1 //===--- HexagonSplitDouble.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "hsdr"
11
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonTargetMachine.h"
14
15 #include "llvm/Pass.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Target/TargetRegisterInfo.h"
26
27 #include <map>
28 #include <set>
29 #include <vector>
30
31 using namespace llvm;
32
33 namespace llvm {
34 FunctionPass *createHexagonSplitDoubleRegs();
35 void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
36 }
37
38 namespace {
39 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
40 cl::desc("Maximum number of split partitions"));
41 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
42 cl::desc("Do not split loads or stores"));
43
44 class HexagonSplitDoubleRegs : public MachineFunctionPass {
45 public:
46 static char ID;
HexagonSplitDoubleRegs()47 HexagonSplitDoubleRegs() : MachineFunctionPass(ID), TRI(nullptr),
48 TII(nullptr) {
49 initializeHexagonSplitDoubleRegsPass(*PassRegistry::getPassRegistry());
50 }
getPassName() const51 const char *getPassName() const override {
52 return "Hexagon Split Double Registers";
53 }
getAnalysisUsage(AnalysisUsage & AU) const54 void getAnalysisUsage(AnalysisUsage &AU) const override {
55 AU.addRequired<MachineLoopInfo>();
56 AU.addPreserved<MachineLoopInfo>();
57 MachineFunctionPass::getAnalysisUsage(AU);
58 }
59 bool runOnMachineFunction(MachineFunction &MF) override;
60
61 private:
62 static const TargetRegisterClass *const DoubleRC;
63
64 const HexagonRegisterInfo *TRI;
65 const HexagonInstrInfo *TII;
66 const MachineLoopInfo *MLI;
67 MachineRegisterInfo *MRI;
68
69 typedef std::set<unsigned> USet;
70 typedef std::map<unsigned,USet> UUSetMap;
71 typedef std::pair<unsigned,unsigned> UUPair;
72 typedef std::map<unsigned,UUPair> UUPairMap;
73 typedef std::map<const MachineLoop*,USet> LoopRegMap;
74
75 bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
76 bool isVolatileInstr(const MachineInstr *MI) const;
77 bool isFixedInstr(const MachineInstr *MI) const;
78 void partitionRegisters(UUSetMap &P2Rs);
79 int32_t profit(const MachineInstr *MI) const;
80 bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
81
82 void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
83 void collectIndRegs(LoopRegMap &IRM);
84
85 void createHalfInstr(unsigned Opc, MachineInstr *MI,
86 const UUPairMap &PairMap, unsigned SubR);
87 void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
88 void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
89 void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
90 void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
91 void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
92 void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
93 bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
94 void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
95 void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
96 bool splitPartition(const USet &Part);
97
98 static int Counter;
99 static void dump_partition(raw_ostream&, const USet&,
100 const TargetRegisterInfo&);
101 };
102 char HexagonSplitDoubleRegs::ID;
103 int HexagonSplitDoubleRegs::Counter = 0;
104 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC
105 = &Hexagon::DoubleRegsRegClass;
106 }
107
108 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
109 "Hexagon Split Double Registers", false, false)
110
111
getRegState(const MachineOperand & R)112 static inline uint32_t getRegState(const MachineOperand &R) {
113 assert(R.isReg());
114 return getDefRegState(R.isDef()) |
115 getImplRegState(R.isImplicit()) |
116 getKillRegState(R.isKill()) |
117 getDeadRegState(R.isDead()) |
118 getUndefRegState(R.isUndef()) |
119 getInternalReadRegState(R.isInternalRead()) |
120 (R.isDebug() ? RegState::Debug : 0);
121 }
122
123
dump_partition(raw_ostream & os,const USet & Part,const TargetRegisterInfo & TRI)124 void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
125 const USet &Part, const TargetRegisterInfo &TRI) {
126 dbgs() << '{';
127 for (auto I : Part)
128 dbgs() << ' ' << PrintReg(I, &TRI);
129 dbgs() << " }";
130 }
131
132
isInduction(unsigned Reg,LoopRegMap & IRM) const133 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
134 for (auto I : IRM) {
135 const USet &Rs = I.second;
136 if (Rs.find(Reg) != Rs.end())
137 return true;
138 }
139 return false;
140 }
141
142
isVolatileInstr(const MachineInstr * MI) const143 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
144 for (auto &I : MI->memoperands())
145 if (I->isVolatile())
146 return true;
147 return false;
148 }
149
150
isFixedInstr(const MachineInstr * MI) const151 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
152 if (MI->mayLoad() || MI->mayStore())
153 if (MemRefsFixed || isVolatileInstr(MI))
154 return true;
155 if (MI->isDebugValue())
156 return false;
157
158 unsigned Opc = MI->getOpcode();
159 switch (Opc) {
160 default:
161 return true;
162
163 case TargetOpcode::PHI:
164 case TargetOpcode::COPY:
165 break;
166
167 case Hexagon::L2_loadrd_io:
168 // Not handling stack stores (only reg-based addresses).
169 if (MI->getOperand(1).isReg())
170 break;
171 return true;
172 case Hexagon::S2_storerd_io:
173 // Not handling stack stores (only reg-based addresses).
174 if (MI->getOperand(0).isReg())
175 break;
176 return true;
177 case Hexagon::L2_loadrd_pi:
178 case Hexagon::S2_storerd_pi:
179
180 case Hexagon::A2_tfrpi:
181 case Hexagon::A2_combineii:
182 case Hexagon::A4_combineir:
183 case Hexagon::A4_combineii:
184 case Hexagon::A4_combineri:
185 case Hexagon::A2_combinew:
186 case Hexagon::CONST64_Int_Real:
187
188 case Hexagon::A2_sxtw:
189
190 case Hexagon::A2_andp:
191 case Hexagon::A2_orp:
192 case Hexagon::A2_xorp:
193 case Hexagon::S2_asl_i_p_or:
194 case Hexagon::S2_asl_i_p:
195 case Hexagon::S2_asr_i_p:
196 case Hexagon::S2_lsr_i_p:
197 break;
198 }
199
200 for (auto &Op : MI->operands()) {
201 if (!Op.isReg())
202 continue;
203 unsigned R = Op.getReg();
204 if (!TargetRegisterInfo::isVirtualRegister(R))
205 return true;
206 }
207 return false;
208 }
209
210
partitionRegisters(UUSetMap & P2Rs)211 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
212 typedef std::map<unsigned,unsigned> UUMap;
213 typedef std::vector<unsigned> UVect;
214
215 unsigned NumRegs = MRI->getNumVirtRegs();
216 BitVector DoubleRegs(NumRegs);
217 for (unsigned i = 0; i < NumRegs; ++i) {
218 unsigned R = TargetRegisterInfo::index2VirtReg(i);
219 if (MRI->getRegClass(R) == DoubleRC)
220 DoubleRegs.set(i);
221 }
222
223 BitVector FixedRegs(NumRegs);
224 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
225 unsigned R = TargetRegisterInfo::index2VirtReg(x);
226 MachineInstr *DefI = MRI->getVRegDef(R);
227 // In some cases a register may exist, but never be defined or used.
228 // It should never appear anywhere, but mark it as "fixed", just to be
229 // safe.
230 if (!DefI || isFixedInstr(DefI))
231 FixedRegs.set(x);
232 }
233
234 UUSetMap AssocMap;
235 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
236 if (FixedRegs[x])
237 continue;
238 unsigned R = TargetRegisterInfo::index2VirtReg(x);
239 DEBUG(dbgs() << PrintReg(R, TRI) << " ~~");
240 USet &Asc = AssocMap[R];
241 for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
242 U != Z; ++U) {
243 MachineOperand &Op = *U;
244 MachineInstr *UseI = Op.getParent();
245 if (isFixedInstr(UseI))
246 continue;
247 for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
248 MachineOperand &MO = UseI->getOperand(i);
249 // Skip non-registers or registers with subregisters.
250 if (&MO == &Op || !MO.isReg() || MO.getSubReg())
251 continue;
252 unsigned T = MO.getReg();
253 if (!TargetRegisterInfo::isVirtualRegister(T)) {
254 FixedRegs.set(x);
255 continue;
256 }
257 if (MRI->getRegClass(T) != DoubleRC)
258 continue;
259 unsigned u = TargetRegisterInfo::virtReg2Index(T);
260 if (FixedRegs[u])
261 continue;
262 DEBUG(dbgs() << ' ' << PrintReg(T, TRI));
263 Asc.insert(T);
264 // Make it symmetric.
265 AssocMap[T].insert(R);
266 }
267 }
268 DEBUG(dbgs() << '\n');
269 }
270
271 UUMap R2P;
272 unsigned NextP = 1;
273 USet Visited;
274 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
275 unsigned R = TargetRegisterInfo::index2VirtReg(x);
276 if (Visited.count(R))
277 continue;
278 // Create a new partition for R.
279 unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
280 UVect WorkQ;
281 WorkQ.push_back(R);
282 for (unsigned i = 0; i < WorkQ.size(); ++i) {
283 unsigned T = WorkQ[i];
284 if (Visited.count(T))
285 continue;
286 R2P[T] = ThisP;
287 Visited.insert(T);
288 // Add all registers associated with T.
289 USet &Asc = AssocMap[T];
290 for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
291 WorkQ.push_back(*J);
292 }
293 }
294
295 for (auto I : R2P)
296 P2Rs[I.second].insert(I.first);
297 }
298
299
profitImm(unsigned Lo,unsigned Hi)300 static inline int32_t profitImm(unsigned Lo, unsigned Hi) {
301 int32_t P = 0;
302 bool LoZ1 = false, HiZ1 = false;
303 if (Lo == 0 || Lo == 0xFFFFFFFF)
304 P += 10, LoZ1 = true;
305 if (Hi == 0 || Hi == 0xFFFFFFFF)
306 P += 10, HiZ1 = true;
307 if (!LoZ1 && !HiZ1 && Lo == Hi)
308 P += 3;
309 return P;
310 }
311
312
profit(const MachineInstr * MI) const313 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
314 unsigned ImmX = 0;
315 unsigned Opc = MI->getOpcode();
316 switch (Opc) {
317 case TargetOpcode::PHI:
318 for (const auto &Op : MI->operands())
319 if (!Op.getSubReg())
320 return 0;
321 return 10;
322 case TargetOpcode::COPY:
323 if (MI->getOperand(1).getSubReg() != 0)
324 return 10;
325 return 0;
326
327 case Hexagon::L2_loadrd_io:
328 case Hexagon::S2_storerd_io:
329 return -1;
330 case Hexagon::L2_loadrd_pi:
331 case Hexagon::S2_storerd_pi:
332 return 2;
333
334 case Hexagon::A2_tfrpi:
335 case Hexagon::CONST64_Int_Real: {
336 uint64_t D = MI->getOperand(1).getImm();
337 unsigned Lo = D & 0xFFFFFFFFULL;
338 unsigned Hi = D >> 32;
339 return profitImm(Lo, Hi);
340 }
341 case Hexagon::A2_combineii:
342 case Hexagon::A4_combineii:
343 return profitImm(MI->getOperand(1).getImm(),
344 MI->getOperand(2).getImm());
345 case Hexagon::A4_combineri:
346 ImmX++;
347 case Hexagon::A4_combineir: {
348 ImmX++;
349 int64_t V = MI->getOperand(ImmX).getImm();
350 if (V == 0 || V == -1)
351 return 10;
352 // Fall through into A2_combinew.
353 }
354 case Hexagon::A2_combinew:
355 return 2;
356
357 case Hexagon::A2_sxtw:
358 return 3;
359
360 case Hexagon::A2_andp:
361 case Hexagon::A2_orp:
362 case Hexagon::A2_xorp:
363 return 1;
364
365 case Hexagon::S2_asl_i_p_or: {
366 unsigned S = MI->getOperand(3).getImm();
367 if (S == 0 || S == 32)
368 return 10;
369 return -1;
370 }
371 case Hexagon::S2_asl_i_p:
372 case Hexagon::S2_asr_i_p:
373 case Hexagon::S2_lsr_i_p:
374 unsigned S = MI->getOperand(2).getImm();
375 if (S == 0 || S == 32)
376 return 10;
377 if (S == 16)
378 return 5;
379 if (S == 48)
380 return 7;
381 return -10;
382 }
383
384 return 0;
385 }
386
387
isProfitable(const USet & Part,LoopRegMap & IRM) const388 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
389 const {
390 unsigned FixedNum = 0, SplitNum = 0, LoopPhiNum = 0;
391 int32_t TotalP = 0;
392
393 for (unsigned DR : Part) {
394 MachineInstr *DefI = MRI->getVRegDef(DR);
395 int32_t P = profit(DefI);
396 if (P == INT_MIN)
397 return false;
398 TotalP += P;
399 // Reduce the profitability of splitting induction registers.
400 if (isInduction(DR, IRM))
401 TotalP -= 30;
402
403 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
404 U != W; ++U) {
405 MachineInstr *UseI = U->getParent();
406 if (isFixedInstr(UseI)) {
407 FixedNum++;
408 // Calculate the cost of generating REG_SEQUENCE instructions.
409 for (auto &Op : UseI->operands()) {
410 if (Op.isReg() && Part.count(Op.getReg()))
411 if (Op.getSubReg())
412 TotalP -= 2;
413 }
414 continue;
415 }
416 // If a register from this partition is used in a fixed instruction,
417 // and there is also a register in this partition that is used in
418 // a loop phi node, then decrease the splitting profit as this can
419 // confuse the modulo scheduler.
420 if (UseI->isPHI()) {
421 const MachineBasicBlock *PB = UseI->getParent();
422 const MachineLoop *L = MLI->getLoopFor(PB);
423 if (L && L->getHeader() == PB)
424 LoopPhiNum++;
425 }
426 // Splittable instruction.
427 SplitNum++;
428 int32_t P = profit(UseI);
429 if (P == INT_MIN)
430 return false;
431 TotalP += P;
432 }
433 }
434
435 if (FixedNum > 0 && LoopPhiNum > 0)
436 TotalP -= 20*LoopPhiNum;
437
438 DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
439 return TotalP > 0;
440 }
441
442
collectIndRegsForLoop(const MachineLoop * L,USet & Rs)443 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
444 USet &Rs) {
445 const MachineBasicBlock *HB = L->getHeader();
446 const MachineBasicBlock *LB = L->getLoopLatch();
447 if (!HB || !LB)
448 return;
449
450 // Examine the latch branch. Expect it to be a conditional branch to
451 // the header (either "br-cond header" or "br-cond exit; br header").
452 MachineBasicBlock *TB = 0, *FB = 0;
453 MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
454 SmallVector<MachineOperand,2> Cond;
455 bool BadLB = TII->AnalyzeBranch(*TmpLB, TB, FB, Cond, false);
456 // Only analyzable conditional branches. HII::AnalyzeBranch will put
457 // the branch opcode as the first element of Cond, and the predicate
458 // operand as the second.
459 if (BadLB || Cond.size() != 2)
460 return;
461 // Only simple jump-conditional (with or without negation).
462 if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
463 return;
464 // Must go to the header.
465 if (TB != HB && FB != HB)
466 return;
467 assert(Cond[1].isReg() && "Unexpected Cond vector from AnalyzeBranch");
468 // Expect a predicate register.
469 unsigned PR = Cond[1].getReg();
470 assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
471
472 // Get the registers on which the loop controlling compare instruction
473 // depends.
474 unsigned CmpR1 = 0, CmpR2 = 0;
475 const MachineInstr *CmpI = MRI->getVRegDef(PR);
476 while (CmpI->getOpcode() == Hexagon::C2_not)
477 CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
478
479 int Mask = 0, Val = 0;
480 bool OkCI = TII->analyzeCompare(CmpI, CmpR1, CmpR2, Mask, Val);
481 if (!OkCI)
482 return;
483 // Eliminate non-double input registers.
484 if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
485 CmpR1 = 0;
486 if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
487 CmpR2 = 0;
488 if (!CmpR1 && !CmpR2)
489 return;
490
491 // Now examine the top of the loop: the phi nodes that could poten-
492 // tially define loop induction registers. The registers defined by
493 // such a phi node would be used in a 64-bit add, which then would
494 // be used in the loop compare instruction.
495
496 // Get the set of all double registers defined by phi nodes in the
497 // loop header.
498 typedef std::vector<unsigned> UVect;
499 UVect DP;
500 for (auto &MI : *HB) {
501 if (!MI.isPHI())
502 break;
503 const MachineOperand &MD = MI.getOperand(0);
504 unsigned R = MD.getReg();
505 if (MRI->getRegClass(R) == DoubleRC)
506 DP.push_back(R);
507 }
508 if (DP.empty())
509 return;
510
511 auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
512 for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
513 I != E; ++I) {
514 const MachineInstr *UseI = I->getParent();
515 if (UseI->getOpcode() != Hexagon::A2_addp)
516 continue;
517 // Get the output from the add. If it is one of the inputs to the
518 // loop-controlling compare instruction, then R is likely an induc-
519 // tion register.
520 unsigned T = UseI->getOperand(0).getReg();
521 if (T == CmpR1 || T == CmpR2)
522 return false;
523 }
524 return true;
525 };
526 UVect::iterator End = std::remove_if(DP.begin(), DP.end(), NoIndOp);
527 Rs.insert(DP.begin(), End);
528 Rs.insert(CmpR1);
529 Rs.insert(CmpR2);
530
531 DEBUG({
532 dbgs() << "For loop at BB#" << HB->getNumber() << " ind regs: ";
533 dump_partition(dbgs(), Rs, *TRI);
534 dbgs() << '\n';
535 });
536 }
537
538
collectIndRegs(LoopRegMap & IRM)539 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
540 typedef std::vector<MachineLoop*> LoopVector;
541 LoopVector WorkQ;
542
543 for (auto I : *MLI)
544 WorkQ.push_back(I);
545 for (unsigned i = 0; i < WorkQ.size(); ++i) {
546 for (auto I : *WorkQ[i])
547 WorkQ.push_back(I);
548 }
549
550 USet Rs;
551 for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
552 MachineLoop *L = WorkQ[i];
553 Rs.clear();
554 collectIndRegsForLoop(L, Rs);
555 if (!Rs.empty())
556 IRM.insert(std::make_pair(L, Rs));
557 }
558 }
559
560
createHalfInstr(unsigned Opc,MachineInstr * MI,const UUPairMap & PairMap,unsigned SubR)561 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
562 const UUPairMap &PairMap, unsigned SubR) {
563 MachineBasicBlock &B = *MI->getParent();
564 DebugLoc DL = MI->getDebugLoc();
565 MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
566
567 for (auto &Op : MI->operands()) {
568 if (!Op.isReg()) {
569 NewI->addOperand(Op);
570 continue;
571 }
572 // For register operands, set the subregister.
573 unsigned R = Op.getReg();
574 unsigned SR = Op.getSubReg();
575 bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R);
576 bool isKill = Op.isKill();
577 if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
578 isKill = false;
579 UUPairMap::const_iterator F = PairMap.find(R);
580 if (F == PairMap.end()) {
581 SR = SubR;
582 } else {
583 const UUPair &P = F->second;
584 R = (SubR == Hexagon::subreg_loreg) ? P.first : P.second;
585 SR = 0;
586 }
587 }
588 auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
589 Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
590 Op.isInternalRead());
591 NewI->addOperand(CO);
592 }
593 }
594
595
splitMemRef(MachineInstr * MI,const UUPairMap & PairMap)596 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
597 const UUPairMap &PairMap) {
598 bool Load = MI->mayLoad();
599 unsigned OrigOpc = MI->getOpcode();
600 bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
601 OrigOpc == Hexagon::S2_storerd_pi);
602 MachineInstr *LowI, *HighI;
603 MachineBasicBlock &B = *MI->getParent();
604 DebugLoc DL = MI->getDebugLoc();
605
606 // Index of the base-address-register operand.
607 unsigned AdrX = PostInc ? (Load ? 2 : 1)
608 : (Load ? 1 : 0);
609 MachineOperand &AdrOp = MI->getOperand(AdrX);
610 unsigned RSA = getRegState(AdrOp);
611 MachineOperand &ValOp = Load ? MI->getOperand(0)
612 : (PostInc ? MI->getOperand(3)
613 : MI->getOperand(2));
614 UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
615 assert(F != PairMap.end());
616
617 if (Load) {
618 const UUPair &P = F->second;
619 int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
620 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
621 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
622 .addImm(Off);
623 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
624 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
625 .addImm(Off+4);
626 } else {
627 const UUPair &P = F->second;
628 int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
629 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
630 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
631 .addImm(Off)
632 .addReg(P.first);
633 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
634 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
635 .addImm(Off+4)
636 .addReg(P.second);
637 }
638
639 if (PostInc) {
640 // Create the increment of the address register.
641 int64_t Inc = Load ? MI->getOperand(3).getImm()
642 : MI->getOperand(2).getImm();
643 MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
644 const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
645 unsigned NewR = MRI->createVirtualRegister(RC);
646 assert(!UpdOp.getSubReg() && "Def operand with subreg");
647 BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
648 .addReg(AdrOp.getReg(), RSA)
649 .addImm(Inc);
650 MRI->replaceRegWith(UpdOp.getReg(), NewR);
651 // The original instruction will be deleted later.
652 }
653
654 // Generate a new pair of memory-operands.
655 MachineFunction &MF = *B.getParent();
656 for (auto &MO : MI->memoperands()) {
657 const MachinePointerInfo &Ptr = MO->getPointerInfo();
658 unsigned F = MO->getFlags();
659 int A = MO->getAlignment();
660
661 auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A);
662 LowI->addMemOperand(MF, Tmp1);
663 auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4));
664 HighI->addMemOperand(MF, Tmp2);
665 }
666 }
667
668
splitImmediate(MachineInstr * MI,const UUPairMap & PairMap)669 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
670 const UUPairMap &PairMap) {
671 MachineOperand &Op0 = MI->getOperand(0);
672 MachineOperand &Op1 = MI->getOperand(1);
673 assert(Op0.isReg() && Op1.isImm());
674 uint64_t V = Op1.getImm();
675
676 MachineBasicBlock &B = *MI->getParent();
677 DebugLoc DL = MI->getDebugLoc();
678 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
679 assert(F != PairMap.end());
680 const UUPair &P = F->second;
681
682 // The operand to A2_tfrsi can only have 32 significant bits. Immediate
683 // values in MachineOperand are stored as 64-bit integers, and so the
684 // value -1 may be represented either as 64-bit -1, or 4294967295. Both
685 // will have the 32 higher bits truncated in the end, but -1 will remain
686 // as -1, while the latter may appear to be a large unsigned value
687 // requiring a constant extender. The casting to int32_t will select the
688 // former representation. (The same reasoning applies to all 32-bit
689 // values.)
690 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
691 .addImm(int32_t(V & 0xFFFFFFFFULL));
692 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
693 .addImm(int32_t(V >> 32));
694 }
695
696
splitCombine(MachineInstr * MI,const UUPairMap & PairMap)697 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
698 const UUPairMap &PairMap) {
699 MachineOperand &Op0 = MI->getOperand(0);
700 MachineOperand &Op1 = MI->getOperand(1);
701 MachineOperand &Op2 = MI->getOperand(2);
702 assert(Op0.isReg());
703
704 MachineBasicBlock &B = *MI->getParent();
705 DebugLoc DL = MI->getDebugLoc();
706 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
707 assert(F != PairMap.end());
708 const UUPair &P = F->second;
709
710 if (Op1.isImm()) {
711 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
712 .addImm(Op1.getImm());
713 } else if (Op1.isReg()) {
714 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
715 .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
716 } else
717 llvm_unreachable("Unexpected operand");
718
719 if (Op2.isImm()) {
720 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
721 .addImm(Op2.getImm());
722 } else if (Op2.isReg()) {
723 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
724 .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
725 } else
726 llvm_unreachable("Unexpected operand");
727 }
728
729
splitExt(MachineInstr * MI,const UUPairMap & PairMap)730 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
731 const UUPairMap &PairMap) {
732 MachineOperand &Op0 = MI->getOperand(0);
733 MachineOperand &Op1 = MI->getOperand(1);
734 assert(Op0.isReg() && Op1.isReg());
735
736 MachineBasicBlock &B = *MI->getParent();
737 DebugLoc DL = MI->getDebugLoc();
738 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
739 assert(F != PairMap.end());
740 const UUPair &P = F->second;
741 unsigned RS = getRegState(Op1);
742
743 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
744 .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
745 BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
746 .addReg(Op1.getReg(), RS, Op1.getSubReg())
747 .addImm(31);
748 }
749
750
splitShift(MachineInstr * MI,const UUPairMap & PairMap)751 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
752 const UUPairMap &PairMap) {
753 MachineOperand &Op0 = MI->getOperand(0);
754 MachineOperand &Op1 = MI->getOperand(1);
755 MachineOperand &Op2 = MI->getOperand(2);
756 assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
757 int64_t Sh64 = Op2.getImm();
758 assert(Sh64 >= 0 && Sh64 < 64);
759 unsigned S = Sh64;
760
761 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
762 assert(F != PairMap.end());
763 const UUPair &P = F->second;
764 unsigned LoR = P.first;
765 unsigned HiR = P.second;
766 using namespace Hexagon;
767
768 unsigned Opc = MI->getOpcode();
769 bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
770 bool Left = !Right;
771 bool Signed = (Opc == S2_asr_i_p);
772
773 MachineBasicBlock &B = *MI->getParent();
774 DebugLoc DL = MI->getDebugLoc();
775 unsigned RS = getRegState(Op1);
776 unsigned ShiftOpc = Left ? S2_asl_i_r
777 : (Signed ? S2_asr_i_r : S2_lsr_i_r);
778 unsigned LoSR = subreg_loreg;
779 unsigned HiSR = subreg_hireg;
780
781 if (S == 0) {
782 // No shift, subregister copy.
783 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
784 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
785 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
786 .addReg(Op1.getReg(), RS, HiSR);
787 } else if (S < 32) {
788 const TargetRegisterClass *IntRC = &IntRegsRegClass;
789 unsigned TmpR = MRI->createVirtualRegister(IntRC);
790 // Expansion:
791 // Shift left: DR = shl R, #s
792 // LoR = shl R.lo, #s
793 // TmpR = extractu R.lo, #s, #32-s
794 // HiR = or (TmpR, asl(R.hi, #s))
795 // Shift right: DR = shr R, #s
796 // HiR = shr R.hi, #s
797 // TmpR = shr R.lo, #s
798 // LoR = insert TmpR, R.hi, #s, #32-s
799
800 // Shift left:
801 // LoR = shl R.lo, #s
802 // Shift right:
803 // TmpR = shr R.lo, #s
804
805 // Make a special case for A2_aslh and A2_asrh (they are predicable as
806 // opposed to S2_asl_i_r/S2_asr_i_r).
807 if (S == 16 && Left)
808 BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
809 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
810 else if (S == 16 && Signed)
811 BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
812 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
813 else
814 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
815 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
816 .addImm(S);
817
818 if (Left) {
819 // TmpR = extractu R.lo, #s, #32-s
820 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
821 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
822 .addImm(S)
823 .addImm(32-S);
824 // HiR = or (TmpR, asl(R.hi, #s))
825 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
826 .addReg(TmpR)
827 .addReg(Op1.getReg(), RS, HiSR)
828 .addImm(S);
829 } else {
830 // HiR = shr R.hi, #s
831 BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
832 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
833 .addImm(S);
834 // LoR = insert TmpR, R.hi, #s, #32-s
835 BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
836 .addReg(TmpR)
837 .addReg(Op1.getReg(), RS, HiSR)
838 .addImm(S)
839 .addImm(32-S);
840 }
841 } else if (S == 32) {
842 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
843 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
844 if (!Signed)
845 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
846 .addImm(0);
847 else // Must be right shift.
848 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
849 .addReg(Op1.getReg(), RS, HiSR)
850 .addImm(31);
851 } else if (S < 64) {
852 S -= 32;
853 if (S == 16 && Left)
854 BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
855 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
856 else if (S == 16 && Signed)
857 BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
858 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
859 else
860 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
861 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
862 .addImm(S);
863
864 if (Signed)
865 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
866 .addReg(Op1.getReg(), RS, HiSR)
867 .addImm(31);
868 else
869 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
870 .addImm(0);
871 }
872 }
873
874
splitAslOr(MachineInstr * MI,const UUPairMap & PairMap)875 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
876 const UUPairMap &PairMap) {
877 MachineOperand &Op0 = MI->getOperand(0);
878 MachineOperand &Op1 = MI->getOperand(1);
879 MachineOperand &Op2 = MI->getOperand(2);
880 MachineOperand &Op3 = MI->getOperand(3);
881 assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
882 int64_t Sh64 = Op3.getImm();
883 assert(Sh64 >= 0 && Sh64 < 64);
884 unsigned S = Sh64;
885
886 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
887 assert(F != PairMap.end());
888 const UUPair &P = F->second;
889 unsigned LoR = P.first;
890 unsigned HiR = P.second;
891 using namespace Hexagon;
892
893 MachineBasicBlock &B = *MI->getParent();
894 DebugLoc DL = MI->getDebugLoc();
895 unsigned RS1 = getRegState(Op1);
896 unsigned RS2 = getRegState(Op2);
897 const TargetRegisterClass *IntRC = &IntRegsRegClass;
898
899 unsigned LoSR = subreg_loreg;
900 unsigned HiSR = subreg_hireg;
901
902 // Op0 = S2_asl_i_p_or Op1, Op2, Op3
903 // means: Op0 = or (Op1, asl(Op2, Op3))
904
905 // Expansion of
906 // DR = or (R1, asl(R2, #s))
907 //
908 // LoR = or (R1.lo, asl(R2.lo, #s))
909 // Tmp1 = extractu R2.lo, #s, #32-s
910 // Tmp2 = or R1.hi, Tmp1
911 // HiR = or (Tmp2, asl(R2.hi, #s))
912
913 if (S == 0) {
914 // DR = or (R1, asl(R2, #0))
915 // -> or (R1, R2)
916 // i.e. LoR = or R1.lo, R2.lo
917 // HiR = or R1.hi, R2.hi
918 BuildMI(B, MI, DL, TII->get(A2_or), LoR)
919 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
920 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
921 BuildMI(B, MI, DL, TII->get(A2_or), HiR)
922 .addReg(Op1.getReg(), RS1, HiSR)
923 .addReg(Op2.getReg(), RS2, HiSR);
924 } else if (S < 32) {
925 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
926 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
927 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
928 .addImm(S);
929 unsigned TmpR1 = MRI->createVirtualRegister(IntRC);
930 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
931 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
932 .addImm(S)
933 .addImm(32-S);
934 unsigned TmpR2 = MRI->createVirtualRegister(IntRC);
935 BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
936 .addReg(Op1.getReg(), RS1, HiSR)
937 .addReg(TmpR1);
938 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
939 .addReg(TmpR2)
940 .addReg(Op2.getReg(), RS2, HiSR)
941 .addImm(S);
942 } else if (S == 32) {
943 // DR = or (R1, asl(R2, #32))
944 // -> or R1, R2.lo
945 // LoR = R1.lo
946 // HiR = or R1.hi, R2.lo
947 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
948 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
949 BuildMI(B, MI, DL, TII->get(A2_or), HiR)
950 .addReg(Op1.getReg(), RS1, HiSR)
951 .addReg(Op2.getReg(), RS2, LoSR);
952 } else if (S < 64) {
953 // DR = or (R1, asl(R2, #s))
954 //
955 // LoR = R1:lo
956 // HiR = or (R1:hi, asl(R2:lo, #s-32))
957 S -= 32;
958 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
959 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
960 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
961 .addReg(Op1.getReg(), RS1, HiSR)
962 .addReg(Op2.getReg(), RS2, LoSR)
963 .addImm(S);
964 }
965 }
966
967
splitInstr(MachineInstr * MI,const UUPairMap & PairMap)968 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
969 const UUPairMap &PairMap) {
970 DEBUG(dbgs() << "Splitting: " << *MI);
971 bool Split = false;
972 unsigned Opc = MI->getOpcode();
973 using namespace Hexagon;
974
975 switch (Opc) {
976 case TargetOpcode::PHI:
977 case TargetOpcode::COPY: {
978 unsigned DstR = MI->getOperand(0).getReg();
979 if (MRI->getRegClass(DstR) == DoubleRC) {
980 createHalfInstr(Opc, MI, PairMap, subreg_loreg);
981 createHalfInstr(Opc, MI, PairMap, subreg_hireg);
982 Split = true;
983 }
984 break;
985 }
986 case A2_andp:
987 createHalfInstr(A2_and, MI, PairMap, subreg_loreg);
988 createHalfInstr(A2_and, MI, PairMap, subreg_hireg);
989 Split = true;
990 break;
991 case A2_orp:
992 createHalfInstr(A2_or, MI, PairMap, subreg_loreg);
993 createHalfInstr(A2_or, MI, PairMap, subreg_hireg);
994 Split = true;
995 break;
996 case A2_xorp:
997 createHalfInstr(A2_xor, MI, PairMap, subreg_loreg);
998 createHalfInstr(A2_xor, MI, PairMap, subreg_hireg);
999 Split = true;
1000 break;
1001
1002 case L2_loadrd_io:
1003 case L2_loadrd_pi:
1004 case S2_storerd_io:
1005 case S2_storerd_pi:
1006 splitMemRef(MI, PairMap);
1007 Split = true;
1008 break;
1009
1010 case A2_tfrpi:
1011 case CONST64_Int_Real:
1012 splitImmediate(MI, PairMap);
1013 Split = true;
1014 break;
1015
1016 case A2_combineii:
1017 case A4_combineir:
1018 case A4_combineii:
1019 case A4_combineri:
1020 case A2_combinew:
1021 splitCombine(MI, PairMap);
1022 Split = true;
1023 break;
1024
1025 case A2_sxtw:
1026 splitExt(MI, PairMap);
1027 Split = true;
1028 break;
1029
1030 case S2_asl_i_p:
1031 case S2_asr_i_p:
1032 case S2_lsr_i_p:
1033 splitShift(MI, PairMap);
1034 Split = true;
1035 break;
1036
1037 case S2_asl_i_p_or:
1038 splitAslOr(MI, PairMap);
1039 Split = true;
1040 break;
1041
1042 default:
1043 llvm_unreachable("Instruction not splitable");
1044 return false;
1045 }
1046
1047 return Split;
1048 }
1049
1050
replaceSubregUses(MachineInstr * MI,const UUPairMap & PairMap)1051 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1052 const UUPairMap &PairMap) {
1053 for (auto &Op : MI->operands()) {
1054 if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1055 continue;
1056 unsigned R = Op.getReg();
1057 UUPairMap::const_iterator F = PairMap.find(R);
1058 if (F == PairMap.end())
1059 continue;
1060 const UUPair &P = F->second;
1061 switch (Op.getSubReg()) {
1062 case Hexagon::subreg_loreg:
1063 Op.setReg(P.first);
1064 break;
1065 case Hexagon::subreg_hireg:
1066 Op.setReg(P.second);
1067 break;
1068 }
1069 Op.setSubReg(0);
1070 }
1071 }
1072
1073
collapseRegPairs(MachineInstr * MI,const UUPairMap & PairMap)1074 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1075 const UUPairMap &PairMap) {
1076 MachineBasicBlock &B = *MI->getParent();
1077 DebugLoc DL = MI->getDebugLoc();
1078
1079 for (auto &Op : MI->operands()) {
1080 if (!Op.isReg() || !Op.isUse())
1081 continue;
1082 unsigned R = Op.getReg();
1083 if (!TargetRegisterInfo::isVirtualRegister(R))
1084 continue;
1085 if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1086 continue;
1087 UUPairMap::const_iterator F = PairMap.find(R);
1088 if (F == PairMap.end())
1089 continue;
1090 const UUPair &Pr = F->second;
1091 unsigned NewDR = MRI->createVirtualRegister(DoubleRC);
1092 BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1093 .addReg(Pr.first)
1094 .addImm(Hexagon::subreg_loreg)
1095 .addReg(Pr.second)
1096 .addImm(Hexagon::subreg_hireg);
1097 Op.setReg(NewDR);
1098 }
1099 }
1100
1101
splitPartition(const USet & Part)1102 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1103 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1104 typedef std::set<MachineInstr*> MISet;
1105 bool Changed = false;
1106
1107 DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI);
1108 dbgs() << '\n');
1109
1110 UUPairMap PairMap;
1111
1112 MISet SplitIns;
1113 for (unsigned DR : Part) {
1114 MachineInstr *DefI = MRI->getVRegDef(DR);
1115 SplitIns.insert(DefI);
1116
1117 // Collect all instructions, including fixed ones. We won't split them,
1118 // but we need to visit them again to insert the REG_SEQUENCE instructions.
1119 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1120 U != W; ++U)
1121 SplitIns.insert(U->getParent());
1122
1123 unsigned LoR = MRI->createVirtualRegister(IntRC);
1124 unsigned HiR = MRI->createVirtualRegister(IntRC);
1125 DEBUG(dbgs() << "Created mapping: " << PrintReg(DR, TRI) << " -> "
1126 << PrintReg(HiR, TRI) << ':' << PrintReg(LoR, TRI) << '\n');
1127 PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1128 }
1129
1130 MISet Erase;
1131 for (auto MI : SplitIns) {
1132 if (isFixedInstr(MI)) {
1133 collapseRegPairs(MI, PairMap);
1134 } else {
1135 bool Done = splitInstr(MI, PairMap);
1136 if (Done)
1137 Erase.insert(MI);
1138 Changed |= Done;
1139 }
1140 }
1141
1142 for (unsigned DR : Part) {
1143 // Before erasing "double" instructions, revisit all uses of the double
1144 // registers in this partition, and replace all uses of them with subre-
1145 // gisters, with the corresponding single registers.
1146 MISet Uses;
1147 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1148 U != W; ++U)
1149 Uses.insert(U->getParent());
1150 for (auto M : Uses)
1151 replaceSubregUses(M, PairMap);
1152 }
1153
1154 for (auto MI : Erase) {
1155 MachineBasicBlock *B = MI->getParent();
1156 B->erase(MI);
1157 }
1158
1159 return Changed;
1160 }
1161
1162
runOnMachineFunction(MachineFunction & MF)1163 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1164 DEBUG(dbgs() << "Splitting double registers in function: "
1165 << MF.getName() << '\n');
1166
1167 auto &ST = MF.getSubtarget<HexagonSubtarget>();
1168 TRI = ST.getRegisterInfo();
1169 TII = ST.getInstrInfo();
1170 MRI = &MF.getRegInfo();
1171 MLI = &getAnalysis<MachineLoopInfo>();
1172
1173 UUSetMap P2Rs;
1174 LoopRegMap IRM;
1175
1176 collectIndRegs(IRM);
1177 partitionRegisters(P2Rs);
1178
1179 DEBUG({
1180 dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1181 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1182 dbgs() << '#' << I->first << " -> ";
1183 dump_partition(dbgs(), I->second, *TRI);
1184 dbgs() << '\n';
1185 }
1186 });
1187
1188 bool Changed = false;
1189 int Limit = MaxHSDR;
1190
1191 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1192 if (I->first == 0)
1193 continue;
1194 if (Limit >= 0 && Counter >= Limit)
1195 break;
1196 USet &Part = I->second;
1197 DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n');
1198 if (!isProfitable(Part, IRM))
1199 continue;
1200 Counter++;
1201 Changed |= splitPartition(Part);
1202 }
1203
1204 return Changed;
1205 }
1206
createHexagonSplitDoubleRegs()1207 FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1208 return new HexagonSplitDoubleRegs();
1209 }
1210