD, RC);
2169       Changed |= T;
2170       continue;
2171     }
2172   }
2173   return Changed;
2174 }
2175 
2176 
runOnMachineFunction(MachineFunction & MF)2177 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2178   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2179   auto &HRI = *HST.getRegisterInfo();
2180   auto &HII = *HST.getInstrInfo();
2181 
2182   MDT = &getAnalysis<MachineDominatorTree>();
2183   MachineRegisterInfo &MRI = MF.getRegInfo();
2184   bool Changed;
2185 
2186   Changed = DeadCodeElimination(MF, *MDT).run();
2187 
2188   const HexagonEvaluator HE(HRI, MRI, HII, MF);
2189   BitTracker BT(HE, MF);
2190   DEBUG(BT.trace(true));
2191   BT.run();
2192 
2193   MachineBasicBlock &Entry = MF.front();
2194 
2195   RegisterSet AIG;  // Available registers for IG.
2196   ConstGeneration ImmG(BT, HII, MRI);
2197   Changed |= visitBlock(Entry, ImmG, AIG);
2198 
2199   RegisterSet ARE;  // Available registers for RIE.
2200   RedundantInstrElimination RIE(BT, HII, MRI);
2201   Changed |= visitBlock(Entry, RIE, ARE);
2202 
2203   RegisterSet ACG;  // Available registers for CG.
2204   CopyGeneration CopyG(BT, HII, MRI);
2205   Changed |= visitBlock(Entry, CopyG, ACG);
2206 
2207   RegisterSet ACP;  // Available registers for CP.
2208   CopyPropagation CopyP(HRI, MRI);
2209   Changed |= visitBlock(Entry, CopyP, ACP);
2210 
2211   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2212 
2213   BT.run();
2214   RegisterSet ABS;  // Available registers for BS.
2215   BitSimplification BitS(BT, HII, MRI);
2216   Changed |= visitBlock(Entry, BitS, ABS);
2217 
2218   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2219 
2220   if (Changed) {
2221     for (auto &B : MF)
2222       for (auto &I : B)
2223         I.clearKillInfo();
2224     DeadCodeElimination(MF, *MDT).run();
2225   }
2226   return Changed;
2227 }
2228 
2229 
2230 // Recognize loops where the code at the end of the loop matches the code
2231 // before the entry of the loop, and the matching code is such that is can
2232 // be simplified. This pass relies on the bit simplification above and only
2233 // prepares code in a way that can be handled by the bit simplifcation.
2234 //
2235 // This is the motivating testcase (and explanation):
2236 //
2237 // {
2238 //   loop0(.LBB0_2, r1)      // %for.body.preheader
2239 //   r5:4 = memd(r0++#8)
2240 // }
2241 // {
2242 //   r3 = lsr(r4, #16)
2243 //   r7:6 = combine(r5, r5)
2244 // }
2245 // {
2246 //   r3 = insert(r5, #16, #16)
2247 //   r7:6 = vlsrw(r7:6, #16)
2248 // }
2249 // .LBB0_2:
2250 // {
2251 //   memh(r2+#4) = r5
2252 //   memh(r2+#6) = r6            # R6 is really R5.H
2253 // }
2254 // {
2255 //   r2 = add(r2, #8)
2256 //   memh(r2+#0) = r4
2257 //   memh(r2+#2) = r3            # R3 is really R4.H
2258 // }
2259 // {
2260 //   r5:4 = memd(r0++#8)
2261 // }
2262 // {                             # "Shuffling" code that sets up R3 and R6
2263 //   r3 = lsr(r4, #16)           # so that their halves can be stored in the
2264 //   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
2265 // }                             # the stores if the code was at the beginning
2266 // {                             # of the loop iteration. Since the same code
2267 //   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
2268 //   r7:6 = vlsrw(r7:6, #16)     # there.
2269 // }:endloop0
2270 //
2271 //
2272 // The outcome:
2273 //
2274 // {
2275 //   loop0(.LBB0_2, r1)
2276 //   r5:4 = memd(r0++#8)
2277 // }
2278 // .LBB0_2:
2279 // {
2280 //   memh(r2+#4) = r5
2281 //   memh(r2+#6) = r5.h
2282 // }
2283 // {
2284 //   r2 = add(r2, #8)
2285 //   memh(r2+#0) = r4
2286 //   memh(r2+#2) = r4.h
2287 // }
2288 // {
2289 //   r5:4 = memd(r0++#8)
2290 // }:endloop0
2291 
2292 namespace llvm {
2293   FunctionPass *createHexagonLoopRescheduling();
2294   void initializeHexagonLoopReschedulingPass(PassRegistry&);
2295 }
2296 
2297 namespace {
2298   class HexagonLoopRescheduling : public MachineFunctionPass {
2299   public:
2300     static char ID;
HexagonLoopRescheduling()2301     HexagonLoopRescheduling() : MachineFunctionPass(ID),
2302         HII(0), HRI(0), MRI(0), BTP(0) {
2303       initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2304     }
2305 
2306     bool runOnMachineFunction(MachineFunction &MF) override;
2307 
2308   private:
2309     const HexagonInstrInfo *HII;
2310     const HexagonRegisterInfo *HRI;
2311     MachineRegisterInfo *MRI;
2312     BitTracker *BTP;
2313 
2314     struct LoopCand {
LoopCand__anon3f9b49d70911::HexagonLoopRescheduling::LoopCand2315       LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2316             MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2317       MachineBasicBlock *LB, *PB, *EB;
2318     };
2319     typedef std::vector<MachineInstr*> InstrList;
2320     struct InstrGroup {
2321       BitTracker::RegisterRef Inp, Out;
2322       InstrList Ins;
2323     };
2324     struct PhiInfo {
2325       PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2326       unsigned DefR;
2327       BitTracker::RegisterRef LR, PR;
2328       MachineBasicBlock *LB, *PB;
2329     };
2330 
2331     static unsigned getDefReg(const MachineInstr *MI);
2332     bool isConst(unsigned Reg) const;
2333     bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2334     bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2335     bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2336     bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2337         unsigned &InpR2) const;
2338     void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2339         MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2340     bool processLoop(LoopCand &C);
2341   };
2342 }
2343 
2344 char HexagonLoopRescheduling::ID = 0;
2345 
2346 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2347   "Hexagon Loop Rescheduling", false, false)
2348 
2349 
PhiInfo(MachineInstr & P,MachineBasicBlock & B)2350 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2351       MachineBasicBlock &B) {
2352   DefR = HexagonLoopRescheduling::getDefReg(&P);
2353   LB = &B;
2354   PB = nullptr;
2355   for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2356     const MachineOperand &OpB = P.getOperand(i+1);
2357     if (OpB.getMBB() == &B) {
2358       LR = P.getOperand(i);
2359       continue;
2360     }
2361     PB = OpB.getMBB();
2362     PR = P.getOperand(i);
2363   }
2364 }
2365 
2366 
getDefReg(const MachineInstr * MI)2367 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2368   RegisterSet Defs;
2369   HBS::getInstrDefs(*MI, Defs);
2370   if (Defs.count() != 1)
2371     return 0;
2372   return Defs.find_first();
2373 }
2374 
2375 
isConst(unsigned Reg) const2376 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2377   if (!BTP->has(Reg))
2378     return false;
2379   const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2380   for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2381     const BitTracker::BitValue &V = RC[i];
2382     if (!V.is(0) && !V.is(1))
2383       return false;
2384   }
2385   return true;
2386 }
2387 
2388 
isBitShuffle(const MachineInstr * MI,unsigned DefR) const2389 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2390       unsigned DefR) const {
2391   unsigned Opc = MI->getOpcode();
2392   switch (Opc) {
2393     case TargetOpcode::COPY:
2394     case Hexagon::S2_lsr_i_r:
2395     case Hexagon::S2_asr_i_r:
2396     case Hexagon::S2_asl_i_r:
2397     case Hexagon::S2_lsr_i_p:
2398     case Hexagon::S2_asr_i_p:
2399     case Hexagon::S2_asl_i_p:
2400     case Hexagon::S2_insert:
2401     case Hexagon::A2_or:
2402     case Hexagon::A2_orp:
2403     case Hexagon::A2_and:
2404     case Hexagon::A2_andp:
2405     case Hexagon::A2_combinew:
2406     case Hexagon::A4_combineri:
2407     case Hexagon::A4_combineir:
2408     case Hexagon::A2_combineii:
2409     case Hexagon::A4_combineii:
2410     case Hexagon::A2_combine_ll:
2411     case Hexagon::A2_combine_lh:
2412     case Hexagon::A2_combine_hl:
2413     case Hexagon::A2_combine_hh:
2414       return true;
2415   }
2416   return false;
2417 }
2418 
2419 
isStoreInput(const MachineInstr * MI,unsigned InpR) const2420 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
2421       unsigned InpR) const {
2422   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
2423     const MachineOperand &Op = MI->getOperand(i);
2424     if (!Op.isReg())
2425       continue;
2426     if (Op.getReg() == InpR)
2427       return i == n-1;
2428   }
2429   return false;
2430 }
2431 
2432 
isShuffleOf(unsigned OutR,unsigned InpR) const2433 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
2434   if (!BTP->has(OutR) || !BTP->has(InpR))
2435     return false;
2436   const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
2437   for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
2438     const BitTracker::BitValue &V = OutC[i];
2439     if (V.Type != BitTracker::BitValue::Ref)
2440       continue;
2441     if (V.RefI.Reg != InpR)
2442       return false;
2443   }
2444   return true;
2445 }
2446 
2447 
isSameShuffle(unsigned OutR1,unsigned InpR1,unsigned OutR2,unsigned & InpR2) const2448 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
2449       unsigned OutR2, unsigned &InpR2) const {
2450   if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
2451     return false;
2452   const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
2453   const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
2454   unsigned W = OutC1.width();
2455   unsigned MatchR = 0;
2456   if (W != OutC2.width())
2457     return false;
2458   for (unsigned i = 0; i < W; ++i) {
2459     const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
2460     if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
2461       return false;
2462     if (V1.Type != BitTracker::BitValue::Ref)
2463       continue;
2464     if (V1.RefI.Pos != V2.RefI.Pos)
2465       return false;
2466     if (V1.RefI.Reg != InpR1)
2467       return false;
2468     if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
2469       return false;
2470     if (!MatchR)
2471       MatchR = V2.RefI.Reg;
2472     else if (V2.RefI.Reg != MatchR)
2473       return false;
2474   }
2475   InpR2 = MatchR;
2476   return true;
2477 }
2478 
2479 
moveGroup(InstrGroup & G,MachineBasicBlock & LB,MachineBasicBlock & PB,MachineBasicBlock::iterator At,unsigned OldPhiR,unsigned NewPredR)2480 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
2481       MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
2482       unsigned NewPredR) {
2483   DenseMap<unsigned,unsigned> RegMap;
2484 
2485   const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
2486   unsigned PhiR = MRI->createVirtualRegister(PhiRC);
2487   BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
2488     .addReg(NewPredR)
2489     .addMBB(&PB)
2490     .addReg(G.Inp.Reg)
2491     .addMBB(&LB);
2492   RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
2493 
2494   for (unsigned i = G.Ins.size(); i > 0; --i) {
2495     const MachineInstr *SI = G.Ins[i-1];
2496     unsigned DR = getDefReg(SI);
2497     const TargetRegisterClass *RC = MRI->getRegClass(DR);
2498     unsigned NewDR = MRI->createVirtualRegister(RC);
2499     DebugLoc DL = SI->getDebugLoc();
2500 
2501     auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
2502     for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
2503       const MachineOperand &Op = SI->getOperand(j);
2504       if (!Op.isReg()) {
2505         MIB.addOperand(Op);
2506         continue;
2507       }
2508       if (!Op.isUse())
2509         continue;
2510       unsigned UseR = RegMap[Op.getReg()];
2511       MIB.addReg(UseR, 0, Op.getSubReg());
2512     }
2513     RegMap.insert(std::make_pair(DR, NewDR));
2514   }
2515 
2516   HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
2517 }
2518 
2519 
processLoop(LoopCand & C)2520 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
2521   DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
2522   std::vector<PhiInfo> Phis;
2523   for (auto &I : *C.LB) {
2524     if (!I.isPHI())
2525       break;
2526     unsigned PR = getDefReg(&I);
2527     if (isConst(PR))
2528       continue;
2529     bool BadUse = false, GoodUse = false;
2530     for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
2531       MachineInstr *UseI = UI->getParent();
2532       if (UseI->getParent() != C.LB) {
2533         BadUse = true;
2534         break;
2535       }
2536       if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
2537         GoodUse = true;
2538     }
2539     if (BadUse || !GoodUse)
2540       continue;
2541 
2542     Phis.push_back(PhiInfo(I, *C.LB));
2543   }
2544 
2545   DEBUG({
2546     dbgs() << "Phis: {";
2547     for (auto &I : Phis) {
2548       dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
2549              << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
2550              << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
2551              << I.LB->getNumber() << ')';
2552     }
2553     dbgs() << " }\n";
2554   });
2555 
2556   if (Phis.empty())
2557     return false;
2558 
2559   bool Changed = false;
2560   InstrList ShufIns;
2561 
2562   // Go backwards in the block: for each bit shuffling instruction, check
2563   // if that instruction could potentially be moved to the front of the loop:
2564   // the output of the loop cannot be used in a non-shuffling instruction
2565   // in this loop.
2566   for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
2567     if (I->isTerminator())
2568       continue;
2569     if (I->isPHI())
2570       break;
2571 
2572     RegisterSet Defs;
2573     HBS::getInstrDefs(*I, Defs);
2574     if (Defs.count() != 1)
2575       continue;
2576     unsigned DefR = Defs.find_first();
2577     if (!TargetRegisterInfo::isVirtualRegister(DefR))
2578       continue;
2579     if (!isBitShuffle(&*I, DefR))
2580       continue;
2581 
2582     bool BadUse = false;
2583     for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
2584       MachineInstr *UseI = UI->getParent();
2585       if (UseI->getParent() == C.LB) {
2586         if (UseI->isPHI()) {
2587           // If the use is in a phi node in this loop, then it should be
2588           // the value corresponding to the back edge.
2589           unsigned Idx = UI.getOperandNo();
2590           if (UseI->getOperand(Idx+1).getMBB() != C.LB)
2591             BadUse = true;
2592         } else {
2593           auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
2594           if (F == ShufIns.end())
2595             BadUse = true;
2596         }
2597       } else {
2598         // There is a use outside of the loop, but there is no epilog block
2599         // suitable for a copy-out.
2600         if (C.EB == nullptr)
2601           BadUse = true;
2602       }
2603       if (BadUse)
2604         break;
2605     }
2606 
2607     if (BadUse)
2608       continue;
2609     ShufIns.push_back(&*I);
2610   }
2611 
2612   // Partition the list of shuffling instructions into instruction groups,
2613   // where each group has to be moved as a whole (i.e. a group is a chain of
2614   // dependent instructions). A group produces a single live output register,
2615   // which is meant to be the input of the loop phi node (although this is
2616   // not checked here yet). It also uses a single register as its input,
2617   // which is some value produced in the loop body. After moving the group
2618   // to the beginning of the loop, that input register would need to be
2619   // the loop-carried register (through a phi node) instead of the (currently
2620   // loop-carried) output register.
2621   typedef std::vector<InstrGroup> InstrGroupList;
2622   InstrGroupList Groups;
2623 
2624   for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
2625     MachineInstr *SI = ShufIns[i];
2626     if (SI == nullptr)
2627       continue;
2628 
2629     InstrGroup G;
2630     G.Ins.push_back(SI);
2631     G.Out.Reg = getDefReg(SI);
2632     RegisterSet Inputs;
2633     HBS::getInstrUses(*SI, Inputs);
2634 
2635     for (unsigned j = i+1; j < n; ++j) {
2636       MachineInstr *MI = ShufIns[j];
2637       if (MI == nullptr)
2638         continue;
2639       RegisterSet Defs;
2640       HBS::getInstrDefs(*MI, Defs);
2641       // If this instruction does not define any pending inputs, skip it.
2642       if (!Defs.intersects(Inputs))
2643         continue;
2644       // Otherwise, add it to the current group and remove the inputs that
2645       // are defined by MI.
2646       G.Ins.push_back(MI);
2647       Inputs.remove(Defs);
2648       // Then add all registers used by MI.
2649       HBS::getInstrUses(*MI, Inputs);
2650       ShufIns[j] = nullptr;
2651     }
2652 
2653     // Only add a group if it requires at most one register.
2654     if (Inputs.count() > 1)
2655       continue;
2656     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2657       return G.Out.Reg == P.LR.Reg;
2658     };
2659     if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
2660       continue;
2661 
2662     G.Inp.Reg = Inputs.find_first();
2663     Groups.push_back(G);
2664   }
2665 
2666   DEBUG({
2667     for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2668       InstrGroup &G = Groups[i];
2669       dbgs() << "Group[" << i << "] inp: "
2670              << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
2671              << "  out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
2672       for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
2673         dbgs() << "  " << *G.Ins[j];
2674     }
2675   });
2676 
2677   for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2678     InstrGroup &G = Groups[i];
2679     if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
2680       continue;
2681     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2682       return G.Out.Reg == P.LR.Reg;
2683     };
2684     auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
2685     if (F == Phis.end())
2686       continue;
2687     unsigned PredR = 0;
2688     if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) {
2689       const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg);
2690       unsigned Opc = DefPredR->getOpcode();
2691       if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
2692         continue;
2693       if (!DefPredR->getOperand(1).isImm())
2694         continue;
2695       if (DefPredR->getOperand(1).getImm() != 0)
2696         continue;
2697       const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
2698       if (RC != MRI->getRegClass(F->PR.Reg)) {
2699         PredR = MRI->createVirtualRegister(RC);
2700         unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
2701                                                           : Hexagon::A2_tfrpi;
2702         auto T = C.PB->getFirstTerminator();
2703         DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
2704         BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR)
2705           .addImm(0);
2706       } else {
2707         PredR = F->PR.Reg;
2708       }
2709     }
2710     assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg));
2711     moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR);
2712     Changed = true;
2713   }
2714 
2715   return Changed;
2716 }
2717 
2718 
runOnMachineFunction(MachineFunction & MF)2719 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
2720   auto &HST = MF.getSubtarget<HexagonSubtarget>();
2721   HII = HST.getInstrInfo();
2722   HRI = HST.getRegisterInfo();
2723   MRI = &MF.getRegInfo();
2724   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
2725   BitTracker BT(HE, MF);
2726   DEBUG(BT.trace(true));
2727   BT.run();
2728   BTP = &BT;
2729 
2730   std::vector<LoopCand> Cand;
2731 
2732   for (auto &B : MF) {
2733     if (B.pred_size() != 2 || B.succ_size() != 2)
2734       continue;
2735     MachineBasicBlock *PB = nullptr;
2736     bool IsLoop = false;
2737     for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
2738       if (*PI != &B)
2739         PB = *PI;
2740       else
2741         IsLoop = true;
2742     }
2743     if (!IsLoop)
2744       continue;
2745 
2746     MachineBasicBlock *EB = nullptr;
2747     for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
2748       if (*SI == &B)
2749         continue;
2750       // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
2751       // edge from B to EP is non-critical.
2752       if ((*SI)->pred_size() == 1)
2753         EB = *SI;
2754       break;
2755     }
2756 
2757     Cand.push_back(LoopCand(&B, PB, EB));
2758   }
2759 
2760   bool Changed = false;
2761   for (auto &C : Cand)
2762     Changed |= processLoop(C);
2763 
2764   return Changed;
2765 }
2766 
2767 //===----------------------------------------------------------------------===//
2768 //                         Public Constructor Functions
2769 //===----------------------------------------------------------------------===//
2770 
createHexagonLoopRescheduling()2771 FunctionPass *llvm::createHexagonLoopRescheduling() {
2772   return new HexagonLoopRescheduling();
2773 }
2774 
createHexagonBitSimplify()2775 FunctionPass *llvm::createHexagonBitSimplify() {
2776   return new HexagonBitSimplify();
2777 }
2778 
2779