1 //===--- HexagonBitSimplify.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "hexbit"
11
12 #include "llvm/CodeGen/Passes.h"
13 #include "llvm/CodeGen/MachineDominators.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/Support/CommandLine.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/raw_ostream.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "HexagonTargetMachine.h"
23 #include "HexagonBitTracker.h"
24
25 using namespace llvm;
26
27 namespace llvm {
28 void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
29 FunctionPass *createHexagonBitSimplify();
30 }
31
32 namespace {
33 // Set of virtual registers, based on BitVector.
34 struct RegisterSet : private BitVector {
RegisterSet__anon3f9b49d70111::RegisterSet35 RegisterSet() : BitVector() {}
RegisterSet__anon3f9b49d70111::RegisterSet36 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
RegisterSet__anon3f9b49d70111::RegisterSet37 RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
38
39 using BitVector::clear;
40 using BitVector::count;
41
find_first__anon3f9b49d70111::RegisterSet42 unsigned find_first() const {
43 int First = BitVector::find_first();
44 if (First < 0)
45 return 0;
46 return x2v(First);
47 }
48
find_next__anon3f9b49d70111::RegisterSet49 unsigned find_next(unsigned Prev) const {
50 int Next = BitVector::find_next(v2x(Prev));
51 if (Next < 0)
52 return 0;
53 return x2v(Next);
54 }
55
insert__anon3f9b49d70111::RegisterSet56 RegisterSet &insert(unsigned R) {
57 unsigned Idx = v2x(R);
58 ensure(Idx);
59 return static_cast<RegisterSet&>(BitVector::set(Idx));
60 }
remove__anon3f9b49d70111::RegisterSet61 RegisterSet &remove(unsigned R) {
62 unsigned Idx = v2x(R);
63 if (Idx >= size())
64 return *this;
65 return static_cast<RegisterSet&>(BitVector::reset(Idx));
66 }
67
insert__anon3f9b49d70111::RegisterSet68 RegisterSet &insert(const RegisterSet &Rs) {
69 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
70 }
remove__anon3f9b49d70111::RegisterSet71 RegisterSet &remove(const RegisterSet &Rs) {
72 return static_cast<RegisterSet&>(BitVector::reset(Rs));
73 }
74
operator []__anon3f9b49d70111::RegisterSet75 reference operator[](unsigned R) {
76 unsigned Idx = v2x(R);
77 ensure(Idx);
78 return BitVector::operator[](Idx);
79 }
operator []__anon3f9b49d70111::RegisterSet80 bool operator[](unsigned R) const {
81 unsigned Idx = v2x(R);
82 assert(Idx < size());
83 return BitVector::operator[](Idx);
84 }
has__anon3f9b49d70111::RegisterSet85 bool has(unsigned R) const {
86 unsigned Idx = v2x(R);
87 if (Idx >= size())
88 return false;
89 return BitVector::test(Idx);
90 }
91
empty__anon3f9b49d70111::RegisterSet92 bool empty() const {
93 return !BitVector::any();
94 }
includes__anon3f9b49d70111::RegisterSet95 bool includes(const RegisterSet &Rs) const {
96 // A.BitVector::test(B) <=> A-B != {}
97 return !Rs.BitVector::test(*this);
98 }
intersects__anon3f9b49d70111::RegisterSet99 bool intersects(const RegisterSet &Rs) const {
100 return BitVector::anyCommon(Rs);
101 }
102
103 private:
ensure__anon3f9b49d70111::RegisterSet104 void ensure(unsigned Idx) {
105 if (size() <= Idx)
106 resize(std::max(Idx+1, 32U));
107 }
v2x__anon3f9b49d70111::RegisterSet108 static inline unsigned v2x(unsigned v) {
109 return TargetRegisterInfo::virtReg2Index(v);
110 }
x2v__anon3f9b49d70111::RegisterSet111 static inline unsigned x2v(unsigned x) {
112 return TargetRegisterInfo::index2VirtReg(x);
113 }
114 };
115
116
117 struct PrintRegSet {
PrintRegSet__anon3f9b49d70111::PrintRegSet118 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
119 : RS(S), TRI(RI) {}
120 friend raw_ostream &operator<< (raw_ostream &OS,
121 const PrintRegSet &P);
122 private:
123 const RegisterSet &RS;
124 const TargetRegisterInfo *TRI;
125 };
126
127 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
128 LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const PrintRegSet & P)129 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
130 OS << '{';
131 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
132 OS << ' ' << PrintReg(R, P.TRI);
133 OS << " }";
134 return OS;
135 }
136 }
137
138
139 namespace {
140 class Transformation;
141
142 class HexagonBitSimplify : public MachineFunctionPass {
143 public:
144 static char ID;
HexagonBitSimplify()145 HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
146 initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
147 }
getPassName() const148 virtual const char *getPassName() const {
149 return "Hexagon bit simplification";
150 }
getAnalysisUsage(AnalysisUsage & AU) const151 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
152 AU.addRequired<MachineDominatorTree>();
153 AU.addPreserved<MachineDominatorTree>();
154 MachineFunctionPass::getAnalysisUsage(AU);
155 }
156 virtual bool runOnMachineFunction(MachineFunction &MF);
157
158 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
159 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
160 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
161 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
162 static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B,
163 uint16_t W);
164 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
165 uint16_t W);
166 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
167 uint16_t W, uint64_t &U);
168 static bool replaceReg(unsigned OldR, unsigned NewR,
169 MachineRegisterInfo &MRI);
170 static bool getSubregMask(const BitTracker::RegisterRef &RR,
171 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
172 static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
173 unsigned NewSR, MachineRegisterInfo &MRI);
174 static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
175 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
176 static bool parseRegSequence(const MachineInstr &I,
177 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
178
179 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
180 uint16_t Begin);
181 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
182 uint16_t Begin, const HexagonInstrInfo &HII);
183
184 static const TargetRegisterClass *getFinalVRegClass(
185 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
186 static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
187 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
188
189 private:
190 MachineDominatorTree *MDT;
191
192 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
193 };
194
195 char HexagonBitSimplify::ID = 0;
196 typedef HexagonBitSimplify HBS;
197
198
199 // The purpose of this class is to provide a common facility to traverse
200 // the function top-down or bottom-up via the dominator tree, and keep
201 // track of the available registers.
202 class Transformation {
203 public:
204 bool TopDown;
Transformation(bool TD)205 Transformation(bool TD) : TopDown(TD) {}
206 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
~Transformation()207 virtual ~Transformation() {}
208 };
209 }
210
211 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
212 "Hexagon bit simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)213 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
214 INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
215 "Hexagon bit simplification", false, false)
216
217
218 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
219 RegisterSet &AVs) {
220 MachineDomTreeNode *N = MDT->getNode(&B);
221 typedef GraphTraits<MachineDomTreeNode*> GTN;
222 bool Changed = false;
223
224 if (T.TopDown)
225 Changed = T.processBlock(B, AVs);
226
227 RegisterSet Defs;
228 for (auto &I : B)
229 getInstrDefs(I, Defs);
230 RegisterSet NewAVs = AVs;
231 NewAVs.insert(Defs);
232
233 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
234 MachineBasicBlock *SB = (*I)->getBlock();
235 Changed |= visitBlock(*SB, T, NewAVs);
236 }
237 if (!T.TopDown)
238 Changed |= T.processBlock(B, AVs);
239
240 return Changed;
241 }
242
243 //
244 // Utility functions:
245 //
getInstrDefs(const MachineInstr & MI,RegisterSet & Defs)246 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
247 RegisterSet &Defs) {
248 for (auto &Op : MI.operands()) {
249 if (!Op.isReg() || !Op.isDef())
250 continue;
251 unsigned R = Op.getReg();
252 if (!TargetRegisterInfo::isVirtualRegister(R))
253 continue;
254 Defs.insert(R);
255 }
256 }
257
getInstrUses(const MachineInstr & MI,RegisterSet & Uses)258 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
259 RegisterSet &Uses) {
260 for (auto &Op : MI.operands()) {
261 if (!Op.isReg() || !Op.isUse())
262 continue;
263 unsigned R = Op.getReg();
264 if (!TargetRegisterInfo::isVirtualRegister(R))
265 continue;
266 Uses.insert(R);
267 }
268 }
269
270 // Check if all the bits in range [B, E) in both cells are equal.
isEqual(const BitTracker::RegisterCell & RC1,uint16_t B1,const BitTracker::RegisterCell & RC2,uint16_t B2,uint16_t W)271 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
272 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
273 uint16_t W) {
274 for (uint16_t i = 0; i < W; ++i) {
275 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
276 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
277 return false;
278 // Same for RC2[i].
279 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
280 return false;
281 if (RC1[B1+i] != RC2[B2+i])
282 return false;
283 }
284 return true;
285 }
286
287
isConst(const BitTracker::RegisterCell & RC,uint16_t B,uint16_t W)288 bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC,
289 uint16_t B, uint16_t W) {
290 assert(B < RC.width() && B+W <= RC.width());
291 for (uint16_t i = B; i < B+W; ++i)
292 if (!RC[i].num())
293 return false;
294 return true;
295 }
296
297
isZero(const BitTracker::RegisterCell & RC,uint16_t B,uint16_t W)298 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
299 uint16_t B, uint16_t W) {
300 assert(B < RC.width() && B+W <= RC.width());
301 for (uint16_t i = B; i < B+W; ++i)
302 if (!RC[i].is(0))
303 return false;
304 return true;
305 }
306
307
getConst(const BitTracker::RegisterCell & RC,uint16_t B,uint16_t W,uint64_t & U)308 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
309 uint16_t B, uint16_t W, uint64_t &U) {
310 assert(B < RC.width() && B+W <= RC.width());
311 int64_t T = 0;
312 for (uint16_t i = B+W; i > B; --i) {
313 const BitTracker::BitValue &BV = RC[i-1];
314 T <<= 1;
315 if (BV.is(1))
316 T |= 1;
317 else if (!BV.is(0))
318 return false;
319 }
320 U = T;
321 return true;
322 }
323
324
replaceReg(unsigned OldR,unsigned NewR,MachineRegisterInfo & MRI)325 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
326 MachineRegisterInfo &MRI) {
327 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
328 !TargetRegisterInfo::isVirtualRegister(NewR))
329 return false;
330 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
331 decltype(End) NextI;
332 for (auto I = Begin; I != End; I = NextI) {
333 NextI = std::next(I);
334 I->setReg(NewR);
335 }
336 return Begin != End;
337 }
338
339
replaceRegWithSub(unsigned OldR,unsigned NewR,unsigned NewSR,MachineRegisterInfo & MRI)340 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
341 unsigned NewSR, MachineRegisterInfo &MRI) {
342 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
343 !TargetRegisterInfo::isVirtualRegister(NewR))
344 return false;
345 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
346 decltype(End) NextI;
347 for (auto I = Begin; I != End; I = NextI) {
348 NextI = std::next(I);
349 I->setReg(NewR);
350 I->setSubReg(NewSR);
351 }
352 return Begin != End;
353 }
354
355
replaceSubWithSub(unsigned OldR,unsigned OldSR,unsigned NewR,unsigned NewSR,MachineRegisterInfo & MRI)356 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
357 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
358 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
359 !TargetRegisterInfo::isVirtualRegister(NewR))
360 return false;
361 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
362 decltype(End) NextI;
363 for (auto I = Begin; I != End; I = NextI) {
364 NextI = std::next(I);
365 if (I->getSubReg() != OldSR)
366 continue;
367 I->setReg(NewR);
368 I->setSubReg(NewSR);
369 }
370 return Begin != End;
371 }
372
373
374 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
375 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
376 // if this succeeded, otherwise return false.
getSubregMask(const BitTracker::RegisterRef & RR,unsigned & Begin,unsigned & Width,MachineRegisterInfo & MRI)377 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
378 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
379 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
380 if (RC == &Hexagon::IntRegsRegClass) {
381 assert(RR.Sub == 0);
382 Begin = 0;
383 Width = 32;
384 return true;
385 }
386 if (RC == &Hexagon::DoubleRegsRegClass) {
387 if (RR.Sub == 0) {
388 Begin = 0;
389 Width = 64;
390 return true;
391 }
392 assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
393 Width = 32;
394 Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
395 return true;
396 }
397 return false;
398 }
399
400
401 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
402 // subregister.
parseRegSequence(const MachineInstr & I,BitTracker::RegisterRef & SL,BitTracker::RegisterRef & SH)403 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
404 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
405 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
406 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
407 assert(Sub1 != Sub2);
408 if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
409 SL = I.getOperand(1);
410 SH = I.getOperand(3);
411 return true;
412 }
413 if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
414 SH = I.getOperand(1);
415 SL = I.getOperand(3);
416 return true;
417 }
418 return false;
419 }
420
421
422 // All stores (except 64-bit stores) take a 32-bit register as the source
423 // of the value to be stored. If the instruction stores into a location
424 // that is shorter than 32 bits, some bits of the source register are not
425 // used. For each store instruction, calculate the set of used bits in
426 // the source register, and set appropriate bits in Bits. Return true if
427 // the bits are calculated, false otherwise.
getUsedBitsInStore(unsigned Opc,BitVector & Bits,uint16_t Begin)428 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
429 uint16_t Begin) {
430 using namespace Hexagon;
431
432 switch (Opc) {
433 // Store byte
434 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
435 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
436 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
437 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
438 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
439 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
440 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
441 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
442 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
443 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
444 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
445 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
446 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
447 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
448 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
449 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
450 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
451 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
452 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
453 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
454 case S4_storerb_ap: // memb(Re32=#U6)=Rt32
455 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
456 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
457 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
458 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
459 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
460 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
461 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
462 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
463 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
464 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
465 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
466 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
467 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
468 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
469 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
470 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
471 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
472 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
473 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
474 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
475 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
476 case S2_storerbgp: // memb(gp+#u16:0)=Rt32
477 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
478 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
479 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
480 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
481 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
482 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
483 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
484 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
485 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
486 Bits.set(Begin, Begin+8);
487 return true;
488
489 // Store low half
490 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
491 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
492 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
493 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
494 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
495 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
496 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
497 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
498 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
499 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
500 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
501 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
502 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
503 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
504 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
505 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
506 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
507 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
508 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
509 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
510 case S4_storerh_ap: // memh(Re32=#U6)=Rt32
511 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
512 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
513 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
514 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
515 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
516 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
517 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
518 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
519 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
520 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
521 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
522 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
523 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
524 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
525 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
526 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
527 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
528 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
529 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
530 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
531 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
532 case S2_storerhgp: // memh(gp+#u16:1)=Rt32
533 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
534 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
535 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
536 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
537 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
538 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
539 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
540 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
541 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
542 Bits.set(Begin, Begin+16);
543 return true;
544
545 // Store high half
546 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
547 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
548 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
549 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
550 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
551 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
552 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
553 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
554 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
555 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
556 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
557 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
558 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
559 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
560 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
561 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
562 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
563 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
564 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
565 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
566 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
567 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
568 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
569 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
570 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
571 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
572 Bits.set(Begin+16, Begin+32);
573 return true;
574 }
575
576 return false;
577 }
578
579
580 // For an instruction with opcode Opc, calculate the set of bits that it
581 // uses in a register in operand OpN. This only calculates the set of used
582 // bits for cases where it does not depend on any operands (as is the case
583 // in shifts, for example). For concrete instructions from a program, the
584 // operand may be a subregister of a larger register, while Bits would
585 // correspond to the larger register in its entirety. Because of that,
586 // the parameter Begin can be used to indicate which bit of Bits should be
587 // considered the LSB of of the operand.
getUsedBits(unsigned Opc,unsigned OpN,BitVector & Bits,uint16_t Begin,const HexagonInstrInfo & HII)588 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
589 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
590 using namespace Hexagon;
591
592 const MCInstrDesc &D = HII.get(Opc);
593 if (D.mayStore()) {
594 if (OpN == D.getNumOperands()-1)
595 return getUsedBitsInStore(Opc, Bits, Begin);
596 return false;
597 }
598
599 switch (Opc) {
600 // One register source. Used bits: R1[0-7].
601 case A2_sxtb:
602 case A2_zxtb:
603 case A4_cmpbeqi:
604 case A4_cmpbgti:
605 case A4_cmpbgtui:
606 if (OpN == 1) {
607 Bits.set(Begin, Begin+8);
608 return true;
609 }
610 break;
611
612 // One register source. Used bits: R1[0-15].
613 case A2_aslh:
614 case A2_sxth:
615 case A2_zxth:
616 case A4_cmpheqi:
617 case A4_cmphgti:
618 case A4_cmphgtui:
619 if (OpN == 1) {
620 Bits.set(Begin, Begin+16);
621 return true;
622 }
623 break;
624
625 // One register source. Used bits: R1[16-31].
626 case A2_asrh:
627 if (OpN == 1) {
628 Bits.set(Begin+16, Begin+32);
629 return true;
630 }
631 break;
632
633 // Two register sources. Used bits: R1[0-7], R2[0-7].
634 case A4_cmpbeq:
635 case A4_cmpbgt:
636 case A4_cmpbgtu:
637 if (OpN == 1) {
638 Bits.set(Begin, Begin+8);
639 return true;
640 }
641 break;
642
643 // Two register sources. Used bits: R1[0-15], R2[0-15].
644 case A4_cmpheq:
645 case A4_cmphgt:
646 case A4_cmphgtu:
647 case A2_addh_h16_ll:
648 case A2_addh_h16_sat_ll:
649 case A2_addh_l16_ll:
650 case A2_addh_l16_sat_ll:
651 case A2_combine_ll:
652 case A2_subh_h16_ll:
653 case A2_subh_h16_sat_ll:
654 case A2_subh_l16_ll:
655 case A2_subh_l16_sat_ll:
656 case M2_mpy_acc_ll_s0:
657 case M2_mpy_acc_ll_s1:
658 case M2_mpy_acc_sat_ll_s0:
659 case M2_mpy_acc_sat_ll_s1:
660 case M2_mpy_ll_s0:
661 case M2_mpy_ll_s1:
662 case M2_mpy_nac_ll_s0:
663 case M2_mpy_nac_ll_s1:
664 case M2_mpy_nac_sat_ll_s0:
665 case M2_mpy_nac_sat_ll_s1:
666 case M2_mpy_rnd_ll_s0:
667 case M2_mpy_rnd_ll_s1:
668 case M2_mpy_sat_ll_s0:
669 case M2_mpy_sat_ll_s1:
670 case M2_mpy_sat_rnd_ll_s0:
671 case M2_mpy_sat_rnd_ll_s1:
672 case M2_mpyd_acc_ll_s0:
673 case M2_mpyd_acc_ll_s1:
674 case M2_mpyd_ll_s0:
675 case M2_mpyd_ll_s1:
676 case M2_mpyd_nac_ll_s0:
677 case M2_mpyd_nac_ll_s1:
678 case M2_mpyd_rnd_ll_s0:
679 case M2_mpyd_rnd_ll_s1:
680 case M2_mpyu_acc_ll_s0:
681 case M2_mpyu_acc_ll_s1:
682 case M2_mpyu_ll_s0:
683 case M2_mpyu_ll_s1:
684 case M2_mpyu_nac_ll_s0:
685 case M2_mpyu_nac_ll_s1:
686 case M2_mpyud_acc_ll_s0:
687 case M2_mpyud_acc_ll_s1:
688 case M2_mpyud_ll_s0:
689 case M2_mpyud_ll_s1:
690 case M2_mpyud_nac_ll_s0:
691 case M2_mpyud_nac_ll_s1:
692 if (OpN == 1 || OpN == 2) {
693 Bits.set(Begin, Begin+16);
694 return true;
695 }
696 break;
697
698 // Two register sources. Used bits: R1[0-15], R2[16-31].
699 case A2_addh_h16_lh:
700 case A2_addh_h16_sat_lh:
701 case A2_combine_lh:
702 case A2_subh_h16_lh:
703 case A2_subh_h16_sat_lh:
704 case M2_mpy_acc_lh_s0:
705 case M2_mpy_acc_lh_s1:
706 case M2_mpy_acc_sat_lh_s0:
707 case M2_mpy_acc_sat_lh_s1:
708 case M2_mpy_lh_s0:
709 case M2_mpy_lh_s1:
710 case M2_mpy_nac_lh_s0:
711 case M2_mpy_nac_lh_s1:
712 case M2_mpy_nac_sat_lh_s0:
713 case M2_mpy_nac_sat_lh_s1:
714 case M2_mpy_rnd_lh_s0:
715 case M2_mpy_rnd_lh_s1:
716 case M2_mpy_sat_lh_s0:
717 case M2_mpy_sat_lh_s1:
718 case M2_mpy_sat_rnd_lh_s0:
719 case M2_mpy_sat_rnd_lh_s1:
720 case M2_mpyd_acc_lh_s0:
721 case M2_mpyd_acc_lh_s1:
722 case M2_mpyd_lh_s0:
723 case M2_mpyd_lh_s1:
724 case M2_mpyd_nac_lh_s0:
725 case M2_mpyd_nac_lh_s1:
726 case M2_mpyd_rnd_lh_s0:
727 case M2_mpyd_rnd_lh_s1:
728 case M2_mpyu_acc_lh_s0:
729 case M2_mpyu_acc_lh_s1:
730 case M2_mpyu_lh_s0:
731 case M2_mpyu_lh_s1:
732 case M2_mpyu_nac_lh_s0:
733 case M2_mpyu_nac_lh_s1:
734 case M2_mpyud_acc_lh_s0:
735 case M2_mpyud_acc_lh_s1:
736 case M2_mpyud_lh_s0:
737 case M2_mpyud_lh_s1:
738 case M2_mpyud_nac_lh_s0:
739 case M2_mpyud_nac_lh_s1:
740 // These four are actually LH.
741 case A2_addh_l16_hl:
742 case A2_addh_l16_sat_hl:
743 case A2_subh_l16_hl:
744 case A2_subh_l16_sat_hl:
745 if (OpN == 1) {
746 Bits.set(Begin, Begin+16);
747 return true;
748 }
749 if (OpN == 2) {
750 Bits.set(Begin+16, Begin+32);
751 return true;
752 }
753 break;
754
755 // Two register sources, used bits: R1[16-31], R2[0-15].
756 case A2_addh_h16_hl:
757 case A2_addh_h16_sat_hl:
758 case A2_combine_hl:
759 case A2_subh_h16_hl:
760 case A2_subh_h16_sat_hl:
761 case M2_mpy_acc_hl_s0:
762 case M2_mpy_acc_hl_s1:
763 case M2_mpy_acc_sat_hl_s0:
764 case M2_mpy_acc_sat_hl_s1:
765 case M2_mpy_hl_s0:
766 case M2_mpy_hl_s1:
767 case M2_mpy_nac_hl_s0:
768 case M2_mpy_nac_hl_s1:
769 case M2_mpy_nac_sat_hl_s0:
770 case M2_mpy_nac_sat_hl_s1:
771 case M2_mpy_rnd_hl_s0:
772 case M2_mpy_rnd_hl_s1:
773 case M2_mpy_sat_hl_s0:
774 case M2_mpy_sat_hl_s1:
775 case M2_mpy_sat_rnd_hl_s0:
776 case M2_mpy_sat_rnd_hl_s1:
777 case M2_mpyd_acc_hl_s0:
778 case M2_mpyd_acc_hl_s1:
779 case M2_mpyd_hl_s0:
780 case M2_mpyd_hl_s1:
781 case M2_mpyd_nac_hl_s0:
782 case M2_mpyd_nac_hl_s1:
783 case M2_mpyd_rnd_hl_s0:
784 case M2_mpyd_rnd_hl_s1:
785 case M2_mpyu_acc_hl_s0:
786 case M2_mpyu_acc_hl_s1:
787 case M2_mpyu_hl_s0:
788 case M2_mpyu_hl_s1:
789 case M2_mpyu_nac_hl_s0:
790 case M2_mpyu_nac_hl_s1:
791 case M2_mpyud_acc_hl_s0:
792 case M2_mpyud_acc_hl_s1:
793 case M2_mpyud_hl_s0:
794 case M2_mpyud_hl_s1:
795 case M2_mpyud_nac_hl_s0:
796 case M2_mpyud_nac_hl_s1:
797 if (OpN == 1) {
798 Bits.set(Begin+16, Begin+32);
799 return true;
800 }
801 if (OpN == 2) {
802 Bits.set(Begin, Begin+16);
803 return true;
804 }
805 break;
806
807 // Two register sources, used bits: R1[16-31], R2[16-31].
808 case A2_addh_h16_hh:
809 case A2_addh_h16_sat_hh:
810 case A2_combine_hh:
811 case A2_subh_h16_hh:
812 case A2_subh_h16_sat_hh:
813 case M2_mpy_acc_hh_s0:
814 case M2_mpy_acc_hh_s1:
815 case M2_mpy_acc_sat_hh_s0:
816 case M2_mpy_acc_sat_hh_s1:
817 case M2_mpy_hh_s0:
818 case M2_mpy_hh_s1:
819 case M2_mpy_nac_hh_s0:
820 case M2_mpy_nac_hh_s1:
821 case M2_mpy_nac_sat_hh_s0:
822 case M2_mpy_nac_sat_hh_s1:
823 case M2_mpy_rnd_hh_s0:
824 case M2_mpy_rnd_hh_s1:
825 case M2_mpy_sat_hh_s0:
826 case M2_mpy_sat_hh_s1:
827 case M2_mpy_sat_rnd_hh_s0:
828 case M2_mpy_sat_rnd_hh_s1:
829 case M2_mpyd_acc_hh_s0:
830 case M2_mpyd_acc_hh_s1:
831 case M2_mpyd_hh_s0:
832 case M2_mpyd_hh_s1:
833 case M2_mpyd_nac_hh_s0:
834 case M2_mpyd_nac_hh_s1:
835 case M2_mpyd_rnd_hh_s0:
836 case M2_mpyd_rnd_hh_s1:
837 case M2_mpyu_acc_hh_s0:
838 case M2_mpyu_acc_hh_s1:
839 case M2_mpyu_hh_s0:
840 case M2_mpyu_hh_s1:
841 case M2_mpyu_nac_hh_s0:
842 case M2_mpyu_nac_hh_s1:
843 case M2_mpyud_acc_hh_s0:
844 case M2_mpyud_acc_hh_s1:
845 case M2_mpyud_hh_s0:
846 case M2_mpyud_hh_s1:
847 case M2_mpyud_nac_hh_s0:
848 case M2_mpyud_nac_hh_s1:
849 if (OpN == 1 || OpN == 2) {
850 Bits.set(Begin+16, Begin+32);
851 return true;
852 }
853 break;
854 }
855
856 return false;
857 }
858
859
860 // Calculate the register class that matches Reg:Sub. For example, if
861 // vreg1 is a double register, then vreg1:subreg_hireg would match "int"
862 // register class.
getFinalVRegClass(const BitTracker::RegisterRef & RR,MachineRegisterInfo & MRI)863 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
864 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
865 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
866 return nullptr;
867 auto *RC = MRI.getRegClass(RR.Reg);
868 if (RR.Sub == 0)
869 return RC;
870
871 auto VerifySR = [] (unsigned Sub) -> void {
872 assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
873 };
874
875 switch (RC->getID()) {
876 case Hexagon::DoubleRegsRegClassID:
877 VerifySR(RR.Sub);
878 return &Hexagon::IntRegsRegClass;
879 }
880 return nullptr;
881 }
882
883
884 // Check if RD could be replaced with RS at any possible use of RD.
885 // For example a predicate register cannot be replaced with a integer
886 // register, but a 64-bit register with a subregister can be replaced
887 // with a 32-bit register.
isTransparentCopy(const BitTracker::RegisterRef & RD,const BitTracker::RegisterRef & RS,MachineRegisterInfo & MRI)888 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
889 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
890 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
891 !TargetRegisterInfo::isVirtualRegister(RS.Reg))
892 return false;
893 // Return false if one (or both) classes are nullptr.
894 auto *DRC = getFinalVRegClass(RD, MRI);
895 if (!DRC)
896 return false;
897
898 return DRC == getFinalVRegClass(RS, MRI);
899 }
900
901
902 //
903 // Dead code elimination
904 //
905 namespace {
906 class DeadCodeElimination {
907 public:
DeadCodeElimination(MachineFunction & mf,MachineDominatorTree & mdt)908 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
909 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
910 MDT(mdt), MRI(mf.getRegInfo()) {}
911
run()912 bool run() {
913 return runOnNode(MDT.getRootNode());
914 }
915
916 private:
917 bool isDead(unsigned R) const;
918 bool runOnNode(MachineDomTreeNode *N);
919
920 MachineFunction &MF;
921 const HexagonInstrInfo &HII;
922 MachineDominatorTree &MDT;
923 MachineRegisterInfo &MRI;
924 };
925 }
926
927
isDead(unsigned R) const928 bool DeadCodeElimination::isDead(unsigned R) const {
929 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
930 MachineInstr *UseI = I->getParent();
931 if (UseI->isDebugValue())
932 continue;
933 if (UseI->isPHI()) {
934 assert(!UseI->getOperand(0).getSubReg());
935 unsigned DR = UseI->getOperand(0).getReg();
936 if (DR == R)
937 continue;
938 }
939 return false;
940 }
941 return true;
942 }
943
944
runOnNode(MachineDomTreeNode * N)945 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
946 bool Changed = false;
947 typedef GraphTraits<MachineDomTreeNode*> GTN;
948 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
949 Changed |= runOnNode(*I);
950
951 MachineBasicBlock *B = N->getBlock();
952 std::vector<MachineInstr*> Instrs;
953 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
954 Instrs.push_back(&*I);
955
956 for (auto MI : Instrs) {
957 unsigned Opc = MI->getOpcode();
958 // Do not touch lifetime markers. This is why the target-independent DCE
959 // cannot be used.
960 if (Opc == TargetOpcode::LIFETIME_START ||
961 Opc == TargetOpcode::LIFETIME_END)
962 continue;
963 bool Store = false;
964 if (MI->isInlineAsm())
965 continue;
966 // Delete PHIs if possible.
967 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
968 continue;
969
970 bool AllDead = true;
971 SmallVector<unsigned,2> Regs;
972 for (auto &Op : MI->operands()) {
973 if (!Op.isReg() || !Op.isDef())
974 continue;
975 unsigned R = Op.getReg();
976 if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
977 AllDead = false;
978 break;
979 }
980 Regs.push_back(R);
981 }
982 if (!AllDead)
983 continue;
984
985 B->erase(MI);
986 for (unsigned i = 0, n = Regs.size(); i != n; ++i)
987 MRI.markUsesInDebugValueAsUndef(Regs[i]);
988 Changed = true;
989 }
990
991 return Changed;
992 }
993
994
995 //
996 // Eliminate redundant instructions
997 //
998 // This transformation will identify instructions where the output register
999 // is the same as one of its input registers. This only works on instructions
1000 // that define a single register (unlike post-increment loads, for example).
1001 // The equality check is actually more detailed: the code calculates which
1002 // bits of the output are used, and only compares these bits with the input
1003 // registers.
1004 // If the output matches an input, the instruction is replaced with COPY.
1005 // The copies will be removed by another transformation.
1006 namespace {
1007 class RedundantInstrElimination : public Transformation {
1008 public:
RedundantInstrElimination(BitTracker & bt,const HexagonInstrInfo & hii,MachineRegisterInfo & mri)1009 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1010 MachineRegisterInfo &mri)
1011 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1012 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1013 private:
1014 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1015 unsigned &LostB, unsigned &LostE);
1016 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1017 unsigned &LostB, unsigned &LostE);
1018 bool computeUsedBits(unsigned Reg, BitVector &Bits);
1019 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1020 uint16_t Begin);
1021 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1022
1023 const HexagonInstrInfo &HII;
1024 MachineRegisterInfo &MRI;
1025 BitTracker &BT;
1026 };
1027 }
1028
1029
1030 // Check if the instruction is a lossy shift left, where the input being
1031 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1032 // of bit indices that are lost.
isLossyShiftLeft(const MachineInstr & MI,unsigned OpN,unsigned & LostB,unsigned & LostE)1033 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1034 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1035 using namespace Hexagon;
1036 unsigned Opc = MI.getOpcode();
1037 unsigned ImN, RegN, Width;
1038 switch (Opc) {
1039 case S2_asl_i_p:
1040 ImN = 2;
1041 RegN = 1;
1042 Width = 64;
1043 break;
1044 case S2_asl_i_p_acc:
1045 case S2_asl_i_p_and:
1046 case S2_asl_i_p_nac:
1047 case S2_asl_i_p_or:
1048 case S2_asl_i_p_xacc:
1049 ImN = 3;
1050 RegN = 2;
1051 Width = 64;
1052 break;
1053 case S2_asl_i_r:
1054 ImN = 2;
1055 RegN = 1;
1056 Width = 32;
1057 break;
1058 case S2_addasl_rrri:
1059 case S4_andi_asl_ri:
1060 case S4_ori_asl_ri:
1061 case S4_addi_asl_ri:
1062 case S4_subi_asl_ri:
1063 case S2_asl_i_r_acc:
1064 case S2_asl_i_r_and:
1065 case S2_asl_i_r_nac:
1066 case S2_asl_i_r_or:
1067 case S2_asl_i_r_sat:
1068 case S2_asl_i_r_xacc:
1069 ImN = 3;
1070 RegN = 2;
1071 Width = 32;
1072 break;
1073 default:
1074 return false;
1075 }
1076
1077 if (RegN != OpN)
1078 return false;
1079
1080 assert(MI.getOperand(ImN).isImm());
1081 unsigned S = MI.getOperand(ImN).getImm();
1082 if (S == 0)
1083 return false;
1084 LostB = Width-S;
1085 LostE = Width;
1086 return true;
1087 }
1088
1089
1090 // Check if the instruction is a lossy shift right, where the input being
1091 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1092 // of bit indices that are lost.
isLossyShiftRight(const MachineInstr & MI,unsigned OpN,unsigned & LostB,unsigned & LostE)1093 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1094 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1095 using namespace Hexagon;
1096 unsigned Opc = MI.getOpcode();
1097 unsigned ImN, RegN;
1098 switch (Opc) {
1099 case S2_asr_i_p:
1100 case S2_lsr_i_p:
1101 ImN = 2;
1102 RegN = 1;
1103 break;
1104 case S2_asr_i_p_acc:
1105 case S2_asr_i_p_and:
1106 case S2_asr_i_p_nac:
1107 case S2_asr_i_p_or:
1108 case S2_lsr_i_p_acc:
1109 case S2_lsr_i_p_and:
1110 case S2_lsr_i_p_nac:
1111 case S2_lsr_i_p_or:
1112 case S2_lsr_i_p_xacc:
1113 ImN = 3;
1114 RegN = 2;
1115 break;
1116 case S2_asr_i_r:
1117 case S2_lsr_i_r:
1118 ImN = 2;
1119 RegN = 1;
1120 break;
1121 case S4_andi_lsr_ri:
1122 case S4_ori_lsr_ri:
1123 case S4_addi_lsr_ri:
1124 case S4_subi_lsr_ri:
1125 case S2_asr_i_r_acc:
1126 case S2_asr_i_r_and:
1127 case S2_asr_i_r_nac:
1128 case S2_asr_i_r_or:
1129 case S2_lsr_i_r_acc:
1130 case S2_lsr_i_r_and:
1131 case S2_lsr_i_r_nac:
1132 case S2_lsr_i_r_or:
1133 case S2_lsr_i_r_xacc:
1134 ImN = 3;
1135 RegN = 2;
1136 break;
1137
1138 default:
1139 return false;
1140 }
1141
1142 if (RegN != OpN)
1143 return false;
1144
1145 assert(MI.getOperand(ImN).isImm());
1146 unsigned S = MI.getOperand(ImN).getImm();
1147 LostB = 0;
1148 LostE = S;
1149 return true;
1150 }
1151
1152
1153 // Calculate the bit vector that corresponds to the used bits of register Reg.
1154 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
1155 // culation fails (i.e. the used bits are unknown), it returns false. Other-
1156 // wise, it returns true and sets the corresponding bits in Bits.
computeUsedBits(unsigned Reg,BitVector & Bits)1157 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1158 BitVector Used(Bits.size());
1159 RegisterSet Visited;
1160 std::vector<unsigned> Pending;
1161 Pending.push_back(Reg);
1162
1163 for (unsigned i = 0; i < Pending.size(); ++i) {
1164 unsigned R = Pending[i];
1165 if (Visited.has(R))
1166 continue;
1167 Visited.insert(R);
1168 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1169 BitTracker::RegisterRef UR = *I;
1170 unsigned B, W;
1171 if (!HBS::getSubregMask(UR, B, W, MRI))
1172 return false;
1173 MachineInstr &UseI = *I->getParent();
1174 if (UseI.isPHI() || UseI.isCopy()) {
1175 unsigned DefR = UseI.getOperand(0).getReg();
1176 if (!TargetRegisterInfo::isVirtualRegister(DefR))
1177 return false;
1178 Pending.push_back(DefR);
1179 } else {
1180 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1181 return false;
1182 }
1183 }
1184 }
1185 Bits |= Used;
1186 return true;
1187 }
1188
1189
1190 // Calculate the bits used by instruction MI in a register in operand OpN.
1191 // Return true/false if the calculation succeeds/fails. If is succeeds, set
1192 // used bits in Bits. This function does not reset any bits in Bits, so
1193 // subsequent calls over different instructions will result in the union
1194 // of the used bits in all these instructions.
1195 // The register in question may be used with a sub-register, whereas Bits
1196 // holds the bits for the entire register. To keep track of that, the
1197 // argument Begin indicates where in Bits is the lowest-significant bit
1198 // of the register used in operand OpN. For example, in instruction:
1199 // vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
1200 // the operand 1 is a 32-bit register, which happens to be a subregister
1201 // of the 64-bit register vreg2, and that subregister starts at position 32.
1202 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
1203 // of vreg2:subreg_hireg.
computeUsedBits(const MachineInstr & MI,unsigned OpN,BitVector & Bits,uint16_t Begin)1204 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1205 unsigned OpN, BitVector &Bits, uint16_t Begin) {
1206 unsigned Opc = MI.getOpcode();
1207 BitVector T(Bits.size());
1208 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1209 // Even if we don't have bits yet, we could still provide some information
1210 // if the instruction is a lossy shift: the lost bits will be marked as
1211 // not used.
1212 unsigned LB, LE;
1213 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1214 assert(MI.getOperand(OpN).isReg());
1215 BitTracker::RegisterRef RR = MI.getOperand(OpN);
1216 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1217 uint16_t Width = RC->getSize()*8;
1218
1219 if (!GotBits)
1220 T.set(Begin, Begin+Width);
1221 assert(LB <= LE && LB < Width && LE <= Width);
1222 T.reset(Begin+LB, Begin+LE);
1223 GotBits = true;
1224 }
1225 if (GotBits)
1226 Bits |= T;
1227 return GotBits;
1228 }
1229
1230
1231 // Calculates the used bits in RD ("defined register"), and checks if these
1232 // bits in RS ("used register") and RD are identical.
usedBitsEqual(BitTracker::RegisterRef RD,BitTracker::RegisterRef RS)1233 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1234 BitTracker::RegisterRef RS) {
1235 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1236 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1237
1238 unsigned DB, DW;
1239 if (!HBS::getSubregMask(RD, DB, DW, MRI))
1240 return false;
1241 unsigned SB, SW;
1242 if (!HBS::getSubregMask(RS, SB, SW, MRI))
1243 return false;
1244 if (SW != DW)
1245 return false;
1246
1247 BitVector Used(DC.width());
1248 if (!computeUsedBits(RD.Reg, Used))
1249 return false;
1250
1251 for (unsigned i = 0; i != DW; ++i)
1252 if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1253 return false;
1254 return true;
1255 }
1256
1257
processBlock(MachineBasicBlock & B,const RegisterSet &)1258 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1259 const RegisterSet&) {
1260 bool Changed = false;
1261
1262 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1263 NextI = std::next(I);
1264 MachineInstr *MI = &*I;
1265
1266 if (MI->getOpcode() == TargetOpcode::COPY)
1267 continue;
1268 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1269 continue;
1270 unsigned NumD = MI->getDesc().getNumDefs();
1271 if (NumD != 1)
1272 continue;
1273
1274 BitTracker::RegisterRef RD = MI->getOperand(0);
1275 if (!BT.has(RD.Reg))
1276 continue;
1277 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1278
1279 // Find a source operand that is equal to the result.
1280 for (auto &Op : MI->uses()) {
1281 if (!Op.isReg())
1282 continue;
1283 BitTracker::RegisterRef RS = Op;
1284 if (!BT.has(RS.Reg))
1285 continue;
1286 if (!HBS::isTransparentCopy(RD, RS, MRI))
1287 continue;
1288
1289 unsigned BN, BW;
1290 if (!HBS::getSubregMask(RS, BN, BW, MRI))
1291 continue;
1292
1293 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1294 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1295 continue;
1296
1297 // If found, replace the instruction with a COPY.
1298 DebugLoc DL = MI->getDebugLoc();
1299 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1300 unsigned NewR = MRI.createVirtualRegister(FRC);
1301 BuildMI(B, I, DL, HII.get(TargetOpcode::COPY), NewR)
1302 .addReg(RS.Reg, 0, RS.Sub);
1303 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1304 BT.put(BitTracker::RegisterRef(NewR), SC);
1305 Changed = true;
1306 break;
1307 }
1308 }
1309
1310 return Changed;
1311 }
1312
1313
1314 //
1315 // Const generation
1316 //
1317 // Recognize instructions that produce constant values known at compile-time.
1318 // Replace them with register definitions that load these constants directly.
1319 namespace {
1320 class ConstGeneration : public Transformation {
1321 public:
ConstGeneration(BitTracker & bt,const HexagonInstrInfo & hii,MachineRegisterInfo & mri)1322 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1323 MachineRegisterInfo &mri)
1324 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1325 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1326 private:
1327 bool isTfrConst(const MachineInstr *MI) const;
1328 bool isConst(unsigned R, int64_t &V) const;
1329 unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1330 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1331
1332 const HexagonInstrInfo &HII;
1333 MachineRegisterInfo &MRI;
1334 BitTracker &BT;
1335 };
1336 }
1337
isConst(unsigned R,int64_t & C) const1338 bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
1339 if (!BT.has(R))
1340 return false;
1341 const BitTracker::RegisterCell &RC = BT.lookup(R);
1342 int64_t T = 0;
1343 for (unsigned i = RC.width(); i > 0; --i) {
1344 const BitTracker::BitValue &V = RC[i-1];
1345 T <<= 1;
1346 if (V.is(1))
1347 T |= 1;
1348 else if (!V.is(0))
1349 return false;
1350 }
1351 C = T;
1352 return true;
1353 }
1354
1355
isTfrConst(const MachineInstr * MI) const1356 bool ConstGeneration::isTfrConst(const MachineInstr *MI) const {
1357 unsigned Opc = MI->getOpcode();
1358 switch (Opc) {
1359 case Hexagon::A2_combineii:
1360 case Hexagon::A4_combineii:
1361 case Hexagon::A2_tfrsi:
1362 case Hexagon::A2_tfrpi:
1363 case Hexagon::TFR_PdTrue:
1364 case Hexagon::TFR_PdFalse:
1365 case Hexagon::CONST32_Int_Real:
1366 case Hexagon::CONST64_Int_Real:
1367 return true;
1368 }
1369 return false;
1370 }
1371
1372
1373 // Generate a transfer-immediate instruction that is appropriate for the
1374 // register class and the actual value being transferred.
genTfrConst(const TargetRegisterClass * RC,int64_t C,MachineBasicBlock & B,MachineBasicBlock::iterator At,DebugLoc & DL)1375 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1376 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1377 unsigned Reg = MRI.createVirtualRegister(RC);
1378 if (RC == &Hexagon::IntRegsRegClass) {
1379 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1380 .addImm(int32_t(C));
1381 return Reg;
1382 }
1383
1384 if (RC == &Hexagon::DoubleRegsRegClass) {
1385 if (isInt<8>(C)) {
1386 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1387 .addImm(C);
1388 return Reg;
1389 }
1390
1391 unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1392 if (isInt<8>(Lo) || isInt<8>(Hi)) {
1393 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1394 : Hexagon::A4_combineii;
1395 BuildMI(B, At, DL, HII.get(Opc), Reg)
1396 .addImm(int32_t(Hi))
1397 .addImm(int32_t(Lo));
1398 return Reg;
1399 }
1400
1401 BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
1402 .addImm(C);
1403 return Reg;
1404 }
1405
1406 if (RC == &Hexagon::PredRegsRegClass) {
1407 unsigned Opc;
1408 if (C == 0)
1409 Opc = Hexagon::TFR_PdFalse;
1410 else if ((C & 0xFF) == 0xFF)
1411 Opc = Hexagon::TFR_PdTrue;
1412 else
1413 return 0;
1414 BuildMI(B, At, DL, HII.get(Opc), Reg);
1415 return Reg;
1416 }
1417
1418 return 0;
1419 }
1420
1421
processBlock(MachineBasicBlock & B,const RegisterSet &)1422 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1423 bool Changed = false;
1424 RegisterSet Defs;
1425
1426 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1427 if (isTfrConst(I))
1428 continue;
1429 Defs.clear();
1430 HBS::getInstrDefs(*I, Defs);
1431 if (Defs.count() != 1)
1432 continue;
1433 unsigned DR = Defs.find_first();
1434 if (!TargetRegisterInfo::isVirtualRegister(DR))
1435 continue;
1436 int64_t C;
1437 if (isConst(DR, C)) {
1438 DebugLoc DL = I->getDebugLoc();
1439 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1440 unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1441 if (ImmReg) {
1442 HBS::replaceReg(DR, ImmReg, MRI);
1443 BT.put(ImmReg, BT.lookup(DR));
1444 Changed = true;
1445 }
1446 }
1447 }
1448 return Changed;
1449 }
1450
1451
1452 //
1453 // Copy generation
1454 //
1455 // Identify pairs of available registers which hold identical values.
1456 // In such cases, only one of them needs to be calculated, the other one
1457 // will be defined as a copy of the first.
1458 //
1459 // Copy propagation
1460 //
1461 // Eliminate register copies RD = RS, by replacing the uses of RD with
1462 // with uses of RS.
1463 namespace {
1464 class CopyGeneration : public Transformation {
1465 public:
CopyGeneration(BitTracker & bt,const HexagonInstrInfo & hii,MachineRegisterInfo & mri)1466 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1467 MachineRegisterInfo &mri)
1468 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1469 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1470 private:
1471 bool findMatch(const BitTracker::RegisterRef &Inp,
1472 BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1473
1474 const HexagonInstrInfo &HII;
1475 MachineRegisterInfo &MRI;
1476 BitTracker &BT;
1477 };
1478
1479 class CopyPropagation : public Transformation {
1480 public:
CopyPropagation(const HexagonRegisterInfo & hri,MachineRegisterInfo & mri)1481 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1482 : Transformation(false), MRI(mri) {}
1483 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1484 static bool isCopyReg(unsigned Opc);
1485 private:
1486 bool propagateRegCopy(MachineInstr &MI);
1487
1488 MachineRegisterInfo &MRI;
1489 };
1490
1491 }
1492
1493
1494 /// Check if there is a register in AVs that is identical to Inp. If so,
1495 /// set Out to the found register. The output may be a pair Reg:Sub.
findMatch(const BitTracker::RegisterRef & Inp,BitTracker::RegisterRef & Out,const RegisterSet & AVs)1496 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1497 BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1498 if (!BT.has(Inp.Reg))
1499 return false;
1500 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1501 unsigned B, W;
1502 if (!HBS::getSubregMask(Inp, B, W, MRI))
1503 return false;
1504
1505 for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1506 if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI))
1507 continue;
1508 const BitTracker::RegisterCell &RC = BT.lookup(R);
1509 unsigned RW = RC.width();
1510 if (W == RW) {
1511 if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R))
1512 continue;
1513 if (!HBS::isEqual(InpRC, B, RC, 0, W))
1514 continue;
1515 Out.Reg = R;
1516 Out.Sub = 0;
1517 return true;
1518 }
1519 // Check if there is a super-register, whose part (with a subregister)
1520 // is equal to the input.
1521 // Only do double registers for now.
1522 if (W*2 != RW)
1523 continue;
1524 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1525 continue;
1526
1527 if (HBS::isEqual(InpRC, B, RC, 0, W))
1528 Out.Sub = Hexagon::subreg_loreg;
1529 else if (HBS::isEqual(InpRC, B, RC, W, W))
1530 Out.Sub = Hexagon::subreg_hireg;
1531 else
1532 continue;
1533 Out.Reg = R;
1534 return true;
1535 }
1536 return false;
1537 }
1538
1539
processBlock(MachineBasicBlock & B,const RegisterSet & AVs)1540 bool CopyGeneration::processBlock(MachineBasicBlock &B,
1541 const RegisterSet &AVs) {
1542 RegisterSet AVB(AVs);
1543 bool Changed = false;
1544 RegisterSet Defs;
1545
1546 for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1547 ++I, AVB.insert(Defs)) {
1548 NextI = std::next(I);
1549 Defs.clear();
1550 HBS::getInstrDefs(*I, Defs);
1551
1552 unsigned Opc = I->getOpcode();
1553 if (CopyPropagation::isCopyReg(Opc))
1554 continue;
1555
1556 for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1557 BitTracker::RegisterRef MR;
1558 if (!findMatch(R, MR, AVB))
1559 continue;
1560 DebugLoc DL = I->getDebugLoc();
1561 auto *FRC = HBS::getFinalVRegClass(MR, MRI);
1562 unsigned NewR = MRI.createVirtualRegister(FRC);
1563 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1564 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1565 .addReg(MR.Reg, 0, MR.Sub);
1566 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1567 }
1568 }
1569
1570 return Changed;
1571 }
1572
1573
isCopyReg(unsigned Opc)1574 bool CopyPropagation::isCopyReg(unsigned Opc) {
1575 switch (Opc) {
1576 case TargetOpcode::COPY:
1577 case TargetOpcode::REG_SEQUENCE:
1578 case Hexagon::A2_tfr:
1579 case Hexagon::A2_tfrp:
1580 case Hexagon::A2_combinew:
1581 case Hexagon::A4_combineir:
1582 case Hexagon::A4_combineri:
1583 return true;
1584 default:
1585 break;
1586 }
1587 return false;
1588 }
1589
1590
propagateRegCopy(MachineInstr & MI)1591 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1592 bool Changed = false;
1593 unsigned Opc = MI.getOpcode();
1594 BitTracker::RegisterRef RD = MI.getOperand(0);
1595 assert(MI.getOperand(0).getSubReg() == 0);
1596
1597 switch (Opc) {
1598 case TargetOpcode::COPY:
1599 case Hexagon::A2_tfr:
1600 case Hexagon::A2_tfrp: {
1601 BitTracker::RegisterRef RS = MI.getOperand(1);
1602 if (!HBS::isTransparentCopy(RD, RS, MRI))
1603 break;
1604 if (RS.Sub != 0)
1605 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1606 else
1607 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1608 break;
1609 }
1610 case TargetOpcode::REG_SEQUENCE: {
1611 BitTracker::RegisterRef SL, SH;
1612 if (HBS::parseRegSequence(MI, SL, SH)) {
1613 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1614 SL.Reg, SL.Sub, MRI);
1615 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1616 SH.Reg, SH.Sub, MRI);
1617 }
1618 break;
1619 }
1620 case Hexagon::A2_combinew: {
1621 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1622 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1623 RL.Reg, RL.Sub, MRI);
1624 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1625 RH.Reg, RH.Sub, MRI);
1626 break;
1627 }
1628 case Hexagon::A4_combineir:
1629 case Hexagon::A4_combineri: {
1630 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1631 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
1632 : Hexagon::subreg_hireg;
1633 BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1634 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1635 break;
1636 }
1637 }
1638 return Changed;
1639 }
1640
1641
processBlock(MachineBasicBlock & B,const RegisterSet &)1642 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1643 std::vector<MachineInstr*> Instrs;
1644 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1645 Instrs.push_back(&*I);
1646
1647 bool Changed = false;
1648 for (auto I : Instrs) {
1649 unsigned Opc = I->getOpcode();
1650 if (!CopyPropagation::isCopyReg(Opc))
1651 continue;
1652 Changed |= propagateRegCopy(*I);
1653 }
1654
1655 return Changed;
1656 }
1657
1658
1659 //
1660 // Bit simplification
1661 //
1662 // Recognize patterns that can be simplified and replace them with the
1663 // simpler forms.
1664 // This is by no means complete
1665 namespace {
1666 class BitSimplification : public Transformation {
1667 public:
BitSimplification(BitTracker & bt,const HexagonInstrInfo & hii,MachineRegisterInfo & mri)1668 BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
1669 MachineRegisterInfo &mri)
1670 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1671 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1672 private:
1673 struct RegHalf : public BitTracker::RegisterRef {
1674 bool Low; // Low/High halfword.
1675 };
1676
1677 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1678 unsigned B, RegHalf &RH);
1679
1680 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1681 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1682 unsigned getCombineOpcode(bool HLow, bool LLow);
1683
1684 bool genStoreUpperHalf(MachineInstr *MI);
1685 bool genStoreImmediate(MachineInstr *MI);
1686 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1687 const BitTracker::RegisterCell &RC);
1688 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1689 const BitTracker::RegisterCell &RC);
1690 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1691 const BitTracker::RegisterCell &RC);
1692 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1693 const BitTracker::RegisterCell &RC);
1694 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1695 const BitTracker::RegisterCell &RC);
1696
1697 const HexagonInstrInfo &HII;
1698 MachineRegisterInfo &MRI;
1699 BitTracker &BT;
1700 };
1701 }
1702
1703
1704 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
1705 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
1706 // set the information about the found register in RH.
matchHalf(unsigned SelfR,const BitTracker::RegisterCell & RC,unsigned B,RegHalf & RH)1707 bool BitSimplification::matchHalf(unsigned SelfR,
1708 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1709 // XXX This could be searching in the set of available registers, in case
1710 // the match is not exact.
1711
1712 // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1713 // register and all the bits B..B+15 match between RC and the register.
1714 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1715 // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1716 bool Low = false;
1717 unsigned I = B;
1718 while (I < B+16 && RC[I].num())
1719 I++;
1720 if (I == B+16)
1721 return false;
1722
1723 unsigned Reg = RC[I].RefI.Reg;
1724 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
1725 if (P < I-B)
1726 return false;
1727 unsigned Pos = P - (I-B);
1728
1729 if (Reg == 0 || Reg == SelfR) // Don't match "self".
1730 return false;
1731 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1732 return false;
1733 if (!BT.has(Reg))
1734 return false;
1735
1736 const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1737 if (Pos+16 > SC.width())
1738 return false;
1739
1740 for (unsigned i = 0; i < 16; ++i) {
1741 const BitTracker::BitValue &RV = RC[i+B];
1742 if (RV.Type == BitTracker::BitValue::Ref) {
1743 if (RV.RefI.Reg != Reg)
1744 return false;
1745 if (RV.RefI.Pos != i+Pos)
1746 return false;
1747 continue;
1748 }
1749 if (RC[i+B] != SC[i+Pos])
1750 return false;
1751 }
1752
1753 unsigned Sub = 0;
1754 switch (Pos) {
1755 case 0:
1756 Sub = Hexagon::subreg_loreg;
1757 Low = true;
1758 break;
1759 case 16:
1760 Sub = Hexagon::subreg_loreg;
1761 Low = false;
1762 break;
1763 case 32:
1764 Sub = Hexagon::subreg_hireg;
1765 Low = true;
1766 break;
1767 case 48:
1768 Sub = Hexagon::subreg_hireg;
1769 Low = false;
1770 break;
1771 default:
1772 return false;
1773 }
1774
1775 RH.Reg = Reg;
1776 RH.Sub = Sub;
1777 RH.Low = Low;
1778 // If the subregister is not valid with the register, set it to 0.
1779 if (!HBS::getFinalVRegClass(RH, MRI))
1780 RH.Sub = 0;
1781
1782 return true;
1783 }
1784
1785
1786 // Check if RC matches the pattern of a S2_packhl. If so, return true and
1787 // set the inputs Rs and Rt.
matchPackhl(unsigned SelfR,const BitTracker::RegisterCell & RC,BitTracker::RegisterRef & Rs,BitTracker::RegisterRef & Rt)1788 bool BitSimplification::matchPackhl(unsigned SelfR,
1789 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1790 BitTracker::RegisterRef &Rt) {
1791 RegHalf L1, H1, L2, H2;
1792
1793 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
1794 return false;
1795 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1796 return false;
1797
1798 // Rs = H1.L1, Rt = H2.L2
1799 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1800 return false;
1801 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1802 return false;
1803
1804 Rs = H1;
1805 Rt = H2;
1806 return true;
1807 }
1808
1809
getCombineOpcode(bool HLow,bool LLow)1810 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1811 return HLow ? LLow ? Hexagon::A2_combine_ll
1812 : Hexagon::A2_combine_lh
1813 : LLow ? Hexagon::A2_combine_hl
1814 : Hexagon::A2_combine_hh;
1815 }
1816
1817
1818 // If MI stores the upper halfword of a register (potentially obtained via
1819 // shifts or extracts), replace it with a storerf instruction. This could
1820 // cause the "extraction" code to become dead.
genStoreUpperHalf(MachineInstr * MI)1821 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1822 unsigned Opc = MI->getOpcode();
1823 if (Opc != Hexagon::S2_storerh_io)
1824 return false;
1825
1826 MachineOperand &ValOp = MI->getOperand(2);
1827 BitTracker::RegisterRef RS = ValOp;
1828 if (!BT.has(RS.Reg))
1829 return false;
1830 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1831 RegHalf H;
1832 if (!matchHalf(0, RC, 0, H))
1833 return false;
1834 if (H.Low)
1835 return false;
1836 MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1837 ValOp.setReg(H.Reg);
1838 ValOp.setSubReg(H.Sub);
1839 return true;
1840 }
1841
1842
1843 // If MI stores a value known at compile-time, and the value is within a range
1844 // that avoids using constant-extenders, replace it with a store-immediate.
genStoreImmediate(MachineInstr * MI)1845 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1846 unsigned Opc = MI->getOpcode();
1847 unsigned Align = 0;
1848 switch (Opc) {
1849 case Hexagon::S2_storeri_io:
1850 Align++;
1851 case Hexagon::S2_storerh_io:
1852 Align++;
1853 case Hexagon::S2_storerb_io:
1854 break;
1855 default:
1856 return false;
1857 }
1858
1859 // Avoid stores to frame-indices (due to an unknown offset).
1860 if (!MI->getOperand(0).isReg())
1861 return false;
1862 MachineOperand &OffOp = MI->getOperand(1);
1863 if (!OffOp.isImm())
1864 return false;
1865
1866 int64_t Off = OffOp.getImm();
1867 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1868 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1869 return false;
1870 // Source register:
1871 BitTracker::RegisterRef RS = MI->getOperand(2);
1872 if (!BT.has(RS.Reg))
1873 return false;
1874 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1875 uint64_t U;
1876 if (!HBS::getConst(RC, 0, RC.width(), U))
1877 return false;
1878
1879 // Only consider 8-bit values to avoid constant-extenders.
1880 int V;
1881 switch (Opc) {
1882 case Hexagon::S2_storerb_io:
1883 V = int8_t(U);
1884 break;
1885 case Hexagon::S2_storerh_io:
1886 V = int16_t(U);
1887 break;
1888 case Hexagon::S2_storeri_io:
1889 V = int32_t(U);
1890 break;
1891 }
1892 if (!isInt<8>(V))
1893 return false;
1894
1895 MI->RemoveOperand(2);
1896 switch (Opc) {
1897 case Hexagon::S2_storerb_io:
1898 MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1899 break;
1900 case Hexagon::S2_storerh_io:
1901 MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
1902 break;
1903 case Hexagon::S2_storeri_io:
1904 MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
1905 break;
1906 }
1907 MI->addOperand(MachineOperand::CreateImm(V));
1908 return true;
1909 }
1910
1911
1912 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
1913 // last instruction in a sequence that results in something equivalent to
1914 // the pack-halfwords. The intent is to cause the entire sequence to become
1915 // dead.
genPackhl(MachineInstr * MI,BitTracker::RegisterRef RD,const BitTracker::RegisterCell & RC)1916 bool BitSimplification::genPackhl(MachineInstr *MI,
1917 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1918 unsigned Opc = MI->getOpcode();
1919 if (Opc == Hexagon::S2_packhl)
1920 return false;
1921 BitTracker::RegisterRef Rs, Rt;
1922 if (!matchPackhl(RD.Reg, RC, Rs, Rt))
1923 return false;
1924
1925 MachineBasicBlock &B = *MI->getParent();
1926 unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1927 DebugLoc DL = MI->getDebugLoc();
1928 BuildMI(B, MI, DL, HII.get(Hexagon::S2_packhl), NewR)
1929 .addReg(Rs.Reg, 0, Rs.Sub)
1930 .addReg(Rt.Reg, 0, Rt.Sub);
1931 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1932 BT.put(BitTracker::RegisterRef(NewR), RC);
1933 return true;
1934 }
1935
1936
1937 // If MI produces halfword of the input in the low half of the output,
1938 // replace it with zero-extend or extractu.
genExtractHalf(MachineInstr * MI,BitTracker::RegisterRef RD,const BitTracker::RegisterCell & RC)1939 bool BitSimplification::genExtractHalf(MachineInstr *MI,
1940 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1941 RegHalf L;
1942 // Check for halfword in low 16 bits, zeros elsewhere.
1943 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
1944 return false;
1945
1946 unsigned Opc = MI->getOpcode();
1947 MachineBasicBlock &B = *MI->getParent();
1948 DebugLoc DL = MI->getDebugLoc();
1949
1950 // Prefer zxth, since zxth can go in any slot, while extractu only in
1951 // slots 2 and 3.
1952 unsigned NewR = 0;
1953 if (L.Low && Opc != Hexagon::A2_zxth) {
1954 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1955 BuildMI(B, MI, DL, HII.get(Hexagon::A2_zxth), NewR)
1956 .addReg(L.Reg, 0, L.Sub);
1957 } else if (!L.Low && Opc != Hexagon::S2_extractu) {
1958 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1959 BuildMI(B, MI, DL, HII.get(Hexagon::S2_extractu), NewR)
1960 .addReg(L.Reg, 0, L.Sub)
1961 .addImm(16)
1962 .addImm(16);
1963 }
1964 if (NewR == 0)
1965 return false;
1966 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1967 BT.put(BitTracker::RegisterRef(NewR), RC);
1968 return true;
1969 }
1970
1971
1972 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
1973 // combine.
genCombineHalf(MachineInstr * MI,BitTracker::RegisterRef RD,const BitTracker::RegisterCell & RC)1974 bool BitSimplification::genCombineHalf(MachineInstr *MI,
1975 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1976 RegHalf L, H;
1977 // Check for combine h/l
1978 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
1979 return false;
1980 // Do nothing if this is just a reg copy.
1981 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
1982 return false;
1983
1984 unsigned Opc = MI->getOpcode();
1985 unsigned COpc = getCombineOpcode(H.Low, L.Low);
1986 if (COpc == Opc)
1987 return false;
1988
1989 MachineBasicBlock &B = *MI->getParent();
1990 DebugLoc DL = MI->getDebugLoc();
1991 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1992 BuildMI(B, MI, DL, HII.get(COpc), NewR)
1993 .addReg(H.Reg, 0, H.Sub)
1994 .addReg(L.Reg, 0, L.Sub);
1995 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1996 BT.put(BitTracker::RegisterRef(NewR), RC);
1997 return true;
1998 }
1999
2000
2001 // If MI resets high bits of a register and keeps the lower ones, replace it
2002 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
genExtractLow(MachineInstr * MI,BitTracker::RegisterRef RD,const BitTracker::RegisterCell & RC)2003 bool BitSimplification::genExtractLow(MachineInstr *MI,
2004 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2005 unsigned Opc = MI->getOpcode();
2006 switch (Opc) {
2007 case Hexagon::A2_zxtb:
2008 case Hexagon::A2_zxth:
2009 case Hexagon::S2_extractu:
2010 return false;
2011 }
2012 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2013 int32_t Imm = MI->getOperand(2).getImm();
2014 if (isInt<10>(Imm))
2015 return false;
2016 }
2017
2018 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2019 return false;
2020 unsigned W = RC.width();
2021 while (W > 0 && RC[W-1].is(0))
2022 W--;
2023 if (W == 0 || W == RC.width())
2024 return false;
2025 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
2026 : (W == 16) ? Hexagon::A2_zxth
2027 : (W < 10) ? Hexagon::A2_andir
2028 : Hexagon::S2_extractu;
2029 MachineBasicBlock &B = *MI->getParent();
2030 DebugLoc DL = MI->getDebugLoc();
2031
2032 for (auto &Op : MI->uses()) {
2033 if (!Op.isReg())
2034 continue;
2035 BitTracker::RegisterRef RS = Op;
2036 if (!BT.has(RS.Reg))
2037 continue;
2038 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2039 unsigned BN, BW;
2040 if (!HBS::getSubregMask(RS, BN, BW, MRI))
2041 continue;
2042 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2043 continue;
2044
2045 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2046 auto MIB = BuildMI(B, MI, DL, HII.get(NewOpc), NewR)
2047 .addReg(RS.Reg, 0, RS.Sub);
2048 if (NewOpc == Hexagon::A2_andir)
2049 MIB.addImm((1 << W) - 1);
2050 else if (NewOpc == Hexagon::S2_extractu)
2051 MIB.addImm(W).addImm(0);
2052 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2053 BT.put(BitTracker::RegisterRef(NewR), RC);
2054 return true;
2055 }
2056 return false;
2057 }
2058
2059
2060 // Check for tstbit simplification opportunity, where the bit being checked
2061 // can be tracked back to another register. For example:
2062 // vreg2 = S2_lsr_i_r vreg1, 5
2063 // vreg3 = S2_tstbit_i vreg2, 0
2064 // =>
2065 // vreg3 = S2_tstbit_i vreg1, 5
simplifyTstbit(MachineInstr * MI,BitTracker::RegisterRef RD,const BitTracker::RegisterCell & RC)2066 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2067 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2068 unsigned Opc = MI->getOpcode();
2069 if (Opc != Hexagon::S2_tstbit_i)
2070 return false;
2071
2072 unsigned BN = MI->getOperand(2).getImm();
2073 BitTracker::RegisterRef RS = MI->getOperand(1);
2074 unsigned F, W;
2075 DebugLoc DL = MI->getDebugLoc();
2076 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2077 return false;
2078 MachineBasicBlock &B = *MI->getParent();
2079
2080 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2081 const BitTracker::BitValue &V = SC[F+BN];
2082 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2083 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2084 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2085 // a double register, need to use a subregister and adjust bit
2086 // number.
2087 unsigned P = UINT_MAX;
2088 BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2089 if (TC == &Hexagon::DoubleRegsRegClass) {
2090 P = V.RefI.Pos;
2091 RR.Sub = Hexagon::subreg_loreg;
2092 if (P >= 32) {
2093 P -= 32;
2094 RR.Sub = Hexagon::subreg_hireg;
2095 }
2096 } else if (TC == &Hexagon::IntRegsRegClass) {
2097 P = V.RefI.Pos;
2098 }
2099 if (P != UINT_MAX) {
2100 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2101 BuildMI(B, MI, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2102 .addReg(RR.Reg, 0, RR.Sub)
2103 .addImm(P);
2104 HBS::replaceReg(RD.Reg, NewR, MRI);
2105 BT.put(NewR, RC);
2106 return true;
2107 }
2108 } else if (V.is(0) || V.is(1)) {
2109 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2110 unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
2111 BuildMI(B, MI, DL, HII.get(NewOpc), NewR);
2112 HBS::replaceReg(RD.Reg, NewR, MRI);
2113 return true;
2114 }
2115
2116 return false;
2117 }
2118
2119
processBlock(MachineBasicBlock & B,const RegisterSet & AVs)2120 bool BitSimplification::processBlock(MachineBasicBlock &B,
2121 const RegisterSet &AVs) {
2122 bool Changed = false;
2123 RegisterSet AVB = AVs;
2124 RegisterSet Defs;
2125
2126 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2127 MachineInstr *MI = &*I;
2128 Defs.clear();
2129 HBS::getInstrDefs(*MI, Defs);
2130
2131 unsigned Opc = MI->getOpcode();
2132 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2133 continue;
2134
2135 if (MI->mayStore()) {
2136 bool T = genStoreUpperHalf(MI);
2137 T = T || genStoreImmediate(MI);
2138 Changed |= T;
2139 continue;
2140 }
2141
2142 if (Defs.count() != 1)
2143 continue;
2144 const MachineOperand &Op0 = MI->getOperand(0);
2145 if (!Op0.isReg() || !Op0.isDef())
2146 continue;
2147 BitTracker::RegisterRef RD = Op0;
2148 if (!BT.has(RD.Reg))
2149 continue;
2150 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2151 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2152
2153 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2154 bool T = genPackhl(MI, RD, RC);
2155 Changed |= T;
2156 continue;
2157 }
2158
2159 if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2160 bool T = genExtractHalf(MI, RD, RC);
2161 T = T || genCombineHalf(MI, RD, RC);
2162 T = T || genExtractLow(MI, RD, RC);
2163 Changed |= T;
2164 continue;
2165 }
2166
2167 if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2168 bool T = simplifyTstbit(MI, RD, RC);
2169 Changed |= T;
2170 continue;
2171 }
2172 }
2173 return Changed;
2174 }
2175
2176
runOnMachineFunction(MachineFunction & MF)2177 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2178 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2179 auto &HRI = *HST.getRegisterInfo();
2180 auto &HII = *HST.getInstrInfo();
2181
2182 MDT = &getAnalysis<MachineDominatorTree>();
2183 MachineRegisterInfo &MRI = MF.getRegInfo();
2184 bool Changed;
2185
2186 Changed = DeadCodeElimination(MF, *MDT).run();
2187
2188 const HexagonEvaluator HE(HRI, MRI, HII, MF);
2189 BitTracker BT(HE, MF);
2190 DEBUG(BT.trace(true));
2191 BT.run();
2192
2193 MachineBasicBlock &Entry = MF.front();
2194
2195 RegisterSet AIG; // Available registers for IG.
2196 ConstGeneration ImmG(BT, HII, MRI);
2197 Changed |= visitBlock(Entry, ImmG, AIG);
2198
2199 RegisterSet ARE; // Available registers for RIE.
2200 RedundantInstrElimination RIE(BT, HII, MRI);
2201 Changed |= visitBlock(Entry, RIE, ARE);
2202
2203 RegisterSet ACG; // Available registers for CG.
2204 CopyGeneration CopyG(BT, HII, MRI);
2205 Changed |= visitBlock(Entry, CopyG, ACG);
2206
2207 RegisterSet ACP; // Available registers for CP.
2208 CopyPropagation CopyP(HRI, MRI);
2209 Changed |= visitBlock(Entry, CopyP, ACP);
2210
2211 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2212
2213 BT.run();
2214 RegisterSet ABS; // Available registers for BS.
2215 BitSimplification BitS(BT, HII, MRI);
2216 Changed |= visitBlock(Entry, BitS, ABS);
2217
2218 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2219
2220 if (Changed) {
2221 for (auto &B : MF)
2222 for (auto &I : B)
2223 I.clearKillInfo();
2224 DeadCodeElimination(MF, *MDT).run();
2225 }
2226 return Changed;
2227 }
2228
2229
2230 // Recognize loops where the code at the end of the loop matches the code
2231 // before the entry of the loop, and the matching code is such that is can
2232 // be simplified. This pass relies on the bit simplification above and only
2233 // prepares code in a way that can be handled by the bit simplifcation.
2234 //
2235 // This is the motivating testcase (and explanation):
2236 //
2237 // {
2238 // loop0(.LBB0_2, r1) // %for.body.preheader
2239 // r5:4 = memd(r0++#8)
2240 // }
2241 // {
2242 // r3 = lsr(r4, #16)
2243 // r7:6 = combine(r5, r5)
2244 // }
2245 // {
2246 // r3 = insert(r5, #16, #16)
2247 // r7:6 = vlsrw(r7:6, #16)
2248 // }
2249 // .LBB0_2:
2250 // {
2251 // memh(r2+#4) = r5
2252 // memh(r2+#6) = r6 # R6 is really R5.H
2253 // }
2254 // {
2255 // r2 = add(r2, #8)
2256 // memh(r2+#0) = r4
2257 // memh(r2+#2) = r3 # R3 is really R4.H
2258 // }
2259 // {
2260 // r5:4 = memd(r0++#8)
2261 // }
2262 // { # "Shuffling" code that sets up R3 and R6
2263 // r3 = lsr(r4, #16) # so that their halves can be stored in the
2264 // r7:6 = combine(r5, r5) # next iteration. This could be folded into
2265 // } # the stores if the code was at the beginning
2266 // { # of the loop iteration. Since the same code
2267 // r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
2268 // r7:6 = vlsrw(r7:6, #16) # there.
2269 // }:endloop0
2270 //
2271 //
2272 // The outcome:
2273 //
2274 // {
2275 // loop0(.LBB0_2, r1)
2276 // r5:4 = memd(r0++#8)
2277 // }
2278 // .LBB0_2:
2279 // {
2280 // memh(r2+#4) = r5
2281 // memh(r2+#6) = r5.h
2282 // }
2283 // {
2284 // r2 = add(r2, #8)
2285 // memh(r2+#0) = r4
2286 // memh(r2+#2) = r4.h
2287 // }
2288 // {
2289 // r5:4 = memd(r0++#8)
2290 // }:endloop0
2291
2292 namespace llvm {
2293 FunctionPass *createHexagonLoopRescheduling();
2294 void initializeHexagonLoopReschedulingPass(PassRegistry&);
2295 }
2296
2297 namespace {
2298 class HexagonLoopRescheduling : public MachineFunctionPass {
2299 public:
2300 static char ID;
HexagonLoopRescheduling()2301 HexagonLoopRescheduling() : MachineFunctionPass(ID),
2302 HII(0), HRI(0), MRI(0), BTP(0) {
2303 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2304 }
2305
2306 bool runOnMachineFunction(MachineFunction &MF) override;
2307
2308 private:
2309 const HexagonInstrInfo *HII;
2310 const HexagonRegisterInfo *HRI;
2311 MachineRegisterInfo *MRI;
2312 BitTracker *BTP;
2313
2314 struct LoopCand {
LoopCand__anon3f9b49d70911::HexagonLoopRescheduling::LoopCand2315 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2316 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2317 MachineBasicBlock *LB, *PB, *EB;
2318 };
2319 typedef std::vector<MachineInstr*> InstrList;
2320 struct InstrGroup {
2321 BitTracker::RegisterRef Inp, Out;
2322 InstrList Ins;
2323 };
2324 struct PhiInfo {
2325 PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2326 unsigned DefR;
2327 BitTracker::RegisterRef LR, PR;
2328 MachineBasicBlock *LB, *PB;
2329 };
2330
2331 static unsigned getDefReg(const MachineInstr *MI);
2332 bool isConst(unsigned Reg) const;
2333 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2334 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2335 bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2336 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2337 unsigned &InpR2) const;
2338 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2339 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2340 bool processLoop(LoopCand &C);
2341 };
2342 }
2343
2344 char HexagonLoopRescheduling::ID = 0;
2345
2346 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2347 "Hexagon Loop Rescheduling", false, false)
2348
2349
PhiInfo(MachineInstr & P,MachineBasicBlock & B)2350 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2351 MachineBasicBlock &B) {
2352 DefR = HexagonLoopRescheduling::getDefReg(&P);
2353 LB = &B;
2354 PB = nullptr;
2355 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2356 const MachineOperand &OpB = P.getOperand(i+1);
2357 if (OpB.getMBB() == &B) {
2358 LR = P.getOperand(i);
2359 continue;
2360 }
2361 PB = OpB.getMBB();
2362 PR = P.getOperand(i);
2363 }
2364 }
2365
2366
getDefReg(const MachineInstr * MI)2367 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2368 RegisterSet Defs;
2369 HBS::getInstrDefs(*MI, Defs);
2370 if (Defs.count() != 1)
2371 return 0;
2372 return Defs.find_first();
2373 }
2374
2375
isConst(unsigned Reg) const2376 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2377 if (!BTP->has(Reg))
2378 return false;
2379 const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2380 for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2381 const BitTracker::BitValue &V = RC[i];
2382 if (!V.is(0) && !V.is(1))
2383 return false;
2384 }
2385 return true;
2386 }
2387
2388
isBitShuffle(const MachineInstr * MI,unsigned DefR) const2389 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2390 unsigned DefR) const {
2391 unsigned Opc = MI->getOpcode();
2392 switch (Opc) {
2393 case TargetOpcode::COPY:
2394 case Hexagon::S2_lsr_i_r:
2395 case Hexagon::S2_asr_i_r:
2396 case Hexagon::S2_asl_i_r:
2397 case Hexagon::S2_lsr_i_p:
2398 case Hexagon::S2_asr_i_p:
2399 case Hexagon::S2_asl_i_p:
2400 case Hexagon::S2_insert:
2401 case Hexagon::A2_or:
2402 case Hexagon::A2_orp:
2403 case Hexagon::A2_and:
2404 case Hexagon::A2_andp:
2405 case Hexagon::A2_combinew:
2406 case Hexagon::A4_combineri:
2407 case Hexagon::A4_combineir:
2408 case Hexagon::A2_combineii:
2409 case Hexagon::A4_combineii:
2410 case Hexagon::A2_combine_ll:
2411 case Hexagon::A2_combine_lh:
2412 case Hexagon::A2_combine_hl:
2413 case Hexagon::A2_combine_hh:
2414 return true;
2415 }
2416 return false;
2417 }
2418
2419
isStoreInput(const MachineInstr * MI,unsigned InpR) const2420 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
2421 unsigned InpR) const {
2422 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
2423 const MachineOperand &Op = MI->getOperand(i);
2424 if (!Op.isReg())
2425 continue;
2426 if (Op.getReg() == InpR)
2427 return i == n-1;
2428 }
2429 return false;
2430 }
2431
2432
isShuffleOf(unsigned OutR,unsigned InpR) const2433 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
2434 if (!BTP->has(OutR) || !BTP->has(InpR))
2435 return false;
2436 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
2437 for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
2438 const BitTracker::BitValue &V = OutC[i];
2439 if (V.Type != BitTracker::BitValue::Ref)
2440 continue;
2441 if (V.RefI.Reg != InpR)
2442 return false;
2443 }
2444 return true;
2445 }
2446
2447
isSameShuffle(unsigned OutR1,unsigned InpR1,unsigned OutR2,unsigned & InpR2) const2448 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
2449 unsigned OutR2, unsigned &InpR2) const {
2450 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
2451 return false;
2452 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
2453 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
2454 unsigned W = OutC1.width();
2455 unsigned MatchR = 0;
2456 if (W != OutC2.width())
2457 return false;
2458 for (unsigned i = 0; i < W; ++i) {
2459 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
2460 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
2461 return false;
2462 if (V1.Type != BitTracker::BitValue::Ref)
2463 continue;
2464 if (V1.RefI.Pos != V2.RefI.Pos)
2465 return false;
2466 if (V1.RefI.Reg != InpR1)
2467 return false;
2468 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
2469 return false;
2470 if (!MatchR)
2471 MatchR = V2.RefI.Reg;
2472 else if (V2.RefI.Reg != MatchR)
2473 return false;
2474 }
2475 InpR2 = MatchR;
2476 return true;
2477 }
2478
2479
moveGroup(InstrGroup & G,MachineBasicBlock & LB,MachineBasicBlock & PB,MachineBasicBlock::iterator At,unsigned OldPhiR,unsigned NewPredR)2480 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
2481 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
2482 unsigned NewPredR) {
2483 DenseMap<unsigned,unsigned> RegMap;
2484
2485 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
2486 unsigned PhiR = MRI->createVirtualRegister(PhiRC);
2487 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
2488 .addReg(NewPredR)
2489 .addMBB(&PB)
2490 .addReg(G.Inp.Reg)
2491 .addMBB(&LB);
2492 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
2493
2494 for (unsigned i = G.Ins.size(); i > 0; --i) {
2495 const MachineInstr *SI = G.Ins[i-1];
2496 unsigned DR = getDefReg(SI);
2497 const TargetRegisterClass *RC = MRI->getRegClass(DR);
2498 unsigned NewDR = MRI->createVirtualRegister(RC);
2499 DebugLoc DL = SI->getDebugLoc();
2500
2501 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
2502 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
2503 const MachineOperand &Op = SI->getOperand(j);
2504 if (!Op.isReg()) {
2505 MIB.addOperand(Op);
2506 continue;
2507 }
2508 if (!Op.isUse())
2509 continue;
2510 unsigned UseR = RegMap[Op.getReg()];
2511 MIB.addReg(UseR, 0, Op.getSubReg());
2512 }
2513 RegMap.insert(std::make_pair(DR, NewDR));
2514 }
2515
2516 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
2517 }
2518
2519
processLoop(LoopCand & C)2520 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
2521 DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
2522 std::vector<PhiInfo> Phis;
2523 for (auto &I : *C.LB) {
2524 if (!I.isPHI())
2525 break;
2526 unsigned PR = getDefReg(&I);
2527 if (isConst(PR))
2528 continue;
2529 bool BadUse = false, GoodUse = false;
2530 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
2531 MachineInstr *UseI = UI->getParent();
2532 if (UseI->getParent() != C.LB) {
2533 BadUse = true;
2534 break;
2535 }
2536 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
2537 GoodUse = true;
2538 }
2539 if (BadUse || !GoodUse)
2540 continue;
2541
2542 Phis.push_back(PhiInfo(I, *C.LB));
2543 }
2544
2545 DEBUG({
2546 dbgs() << "Phis: {";
2547 for (auto &I : Phis) {
2548 dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
2549 << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
2550 << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
2551 << I.LB->getNumber() << ')';
2552 }
2553 dbgs() << " }\n";
2554 });
2555
2556 if (Phis.empty())
2557 return false;
2558
2559 bool Changed = false;
2560 InstrList ShufIns;
2561
2562 // Go backwards in the block: for each bit shuffling instruction, check
2563 // if that instruction could potentially be moved to the front of the loop:
2564 // the output of the loop cannot be used in a non-shuffling instruction
2565 // in this loop.
2566 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
2567 if (I->isTerminator())
2568 continue;
2569 if (I->isPHI())
2570 break;
2571
2572 RegisterSet Defs;
2573 HBS::getInstrDefs(*I, Defs);
2574 if (Defs.count() != 1)
2575 continue;
2576 unsigned DefR = Defs.find_first();
2577 if (!TargetRegisterInfo::isVirtualRegister(DefR))
2578 continue;
2579 if (!isBitShuffle(&*I, DefR))
2580 continue;
2581
2582 bool BadUse = false;
2583 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
2584 MachineInstr *UseI = UI->getParent();
2585 if (UseI->getParent() == C.LB) {
2586 if (UseI->isPHI()) {
2587 // If the use is in a phi node in this loop, then it should be
2588 // the value corresponding to the back edge.
2589 unsigned Idx = UI.getOperandNo();
2590 if (UseI->getOperand(Idx+1).getMBB() != C.LB)
2591 BadUse = true;
2592 } else {
2593 auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
2594 if (F == ShufIns.end())
2595 BadUse = true;
2596 }
2597 } else {
2598 // There is a use outside of the loop, but there is no epilog block
2599 // suitable for a copy-out.
2600 if (C.EB == nullptr)
2601 BadUse = true;
2602 }
2603 if (BadUse)
2604 break;
2605 }
2606
2607 if (BadUse)
2608 continue;
2609 ShufIns.push_back(&*I);
2610 }
2611
2612 // Partition the list of shuffling instructions into instruction groups,
2613 // where each group has to be moved as a whole (i.e. a group is a chain of
2614 // dependent instructions). A group produces a single live output register,
2615 // which is meant to be the input of the loop phi node (although this is
2616 // not checked here yet). It also uses a single register as its input,
2617 // which is some value produced in the loop body. After moving the group
2618 // to the beginning of the loop, that input register would need to be
2619 // the loop-carried register (through a phi node) instead of the (currently
2620 // loop-carried) output register.
2621 typedef std::vector<InstrGroup> InstrGroupList;
2622 InstrGroupList Groups;
2623
2624 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
2625 MachineInstr *SI = ShufIns[i];
2626 if (SI == nullptr)
2627 continue;
2628
2629 InstrGroup G;
2630 G.Ins.push_back(SI);
2631 G.Out.Reg = getDefReg(SI);
2632 RegisterSet Inputs;
2633 HBS::getInstrUses(*SI, Inputs);
2634
2635 for (unsigned j = i+1; j < n; ++j) {
2636 MachineInstr *MI = ShufIns[j];
2637 if (MI == nullptr)
2638 continue;
2639 RegisterSet Defs;
2640 HBS::getInstrDefs(*MI, Defs);
2641 // If this instruction does not define any pending inputs, skip it.
2642 if (!Defs.intersects(Inputs))
2643 continue;
2644 // Otherwise, add it to the current group and remove the inputs that
2645 // are defined by MI.
2646 G.Ins.push_back(MI);
2647 Inputs.remove(Defs);
2648 // Then add all registers used by MI.
2649 HBS::getInstrUses(*MI, Inputs);
2650 ShufIns[j] = nullptr;
2651 }
2652
2653 // Only add a group if it requires at most one register.
2654 if (Inputs.count() > 1)
2655 continue;
2656 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2657 return G.Out.Reg == P.LR.Reg;
2658 };
2659 if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
2660 continue;
2661
2662 G.Inp.Reg = Inputs.find_first();
2663 Groups.push_back(G);
2664 }
2665
2666 DEBUG({
2667 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2668 InstrGroup &G = Groups[i];
2669 dbgs() << "Group[" << i << "] inp: "
2670 << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
2671 << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
2672 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
2673 dbgs() << " " << *G.Ins[j];
2674 }
2675 });
2676
2677 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2678 InstrGroup &G = Groups[i];
2679 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
2680 continue;
2681 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2682 return G.Out.Reg == P.LR.Reg;
2683 };
2684 auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
2685 if (F == Phis.end())
2686 continue;
2687 unsigned PredR = 0;
2688 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) {
2689 const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg);
2690 unsigned Opc = DefPredR->getOpcode();
2691 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
2692 continue;
2693 if (!DefPredR->getOperand(1).isImm())
2694 continue;
2695 if (DefPredR->getOperand(1).getImm() != 0)
2696 continue;
2697 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
2698 if (RC != MRI->getRegClass(F->PR.Reg)) {
2699 PredR = MRI->createVirtualRegister(RC);
2700 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
2701 : Hexagon::A2_tfrpi;
2702 auto T = C.PB->getFirstTerminator();
2703 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
2704 BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR)
2705 .addImm(0);
2706 } else {
2707 PredR = F->PR.Reg;
2708 }
2709 }
2710 assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg));
2711 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR);
2712 Changed = true;
2713 }
2714
2715 return Changed;
2716 }
2717
2718
runOnMachineFunction(MachineFunction & MF)2719 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
2720 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2721 HII = HST.getInstrInfo();
2722 HRI = HST.getRegisterInfo();
2723 MRI = &MF.getRegInfo();
2724 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
2725 BitTracker BT(HE, MF);
2726 DEBUG(BT.trace(true));
2727 BT.run();
2728 BTP = &BT;
2729
2730 std::vector<LoopCand> Cand;
2731
2732 for (auto &B : MF) {
2733 if (B.pred_size() != 2 || B.succ_size() != 2)
2734 continue;
2735 MachineBasicBlock *PB = nullptr;
2736 bool IsLoop = false;
2737 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
2738 if (*PI != &B)
2739 PB = *PI;
2740 else
2741 IsLoop = true;
2742 }
2743 if (!IsLoop)
2744 continue;
2745
2746 MachineBasicBlock *EB = nullptr;
2747 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
2748 if (*SI == &B)
2749 continue;
2750 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
2751 // edge from B to EP is non-critical.
2752 if ((*SI)->pred_size() == 1)
2753 EB = *SI;
2754 break;
2755 }
2756
2757 Cand.push_back(LoopCand(&B, PB, EB));
2758 }
2759
2760 bool Changed = false;
2761 for (auto &C : Cand)
2762 Changed |= processLoop(C);
2763
2764 return Changed;
2765 }
2766
2767 //===----------------------------------------------------------------------===//
2768 // Public Constructor Functions
2769 //===----------------------------------------------------------------------===//
2770
createHexagonLoopRescheduling()2771 FunctionPass *llvm::createHexagonLoopRescheduling() {
2772 return new HexagonLoopRescheduling();
2773 }
2774
createHexagonBitSimplify()2775 FunctionPass *llvm::createHexagonBitSimplify() {
2776 return new HexagonBitSimplify();
2777 }
2778
2779