1 //===--- HexagonEarlyIfConv.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a Hexagon-specific if-conversion pass that runs on the
11 // SSA form.
12 // In SSA it is not straightforward to represent instructions that condi-
13 // tionally define registers, since a conditionally-defined register may
14 // only be used under the same condition on which the definition was based.
15 // To avoid complications of this nature, this patch will only generate
16 // predicated stores, and speculate other instructions from the "if-conver-
17 // ted" block.
18 // The code will recognize CFG patterns where a block with a conditional
19 // branch "splits" into a "true block" and a "false block". Either of these
20 // could be omitted (in case of a triangle, for example).
21 // If after conversion of the side block(s) the CFG allows it, the resul-
22 // ting blocks may be merged. If the "join" block contained PHI nodes, they
23 // will be replaced with MUX (or MUX-like) instructions to maintain the
24 // semantics of the PHI.
25 //
26 // Example:
27 //
28 //         %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
29 //         %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
30 //         J2_jumpt %vreg41<kill>, <BB#5>, %PC<imp-def,dead>
31 //         J2_jump <BB#4>, %PC<imp-def,dead>
32 //     Successors according to CFG: BB#4(62) BB#5(62)
33 //
34 // BB#4: derived from LLVM BB %if.then
35 //     Predecessors according to CFG: BB#3
36 //         %vreg11<def> = A2_addp %vreg6, %vreg10
37 //         S2_storerd_io %vreg32, 16, %vreg11
38 //     Successors according to CFG: BB#5
39 //
40 // BB#5: derived from LLVM BB %if.end
41 //     Predecessors according to CFG: BB#3 BB#4
42 //         %vreg12<def> = PHI %vreg6, <BB#3>, %vreg11, <BB#4>
43 //         %vreg13<def> = A2_addp %vreg7, %vreg12
44 //         %vreg42<def> = C2_cmpeqi %vreg9, 10
45 //         J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
46 //         J2_jump <BB#6>, %PC<imp-def,dead>
47 //     Successors according to CFG: BB#6(4) BB#3(124)
48 //
49 // would become:
50 //
51 //         %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
52 //         %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
53 // spec->  %vreg11<def> = A2_addp %vreg6, %vreg10
54 // pred->  S2_pstorerdf_io %vreg41, %vreg32, 16, %vreg11
55 //         %vreg46<def> = MUX64_rr %vreg41, %vreg6, %vreg11
56 //         %vreg13<def> = A2_addp %vreg7, %vreg46
57 //         %vreg42<def> = C2_cmpeqi %vreg9, 10
58 //         J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
59 //         J2_jump <BB#6>, %PC<imp-def,dead>
60 //     Successors according to CFG: BB#6 BB#3
61 
62 #define DEBUG_TYPE "hexagon-eif"
63 
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/SetVector.h"
66 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
67 #include "llvm/CodeGen/MachineDominators.h"
68 #include "llvm/CodeGen/MachineFunctionPass.h"
69 #include "llvm/CodeGen/MachineInstrBuilder.h"
70 #include "llvm/CodeGen/MachineLoopInfo.h"
71 #include "llvm/CodeGen/MachineRegisterInfo.h"
72 #include "llvm/CodeGen/Passes.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Target/TargetInstrInfo.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "HexagonTargetMachine.h"
79 
80 #include <functional>
81 #include <set>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 namespace llvm {
87   FunctionPass *createHexagonEarlyIfConversion();
88   void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);
89 }
90 
91 namespace {
92   cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
93     cl::init(false), cl::desc("Enable branch probability info"));
94   cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
95     cl::desc("Size limit in Hexagon early if-conversion"));
96 
97   struct PrintMB {
PrintMB__anonb9ada2ed0111::PrintMB98     PrintMB(const MachineBasicBlock *B) : MB(B) {}
99     const MachineBasicBlock *MB;
100   };
operator <<(raw_ostream & OS,const PrintMB & P)101   raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
102     if (!P.MB)
103       return OS << "<none>";
104     return OS << '#' << P.MB->getNumber();
105   }
106 
107   struct FlowPattern {
FlowPattern__anonb9ada2ed0111::FlowPattern108     FlowPattern() : SplitB(0), TrueB(0), FalseB(0), JoinB(0), PredR(0) {}
FlowPattern__anonb9ada2ed0111::FlowPattern109     FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
110           MachineBasicBlock *FB, MachineBasicBlock *JB)
111       : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}
112 
113     MachineBasicBlock *SplitB;
114     MachineBasicBlock *TrueB, *FalseB, *JoinB;
115     unsigned PredR;
116   };
117   struct PrintFP {
PrintFP__anonb9ada2ed0111::PrintFP118     PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
119       : FP(P), TRI(T) {}
120     const FlowPattern &FP;
121     const TargetRegisterInfo &TRI;
122     friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
123   };
124   raw_ostream &operator<<(raw_ostream &OS,
125                           const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const PrintFP & P)126   raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
127     OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
128        << ", PredR:" << PrintReg(P.FP.PredR, &P.TRI)
129        << ", TrueB:" << PrintMB(P.FP.TrueB) << ", FalseB:"
130        << PrintMB(P.FP.FalseB)
131        << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
132     return OS;
133   }
134 
135   class HexagonEarlyIfConversion : public MachineFunctionPass {
136   public:
137     static char ID;
HexagonEarlyIfConversion()138     HexagonEarlyIfConversion() : MachineFunctionPass(ID),
139         TII(0), TRI(0), MFN(0), MRI(0), MDT(0), MLI(0) {
140       initializeHexagonEarlyIfConversionPass(*PassRegistry::getPassRegistry());
141     }
getPassName() const142     const char *getPassName() const override {
143       return "Hexagon early if conversion";
144     }
getAnalysisUsage(AnalysisUsage & AU) const145     void getAnalysisUsage(AnalysisUsage &AU) const override {
146       AU.addRequired<MachineBranchProbabilityInfo>();
147       AU.addRequired<MachineDominatorTree>();
148       AU.addPreserved<MachineDominatorTree>();
149       AU.addRequired<MachineLoopInfo>();
150       MachineFunctionPass::getAnalysisUsage(AU);
151     }
152     bool runOnMachineFunction(MachineFunction &MF) override;
153 
154   private:
155     typedef DenseSet<MachineBasicBlock*> BlockSetType;
156 
157     bool isPreheader(const MachineBasicBlock *B) const;
158     bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
159           FlowPattern &FP);
160     bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
161     bool visitLoop(MachineLoop *L);
162 
163     bool hasEHLabel(const MachineBasicBlock *B) const;
164     bool hasUncondBranch(const MachineBasicBlock *B) const;
165     bool isValidCandidate(const MachineBasicBlock *B) const;
166     bool usesUndefVReg(const MachineInstr *MI) const;
167     bool isValid(const FlowPattern &FP) const;
168     unsigned countPredicateDefs(const MachineBasicBlock *B) const;
169     unsigned computePhiCost(MachineBasicBlock *B) const;
170     bool isProfitable(const FlowPattern &FP) const;
171     bool isPredicableStore(const MachineInstr *MI) const;
172     bool isSafeToSpeculate(const MachineInstr *MI) const;
173 
174     unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
175     void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
176           MachineInstr *MI, unsigned PredR, bool IfTrue);
177     void predicateBlockNB(MachineBasicBlock *ToB,
178           MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
179           unsigned PredR, bool IfTrue);
180 
181     void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
182     void convert(const FlowPattern &FP);
183 
184     void removeBlock(MachineBasicBlock *B);
185     void eliminatePhis(MachineBasicBlock *B);
186     void replacePhiEdges(MachineBasicBlock *OldB, MachineBasicBlock *NewB);
187     void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
188     void simplifyFlowGraph(const FlowPattern &FP);
189 
190     const TargetInstrInfo *TII;
191     const TargetRegisterInfo *TRI;
192     MachineFunction *MFN;
193     MachineRegisterInfo *MRI;
194     MachineDominatorTree *MDT;
195     MachineLoopInfo *MLI;
196     BlockSetType Deleted;
197     const MachineBranchProbabilityInfo *MBPI;
198   };
199 
200   char HexagonEarlyIfConversion::ID = 0;
201 }
202 
203 INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-eif",
204   "Hexagon early if conversion", false, false)
205 
isPreheader(const MachineBasicBlock * B) const206 bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
207   if (B->succ_size() != 1)
208     return false;
209   MachineBasicBlock *SB = *B->succ_begin();
210   MachineLoop *L = MLI->getLoopFor(SB);
211   return L && SB == L->getHeader();
212 }
213 
214 
matchFlowPattern(MachineBasicBlock * B,MachineLoop * L,FlowPattern & FP)215 bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
216     MachineLoop *L, FlowPattern &FP) {
217   DEBUG(dbgs() << "Checking flow pattern at BB#" << B->getNumber() << "\n");
218 
219   // Interested only in conditional branches, no .new, no new-value, etc.
220   // Check the terminators directly, it's easier than handling all responses
221   // from AnalyzeBranch.
222   MachineBasicBlock *TB = 0, *FB = 0;
223   MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
224   if (T1I == B->end())
225     return false;
226   unsigned Opc = T1I->getOpcode();
227   if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
228     return false;
229   unsigned PredR = T1I->getOperand(0).getReg();
230 
231   // Get the layout successor, or 0 if B does not have one.
232   MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
233   MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : 0;
234 
235   MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
236   MachineBasicBlock::const_iterator T2I = std::next(T1I);
237   // The second terminator should be an unconditional branch.
238   assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
239   MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
240                                              : T2I->getOperand(0).getMBB();
241   if (T1B == T2B) {
242     // XXX merge if T1B == NextB, or convert branch to unconditional.
243     // mark as diamond with both sides equal?
244     return false;
245   }
246   // Loop could be null for both.
247   if (MLI->getLoopFor(T1B) != L || MLI->getLoopFor(T2B) != L)
248     return false;
249 
250   // Record the true/false blocks in such a way that "true" means "if (PredR)",
251   // and "false" means "if (!PredR)".
252   if (Opc == Hexagon::J2_jumpt)
253     TB = T1B, FB = T2B;
254   else
255     TB = T2B, FB = T1B;
256 
257   if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
258     return false;
259 
260   // Detect triangle first. In case of a triangle, one of the blocks TB/FB
261   // can fall through into the other, in other words, it will be executed
262   // in both cases. We only want to predicate the block that is executed
263   // conditionally.
264   unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
265   unsigned TNS = TB->succ_size(), FNS = FB->succ_size();
266 
267   // A block is predicable if it has one predecessor (it must be B), and
268   // it has a single successor. In fact, the block has to end either with
269   // an unconditional branch (which can be predicated), or with a fall-
270   // through.
271   bool TOk = (TNP == 1) && (TNS == 1);
272   bool FOk = (FNP == 1) && (FNS == 1);
273 
274   // If neither is predicable, there is nothing interesting.
275   if (!TOk && !FOk)
276     return false;
277 
278   MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : 0;
279   MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : 0;
280   MachineBasicBlock *JB = 0;
281 
282   if (TOk) {
283     if (FOk) {
284       if (TSB == FSB)
285         JB = TSB;
286       // Diamond: "if (P) then TB; else FB;".
287     } else {
288       // TOk && !FOk
289       if (TSB == FB) {
290         JB = FB;
291         FB = 0;
292       }
293     }
294   } else {
295     // !TOk && FOk  (at least one must be true by now).
296     if (FSB == TB) {
297       JB = TB;
298       TB = 0;
299     }
300   }
301   // Don't try to predicate loop preheaders.
302   if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
303     DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
304                  << " is a loop preheader. Skipping.\n");
305     return false;
306   }
307 
308   FP = FlowPattern(B, PredR, TB, FB, JB);
309   DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
310   return true;
311 }
312 
313 
314 // KLUDGE: HexagonInstrInfo::AnalyzeBranch won't work on a block that
315 // contains EH_LABEL.
hasEHLabel(const MachineBasicBlock * B) const316 bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
317   for (auto &I : *B)
318     if (I.isEHLabel())
319       return true;
320   return false;
321 }
322 
323 
324 // KLUDGE: HexagonInstrInfo::AnalyzeBranch may be unable to recognize
325 // that a block can never fall-through.
hasUncondBranch(const MachineBasicBlock * B) const326 bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
327       const {
328   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
329   while (I != E) {
330     if (I->isBarrier())
331       return true;
332     ++I;
333   }
334   return false;
335 }
336 
337 
isValidCandidate(const MachineBasicBlock * B) const338 bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
339       const {
340   if (!B)
341     return true;
342   if (B->isEHPad() || B->hasAddressTaken())
343     return false;
344   if (B->succ_size() == 0)
345     return false;
346 
347   for (auto &MI : *B) {
348     if (MI.isDebugValue())
349       continue;
350     if (MI.isConditionalBranch())
351       return false;
352     unsigned Opc = MI.getOpcode();
353     bool IsJMP = (Opc == Hexagon::J2_jump);
354     if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
355       return false;
356     // Look for predicate registers defined by this instruction. It's ok
357     // to speculate such an instruction, but the predicate register cannot
358     // be used outside of this block (or else it won't be possible to
359     // update the use of it after predication). PHI uses will be updated
360     // to use a result of a MUX, and a MUX cannot be created for predicate
361     // registers.
362     for (ConstMIOperands MO(&MI); MO.isValid(); ++MO) {
363       if (!MO->isReg() || !MO->isDef())
364         continue;
365       unsigned R = MO->getReg();
366       if (!TargetRegisterInfo::isVirtualRegister(R))
367         continue;
368       if (MRI->getRegClass(R) != &Hexagon::PredRegsRegClass)
369         continue;
370       for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
371         if (U->getParent()->isPHI())
372           return false;
373     }
374   }
375   return true;
376 }
377 
378 
usesUndefVReg(const MachineInstr * MI) const379 bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
380   for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
381     if (!MO->isReg() || !MO->isUse())
382       continue;
383     unsigned R = MO->getReg();
384     if (!TargetRegisterInfo::isVirtualRegister(R))
385       continue;
386     const MachineInstr *DefI = MRI->getVRegDef(R);
387     // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
388     assert(DefI && "Expecting a reaching def in MRI");
389     if (DefI->isImplicitDef())
390       return true;
391   }
392   return false;
393 }
394 
395 
isValid(const FlowPattern & FP) const396 bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
397   if (hasEHLabel(FP.SplitB))  // KLUDGE: see function definition
398     return false;
399   if (FP.TrueB && !isValidCandidate(FP.TrueB))
400     return false;
401   if (FP.FalseB && !isValidCandidate(FP.FalseB))
402     return false;
403   // Check the PHIs in the join block. If any of them use a register
404   // that is defined as IMPLICIT_DEF, do not convert this. This can
405   // legitimately happen if one side of the split never executes, but
406   // the compiler is unable to prove it. That side may then seem to
407   // provide an "undef" value to the join block, however it will never
408   // execute at run-time. If we convert this case, the "undef" will
409   // be used in a MUX instruction, and that may seem like actually
410   // using an undefined value to other optimizations. This could lead
411   // to trouble further down the optimization stream, cause assertions
412   // to fail, etc.
413   if (FP.JoinB) {
414     const MachineBasicBlock &B = *FP.JoinB;
415     for (auto &MI : B) {
416       if (!MI.isPHI())
417         break;
418       if (usesUndefVReg(&MI))
419         return false;
420       unsigned DefR = MI.getOperand(0).getReg();
421       const TargetRegisterClass *RC = MRI->getRegClass(DefR);
422       if (RC == &Hexagon::PredRegsRegClass)
423         return false;
424     }
425   }
426   return true;
427 }
428 
429 
computePhiCost(MachineBasicBlock * B) const430 unsigned HexagonEarlyIfConversion::computePhiCost(MachineBasicBlock *B) const {
431   assert(B->pred_size() <= 2);
432   if (B->pred_size() < 2)
433     return 0;
434 
435   unsigned Cost = 0;
436   MachineBasicBlock::const_iterator I, E = B->getFirstNonPHI();
437   for (I = B->begin(); I != E; ++I) {
438     const MachineOperand &RO1 = I->getOperand(1);
439     const MachineOperand &RO3 = I->getOperand(3);
440     assert(RO1.isReg() && RO3.isReg());
441     // Must have a MUX if the phi uses a subregister.
442     if (RO1.getSubReg() != 0 || RO3.getSubReg() != 0) {
443       Cost++;
444       continue;
445     }
446     MachineInstr *Def1 = MRI->getVRegDef(RO1.getReg());
447     MachineInstr *Def3 = MRI->getVRegDef(RO3.getReg());
448     if (!TII->isPredicable(Def1) || !TII->isPredicable(Def3))
449       Cost++;
450   }
451   return Cost;
452 }
453 
454 
countPredicateDefs(const MachineBasicBlock * B) const455 unsigned HexagonEarlyIfConversion::countPredicateDefs(
456       const MachineBasicBlock *B) const {
457   unsigned PredDefs = 0;
458   for (auto &MI : *B) {
459     for (ConstMIOperands MO(&MI); MO.isValid(); ++MO) {
460       if (!MO->isReg() || !MO->isDef())
461         continue;
462       unsigned R = MO->getReg();
463       if (!TargetRegisterInfo::isVirtualRegister(R))
464         continue;
465       if (MRI->getRegClass(R) == &Hexagon::PredRegsRegClass)
466         PredDefs++;
467     }
468   }
469   return PredDefs;
470 }
471 
472 
isProfitable(const FlowPattern & FP) const473 bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
474   if (FP.TrueB && FP.FalseB) {
475 
476     // Do not IfCovert if the branch is one sided.
477     if (MBPI) {
478       BranchProbability Prob(9, 10);
479       if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
480         return false;
481       if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
482         return false;
483     }
484 
485     // If both sides are predicable, convert them if they join, and the
486     // join block has no other predecessors.
487     MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
488     MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
489     if (TSB != FSB)
490       return false;
491     if (TSB->pred_size() != 2)
492       return false;
493   }
494 
495   // Calculate the total size of the predicated blocks.
496   // Assume instruction counts without branches to be the approximation of
497   // the code size. If the predicated blocks are smaller than a packet size,
498   // approximate the spare room in the packet that could be filled with the
499   // predicated/speculated instructions.
500   unsigned TS = 0, FS = 0, Spare = 0;
501   if (FP.TrueB) {
502     TS = std::distance(FP.TrueB->begin(), FP.TrueB->getFirstTerminator());
503     if (TS < HEXAGON_PACKET_SIZE)
504       Spare += HEXAGON_PACKET_SIZE-TS;
505   }
506   if (FP.FalseB) {
507     FS = std::distance(FP.FalseB->begin(), FP.FalseB->getFirstTerminator());
508     if (FS < HEXAGON_PACKET_SIZE)
509       Spare += HEXAGON_PACKET_SIZE-TS;
510   }
511   unsigned TotalIn = TS+FS;
512   DEBUG(dbgs() << "Total number of instructions to be predicated/speculated: "
513                << TotalIn << ", spare room: " << Spare << "\n");
514   if (TotalIn >= SizeLimit+Spare)
515     return false;
516 
517   // Count the number of PHI nodes that will need to be updated (converted
518   // to MUX). Those can be later converted to predicated instructions, so
519   // they aren't always adding extra cost.
520   // KLUDGE: Also, count the number of predicate register definitions in
521   // each block. The scheduler may increase the pressure of these and cause
522   // expensive spills (e.g. bitmnp01).
523   unsigned TotalPh = 0;
524   unsigned PredDefs = countPredicateDefs(FP.SplitB);
525   if (FP.JoinB) {
526     TotalPh = computePhiCost(FP.JoinB);
527     PredDefs += countPredicateDefs(FP.JoinB);
528   } else {
529     if (FP.TrueB && FP.TrueB->succ_size() > 0) {
530       MachineBasicBlock *SB = *FP.TrueB->succ_begin();
531       TotalPh += computePhiCost(SB);
532       PredDefs += countPredicateDefs(SB);
533     }
534     if (FP.FalseB && FP.FalseB->succ_size() > 0) {
535       MachineBasicBlock *SB = *FP.FalseB->succ_begin();
536       TotalPh += computePhiCost(SB);
537       PredDefs += countPredicateDefs(SB);
538     }
539   }
540   DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
541                << TotalPh << "\n");
542   if (TotalIn+TotalPh >= SizeLimit+Spare)
543     return false;
544 
545   DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs << "\n");
546   if (PredDefs > 4)
547     return false;
548 
549   return true;
550 }
551 
552 
visitBlock(MachineBasicBlock * B,MachineLoop * L)553 bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
554       MachineLoop *L) {
555   bool Changed = false;
556 
557   // Visit all dominated blocks from the same loop first, then process B.
558   MachineDomTreeNode *N = MDT->getNode(B);
559   typedef GraphTraits<MachineDomTreeNode*> GTN;
560   // We will change CFG/DT during this traversal, so take precautions to
561   // avoid problems related to invalidated iterators. In fact, processing
562   // a child C of B cannot cause another child to be removed, but it can
563   // cause a new child to be added (which was a child of C before C itself
564   // was removed. This new child C, however, would have been processed
565   // prior to processing B, so there is no need to process it again.
566   // Simply keep a list of children of B, and traverse that list.
567   typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
568   DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
569   for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
570     MachineBasicBlock *SB = (*I)->getBlock();
571     if (!Deleted.count(SB))
572       Changed |= visitBlock(SB, L);
573   }
574   // When walking down the dominator tree, we want to traverse through
575   // blocks from nested (other) loops, because they can dominate blocks
576   // that are in L. Skip the non-L blocks only after the tree traversal.
577   if (MLI->getLoopFor(B) != L)
578     return Changed;
579 
580   FlowPattern FP;
581   if (!matchFlowPattern(B, L, FP))
582     return Changed;
583 
584   if (!isValid(FP)) {
585     DEBUG(dbgs() << "Conversion is not valid\n");
586     return Changed;
587   }
588   if (!isProfitable(FP)) {
589     DEBUG(dbgs() << "Conversion is not profitable\n");
590     return Changed;
591   }
592 
593   convert(FP);
594   simplifyFlowGraph(FP);
595   return true;
596 }
597 
598 
visitLoop(MachineLoop * L)599 bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
600   MachineBasicBlock *HB = L ? L->getHeader() : 0;
601   DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
602            : dbgs() << "Visiting function") << "\n");
603   bool Changed = false;
604   if (L) {
605     for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
606       Changed |= visitLoop(*I);
607   }
608 
609   MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
610   Changed |= visitBlock(L ? HB : EntryB, L);
611   return Changed;
612 }
613 
614 
isPredicableStore(const MachineInstr * MI) const615 bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
616       const {
617   // Exclude post-increment stores. Those return a value, so we cannot
618   // predicate them.
619   unsigned Opc = MI->getOpcode();
620   using namespace Hexagon;
621   switch (Opc) {
622     // Store byte:
623     case S2_storerb_io: case S4_storerb_rr:
624     case S2_storerbabs: case S4_storeirb_io:  case S2_storerbgp:
625     // Store halfword:
626     case S2_storerh_io: case S4_storerh_rr:
627     case S2_storerhabs: case S4_storeirh_io:  case S2_storerhgp:
628     // Store upper halfword:
629     case S2_storerf_io: case S4_storerf_rr:
630     case S2_storerfabs: case S2_storerfgp:
631     // Store word:
632     case S2_storeri_io: case S4_storeri_rr:
633     case S2_storeriabs: case S4_storeiri_io:  case S2_storerigp:
634     // Store doubleword:
635     case S2_storerd_io: case S4_storerd_rr:
636     case S2_storerdabs: case S2_storerdgp:
637       return true;
638   }
639   return false;
640 }
641 
642 
isSafeToSpeculate(const MachineInstr * MI) const643 bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
644       const {
645   if (MI->mayLoad() || MI->mayStore())
646     return false;
647   if (MI->isCall() || MI->isBarrier() || MI->isBranch())
648     return false;
649   if (MI->hasUnmodeledSideEffects())
650     return false;
651 
652   return true;
653 }
654 
655 
getCondStoreOpcode(unsigned Opc,bool IfTrue) const656 unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
657       bool IfTrue) const {
658   // Exclude post-increment stores.
659   using namespace Hexagon;
660   switch (Opc) {
661     case S2_storerb_io:
662       return IfTrue ? S2_pstorerbt_io : S2_pstorerbf_io;
663     case S4_storerb_rr:
664       return IfTrue ? S4_pstorerbt_rr : S4_pstorerbf_rr;
665     case S2_storerbabs:
666     case S2_storerbgp:
667       return IfTrue ? S4_pstorerbt_abs : S4_pstorerbf_abs;
668     case S4_storeirb_io:
669       return IfTrue ? S4_storeirbt_io : S4_storeirbf_io;
670     case S2_storerh_io:
671       return IfTrue ? S2_pstorerht_io : S2_pstorerhf_io;
672     case S4_storerh_rr:
673       return IfTrue ? S4_pstorerht_rr : S4_pstorerhf_rr;
674     case S2_storerhabs:
675     case S2_storerhgp:
676       return IfTrue ? S4_pstorerht_abs : S4_pstorerhf_abs;
677     case S2_storerf_io:
678       return IfTrue ? S2_pstorerft_io : S2_pstorerff_io;
679     case S4_storerf_rr:
680       return IfTrue ? S4_pstorerft_rr : S4_pstorerff_rr;
681     case S2_storerfabs:
682     case S2_storerfgp:
683       return IfTrue ? S4_pstorerft_abs : S4_pstorerff_abs;
684     case S4_storeirh_io:
685       return IfTrue ? S4_storeirht_io : S4_storeirhf_io;
686     case S2_storeri_io:
687       return IfTrue ? S2_pstorerit_io : S2_pstorerif_io;
688     case S4_storeri_rr:
689       return IfTrue ? S4_pstorerit_rr : S4_pstorerif_rr;
690     case S2_storeriabs:
691     case S2_storerigp:
692       return IfTrue ? S4_pstorerit_abs : S4_pstorerif_abs;
693     case S4_storeiri_io:
694       return IfTrue ? S4_storeirit_io : S4_storeirif_io;
695     case S2_storerd_io:
696       return IfTrue ? S2_pstorerdt_io : S2_pstorerdf_io;
697     case S4_storerd_rr:
698       return IfTrue ? S4_pstorerdt_rr : S4_pstorerdf_rr;
699     case S2_storerdabs:
700     case S2_storerdgp:
701       return IfTrue ? S4_pstorerdt_abs : S4_pstorerdf_abs;
702   }
703   llvm_unreachable("Unexpected opcode");
704   return 0;
705 }
706 
707 
predicateInstr(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineInstr * MI,unsigned PredR,bool IfTrue)708 void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
709       MachineBasicBlock::iterator At, MachineInstr *MI,
710       unsigned PredR, bool IfTrue) {
711   DebugLoc DL;
712   if (At != ToB->end())
713     DL = At->getDebugLoc();
714   else if (!ToB->empty())
715     DL = ToB->back().getDebugLoc();
716 
717   unsigned Opc = MI->getOpcode();
718 
719   if (isPredicableStore(MI)) {
720     unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
721     assert(COpc);
722     MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, TII->get(COpc))
723       .addReg(PredR);
724     for (MIOperands MO(MI); MO.isValid(); ++MO)
725       MIB.addOperand(*MO);
726 
727     // Set memory references.
728     MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
729     MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
730     MIB.setMemRefs(MMOBegin, MMOEnd);
731 
732     MI->eraseFromParent();
733     return;
734   }
735 
736   if (Opc == Hexagon::J2_jump) {
737     MachineBasicBlock *TB = MI->getOperand(0).getMBB();
738     const MCInstrDesc &D = TII->get(IfTrue ? Hexagon::J2_jumpt
739                                            : Hexagon::J2_jumpf);
740     BuildMI(*ToB, At, DL, D)
741       .addReg(PredR)
742       .addMBB(TB);
743     MI->eraseFromParent();
744     return;
745   }
746 
747   // Print the offending instruction unconditionally as we are about to
748   // abort.
749   dbgs() << *MI;
750   llvm_unreachable("Unexpected instruction");
751 }
752 
753 
754 // Predicate/speculate non-branch instructions from FromB into block ToB.
755 // Leave the branches alone, they will be handled later. Btw, at this point
756 // FromB should have at most one branch, and it should be unconditional.
predicateBlockNB(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineBasicBlock * FromB,unsigned PredR,bool IfTrue)757 void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
758       MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
759       unsigned PredR, bool IfTrue) {
760   DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
761   MachineBasicBlock::iterator End = FromB->getFirstTerminator();
762   MachineBasicBlock::iterator I, NextI;
763 
764   for (I = FromB->begin(); I != End; I = NextI) {
765     assert(!I->isPHI());
766     NextI = std::next(I);
767     if (isSafeToSpeculate(&*I))
768       ToB->splice(At, FromB, I);
769     else
770       predicateInstr(ToB, At, &*I, PredR, IfTrue);
771   }
772 }
773 
774 
updatePhiNodes(MachineBasicBlock * WhereB,const FlowPattern & FP)775 void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
776       const FlowPattern &FP) {
777   // Visit all PHI nodes in the WhereB block and generate MUX instructions
778   // in the split block. Update the PHI nodes with the values of the MUX.
779   auto NonPHI = WhereB->getFirstNonPHI();
780   for (auto I = WhereB->begin(); I != NonPHI; ++I) {
781     MachineInstr *PN = &*I;
782     // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
783     unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
784     for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
785       const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
786       if (BO.getMBB() == FP.SplitB)
787         SR = RO.getReg(), SSR = RO.getSubReg();
788       else if (BO.getMBB() == FP.TrueB)
789         TR = RO.getReg(), TSR = RO.getSubReg();
790       else if (BO.getMBB() == FP.FalseB)
791         FR = RO.getReg(), FSR = RO.getSubReg();
792       else
793         continue;
794       PN->RemoveOperand(i+1);
795       PN->RemoveOperand(i);
796     }
797     if (TR == 0)
798       TR = SR, TSR = SSR;
799     else if (FR == 0)
800       FR = SR, FSR = SSR;
801     assert(TR && FR);
802 
803     using namespace Hexagon;
804     unsigned DR = PN->getOperand(0).getReg();
805     const TargetRegisterClass *RC = MRI->getRegClass(DR);
806     const MCInstrDesc &D = RC == &IntRegsRegClass ? TII->get(C2_mux)
807                                                   : TII->get(MUX64_rr);
808 
809     MachineBasicBlock::iterator MuxAt = FP.SplitB->getFirstTerminator();
810     DebugLoc DL;
811     if (MuxAt != FP.SplitB->end())
812       DL = MuxAt->getDebugLoc();
813     unsigned MuxR = MRI->createVirtualRegister(RC);
814     BuildMI(*FP.SplitB, MuxAt, DL, D, MuxR)
815       .addReg(FP.PredR)
816       .addReg(TR, 0, TSR)
817       .addReg(FR, 0, FSR);
818 
819     PN->addOperand(MachineOperand::CreateReg(MuxR, false));
820     PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
821   }
822 }
823 
824 
convert(const FlowPattern & FP)825 void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
826   MachineBasicBlock *TSB = 0, *FSB = 0;
827   MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
828   assert(OldTI != FP.SplitB->end());
829   DebugLoc DL = OldTI->getDebugLoc();
830 
831   if (FP.TrueB) {
832     TSB = *FP.TrueB->succ_begin();
833     predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
834   }
835   if (FP.FalseB) {
836     FSB = *FP.FalseB->succ_begin();
837     MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
838     predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
839   }
840 
841   // Regenerate new terminators in the split block and update the successors.
842   // First, remember any information that may be needed later and remove the
843   // existing terminators/successors from the split block.
844   MachineBasicBlock *SSB = 0;
845   FP.SplitB->erase(OldTI, FP.SplitB->end());
846   while (FP.SplitB->succ_size() > 0) {
847     MachineBasicBlock *T = *FP.SplitB->succ_begin();
848     // It's possible that the split block had a successor that is not a pre-
849     // dicated block. This could only happen if there was only one block to
850     // be predicated. Example:
851     //   split_b:
852     //     if (p) jump true_b
853     //     jump unrelated2_b
854     //   unrelated1_b:
855     //     ...
856     //   unrelated2_b:  ; can have other predecessors, so it's not "false_b"
857     //     jump other_b
858     //   true_b:        ; only reachable from split_b, can be predicated
859     //     ...
860     //
861     // Find this successor (SSB) if it exists.
862     if (T != FP.TrueB && T != FP.FalseB) {
863       assert(!SSB);
864       SSB = T;
865     }
866     FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
867   }
868 
869   // Insert new branches and update the successors of the split block. This
870   // may create unconditional branches to the layout successor, etc., but
871   // that will be cleaned up later. For now, make sure that correct code is
872   // generated.
873   if (FP.JoinB) {
874     assert(!SSB || SSB == FP.JoinB);
875     BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump))
876       .addMBB(FP.JoinB);
877     FP.SplitB->addSuccessor(FP.JoinB);
878   } else {
879     bool HasBranch = false;
880     if (TSB) {
881       BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jumpt))
882         .addReg(FP.PredR)
883         .addMBB(TSB);
884       FP.SplitB->addSuccessor(TSB);
885       HasBranch = true;
886     }
887     if (FSB) {
888       const MCInstrDesc &D = HasBranch ? TII->get(Hexagon::J2_jump)
889                                        : TII->get(Hexagon::J2_jumpf);
890       MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
891       if (!HasBranch)
892         MIB.addReg(FP.PredR);
893       MIB.addMBB(FSB);
894       FP.SplitB->addSuccessor(FSB);
895     }
896     if (SSB) {
897       // This cannot happen if both TSB and FSB are set. [TF]SB are the
898       // successor blocks of the TrueB and FalseB (or null of the TrueB
899       // or FalseB block is null). SSB is the potential successor block
900       // of the SplitB that is neither TrueB nor FalseB.
901       BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump))
902         .addMBB(SSB);
903       FP.SplitB->addSuccessor(SSB);
904     }
905   }
906 
907   // What is left to do is to update the PHI nodes that could have entries
908   // referring to predicated blocks.
909   if (FP.JoinB) {
910     updatePhiNodes(FP.JoinB, FP);
911   } else {
912     if (TSB)
913       updatePhiNodes(TSB, FP);
914     if (FSB)
915       updatePhiNodes(FSB, FP);
916     // Nothing to update in SSB, since SSB's predecessors haven't changed.
917   }
918 }
919 
920 
removeBlock(MachineBasicBlock * B)921 void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
922   DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");
923 
924   // Transfer the immediate dominator information from B to its descendants.
925   MachineDomTreeNode *N = MDT->getNode(B);
926   MachineDomTreeNode *IDN = N->getIDom();
927   if (IDN) {
928     MachineBasicBlock *IDB = IDN->getBlock();
929     typedef GraphTraits<MachineDomTreeNode*> GTN;
930     typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
931     DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
932     for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
933       MachineBasicBlock *SB = (*I)->getBlock();
934       MDT->changeImmediateDominator(SB, IDB);
935     }
936   }
937 
938   while (B->succ_size() > 0)
939     B->removeSuccessor(B->succ_begin());
940 
941   for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
942     (*I)->removeSuccessor(B, true);
943 
944   Deleted.insert(B);
945   MDT->eraseNode(B);
946   MFN->erase(B->getIterator());
947 }
948 
949 
eliminatePhis(MachineBasicBlock * B)950 void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
951   DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
952   MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
953   for (I = B->begin(); I != NonPHI; I = NextI) {
954     NextI = std::next(I);
955     MachineInstr *PN = &*I;
956     assert(PN->getNumOperands() == 3 && "Invalid phi node");
957     MachineOperand &UO = PN->getOperand(1);
958     unsigned UseR = UO.getReg(), UseSR = UO.getSubReg();
959     unsigned DefR = PN->getOperand(0).getReg();
960     unsigned NewR = UseR;
961     if (UseSR) {
962       // MRI.replaceVregUsesWith does not allow to update the subregister,
963       // so instead of doing the use-iteration here, create a copy into a
964       // "non-subregistered" register.
965       DebugLoc DL = PN->getDebugLoc();
966       const TargetRegisterClass *RC = MRI->getRegClass(DefR);
967       NewR = MRI->createVirtualRegister(RC);
968       NonPHI = BuildMI(*B, NonPHI, DL, TII->get(TargetOpcode::COPY), NewR)
969         .addReg(UseR, 0, UseSR);
970     }
971     MRI->replaceRegWith(DefR, NewR);
972     B->erase(I);
973   }
974 }
975 
976 
replacePhiEdges(MachineBasicBlock * OldB,MachineBasicBlock * NewB)977 void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB,
978       MachineBasicBlock *NewB) {
979   for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) {
980     MachineBasicBlock *SB = *I;
981     MachineBasicBlock::iterator P, N = SB->getFirstNonPHI();
982     for (P = SB->begin(); P != N; ++P) {
983       MachineInstr *PN = &*P;
984       for (MIOperands MO(PN); MO.isValid(); ++MO)
985         if (MO->isMBB() && MO->getMBB() == OldB)
986           MO->setMBB(NewB);
987     }
988   }
989 }
990 
991 
mergeBlocks(MachineBasicBlock * PredB,MachineBasicBlock * SuccB)992 void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
993       MachineBasicBlock *SuccB) {
994   DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
995                << PrintMB(SuccB) << "\n");
996   bool TermOk = hasUncondBranch(SuccB);
997   eliminatePhis(SuccB);
998   TII->RemoveBranch(*PredB);
999   PredB->removeSuccessor(SuccB);
1000   PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
1001   MachineBasicBlock::succ_iterator I, E = SuccB->succ_end();
1002   for (I = SuccB->succ_begin(); I != E; ++I)
1003     PredB->addSuccessor(*I);
1004   PredB->normalizeSuccProbs();
1005   replacePhiEdges(SuccB, PredB);
1006   removeBlock(SuccB);
1007   if (!TermOk)
1008     PredB->updateTerminator();
1009 }
1010 
1011 
simplifyFlowGraph(const FlowPattern & FP)1012 void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
1013   if (FP.TrueB)
1014     removeBlock(FP.TrueB);
1015   if (FP.FalseB)
1016     removeBlock(FP.FalseB);
1017 
1018   FP.SplitB->updateTerminator();
1019   if (FP.SplitB->succ_size() != 1)
1020     return;
1021 
1022   MachineBasicBlock *SB = *FP.SplitB->succ_begin();
1023   if (SB->pred_size() != 1)
1024     return;
1025 
1026   // By now, the split block has only one successor (SB), and SB has only
1027   // one predecessor. We can try to merge them. We will need to update ter-
1028   // minators in FP.Split+SB, and that requires working AnalyzeBranch, which
1029   // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
1030   // with an unconditional branch, we won't need to touch the terminators.
1031   if (!hasEHLabel(SB) || hasUncondBranch(SB))
1032     mergeBlocks(FP.SplitB, SB);
1033 }
1034 
1035 
runOnMachineFunction(MachineFunction & MF)1036 bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
1037   auto &ST = MF.getSubtarget();
1038   TII = ST.getInstrInfo();
1039   TRI = ST.getRegisterInfo();
1040   MFN = &MF;
1041   MRI = &MF.getRegInfo();
1042   MDT = &getAnalysis<MachineDominatorTree>();
1043   MLI = &getAnalysis<MachineLoopInfo>();
1044   MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
1045     nullptr;
1046 
1047   Deleted.clear();
1048   bool Changed = false;
1049 
1050   for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
1051     Changed |= visitLoop(*I);
1052   Changed |= visitLoop(0);
1053 
1054   return Changed;
1055 }
1056 
1057 //===----------------------------------------------------------------------===//
1058 //                         Public Constructor Functions
1059 //===----------------------------------------------------------------------===//
createHexagonEarlyIfConversion()1060 FunctionPass *llvm::createHexagonEarlyIfConversion() {
1061   return new HexagonEarlyIfConversion();
1062 }
1063 
1064