1 //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an _extremely_ simple interprocedural constant
11 // propagation pass. It could certainly be improved in many different ways,
12 // like using a worklist. This pass makes arguments dead, but does not remove
13 // them. The existing dead argument elimination pass should be run after this
14 // to clean up the mess.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/Transforms/IPO.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Pass.h"
27 using namespace llvm;
28
29 #define DEBUG_TYPE "ipconstprop"
30
31 STATISTIC(NumArgumentsProped, "Number of args turned into constants");
32 STATISTIC(NumReturnValProped, "Number of return values turned into constants");
33
34 namespace {
35 /// IPCP - The interprocedural constant propagation pass
36 ///
37 struct IPCP : public ModulePass {
38 static char ID; // Pass identification, replacement for typeid
IPCP__anon6ecd114e0111::IPCP39 IPCP() : ModulePass(ID) {
40 initializeIPCPPass(*PassRegistry::getPassRegistry());
41 }
42
43 bool runOnModule(Module &M) override;
44 private:
45 bool PropagateConstantsIntoArguments(Function &F);
46 bool PropagateConstantReturn(Function &F);
47 };
48 }
49
50 char IPCP::ID = 0;
51 INITIALIZE_PASS(IPCP, "ipconstprop",
52 "Interprocedural constant propagation", false, false)
53
createIPConstantPropagationPass()54 ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
55
runOnModule(Module & M)56 bool IPCP::runOnModule(Module &M) {
57 bool Changed = false;
58 bool LocalChange = true;
59
60 // FIXME: instead of using smart algorithms, we just iterate until we stop
61 // making changes.
62 while (LocalChange) {
63 LocalChange = false;
64 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
65 if (!I->isDeclaration()) {
66 // Delete any klingons.
67 I->removeDeadConstantUsers();
68 if (I->hasLocalLinkage())
69 LocalChange |= PropagateConstantsIntoArguments(*I);
70 Changed |= PropagateConstantReturn(*I);
71 }
72 Changed |= LocalChange;
73 }
74 return Changed;
75 }
76
77 /// PropagateConstantsIntoArguments - Look at all uses of the specified
78 /// function. If all uses are direct call sites, and all pass a particular
79 /// constant in for an argument, propagate that constant in as the argument.
80 ///
PropagateConstantsIntoArguments(Function & F)81 bool IPCP::PropagateConstantsIntoArguments(Function &F) {
82 if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
83
84 // For each argument, keep track of its constant value and whether it is a
85 // constant or not. The bool is driven to true when found to be non-constant.
86 SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
87 ArgumentConstants.resize(F.arg_size());
88
89 unsigned NumNonconstant = 0;
90 for (Use &U : F.uses()) {
91 User *UR = U.getUser();
92 // Ignore blockaddress uses.
93 if (isa<BlockAddress>(UR)) continue;
94
95 // Used by a non-instruction, or not the callee of a function, do not
96 // transform.
97 if (!isa<CallInst>(UR) && !isa<InvokeInst>(UR))
98 return false;
99
100 CallSite CS(cast<Instruction>(UR));
101 if (!CS.isCallee(&U))
102 return false;
103
104 // Check out all of the potentially constant arguments. Note that we don't
105 // inspect varargs here.
106 CallSite::arg_iterator AI = CS.arg_begin();
107 Function::arg_iterator Arg = F.arg_begin();
108 for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
109 ++i, ++AI, ++Arg) {
110
111 // If this argument is known non-constant, ignore it.
112 if (ArgumentConstants[i].second)
113 continue;
114
115 Constant *C = dyn_cast<Constant>(*AI);
116 if (C && ArgumentConstants[i].first == nullptr) {
117 ArgumentConstants[i].first = C; // First constant seen.
118 } else if (C && ArgumentConstants[i].first == C) {
119 // Still the constant value we think it is.
120 } else if (*AI == &*Arg) {
121 // Ignore recursive calls passing argument down.
122 } else {
123 // Argument became non-constant. If all arguments are non-constant now,
124 // give up on this function.
125 if (++NumNonconstant == ArgumentConstants.size())
126 return false;
127 ArgumentConstants[i].second = true;
128 }
129 }
130 }
131
132 // If we got to this point, there is a constant argument!
133 assert(NumNonconstant != ArgumentConstants.size());
134 bool MadeChange = false;
135 Function::arg_iterator AI = F.arg_begin();
136 for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
137 // Do we have a constant argument?
138 if (ArgumentConstants[i].second || AI->use_empty() ||
139 AI->hasInAllocaAttr() || (AI->hasByValAttr() && !F.onlyReadsMemory()))
140 continue;
141
142 Value *V = ArgumentConstants[i].first;
143 if (!V) V = UndefValue::get(AI->getType());
144 AI->replaceAllUsesWith(V);
145 ++NumArgumentsProped;
146 MadeChange = true;
147 }
148 return MadeChange;
149 }
150
151
152 // Check to see if this function returns one or more constants. If so, replace
153 // all callers that use those return values with the constant value. This will
154 // leave in the actual return values and instructions, but deadargelim will
155 // clean that up.
156 //
157 // Additionally if a function always returns one of its arguments directly,
158 // callers will be updated to use the value they pass in directly instead of
159 // using the return value.
PropagateConstantReturn(Function & F)160 bool IPCP::PropagateConstantReturn(Function &F) {
161 if (F.getReturnType()->isVoidTy())
162 return false; // No return value.
163
164 // If this function could be overridden later in the link stage, we can't
165 // propagate information about its results into callers.
166 if (F.mayBeOverridden())
167 return false;
168
169 // Check to see if this function returns a constant.
170 SmallVector<Value *,4> RetVals;
171 StructType *STy = dyn_cast<StructType>(F.getReturnType());
172 if (STy)
173 for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
174 RetVals.push_back(UndefValue::get(STy->getElementType(i)));
175 else
176 RetVals.push_back(UndefValue::get(F.getReturnType()));
177
178 unsigned NumNonConstant = 0;
179 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
180 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
181 for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
182 // Already found conflicting return values?
183 Value *RV = RetVals[i];
184 if (!RV)
185 continue;
186
187 // Find the returned value
188 Value *V;
189 if (!STy)
190 V = RI->getOperand(0);
191 else
192 V = FindInsertedValue(RI->getOperand(0), i);
193
194 if (V) {
195 // Ignore undefs, we can change them into anything
196 if (isa<UndefValue>(V))
197 continue;
198
199 // Try to see if all the rets return the same constant or argument.
200 if (isa<Constant>(V) || isa<Argument>(V)) {
201 if (isa<UndefValue>(RV)) {
202 // No value found yet? Try the current one.
203 RetVals[i] = V;
204 continue;
205 }
206 // Returning the same value? Good.
207 if (RV == V)
208 continue;
209 }
210 }
211 // Different or no known return value? Don't propagate this return
212 // value.
213 RetVals[i] = nullptr;
214 // All values non-constant? Stop looking.
215 if (++NumNonConstant == RetVals.size())
216 return false;
217 }
218 }
219
220 // If we got here, the function returns at least one constant value. Loop
221 // over all users, replacing any uses of the return value with the returned
222 // constant.
223 bool MadeChange = false;
224 for (Use &U : F.uses()) {
225 CallSite CS(U.getUser());
226 Instruction* Call = CS.getInstruction();
227
228 // Not a call instruction or a call instruction that's not calling F
229 // directly?
230 if (!Call || !CS.isCallee(&U))
231 continue;
232
233 // Call result not used?
234 if (Call->use_empty())
235 continue;
236
237 MadeChange = true;
238
239 if (!STy) {
240 Value* New = RetVals[0];
241 if (Argument *A = dyn_cast<Argument>(New))
242 // Was an argument returned? Then find the corresponding argument in
243 // the call instruction and use that.
244 New = CS.getArgument(A->getArgNo());
245 Call->replaceAllUsesWith(New);
246 continue;
247 }
248
249 for (auto I = Call->user_begin(), E = Call->user_end(); I != E;) {
250 Instruction *Ins = cast<Instruction>(*I);
251
252 // Increment now, so we can remove the use
253 ++I;
254
255 // Find the index of the retval to replace with
256 int index = -1;
257 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
258 if (EV->hasIndices())
259 index = *EV->idx_begin();
260
261 // If this use uses a specific return value, and we have a replacement,
262 // replace it.
263 if (index != -1) {
264 Value *New = RetVals[index];
265 if (New) {
266 if (Argument *A = dyn_cast<Argument>(New))
267 // Was an argument returned? Then find the corresponding argument in
268 // the call instruction and use that.
269 New = CS.getArgument(A->getArgNo());
270 Ins->replaceAllUsesWith(New);
271 Ins->eraseFromParent();
272 }
273 }
274 }
275 }
276
277 if (MadeChange) ++NumReturnValProped;
278 return MadeChange;
279 }
280