1 //===--- HexagonCommonGEP.cpp ---------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #define DEBUG_TYPE "commgep"
11 
12 #include "llvm/Pass.h"
13 #include "llvm/ADT/FoldingSet.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/Analysis/PostDominators.h"
17 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Verifier.h"
23 #include "llvm/Support/Allocator.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 
30 #include <map>
31 #include <set>
32 #include <vector>
33 
34 #include "HexagonTargetMachine.h"
35 
36 using namespace llvm;
37 
38 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
39   cl::Hidden, cl::ZeroOrMore);
40 
41 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
42   cl::ZeroOrMore);
43 
44 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
45   cl::Hidden, cl::ZeroOrMore);
46 
47 namespace llvm {
48   void initializeHexagonCommonGEPPass(PassRegistry&);
49 }
50 
51 namespace {
52   struct GepNode;
53   typedef std::set<GepNode*> NodeSet;
54   typedef std::map<GepNode*,Value*> NodeToValueMap;
55   typedef std::vector<GepNode*> NodeVect;
56   typedef std::map<GepNode*,NodeVect> NodeChildrenMap;
57   typedef std::set<Use*> UseSet;
58   typedef std::map<GepNode*,UseSet> NodeToUsesMap;
59 
60   // Numbering map for gep nodes. Used to keep track of ordering for
61   // gep nodes.
62   struct NodeOrdering {
NodeOrdering__anon71ab34300111::NodeOrdering63     NodeOrdering() : LastNum(0) {}
64 
insert__anon71ab34300111::NodeOrdering65     void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
clear__anon71ab34300111::NodeOrdering66     void clear() { Map.clear(); }
67 
operator ()__anon71ab34300111::NodeOrdering68     bool operator()(const GepNode *N1, const GepNode *N2) const {
69       auto F1 = Map.find(N1), F2 = Map.find(N2);
70       assert(F1 != Map.end() && F2 != Map.end());
71       return F1->second < F2->second;
72     }
73 
74   private:
75     std::map<const GepNode *, unsigned> Map;
76     unsigned LastNum;
77   };
78 
79   class HexagonCommonGEP : public FunctionPass {
80   public:
81     static char ID;
HexagonCommonGEP()82     HexagonCommonGEP() : FunctionPass(ID) {
83       initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
84     }
85     virtual bool runOnFunction(Function &F);
getPassName() const86     virtual const char *getPassName() const {
87       return "Hexagon Common GEP";
88     }
89 
getAnalysisUsage(AnalysisUsage & AU) const90     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
91       AU.addRequired<DominatorTreeWrapperPass>();
92       AU.addPreserved<DominatorTreeWrapperPass>();
93       AU.addRequired<PostDominatorTree>();
94       AU.addPreserved<PostDominatorTree>();
95       AU.addRequired<LoopInfoWrapperPass>();
96       AU.addPreserved<LoopInfoWrapperPass>();
97       FunctionPass::getAnalysisUsage(AU);
98     }
99 
100   private:
101     typedef std::map<Value*,GepNode*> ValueToNodeMap;
102     typedef std::vector<Value*> ValueVect;
103     typedef std::map<GepNode*,ValueVect> NodeToValuesMap;
104 
105     void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
106     bool isHandledGepForm(GetElementPtrInst *GepI);
107     void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
108     void collect();
109     void common();
110 
111     BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
112                                      NodeToValueMap &Loc);
113     BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
114                                         NodeToValueMap &Loc);
115     bool isInvariantIn(Value *Val, Loop *L);
116     bool isInvariantIn(GepNode *Node, Loop *L);
117     bool isInMainPath(BasicBlock *B, Loop *L);
118     BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
119                                     NodeToValueMap &Loc);
120     void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
121     void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
122                                 NodeToValueMap &Loc);
123     void computeNodePlacement(NodeToValueMap &Loc);
124 
125     Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
126                         BasicBlock *LocB);
127     void getAllUsersForNode(GepNode *Node, ValueVect &Values,
128                             NodeChildrenMap &NCM);
129     void materialize(NodeToValueMap &Loc);
130 
131     void removeDeadCode();
132 
133     NodeVect Nodes;
134     NodeToUsesMap Uses;
135     NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
136     SpecificBumpPtrAllocator<GepNode> *Mem;
137     LLVMContext *Ctx;
138     LoopInfo *LI;
139     DominatorTree *DT;
140     PostDominatorTree *PDT;
141     Function *Fn;
142   };
143 }
144 
145 
146 char HexagonCommonGEP::ID = 0;
147 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
148       false, false)
149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
150 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
152 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
153       false, false)
154 
155 namespace {
156   struct GepNode {
157     enum {
158       None      = 0,
159       Root      = 0x01,
160       Internal  = 0x02,
161       Used      = 0x04
162     };
163 
164     uint32_t Flags;
165     union {
166       GepNode *Parent;
167       Value *BaseVal;
168     };
169     Value *Idx;
170     Type *PTy;  // Type of the pointer operand.
171 
GepNode__anon71ab34300211::GepNode172     GepNode() : Flags(0), Parent(0), Idx(0), PTy(0) {}
GepNode__anon71ab34300211::GepNode173     GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
174       if (Flags & Root)
175         BaseVal = N->BaseVal;
176       else
177         Parent = N->Parent;
178     }
179     friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
180   };
181 
182 
next_type(Type * Ty,Value * Idx)183   Type *next_type(Type *Ty, Value *Idx) {
184     // Advance the type.
185     if (!Ty->isStructTy()) {
186       Type *NexTy = cast<SequentialType>(Ty)->getElementType();
187       return NexTy;
188     }
189     // Otherwise it is a struct type.
190     ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
191     assert(CI && "Struct type with non-constant index");
192     int64_t i = CI->getValue().getSExtValue();
193     Type *NextTy = cast<StructType>(Ty)->getElementType(i);
194     return NextTy;
195   }
196 
197 
operator <<(raw_ostream & OS,const GepNode & GN)198   raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
199     OS << "{ {";
200     bool Comma = false;
201     if (GN.Flags & GepNode::Root) {
202       OS << "root";
203       Comma = true;
204     }
205     if (GN.Flags & GepNode::Internal) {
206       if (Comma)
207         OS << ',';
208       OS << "internal";
209       Comma = true;
210     }
211     if (GN.Flags & GepNode::Used) {
212       if (Comma)
213         OS << ',';
214       OS << "used";
215       Comma = true;
216     }
217     OS << "} ";
218     if (GN.Flags & GepNode::Root)
219       OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
220     else
221       OS << "Parent:" << GN.Parent;
222 
223     OS << " Idx:";
224     if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
225       OS << CI->getValue().getSExtValue();
226     else if (GN.Idx->hasName())
227       OS << GN.Idx->getName();
228     else
229       OS << "<anon> =" << *GN.Idx;
230 
231     OS << " PTy:";
232     if (GN.PTy->isStructTy()) {
233       StructType *STy = cast<StructType>(GN.PTy);
234       if (!STy->isLiteral())
235         OS << GN.PTy->getStructName();
236       else
237         OS << "<anon-struct>:" << *STy;
238     }
239     else
240       OS << *GN.PTy;
241     OS << " }";
242     return OS;
243   }
244 
245 
246   template <typename NodeContainer>
dump_node_container(raw_ostream & OS,const NodeContainer & S)247   void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
248     typedef typename NodeContainer::const_iterator const_iterator;
249     for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
250       OS << *I << ' ' << **I << '\n';
251   }
252 
253   raw_ostream &operator<< (raw_ostream &OS,
254                            const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const NodeVect & S)255   raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
256     dump_node_container(OS, S);
257     return OS;
258   }
259 
260 
261   raw_ostream &operator<< (raw_ostream &OS,
262                            const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const NodeToUsesMap & M)263   raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
264     typedef NodeToUsesMap::const_iterator const_iterator;
265     for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
266       const UseSet &Us = I->second;
267       OS << I->first << " -> #" << Us.size() << '{';
268       for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
269         User *R = (*J)->getUser();
270         if (R->hasName())
271           OS << ' ' << R->getName();
272         else
273           OS << " <?>(" << *R << ')';
274       }
275       OS << " }\n";
276     }
277     return OS;
278   }
279 
280 
281   struct in_set {
in_set__anon71ab34300211::in_set282     in_set(const NodeSet &S) : NS(S) {}
operator ()__anon71ab34300211::in_set283     bool operator() (GepNode *N) const {
284       return NS.find(N) != NS.end();
285     }
286   private:
287     const NodeSet &NS;
288   };
289 }
290 
291 
operator new(size_t,SpecificBumpPtrAllocator<GepNode> & A)292 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
293   return A.Allocate();
294 }
295 
296 
getBlockTraversalOrder(BasicBlock * Root,ValueVect & Order)297 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
298       ValueVect &Order) {
299   // Compute block ordering for a typical DT-based traversal of the flow
300   // graph: "before visiting a block, all of its dominators must have been
301   // visited".
302 
303   Order.push_back(Root);
304   DomTreeNode *DTN = DT->getNode(Root);
305   typedef GraphTraits<DomTreeNode*> GTN;
306   typedef GTN::ChildIteratorType Iter;
307   for (Iter I = GTN::child_begin(DTN), E = GTN::child_end(DTN); I != E; ++I)
308     getBlockTraversalOrder((*I)->getBlock(), Order);
309 }
310 
311 
isHandledGepForm(GetElementPtrInst * GepI)312 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
313   // No vector GEPs.
314   if (!GepI->getType()->isPointerTy())
315     return false;
316   // No GEPs without any indices.  (Is this possible?)
317   if (GepI->idx_begin() == GepI->idx_end())
318     return false;
319   return true;
320 }
321 
322 
processGepInst(GetElementPtrInst * GepI,ValueToNodeMap & NM)323 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
324       ValueToNodeMap &NM) {
325   DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
326   GepNode *N = new (*Mem) GepNode;
327   Value *PtrOp = GepI->getPointerOperand();
328   ValueToNodeMap::iterator F = NM.find(PtrOp);
329   if (F == NM.end()) {
330     N->BaseVal = PtrOp;
331     N->Flags |= GepNode::Root;
332   } else {
333     // If PtrOp was a GEP instruction, it must have already been processed.
334     // The ValueToNodeMap entry for it is the last gep node in the generated
335     // chain. Link to it here.
336     N->Parent = F->second;
337   }
338   N->PTy = PtrOp->getType();
339   N->Idx = *GepI->idx_begin();
340 
341   // Collect the list of users of this GEP instruction. Will add it to the
342   // last node created for it.
343   UseSet Us;
344   for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
345        UI != UE; ++UI) {
346     // Check if this gep is used by anything other than other geps that
347     // we will process.
348     if (isa<GetElementPtrInst>(*UI)) {
349       GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
350       if (isHandledGepForm(UserG))
351         continue;
352     }
353     Us.insert(&UI.getUse());
354   }
355   Nodes.push_back(N);
356   NodeOrder.insert(N);
357 
358   // Skip the first index operand, since we only handle 0. This dereferences
359   // the pointer operand.
360   GepNode *PN = N;
361   Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
362   for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
363        OI != OE; ++OI) {
364     Value *Op = *OI;
365     GepNode *Nx = new (*Mem) GepNode;
366     Nx->Parent = PN;  // Link Nx to the previous node.
367     Nx->Flags |= GepNode::Internal;
368     Nx->PTy = PtrTy;
369     Nx->Idx = Op;
370     Nodes.push_back(Nx);
371     NodeOrder.insert(Nx);
372     PN = Nx;
373 
374     PtrTy = next_type(PtrTy, Op);
375   }
376 
377   // After last node has been created, update the use information.
378   if (!Us.empty()) {
379     PN->Flags |= GepNode::Used;
380     Uses[PN].insert(Us.begin(), Us.end());
381   }
382 
383   // Link the last node with the originating GEP instruction. This is to
384   // help with linking chained GEP instructions.
385   NM.insert(std::make_pair(GepI, PN));
386 }
387 
388 
collect()389 void HexagonCommonGEP::collect() {
390   // Establish depth-first traversal order of the dominator tree.
391   ValueVect BO;
392   getBlockTraversalOrder(&Fn->front(), BO);
393 
394   // The creation of gep nodes requires DT-traversal. When processing a GEP
395   // instruction that uses another GEP instruction as the base pointer, the
396   // gep node for the base pointer should already exist.
397   ValueToNodeMap NM;
398   for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
399     BasicBlock *B = cast<BasicBlock>(*I);
400     for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
401       if (!isa<GetElementPtrInst>(J))
402         continue;
403       GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
404       if (isHandledGepForm(GepI))
405         processGepInst(GepI, NM);
406     }
407   }
408 
409   DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
410 }
411 
412 
413 namespace {
invert_find_roots(const NodeVect & Nodes,NodeChildrenMap & NCM,NodeVect & Roots)414   void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
415         NodeVect &Roots) {
416     typedef NodeVect::const_iterator const_iterator;
417     for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
418       GepNode *N = *I;
419       if (N->Flags & GepNode::Root) {
420         Roots.push_back(N);
421         continue;
422       }
423       GepNode *PN = N->Parent;
424       NCM[PN].push_back(N);
425     }
426   }
427 
nodes_for_root(GepNode * Root,NodeChildrenMap & NCM,NodeSet & Nodes)428   void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, NodeSet &Nodes) {
429     NodeVect Work;
430     Work.push_back(Root);
431     Nodes.insert(Root);
432 
433     while (!Work.empty()) {
434       NodeVect::iterator First = Work.begin();
435       GepNode *N = *First;
436       Work.erase(First);
437       NodeChildrenMap::iterator CF = NCM.find(N);
438       if (CF != NCM.end()) {
439         Work.insert(Work.end(), CF->second.begin(), CF->second.end());
440         Nodes.insert(CF->second.begin(), CF->second.end());
441       }
442     }
443   }
444 }
445 
446 
447 namespace {
448   typedef std::set<NodeSet> NodeSymRel;
449   typedef std::pair<GepNode*,GepNode*> NodePair;
450   typedef std::set<NodePair> NodePairSet;
451 
node_class(GepNode * N,NodeSymRel & Rel)452   const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
453     for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
454       if (I->count(N))
455         return &*I;
456     return 0;
457   }
458 
459   // Create an ordered pair of GepNode pointers. The pair will be used in
460   // determining equality. The only purpose of the ordering is to eliminate
461   // duplication due to the commutativity of equality/non-equality.
node_pair(GepNode * N1,GepNode * N2)462   NodePair node_pair(GepNode *N1, GepNode *N2) {
463     uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
464     if (P1 <= P2)
465       return std::make_pair(N1, N2);
466     return std::make_pair(N2, N1);
467   }
468 
node_hash(GepNode * N)469   unsigned node_hash(GepNode *N) {
470     // Include everything except flags and parent.
471     FoldingSetNodeID ID;
472     ID.AddPointer(N->Idx);
473     ID.AddPointer(N->PTy);
474     return ID.ComputeHash();
475   }
476 
node_eq(GepNode * N1,GepNode * N2,NodePairSet & Eq,NodePairSet & Ne)477   bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, NodePairSet &Ne) {
478     // Don't cache the result for nodes with different hashes. The hash
479     // comparison is fast enough.
480     if (node_hash(N1) != node_hash(N2))
481       return false;
482 
483     NodePair NP = node_pair(N1, N2);
484     NodePairSet::iterator FEq = Eq.find(NP);
485     if (FEq != Eq.end())
486       return true;
487     NodePairSet::iterator FNe = Ne.find(NP);
488     if (FNe != Ne.end())
489       return false;
490     // Not previously compared.
491     bool Root1 = N1->Flags & GepNode::Root;
492     bool Root2 = N2->Flags & GepNode::Root;
493     NodePair P = node_pair(N1, N2);
494     // If the Root flag has different values, the nodes are different.
495     // If both nodes are root nodes, but their base pointers differ,
496     // they are different.
497     if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
498       Ne.insert(P);
499       return false;
500     }
501     // Here the root flags are identical, and for root nodes the
502     // base pointers are equal, so the root nodes are equal.
503     // For non-root nodes, compare their parent nodes.
504     if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
505       Eq.insert(P);
506       return true;
507     }
508     return false;
509   }
510 }
511 
512 
common()513 void HexagonCommonGEP::common() {
514   // The essence of this commoning is finding gep nodes that are equal.
515   // To do this we need to compare all pairs of nodes. To save time,
516   // first, partition the set of all nodes into sets of potentially equal
517   // nodes, and then compare pairs from within each partition.
518   typedef std::map<unsigned,NodeSet> NodeSetMap;
519   NodeSetMap MaybeEq;
520 
521   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
522     GepNode *N = *I;
523     unsigned H = node_hash(N);
524     MaybeEq[H].insert(N);
525   }
526 
527   // Compute the equivalence relation for the gep nodes.  Use two caches,
528   // one for equality and the other for non-equality.
529   NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
530   NodePairSet Eq, Ne;  // Caches.
531   for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
532        I != E; ++I) {
533     NodeSet &S = I->second;
534     for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
535       GepNode *N = *NI;
536       // If node already has a class, then the class must have been created
537       // in a prior iteration of this loop. Since equality is transitive,
538       // nothing more will be added to that class, so skip it.
539       if (node_class(N, EqRel))
540         continue;
541 
542       // Create a new class candidate now.
543       NodeSet C;
544       for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
545         if (node_eq(N, *NJ, Eq, Ne))
546           C.insert(*NJ);
547       // If Tmp is empty, N would be the only element in it. Don't bother
548       // creating a class for it then.
549       if (!C.empty()) {
550         C.insert(N);  // Finalize the set before adding it to the relation.
551         std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
552         (void)Ins;
553         assert(Ins.second && "Cannot add a class");
554       }
555     }
556   }
557 
558   DEBUG({
559     dbgs() << "Gep node equality:\n";
560     for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
561       dbgs() << "{ " << I->first << ", " << I->second << " }\n";
562 
563     dbgs() << "Gep equivalence classes:\n";
564     for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
565       dbgs() << '{';
566       const NodeSet &S = *I;
567       for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
568         if (J != S.begin())
569           dbgs() << ',';
570         dbgs() << ' ' << *J;
571       }
572       dbgs() << " }\n";
573     }
574   });
575 
576 
577   // Create a projection from a NodeSet to the minimal element in it.
578   typedef std::map<const NodeSet*,GepNode*> ProjMap;
579   ProjMap PM;
580   for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
581     const NodeSet &S = *I;
582     GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
583     std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
584     (void)Ins;
585     assert(Ins.second && "Cannot add minimal element");
586 
587     // Update the min element's flags, and user list.
588     uint32_t Flags = 0;
589     UseSet &MinUs = Uses[Min];
590     for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
591       GepNode *N = *J;
592       uint32_t NF = N->Flags;
593       // If N is used, append all original values of N to the list of
594       // original values of Min.
595       if (NF & GepNode::Used)
596         MinUs.insert(Uses[N].begin(), Uses[N].end());
597       Flags |= NF;
598     }
599     if (MinUs.empty())
600       Uses.erase(Min);
601 
602     // The collected flags should include all the flags from the min element.
603     assert((Min->Flags & Flags) == Min->Flags);
604     Min->Flags = Flags;
605   }
606 
607   // Commoning: for each non-root gep node, replace "Parent" with the
608   // selected (minimum) node from the corresponding equivalence class.
609   // If a given parent does not have an equivalence class, leave it
610   // unchanged (it means that it's the only element in its class).
611   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
612     GepNode *N = *I;
613     if (N->Flags & GepNode::Root)
614       continue;
615     const NodeSet *PC = node_class(N->Parent, EqRel);
616     if (!PC)
617       continue;
618     ProjMap::iterator F = PM.find(PC);
619     if (F == PM.end())
620       continue;
621     // Found a replacement, use it.
622     GepNode *Rep = F->second;
623     N->Parent = Rep;
624   }
625 
626   DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
627 
628   // Finally, erase the nodes that are no longer used.
629   NodeSet Erase;
630   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
631     GepNode *N = *I;
632     const NodeSet *PC = node_class(N, EqRel);
633     if (!PC)
634       continue;
635     ProjMap::iterator F = PM.find(PC);
636     if (F == PM.end())
637       continue;
638     if (N == F->second)
639       continue;
640     // Node for removal.
641     Erase.insert(*I);
642   }
643   NodeVect::iterator NewE = std::remove_if(Nodes.begin(), Nodes.end(),
644                                            in_set(Erase));
645   Nodes.resize(std::distance(Nodes.begin(), NewE));
646 
647   DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
648 }
649 
650 
651 namespace {
652   template <typename T>
nearest_common_dominator(DominatorTree * DT,T & Blocks)653   BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
654     DEBUG({
655       dbgs() << "NCD of {";
656       for (typename T::iterator I = Blocks.begin(), E = Blocks.end();
657            I != E; ++I) {
658         if (!*I)
659           continue;
660         BasicBlock *B = cast<BasicBlock>(*I);
661         dbgs() << ' ' << B->getName();
662       }
663       dbgs() << " }\n";
664     });
665 
666     // Allow null basic blocks in Blocks.  In such cases, return 0.
667     typename T::iterator I = Blocks.begin(), E = Blocks.end();
668     if (I == E || !*I)
669       return 0;
670     BasicBlock *Dom = cast<BasicBlock>(*I);
671     while (++I != E) {
672       BasicBlock *B = cast_or_null<BasicBlock>(*I);
673       Dom = B ? DT->findNearestCommonDominator(Dom, B) : 0;
674       if (!Dom)
675         return 0;
676     }
677     DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
678     return Dom;
679   }
680 
681   template <typename T>
nearest_common_dominatee(DominatorTree * DT,T & Blocks)682   BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
683     // If two blocks, A and B, dominate a block C, then A dominates B,
684     // or B dominates A.
685     typename T::iterator I = Blocks.begin(), E = Blocks.end();
686     // Find the first non-null block.
687     while (I != E && !*I)
688       ++I;
689     if (I == E)
690       return DT->getRoot();
691     BasicBlock *DomB = cast<BasicBlock>(*I);
692     while (++I != E) {
693       if (!*I)
694         continue;
695       BasicBlock *B = cast<BasicBlock>(*I);
696       if (DT->dominates(B, DomB))
697         continue;
698       if (!DT->dominates(DomB, B))
699         return 0;
700       DomB = B;
701     }
702     return DomB;
703   }
704 
705   // Find the first use in B of any value from Values. If no such use,
706   // return B->end().
707   template <typename T>
first_use_of_in_block(T & Values,BasicBlock * B)708   BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
709     BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
710     typedef typename T::iterator iterator;
711     for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
712       Value *V = *I;
713       // If V is used in a PHI node, the use belongs to the incoming block,
714       // not the block with the PHI node. In the incoming block, the use
715       // would be considered as being at the end of it, so it cannot
716       // influence the position of the first use (which is assumed to be
717       // at the end to start with).
718       if (isa<PHINode>(V))
719         continue;
720       if (!isa<Instruction>(V))
721         continue;
722       Instruction *In = cast<Instruction>(V);
723       if (In->getParent() != B)
724         continue;
725       BasicBlock::iterator It = In->getIterator();
726       if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
727         FirstUse = It;
728     }
729     return FirstUse;
730   }
731 
is_empty(const BasicBlock * B)732   bool is_empty(const BasicBlock *B) {
733     return B->empty() || (&*B->begin() == B->getTerminator());
734   }
735 }
736 
737 
recalculatePlacement(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)738 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
739       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
740   DEBUG(dbgs() << "Loc for node:" << Node << '\n');
741   // Recalculate the placement for Node, assuming that the locations of
742   // its children in Loc are valid.
743   // Return 0 if there is no valid placement for Node (for example, it
744   // uses an index value that is not available at the location required
745   // to dominate all children, etc.).
746 
747   // Find the nearest common dominator for:
748   // - all users, if the node is used, and
749   // - all children.
750   ValueVect Bs;
751   if (Node->Flags & GepNode::Used) {
752     // Append all blocks with uses of the original values to the
753     // block vector Bs.
754     NodeToUsesMap::iterator UF = Uses.find(Node);
755     assert(UF != Uses.end() && "Used node with no use information");
756     UseSet &Us = UF->second;
757     for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
758       Use *U = *I;
759       User *R = U->getUser();
760       if (!isa<Instruction>(R))
761         continue;
762       BasicBlock *PB = isa<PHINode>(R)
763           ? cast<PHINode>(R)->getIncomingBlock(*U)
764           : cast<Instruction>(R)->getParent();
765       Bs.push_back(PB);
766     }
767   }
768   // Append the location of each child.
769   NodeChildrenMap::iterator CF = NCM.find(Node);
770   if (CF != NCM.end()) {
771     NodeVect &Cs = CF->second;
772     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
773       GepNode *CN = *I;
774       NodeToValueMap::iterator LF = Loc.find(CN);
775       // If the child is only used in GEP instructions (i.e. is not used in
776       // non-GEP instructions), the nearest dominator computed for it may
777       // have been null. In such case it won't have a location available.
778       if (LF == Loc.end())
779         continue;
780       Bs.push_back(LF->second);
781     }
782   }
783 
784   BasicBlock *DomB = nearest_common_dominator(DT, Bs);
785   if (!DomB)
786     return 0;
787   // Check if the index used by Node dominates the computed dominator.
788   Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
789   if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
790     return 0;
791 
792   // Avoid putting nodes into empty blocks.
793   while (is_empty(DomB)) {
794     DomTreeNode *N = (*DT)[DomB]->getIDom();
795     if (!N)
796       break;
797     DomB = N->getBlock();
798   }
799 
800   // Otherwise, DomB is fine. Update the location map.
801   Loc[Node] = DomB;
802   return DomB;
803 }
804 
805 
recalculatePlacementRec(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)806 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
807       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
808   DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
809   // Recalculate the placement of Node, after recursively recalculating the
810   // placements of all its children.
811   NodeChildrenMap::iterator CF = NCM.find(Node);
812   if (CF != NCM.end()) {
813     NodeVect &Cs = CF->second;
814     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
815       recalculatePlacementRec(*I, NCM, Loc);
816   }
817   BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
818   DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
819   return LB;
820 }
821 
822 
isInvariantIn(Value * Val,Loop * L)823 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
824   if (isa<Constant>(Val) || isa<Argument>(Val))
825     return true;
826   Instruction *In = dyn_cast<Instruction>(Val);
827   if (!In)
828     return false;
829   BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
830   return DT->properlyDominates(DefB, HdrB);
831 }
832 
833 
isInvariantIn(GepNode * Node,Loop * L)834 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
835   if (Node->Flags & GepNode::Root)
836     if (!isInvariantIn(Node->BaseVal, L))
837       return false;
838   return isInvariantIn(Node->Idx, L);
839 }
840 
841 
isInMainPath(BasicBlock * B,Loop * L)842 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
843   BasicBlock *HB = L->getHeader();
844   BasicBlock *LB = L->getLoopLatch();
845   // B must post-dominate the loop header or dominate the loop latch.
846   if (PDT->dominates(B, HB))
847     return true;
848   if (LB && DT->dominates(B, LB))
849     return true;
850   return false;
851 }
852 
853 
854 namespace {
preheader(DominatorTree * DT,Loop * L)855   BasicBlock *preheader(DominatorTree *DT, Loop *L) {
856     if (BasicBlock *PH = L->getLoopPreheader())
857       return PH;
858     if (!OptSpeculate)
859       return 0;
860     DomTreeNode *DN = DT->getNode(L->getHeader());
861     if (!DN)
862       return 0;
863     return DN->getIDom()->getBlock();
864   }
865 }
866 
867 
adjustForInvariance(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)868 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
869       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
870   // Find the "topmost" location for Node: it must be dominated by both,
871   // its parent (or the BaseVal, if it's a root node), and by the index
872   // value.
873   ValueVect Bs;
874   if (Node->Flags & GepNode::Root) {
875     if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
876       Bs.push_back(PIn->getParent());
877   } else {
878     Bs.push_back(Loc[Node->Parent]);
879   }
880   if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
881     Bs.push_back(IIn->getParent());
882   BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
883 
884   // Traverse the loop nest upwards until we find a loop in which Node
885   // is no longer invariant, or until we get to the upper limit of Node's
886   // placement. The traversal will also stop when a suitable "preheader"
887   // cannot be found for a given loop. The "preheader" may actually be
888   // a regular block outside of the loop (i.e. not guarded), in which case
889   // the Node will be speculated.
890   // For nodes that are not in the main path of the containing loop (i.e.
891   // are not executed in each iteration), do not move them out of the loop.
892   BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
893   if (LocB) {
894     Loop *Lp = LI->getLoopFor(LocB);
895     while (Lp) {
896       if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
897         break;
898       BasicBlock *NewLoc = preheader(DT, Lp);
899       if (!NewLoc || !DT->dominates(TopB, NewLoc))
900         break;
901       Lp = Lp->getParentLoop();
902       LocB = NewLoc;
903     }
904   }
905   Loc[Node] = LocB;
906 
907   // Recursively compute the locations of all children nodes.
908   NodeChildrenMap::iterator CF = NCM.find(Node);
909   if (CF != NCM.end()) {
910     NodeVect &Cs = CF->second;
911     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
912       adjustForInvariance(*I, NCM, Loc);
913   }
914   return LocB;
915 }
916 
917 
918 namespace {
919   struct LocationAsBlock {
LocationAsBlock__anon71ab34300911::LocationAsBlock920     LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
921     const NodeToValueMap &Map;
922   };
923 
924   raw_ostream &operator<< (raw_ostream &OS,
925                            const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
operator <<(raw_ostream & OS,const LocationAsBlock & Loc)926   raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
927     for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
928          I != E; ++I) {
929       OS << I->first << " -> ";
930       BasicBlock *B = cast<BasicBlock>(I->second);
931       OS << B->getName() << '(' << B << ')';
932       OS << '\n';
933     }
934     return OS;
935   }
936 
is_constant(GepNode * N)937   inline bool is_constant(GepNode *N) {
938     return isa<ConstantInt>(N->Idx);
939   }
940 }
941 
942 
separateChainForNode(GepNode * Node,Use * U,NodeToValueMap & Loc)943 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
944       NodeToValueMap &Loc) {
945   User *R = U->getUser();
946   DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: "
947                << *R << '\n');
948   BasicBlock *PB = cast<Instruction>(R)->getParent();
949 
950   GepNode *N = Node;
951   GepNode *C = 0, *NewNode = 0;
952   while (is_constant(N) && !(N->Flags & GepNode::Root)) {
953     // XXX if (single-use) dont-replicate;
954     GepNode *NewN = new (*Mem) GepNode(N);
955     Nodes.push_back(NewN);
956     Loc[NewN] = PB;
957 
958     if (N == Node)
959       NewNode = NewN;
960     NewN->Flags &= ~GepNode::Used;
961     if (C)
962       C->Parent = NewN;
963     C = NewN;
964     N = N->Parent;
965   }
966   if (!NewNode)
967     return;
968 
969   // Move over all uses that share the same user as U from Node to NewNode.
970   NodeToUsesMap::iterator UF = Uses.find(Node);
971   assert(UF != Uses.end());
972   UseSet &Us = UF->second;
973   UseSet NewUs;
974   for (UseSet::iterator I = Us.begin(); I != Us.end(); ) {
975     User *S = (*I)->getUser();
976     UseSet::iterator Nx = std::next(I);
977     if (S == R) {
978       NewUs.insert(*I);
979       Us.erase(I);
980     }
981     I = Nx;
982   }
983   if (Us.empty()) {
984     Node->Flags &= ~GepNode::Used;
985     Uses.erase(UF);
986   }
987 
988   // Should at least have U in NewUs.
989   NewNode->Flags |= GepNode::Used;
990   DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
991   assert(!NewUs.empty());
992   Uses[NewNode] = NewUs;
993 }
994 
995 
separateConstantChains(GepNode * Node,NodeChildrenMap & NCM,NodeToValueMap & Loc)996 void HexagonCommonGEP::separateConstantChains(GepNode *Node,
997       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
998   // First approximation: extract all chains.
999   NodeSet Ns;
1000   nodes_for_root(Node, NCM, Ns);
1001 
1002   DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
1003   // Collect all used nodes together with the uses from loads and stores,
1004   // where the GEP node could be folded into the load/store instruction.
1005   NodeToUsesMap FNs; // Foldable nodes.
1006   for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
1007     GepNode *N = *I;
1008     if (!(N->Flags & GepNode::Used))
1009       continue;
1010     NodeToUsesMap::iterator UF = Uses.find(N);
1011     assert(UF != Uses.end());
1012     UseSet &Us = UF->second;
1013     // Loads/stores that use the node N.
1014     UseSet LSs;
1015     for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
1016       Use *U = *J;
1017       User *R = U->getUser();
1018       // We're interested in uses that provide the address. It can happen
1019       // that the value may also be provided via GEP, but we won't handle
1020       // those cases here for now.
1021       if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1022         unsigned PtrX = LoadInst::getPointerOperandIndex();
1023         if (&Ld->getOperandUse(PtrX) == U)
1024           LSs.insert(U);
1025       } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1026         unsigned PtrX = StoreInst::getPointerOperandIndex();
1027         if (&St->getOperandUse(PtrX) == U)
1028           LSs.insert(U);
1029       }
1030     }
1031     // Even if the total use count is 1, separating the chain may still be
1032     // beneficial, since the constant chain may be longer than the GEP alone
1033     // would be (e.g. if the parent node has a constant index and also has
1034     // other children).
1035     if (!LSs.empty())
1036       FNs.insert(std::make_pair(N, LSs));
1037   }
1038 
1039   DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1040 
1041   for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
1042     GepNode *N = I->first;
1043     UseSet &Us = I->second;
1044     for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
1045       separateChainForNode(N, *J, Loc);
1046   }
1047 }
1048 
1049 
computeNodePlacement(NodeToValueMap & Loc)1050 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1051   // Compute the inverse of the Node.Parent links. Also, collect the set
1052   // of root nodes.
1053   NodeChildrenMap NCM;
1054   NodeVect Roots;
1055   invert_find_roots(Nodes, NCM, Roots);
1056 
1057   // Compute the initial placement determined by the users' locations, and
1058   // the locations of the child nodes.
1059   for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1060     recalculatePlacementRec(*I, NCM, Loc);
1061 
1062   DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1063 
1064   if (OptEnableInv) {
1065     for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1066       adjustForInvariance(*I, NCM, Loc);
1067 
1068     DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1069                  << LocationAsBlock(Loc));
1070   }
1071   if (OptEnableConst) {
1072     for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
1073       separateConstantChains(*I, NCM, Loc);
1074   }
1075   DEBUG(dbgs() << "Node use information:\n" << Uses);
1076 
1077   // At the moment, there is no further refinement of the initial placement.
1078   // Such a refinement could include splitting the nodes if they are placed
1079   // too far from some of its users.
1080 
1081   DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1082 }
1083 
1084 
fabricateGEP(NodeVect & NA,BasicBlock::iterator At,BasicBlock * LocB)1085 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1086       BasicBlock *LocB) {
1087   DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1088                << " for nodes:\n" << NA);
1089   unsigned Num = NA.size();
1090   GepNode *RN = NA[0];
1091   assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1092 
1093   Value *NewInst = 0;
1094   Value *Input = RN->BaseVal;
1095   Value **IdxList = new Value*[Num+1];
1096   unsigned nax = 0;
1097   do {
1098     unsigned IdxC = 0;
1099     // If the type of the input of the first node is not a pointer,
1100     // we need to add an artificial i32 0 to the indices (because the
1101     // actual input in the IR will be a pointer).
1102     if (!NA[nax]->PTy->isPointerTy()) {
1103       Type *Int32Ty = Type::getInt32Ty(*Ctx);
1104       IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
1105     }
1106 
1107     // Keep adding indices from NA until we have to stop and generate
1108     // an "intermediate" GEP.
1109     while (++nax <= Num) {
1110       GepNode *N = NA[nax-1];
1111       IdxList[IdxC++] = N->Idx;
1112       if (nax < Num) {
1113         // We have to stop, if the expected type of the output of this node
1114         // is not the same as the input type of the next node.
1115         Type *NextTy = next_type(N->PTy, N->Idx);
1116         if (NextTy != NA[nax]->PTy)
1117           break;
1118       }
1119     }
1120     ArrayRef<Value*> A(IdxList, IdxC);
1121     Type *InpTy = Input->getType();
1122     Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
1123     NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At);
1124     DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1125     Input = NewInst;
1126   } while (nax <= Num);
1127 
1128   delete[] IdxList;
1129   return NewInst;
1130 }
1131 
1132 
getAllUsersForNode(GepNode * Node,ValueVect & Values,NodeChildrenMap & NCM)1133 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1134       NodeChildrenMap &NCM) {
1135   NodeVect Work;
1136   Work.push_back(Node);
1137 
1138   while (!Work.empty()) {
1139     NodeVect::iterator First = Work.begin();
1140     GepNode *N = *First;
1141     Work.erase(First);
1142     if (N->Flags & GepNode::Used) {
1143       NodeToUsesMap::iterator UF = Uses.find(N);
1144       assert(UF != Uses.end() && "No use information for used node");
1145       UseSet &Us = UF->second;
1146       for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
1147         Values.push_back((*I)->getUser());
1148     }
1149     NodeChildrenMap::iterator CF = NCM.find(N);
1150     if (CF != NCM.end()) {
1151       NodeVect &Cs = CF->second;
1152       Work.insert(Work.end(), Cs.begin(), Cs.end());
1153     }
1154   }
1155 }
1156 
1157 
materialize(NodeToValueMap & Loc)1158 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1159   DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1160   NodeChildrenMap NCM;
1161   NodeVect Roots;
1162   // Compute the inversion again, since computing placement could alter
1163   // "parent" relation between nodes.
1164   invert_find_roots(Nodes, NCM, Roots);
1165 
1166   while (!Roots.empty()) {
1167     NodeVect::iterator First = Roots.begin();
1168     GepNode *Root = *First, *Last = *First;
1169     Roots.erase(First);
1170 
1171     NodeVect NA;  // Nodes to assemble.
1172     // Append to NA all child nodes up to (and including) the first child
1173     // that:
1174     // (1) has more than 1 child, or
1175     // (2) is used, or
1176     // (3) has a child located in a different block.
1177     bool LastUsed = false;
1178     unsigned LastCN = 0;
1179     // The location may be null if the computation failed (it can legitimately
1180     // happen for nodes created from dead GEPs).
1181     Value *LocV = Loc[Last];
1182     if (!LocV)
1183       continue;
1184     BasicBlock *LastB = cast<BasicBlock>(LocV);
1185     do {
1186       NA.push_back(Last);
1187       LastUsed = (Last->Flags & GepNode::Used);
1188       if (LastUsed)
1189         break;
1190       NodeChildrenMap::iterator CF = NCM.find(Last);
1191       LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1192       if (LastCN != 1)
1193         break;
1194       GepNode *Child = CF->second.front();
1195       BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1196       if (ChildB != 0 && LastB != ChildB)
1197         break;
1198       Last = Child;
1199     } while (true);
1200 
1201     BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1202     if (LastUsed || LastCN > 0) {
1203       ValueVect Urs;
1204       getAllUsersForNode(Root, Urs, NCM);
1205       BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1206       if (FirstUse != LastB->end())
1207         InsertAt = FirstUse;
1208     }
1209 
1210     // Generate a new instruction for NA.
1211     Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1212 
1213     // Convert all the children of Last node into roots, and append them
1214     // to the Roots list.
1215     if (LastCN > 0) {
1216       NodeVect &Cs = NCM[Last];
1217       for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
1218         GepNode *CN = *I;
1219         CN->Flags &= ~GepNode::Internal;
1220         CN->Flags |= GepNode::Root;
1221         CN->BaseVal = NewInst;
1222         Roots.push_back(CN);
1223       }
1224     }
1225 
1226     // Lastly, if the Last node was used, replace all uses with the new GEP.
1227     // The uses reference the original GEP values.
1228     if (LastUsed) {
1229       NodeToUsesMap::iterator UF = Uses.find(Last);
1230       assert(UF != Uses.end() && "No use information found");
1231       UseSet &Us = UF->second;
1232       for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
1233         Use *U = *I;
1234         U->set(NewInst);
1235       }
1236     }
1237   }
1238 }
1239 
1240 
removeDeadCode()1241 void HexagonCommonGEP::removeDeadCode() {
1242   ValueVect BO;
1243   BO.push_back(&Fn->front());
1244 
1245   for (unsigned i = 0; i < BO.size(); ++i) {
1246     BasicBlock *B = cast<BasicBlock>(BO[i]);
1247     DomTreeNode *N = DT->getNode(B);
1248     typedef GraphTraits<DomTreeNode*> GTN;
1249     typedef GTN::ChildIteratorType Iter;
1250     for (Iter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
1251       BO.push_back((*I)->getBlock());
1252   }
1253 
1254   for (unsigned i = BO.size(); i > 0; --i) {
1255     BasicBlock *B = cast<BasicBlock>(BO[i-1]);
1256     BasicBlock::InstListType &IL = B->getInstList();
1257     typedef BasicBlock::InstListType::reverse_iterator reverse_iterator;
1258     ValueVect Ins;
1259     for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
1260       Ins.push_back(&*I);
1261     for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
1262       Instruction *In = cast<Instruction>(*I);
1263       if (isInstructionTriviallyDead(In))
1264         In->eraseFromParent();
1265     }
1266   }
1267 }
1268 
1269 
runOnFunction(Function & F)1270 bool HexagonCommonGEP::runOnFunction(Function &F) {
1271   // For now bail out on C++ exception handling.
1272   for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
1273     for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
1274       if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1275         return false;
1276 
1277   Fn = &F;
1278   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1279   PDT = &getAnalysis<PostDominatorTree>();
1280   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1281   Ctx = &F.getContext();
1282 
1283   Nodes.clear();
1284   Uses.clear();
1285   NodeOrder.clear();
1286 
1287   SpecificBumpPtrAllocator<GepNode> Allocator;
1288   Mem = &Allocator;
1289 
1290   collect();
1291   common();
1292 
1293   NodeToValueMap Loc;
1294   computeNodePlacement(Loc);
1295   materialize(Loc);
1296   removeDeadCode();
1297 
1298 #ifdef XDEBUG
1299   // Run this only when expensive checks are enabled.
1300   verifyFunction(F);
1301 #endif
1302   return true;
1303 }
1304 
1305 
1306 namespace llvm {
createHexagonCommonGEP()1307   FunctionPass *createHexagonCommonGEP() {
1308     return new HexagonCommonGEP();
1309   }
1310 }
1311