1 //===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges. It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 // len = < known positive >
15 // for (i = 0; i < n; i++) {
16 // if (0 <= i && i < len) {
17 // do_something();
18 // } else {
19 // throw_out_of_bounds();
20 // }
21 // }
22 //
23 // to
24 //
25 // len = < known positive >
26 // limit = smin(n, len)
27 // // no first segment
28 // for (i = 0; i < limit; i++) {
29 // if (0 <= i && i < len) { // this check is fully redundant
30 // do_something();
31 // } else {
32 // throw_out_of_bounds();
33 // }
34 // }
35 // for (i = limit; i < n; i++) {
36 // if (0 <= i && i < len) {
37 // do_something();
38 // } else {
39 // throw_out_of_bounds();
40 // }
41 // }
42 //===----------------------------------------------------------------------===//
43
44 #include "llvm/ADT/Optional.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/InstructionSimplify.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Analysis/ScalarEvolution.h"
50 #include "llvm/Analysis/ScalarEvolutionExpander.h"
51 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
52 #include "llvm/Analysis/ValueTracking.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/PatternMatch.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/LoopUtils.h"
68 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
69 #include "llvm/Transforms/Utils/UnrollLoop.h"
70 #include <array>
71
72 using namespace llvm;
73
74 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
75 cl::init(64));
76
77 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
78 cl::init(false));
79
80 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
81 cl::init(false));
82
83 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
84 cl::Hidden, cl::init(10));
85
86 #define DEBUG_TYPE "irce"
87
88 namespace {
89
90 /// An inductive range check is conditional branch in a loop with
91 ///
92 /// 1. a very cold successor (i.e. the branch jumps to that successor very
93 /// rarely)
94 ///
95 /// and
96 ///
97 /// 2. a condition that is provably true for some contiguous range of values
98 /// taken by the containing loop's induction variable.
99 ///
100 class InductiveRangeCheck {
101 // Classifies a range check
102 enum RangeCheckKind : unsigned {
103 // Range check of the form "0 <= I".
104 RANGE_CHECK_LOWER = 1,
105
106 // Range check of the form "I < L" where L is known positive.
107 RANGE_CHECK_UPPER = 2,
108
109 // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
110 // conditions.
111 RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
112
113 // Unrecognized range check condition.
114 RANGE_CHECK_UNKNOWN = (unsigned)-1
115 };
116
117 static const char *rangeCheckKindToStr(RangeCheckKind);
118
119 const SCEV *Offset;
120 const SCEV *Scale;
121 Value *Length;
122 BranchInst *Branch;
123 RangeCheckKind Kind;
124
125 static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
126 ScalarEvolution &SE, Value *&Index,
127 Value *&Length);
128
129 static InductiveRangeCheck::RangeCheckKind
130 parseRangeCheck(Loop *L, ScalarEvolution &SE, Value *Condition,
131 const SCEV *&Index, Value *&UpperLimit);
132
InductiveRangeCheck()133 InductiveRangeCheck() :
134 Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
135
136 public:
getOffset() const137 const SCEV *getOffset() const { return Offset; }
getScale() const138 const SCEV *getScale() const { return Scale; }
getLength() const139 Value *getLength() const { return Length; }
140
print(raw_ostream & OS) const141 void print(raw_ostream &OS) const {
142 OS << "InductiveRangeCheck:\n";
143 OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n";
144 OS << " Offset: ";
145 Offset->print(OS);
146 OS << " Scale: ";
147 Scale->print(OS);
148 OS << " Length: ";
149 if (Length)
150 Length->print(OS);
151 else
152 OS << "(null)";
153 OS << "\n Branch: ";
154 getBranch()->print(OS);
155 OS << "\n";
156 }
157
158 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump()159 void dump() {
160 print(dbgs());
161 }
162 #endif
163
getBranch() const164 BranchInst *getBranch() const { return Branch; }
165
166 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
167 /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
168
169 class Range {
170 const SCEV *Begin;
171 const SCEV *End;
172
173 public:
Range(const SCEV * Begin,const SCEV * End)174 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
175 assert(Begin->getType() == End->getType() && "ill-typed range!");
176 }
177
getType() const178 Type *getType() const { return Begin->getType(); }
getBegin() const179 const SCEV *getBegin() const { return Begin; }
getEnd() const180 const SCEV *getEnd() const { return End; }
181 };
182
183 typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
184
185 /// This is the value the condition of the branch needs to evaluate to for the
186 /// branch to take the hot successor (see (1) above).
getPassingDirection()187 bool getPassingDirection() { return true; }
188
189 /// Computes a range for the induction variable (IndVar) in which the range
190 /// check is redundant and can be constant-folded away. The induction
191 /// variable is not required to be the canonical {0,+,1} induction variable.
192 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
193 const SCEVAddRecExpr *IndVar,
194 IRBuilder<> &B) const;
195
196 /// Create an inductive range check out of BI if possible, else return
197 /// nullptr.
198 static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
199 Loop *L, ScalarEvolution &SE,
200 BranchProbabilityInfo &BPI);
201 };
202
203 class InductiveRangeCheckElimination : public LoopPass {
204 InductiveRangeCheck::AllocatorTy Allocator;
205
206 public:
207 static char ID;
InductiveRangeCheckElimination()208 InductiveRangeCheckElimination() : LoopPass(ID) {
209 initializeInductiveRangeCheckEliminationPass(
210 *PassRegistry::getPassRegistry());
211 }
212
getAnalysisUsage(AnalysisUsage & AU) const213 void getAnalysisUsage(AnalysisUsage &AU) const override {
214 AU.addRequired<LoopInfoWrapperPass>();
215 AU.addRequiredID(LoopSimplifyID);
216 AU.addRequiredID(LCSSAID);
217 AU.addRequired<ScalarEvolutionWrapperPass>();
218 AU.addRequired<BranchProbabilityInfoWrapperPass>();
219 }
220
221 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
222 };
223
224 char InductiveRangeCheckElimination::ID = 0;
225 }
226
227 INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
228 "Inductive range check elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)229 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
230 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
231 INITIALIZE_PASS_DEPENDENCY(LCSSA)
232 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
233 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
234 INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
235 "Inductive range check elimination", false, false)
236
237 const char *InductiveRangeCheck::rangeCheckKindToStr(
238 InductiveRangeCheck::RangeCheckKind RCK) {
239 switch (RCK) {
240 case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
241 return "RANGE_CHECK_UNKNOWN";
242
243 case InductiveRangeCheck::RANGE_CHECK_UPPER:
244 return "RANGE_CHECK_UPPER";
245
246 case InductiveRangeCheck::RANGE_CHECK_LOWER:
247 return "RANGE_CHECK_LOWER";
248
249 case InductiveRangeCheck::RANGE_CHECK_BOTH:
250 return "RANGE_CHECK_BOTH";
251 }
252
253 llvm_unreachable("unknown range check type!");
254 }
255
256 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI`
257 /// cannot
258 /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
259 /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value
260 /// being
261 /// range checked, and set `Length` to the upper limit `Index` is being range
262 /// checked with if (and only if) the range check type is stronger or equal to
263 /// RANGE_CHECK_UPPER.
264 ///
265 InductiveRangeCheck::RangeCheckKind
parseRangeCheckICmp(Loop * L,ICmpInst * ICI,ScalarEvolution & SE,Value * & Index,Value * & Length)266 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
267 ScalarEvolution &SE, Value *&Index,
268 Value *&Length) {
269
270 auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
271 const SCEV *S = SE.getSCEV(V);
272 if (isa<SCEVCouldNotCompute>(S))
273 return false;
274
275 return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
276 SE.isKnownNonNegative(S);
277 };
278
279 using namespace llvm::PatternMatch;
280
281 ICmpInst::Predicate Pred = ICI->getPredicate();
282 Value *LHS = ICI->getOperand(0);
283 Value *RHS = ICI->getOperand(1);
284
285 switch (Pred) {
286 default:
287 return RANGE_CHECK_UNKNOWN;
288
289 case ICmpInst::ICMP_SLE:
290 std::swap(LHS, RHS);
291 // fallthrough
292 case ICmpInst::ICMP_SGE:
293 if (match(RHS, m_ConstantInt<0>())) {
294 Index = LHS;
295 return RANGE_CHECK_LOWER;
296 }
297 return RANGE_CHECK_UNKNOWN;
298
299 case ICmpInst::ICMP_SLT:
300 std::swap(LHS, RHS);
301 // fallthrough
302 case ICmpInst::ICMP_SGT:
303 if (match(RHS, m_ConstantInt<-1>())) {
304 Index = LHS;
305 return RANGE_CHECK_LOWER;
306 }
307
308 if (IsNonNegativeAndNotLoopVarying(LHS)) {
309 Index = RHS;
310 Length = LHS;
311 return RANGE_CHECK_UPPER;
312 }
313 return RANGE_CHECK_UNKNOWN;
314
315 case ICmpInst::ICMP_ULT:
316 std::swap(LHS, RHS);
317 // fallthrough
318 case ICmpInst::ICMP_UGT:
319 if (IsNonNegativeAndNotLoopVarying(LHS)) {
320 Index = RHS;
321 Length = LHS;
322 return RANGE_CHECK_BOTH;
323 }
324 return RANGE_CHECK_UNKNOWN;
325 }
326
327 llvm_unreachable("default clause returns!");
328 }
329
330 /// Parses an arbitrary condition into a range check. `Length` is set only if
331 /// the range check is recognized to be `RANGE_CHECK_UPPER` or stronger.
332 InductiveRangeCheck::RangeCheckKind
parseRangeCheck(Loop * L,ScalarEvolution & SE,Value * Condition,const SCEV * & Index,Value * & Length)333 InductiveRangeCheck::parseRangeCheck(Loop *L, ScalarEvolution &SE,
334 Value *Condition, const SCEV *&Index,
335 Value *&Length) {
336 using namespace llvm::PatternMatch;
337
338 Value *A = nullptr;
339 Value *B = nullptr;
340
341 if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
342 Value *IndexA = nullptr, *IndexB = nullptr;
343 Value *LengthA = nullptr, *LengthB = nullptr;
344 ICmpInst *ICmpA = dyn_cast<ICmpInst>(A), *ICmpB = dyn_cast<ICmpInst>(B);
345
346 if (!ICmpA || !ICmpB)
347 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
348
349 auto RCKindA = parseRangeCheckICmp(L, ICmpA, SE, IndexA, LengthA);
350 auto RCKindB = parseRangeCheckICmp(L, ICmpB, SE, IndexB, LengthB);
351
352 if (RCKindA == InductiveRangeCheck::RANGE_CHECK_UNKNOWN ||
353 RCKindB == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
354 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
355
356 if (IndexA != IndexB)
357 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
358
359 if (LengthA != nullptr && LengthB != nullptr && LengthA != LengthB)
360 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
361
362 Index = SE.getSCEV(IndexA);
363 if (isa<SCEVCouldNotCompute>(Index))
364 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
365
366 Length = LengthA == nullptr ? LengthB : LengthA;
367
368 return (InductiveRangeCheck::RangeCheckKind)(RCKindA | RCKindB);
369 }
370
371 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
372 Value *IndexVal = nullptr;
373
374 auto RCKind = parseRangeCheckICmp(L, ICI, SE, IndexVal, Length);
375
376 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
377 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
378
379 Index = SE.getSCEV(IndexVal);
380 if (isa<SCEVCouldNotCompute>(Index))
381 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
382
383 return RCKind;
384 }
385
386 return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
387 }
388
389
390 InductiveRangeCheck *
create(InductiveRangeCheck::AllocatorTy & A,BranchInst * BI,Loop * L,ScalarEvolution & SE,BranchProbabilityInfo & BPI)391 InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
392 Loop *L, ScalarEvolution &SE,
393 BranchProbabilityInfo &BPI) {
394
395 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
396 return nullptr;
397
398 BranchProbability LikelyTaken(15, 16);
399
400 if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken)
401 return nullptr;
402
403 Value *Length = nullptr;
404 const SCEV *IndexSCEV = nullptr;
405
406 auto RCKind = InductiveRangeCheck::parseRangeCheck(L, SE, BI->getCondition(),
407 IndexSCEV, Length);
408
409 if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
410 return nullptr;
411
412 assert(IndexSCEV && "contract with SplitRangeCheckCondition!");
413 assert((!(RCKind & InductiveRangeCheck::RANGE_CHECK_UPPER) || Length) &&
414 "contract with SplitRangeCheckCondition!");
415
416 const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
417 bool IsAffineIndex =
418 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
419
420 if (!IsAffineIndex)
421 return nullptr;
422
423 InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
424 IRC->Length = Length;
425 IRC->Offset = IndexAddRec->getStart();
426 IRC->Scale = IndexAddRec->getStepRecurrence(SE);
427 IRC->Branch = BI;
428 IRC->Kind = RCKind;
429 return IRC;
430 }
431
432 namespace {
433
434 // Keeps track of the structure of a loop. This is similar to llvm::Loop,
435 // except that it is more lightweight and can track the state of a loop through
436 // changing and potentially invalid IR. This structure also formalizes the
437 // kinds of loops we can deal with -- ones that have a single latch that is also
438 // an exiting block *and* have a canonical induction variable.
439 struct LoopStructure {
440 const char *Tag;
441
442 BasicBlock *Header;
443 BasicBlock *Latch;
444
445 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
446 // successor is `LatchExit', the exit block of the loop.
447 BranchInst *LatchBr;
448 BasicBlock *LatchExit;
449 unsigned LatchBrExitIdx;
450
451 Value *IndVarNext;
452 Value *IndVarStart;
453 Value *LoopExitAt;
454 bool IndVarIncreasing;
455
LoopStructure__anon764fa5440311::LoopStructure456 LoopStructure()
457 : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
458 LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
459 IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
460
map__anon764fa5440311::LoopStructure461 template <typename M> LoopStructure map(M Map) const {
462 LoopStructure Result;
463 Result.Tag = Tag;
464 Result.Header = cast<BasicBlock>(Map(Header));
465 Result.Latch = cast<BasicBlock>(Map(Latch));
466 Result.LatchBr = cast<BranchInst>(Map(LatchBr));
467 Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
468 Result.LatchBrExitIdx = LatchBrExitIdx;
469 Result.IndVarNext = Map(IndVarNext);
470 Result.IndVarStart = Map(IndVarStart);
471 Result.LoopExitAt = Map(LoopExitAt);
472 Result.IndVarIncreasing = IndVarIncreasing;
473 return Result;
474 }
475
476 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
477 BranchProbabilityInfo &BPI,
478 Loop &,
479 const char *&);
480 };
481
482 /// This class is used to constrain loops to run within a given iteration space.
483 /// The algorithm this class implements is given a Loop and a range [Begin,
484 /// End). The algorithm then tries to break out a "main loop" out of the loop
485 /// it is given in a way that the "main loop" runs with the induction variable
486 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post
487 /// loops to run any remaining iterations. The pre loop runs any iterations in
488 /// which the induction variable is < Begin, and the post loop runs any
489 /// iterations in which the induction variable is >= End.
490 ///
491 class LoopConstrainer {
492 // The representation of a clone of the original loop we started out with.
493 struct ClonedLoop {
494 // The cloned blocks
495 std::vector<BasicBlock *> Blocks;
496
497 // `Map` maps values in the clonee into values in the cloned version
498 ValueToValueMapTy Map;
499
500 // An instance of `LoopStructure` for the cloned loop
501 LoopStructure Structure;
502 };
503
504 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
505 // more details on what these fields mean.
506 struct RewrittenRangeInfo {
507 BasicBlock *PseudoExit;
508 BasicBlock *ExitSelector;
509 std::vector<PHINode *> PHIValuesAtPseudoExit;
510 PHINode *IndVarEnd;
511
RewrittenRangeInfo__anon764fa5440311::LoopConstrainer::RewrittenRangeInfo512 RewrittenRangeInfo()
513 : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
514 };
515
516 // Calculated subranges we restrict the iteration space of the main loop to.
517 // See the implementation of `calculateSubRanges' for more details on how
518 // these fields are computed. `LowLimit` is None if there is no restriction
519 // on low end of the restricted iteration space of the main loop. `HighLimit`
520 // is None if there is no restriction on high end of the restricted iteration
521 // space of the main loop.
522
523 struct SubRanges {
524 Optional<const SCEV *> LowLimit;
525 Optional<const SCEV *> HighLimit;
526 };
527
528 // A utility function that does a `replaceUsesOfWith' on the incoming block
529 // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
530 // incoming block list with `ReplaceBy'.
531 static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
532 BasicBlock *ReplaceBy);
533
534 // Compute a safe set of limits for the main loop to run in -- effectively the
535 // intersection of `Range' and the iteration space of the original loop.
536 // Return None if unable to compute the set of subranges.
537 //
538 Optional<SubRanges> calculateSubRanges() const;
539
540 // Clone `OriginalLoop' and return the result in CLResult. The IR after
541 // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
542 // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
543 // but there is no such edge.
544 //
545 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
546
547 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
548 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
549 // iteration space is not changed. `ExitLoopAt' is assumed to be slt
550 // `OriginalHeaderCount'.
551 //
552 // If there are iterations left to execute, control is made to jump to
553 // `ContinuationBlock', otherwise they take the normal loop exit. The
554 // returned `RewrittenRangeInfo' object is populated as follows:
555 //
556 // .PseudoExit is a basic block that unconditionally branches to
557 // `ContinuationBlock'.
558 //
559 // .ExitSelector is a basic block that decides, on exit from the loop,
560 // whether to branch to the "true" exit or to `PseudoExit'.
561 //
562 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
563 // for each PHINode in the loop header on taking the pseudo exit.
564 //
565 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
566 // preheader because it is made to branch to the loop header only
567 // conditionally.
568 //
569 RewrittenRangeInfo
570 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
571 Value *ExitLoopAt,
572 BasicBlock *ContinuationBlock) const;
573
574 // The loop denoted by `LS' has `OldPreheader' as its preheader. This
575 // function creates a new preheader for `LS' and returns it.
576 //
577 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
578 const char *Tag) const;
579
580 // `ContinuationBlockAndPreheader' was the continuation block for some call to
581 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
582 // This function rewrites the PHI nodes in `LS.Header' to start with the
583 // correct value.
584 void rewriteIncomingValuesForPHIs(
585 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
586 const LoopConstrainer::RewrittenRangeInfo &RRI) const;
587
588 // Even though we do not preserve any passes at this time, we at least need to
589 // keep the parent loop structure consistent. The `LPPassManager' seems to
590 // verify this after running a loop pass. This function adds the list of
591 // blocks denoted by BBs to this loops parent loop if required.
592 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
593
594 // Some global state.
595 Function &F;
596 LLVMContext &Ctx;
597 ScalarEvolution &SE;
598
599 // Information about the original loop we started out with.
600 Loop &OriginalLoop;
601 LoopInfo &OriginalLoopInfo;
602 const SCEV *LatchTakenCount;
603 BasicBlock *OriginalPreheader;
604
605 // The preheader of the main loop. This may or may not be different from
606 // `OriginalPreheader'.
607 BasicBlock *MainLoopPreheader;
608
609 // The range we need to run the main loop in.
610 InductiveRangeCheck::Range Range;
611
612 // The structure of the main loop (see comment at the beginning of this class
613 // for a definition)
614 LoopStructure MainLoopStructure;
615
616 public:
LoopConstrainer(Loop & L,LoopInfo & LI,const LoopStructure & LS,ScalarEvolution & SE,InductiveRangeCheck::Range R)617 LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
618 ScalarEvolution &SE, InductiveRangeCheck::Range R)
619 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
620 SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
621 OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
622 MainLoopStructure(LS) {}
623
624 // Entry point for the algorithm. Returns true on success.
625 bool run();
626 };
627
628 }
629
replacePHIBlock(PHINode * PN,BasicBlock * Block,BasicBlock * ReplaceBy)630 void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
631 BasicBlock *ReplaceBy) {
632 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
633 if (PN->getIncomingBlock(i) == Block)
634 PN->setIncomingBlock(i, ReplaceBy);
635 }
636
CanBeSMax(ScalarEvolution & SE,const SCEV * S)637 static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
638 APInt SMax =
639 APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
640 return SE.getSignedRange(S).contains(SMax) &&
641 SE.getUnsignedRange(S).contains(SMax);
642 }
643
CanBeSMin(ScalarEvolution & SE,const SCEV * S)644 static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
645 APInt SMin =
646 APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
647 return SE.getSignedRange(S).contains(SMin) &&
648 SE.getUnsignedRange(S).contains(SMin);
649 }
650
651 Optional<LoopStructure>
parseLoopStructure(ScalarEvolution & SE,BranchProbabilityInfo & BPI,Loop & L,const char * & FailureReason)652 LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
653 Loop &L, const char *&FailureReason) {
654 assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
655
656 BasicBlock *Latch = L.getLoopLatch();
657 if (!L.isLoopExiting(Latch)) {
658 FailureReason = "no loop latch";
659 return None;
660 }
661
662 BasicBlock *Header = L.getHeader();
663 BasicBlock *Preheader = L.getLoopPreheader();
664 if (!Preheader) {
665 FailureReason = "no preheader";
666 return None;
667 }
668
669 BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
670 if (!LatchBr || LatchBr->isUnconditional()) {
671 FailureReason = "latch terminator not conditional branch";
672 return None;
673 }
674
675 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
676
677 BranchProbability ExitProbability =
678 BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
679
680 if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
681 FailureReason = "short running loop, not profitable";
682 return None;
683 }
684
685 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
686 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
687 FailureReason = "latch terminator branch not conditional on integral icmp";
688 return None;
689 }
690
691 const SCEV *LatchCount = SE.getExitCount(&L, Latch);
692 if (isa<SCEVCouldNotCompute>(LatchCount)) {
693 FailureReason = "could not compute latch count";
694 return None;
695 }
696
697 ICmpInst::Predicate Pred = ICI->getPredicate();
698 Value *LeftValue = ICI->getOperand(0);
699 const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
700 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
701
702 Value *RightValue = ICI->getOperand(1);
703 const SCEV *RightSCEV = SE.getSCEV(RightValue);
704
705 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
706 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
707 if (isa<SCEVAddRecExpr>(RightSCEV)) {
708 std::swap(LeftSCEV, RightSCEV);
709 std::swap(LeftValue, RightValue);
710 Pred = ICmpInst::getSwappedPredicate(Pred);
711 } else {
712 FailureReason = "no add recurrences in the icmp";
713 return None;
714 }
715 }
716
717 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
718 if (AR->getNoWrapFlags(SCEV::FlagNSW))
719 return true;
720
721 IntegerType *Ty = cast<IntegerType>(AR->getType());
722 IntegerType *WideTy =
723 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
724
725 const SCEVAddRecExpr *ExtendAfterOp =
726 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
727 if (ExtendAfterOp) {
728 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
729 const SCEV *ExtendedStep =
730 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
731
732 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
733 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
734
735 if (NoSignedWrap)
736 return true;
737 }
738
739 // We may have proved this when computing the sign extension above.
740 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
741 };
742
743 auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
744 if (!AR->isAffine())
745 return false;
746
747 // Currently we only work with induction variables that have been proved to
748 // not wrap. This restriction can potentially be lifted in the future.
749
750 if (!HasNoSignedWrap(AR))
751 return false;
752
753 if (const SCEVConstant *StepExpr =
754 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
755 ConstantInt *StepCI = StepExpr->getValue();
756 if (StepCI->isOne() || StepCI->isMinusOne()) {
757 IsIncreasing = StepCI->isOne();
758 return true;
759 }
760 }
761
762 return false;
763 };
764
765 // `ICI` is interpreted as taking the backedge if the *next* value of the
766 // induction variable satisfies some constraint.
767
768 const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
769 bool IsIncreasing = false;
770 if (!IsInductionVar(IndVarNext, IsIncreasing)) {
771 FailureReason = "LHS in icmp not induction variable";
772 return None;
773 }
774
775 ConstantInt *One = ConstantInt::get(IndVarTy, 1);
776 // TODO: generalize the predicates here to also match their unsigned variants.
777 if (IsIncreasing) {
778 bool FoundExpectedPred =
779 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
780 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
781
782 if (!FoundExpectedPred) {
783 FailureReason = "expected icmp slt semantically, found something else";
784 return None;
785 }
786
787 if (LatchBrExitIdx == 0) {
788 if (CanBeSMax(SE, RightSCEV)) {
789 // TODO: this restriction is easily removable -- we just have to
790 // remember that the icmp was an slt and not an sle.
791 FailureReason = "limit may overflow when coercing sle to slt";
792 return None;
793 }
794
795 IRBuilder<> B(&*Preheader->rbegin());
796 RightValue = B.CreateAdd(RightValue, One);
797 }
798
799 } else {
800 bool FoundExpectedPred =
801 (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
802 (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
803
804 if (!FoundExpectedPred) {
805 FailureReason = "expected icmp sgt semantically, found something else";
806 return None;
807 }
808
809 if (LatchBrExitIdx == 0) {
810 if (CanBeSMin(SE, RightSCEV)) {
811 // TODO: this restriction is easily removable -- we just have to
812 // remember that the icmp was an sgt and not an sge.
813 FailureReason = "limit may overflow when coercing sge to sgt";
814 return None;
815 }
816
817 IRBuilder<> B(&*Preheader->rbegin());
818 RightValue = B.CreateSub(RightValue, One);
819 }
820 }
821
822 const SCEV *StartNext = IndVarNext->getStart();
823 const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
824 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
825
826 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
827
828 assert(SE.getLoopDisposition(LatchCount, &L) ==
829 ScalarEvolution::LoopInvariant &&
830 "loop variant exit count doesn't make sense!");
831
832 assert(!L.contains(LatchExit) && "expected an exit block!");
833 const DataLayout &DL = Preheader->getModule()->getDataLayout();
834 Value *IndVarStartV =
835 SCEVExpander(SE, DL, "irce")
836 .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin());
837 IndVarStartV->setName("indvar.start");
838
839 LoopStructure Result;
840
841 Result.Tag = "main";
842 Result.Header = Header;
843 Result.Latch = Latch;
844 Result.LatchBr = LatchBr;
845 Result.LatchExit = LatchExit;
846 Result.LatchBrExitIdx = LatchBrExitIdx;
847 Result.IndVarStart = IndVarStartV;
848 Result.IndVarNext = LeftValue;
849 Result.IndVarIncreasing = IsIncreasing;
850 Result.LoopExitAt = RightValue;
851
852 FailureReason = nullptr;
853
854 return Result;
855 }
856
857 Optional<LoopConstrainer::SubRanges>
calculateSubRanges() const858 LoopConstrainer::calculateSubRanges() const {
859 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
860
861 if (Range.getType() != Ty)
862 return None;
863
864 LoopConstrainer::SubRanges Result;
865
866 // I think we can be more aggressive here and make this nuw / nsw if the
867 // addition that feeds into the icmp for the latch's terminating branch is nuw
868 // / nsw. In any case, a wrapping 2's complement addition is safe.
869 ConstantInt *One = ConstantInt::get(Ty, 1);
870 const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
871 const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
872
873 bool Increasing = MainLoopStructure.IndVarIncreasing;
874
875 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
876 // range of values the induction variable takes.
877
878 const SCEV *Smallest = nullptr, *Greatest = nullptr;
879
880 if (Increasing) {
881 Smallest = Start;
882 Greatest = End;
883 } else {
884 // These two computations may sign-overflow. Here is why that is okay:
885 //
886 // We know that the induction variable does not sign-overflow on any
887 // iteration except the last one, and it starts at `Start` and ends at
888 // `End`, decrementing by one every time.
889 //
890 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
891 // induction variable is decreasing we know that that the smallest value
892 // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
893 //
894 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
895 // that case, `Clamp` will always return `Smallest` and
896 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
897 // will be an empty range. Returning an empty range is always safe.
898 //
899
900 Smallest = SE.getAddExpr(End, SE.getSCEV(One));
901 Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
902 }
903
904 auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
905 return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
906 };
907
908 // In some cases we can prove that we don't need a pre or post loop
909
910 bool ProvablyNoPreloop =
911 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
912 if (!ProvablyNoPreloop)
913 Result.LowLimit = Clamp(Range.getBegin());
914
915 bool ProvablyNoPostLoop =
916 SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
917 if (!ProvablyNoPostLoop)
918 Result.HighLimit = Clamp(Range.getEnd());
919
920 return Result;
921 }
922
cloneLoop(LoopConstrainer::ClonedLoop & Result,const char * Tag) const923 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
924 const char *Tag) const {
925 for (BasicBlock *BB : OriginalLoop.getBlocks()) {
926 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
927 Result.Blocks.push_back(Clone);
928 Result.Map[BB] = Clone;
929 }
930
931 auto GetClonedValue = [&Result](Value *V) {
932 assert(V && "null values not in domain!");
933 auto It = Result.Map.find(V);
934 if (It == Result.Map.end())
935 return V;
936 return static_cast<Value *>(It->second);
937 };
938
939 Result.Structure = MainLoopStructure.map(GetClonedValue);
940 Result.Structure.Tag = Tag;
941
942 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
943 BasicBlock *ClonedBB = Result.Blocks[i];
944 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
945
946 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
947
948 for (Instruction &I : *ClonedBB)
949 RemapInstruction(&I, Result.Map,
950 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
951
952 // Exit blocks will now have one more predecessor and their PHI nodes need
953 // to be edited to reflect that. No phi nodes need to be introduced because
954 // the loop is in LCSSA.
955
956 for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
957 SBBI != SBBE; ++SBBI) {
958
959 if (OriginalLoop.contains(*SBBI))
960 continue; // not an exit block
961
962 for (Instruction &I : **SBBI) {
963 if (!isa<PHINode>(&I))
964 break;
965
966 PHINode *PN = cast<PHINode>(&I);
967 Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
968 PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
969 }
970 }
971 }
972 }
973
changeIterationSpaceEnd(const LoopStructure & LS,BasicBlock * Preheader,Value * ExitSubloopAt,BasicBlock * ContinuationBlock) const974 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
975 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
976 BasicBlock *ContinuationBlock) const {
977
978 // We start with a loop with a single latch:
979 //
980 // +--------------------+
981 // | |
982 // | preheader |
983 // | |
984 // +--------+-----------+
985 // | ----------------\
986 // | / |
987 // +--------v----v------+ |
988 // | | |
989 // | header | |
990 // | | |
991 // +--------------------+ |
992 // |
993 // ..... |
994 // |
995 // +--------------------+ |
996 // | | |
997 // | latch >----------/
998 // | |
999 // +-------v------------+
1000 // |
1001 // |
1002 // | +--------------------+
1003 // | | |
1004 // +---> original exit |
1005 // | |
1006 // +--------------------+
1007 //
1008 // We change the control flow to look like
1009 //
1010 //
1011 // +--------------------+
1012 // | |
1013 // | preheader >-------------------------+
1014 // | | |
1015 // +--------v-----------+ |
1016 // | /-------------+ |
1017 // | / | |
1018 // +--------v--v--------+ | |
1019 // | | | |
1020 // | header | | +--------+ |
1021 // | | | | | |
1022 // +--------------------+ | | +-----v-----v-----------+
1023 // | | | |
1024 // | | | .pseudo.exit |
1025 // | | | |
1026 // | | +-----------v-----------+
1027 // | | |
1028 // ..... | | |
1029 // | | +--------v-------------+
1030 // +--------------------+ | | | |
1031 // | | | | | ContinuationBlock |
1032 // | latch >------+ | | |
1033 // | | | +----------------------+
1034 // +---------v----------+ |
1035 // | |
1036 // | |
1037 // | +---------------^-----+
1038 // | | |
1039 // +-----> .exit.selector |
1040 // | |
1041 // +----------v----------+
1042 // |
1043 // +--------------------+ |
1044 // | | |
1045 // | original exit <----+
1046 // | |
1047 // +--------------------+
1048 //
1049
1050 RewrittenRangeInfo RRI;
1051
1052 auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
1053 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1054 &F, &*BBInsertLocation);
1055 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1056 &*BBInsertLocation);
1057
1058 BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
1059 bool Increasing = LS.IndVarIncreasing;
1060
1061 IRBuilder<> B(PreheaderJump);
1062
1063 // EnterLoopCond - is it okay to start executing this `LS'?
1064 Value *EnterLoopCond = Increasing
1065 ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
1066 : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
1067
1068 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1069 PreheaderJump->eraseFromParent();
1070
1071 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1072 B.SetInsertPoint(LS.LatchBr);
1073 Value *TakeBackedgeLoopCond =
1074 Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
1075 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
1076 Value *CondForBranch = LS.LatchBrExitIdx == 1
1077 ? TakeBackedgeLoopCond
1078 : B.CreateNot(TakeBackedgeLoopCond);
1079
1080 LS.LatchBr->setCondition(CondForBranch);
1081
1082 B.SetInsertPoint(RRI.ExitSelector);
1083
1084 // IterationsLeft - are there any more iterations left, given the original
1085 // upper bound on the induction variable? If not, we branch to the "real"
1086 // exit.
1087 Value *IterationsLeft = Increasing
1088 ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
1089 : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
1090 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1091
1092 BranchInst *BranchToContinuation =
1093 BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1094
1095 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1096 // each of the PHI nodes in the loop header. This feeds into the initial
1097 // value of the same PHI nodes if/when we continue execution.
1098 for (Instruction &I : *LS.Header) {
1099 if (!isa<PHINode>(&I))
1100 break;
1101
1102 PHINode *PN = cast<PHINode>(&I);
1103
1104 PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
1105 BranchToContinuation);
1106
1107 NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
1108 NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
1109 RRI.ExitSelector);
1110 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1111 }
1112
1113 RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
1114 BranchToContinuation);
1115 RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
1116 RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
1117
1118 // The latch exit now has a branch from `RRI.ExitSelector' instead of
1119 // `LS.Latch'. The PHI nodes need to be updated to reflect that.
1120 for (Instruction &I : *LS.LatchExit) {
1121 if (PHINode *PN = dyn_cast<PHINode>(&I))
1122 replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
1123 else
1124 break;
1125 }
1126
1127 return RRI;
1128 }
1129
rewriteIncomingValuesForPHIs(LoopStructure & LS,BasicBlock * ContinuationBlock,const LoopConstrainer::RewrittenRangeInfo & RRI) const1130 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1131 LoopStructure &LS, BasicBlock *ContinuationBlock,
1132 const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1133
1134 unsigned PHIIndex = 0;
1135 for (Instruction &I : *LS.Header) {
1136 if (!isa<PHINode>(&I))
1137 break;
1138
1139 PHINode *PN = cast<PHINode>(&I);
1140
1141 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1142 if (PN->getIncomingBlock(i) == ContinuationBlock)
1143 PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1144 }
1145
1146 LS.IndVarStart = RRI.IndVarEnd;
1147 }
1148
createPreheader(const LoopStructure & LS,BasicBlock * OldPreheader,const char * Tag) const1149 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1150 BasicBlock *OldPreheader,
1151 const char *Tag) const {
1152
1153 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1154 BranchInst::Create(LS.Header, Preheader);
1155
1156 for (Instruction &I : *LS.Header) {
1157 if (!isa<PHINode>(&I))
1158 break;
1159
1160 PHINode *PN = cast<PHINode>(&I);
1161 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
1162 replacePHIBlock(PN, OldPreheader, Preheader);
1163 }
1164
1165 return Preheader;
1166 }
1167
addToParentLoopIfNeeded(ArrayRef<BasicBlock * > BBs)1168 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1169 Loop *ParentLoop = OriginalLoop.getParentLoop();
1170 if (!ParentLoop)
1171 return;
1172
1173 for (BasicBlock *BB : BBs)
1174 ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
1175 }
1176
run()1177 bool LoopConstrainer::run() {
1178 BasicBlock *Preheader = nullptr;
1179 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1180 Preheader = OriginalLoop.getLoopPreheader();
1181 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1182 "preconditions!");
1183
1184 OriginalPreheader = Preheader;
1185 MainLoopPreheader = Preheader;
1186
1187 Optional<SubRanges> MaybeSR = calculateSubRanges();
1188 if (!MaybeSR.hasValue()) {
1189 DEBUG(dbgs() << "irce: could not compute subranges\n");
1190 return false;
1191 }
1192
1193 SubRanges SR = MaybeSR.getValue();
1194 bool Increasing = MainLoopStructure.IndVarIncreasing;
1195 IntegerType *IVTy =
1196 cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
1197
1198 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1199 Instruction *InsertPt = OriginalPreheader->getTerminator();
1200
1201 // It would have been better to make `PreLoop' and `PostLoop'
1202 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1203 // constructor.
1204 ClonedLoop PreLoop, PostLoop;
1205 bool NeedsPreLoop =
1206 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1207 bool NeedsPostLoop =
1208 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1209
1210 Value *ExitPreLoopAt = nullptr;
1211 Value *ExitMainLoopAt = nullptr;
1212 const SCEVConstant *MinusOneS =
1213 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1214
1215 if (NeedsPreLoop) {
1216 const SCEV *ExitPreLoopAtSCEV = nullptr;
1217
1218 if (Increasing)
1219 ExitPreLoopAtSCEV = *SR.LowLimit;
1220 else {
1221 if (CanBeSMin(SE, *SR.HighLimit)) {
1222 DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1223 << "preloop exit limit. HighLimit = " << *(*SR.HighLimit)
1224 << "\n");
1225 return false;
1226 }
1227 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1228 }
1229
1230 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1231 ExitPreLoopAt->setName("exit.preloop.at");
1232 }
1233
1234 if (NeedsPostLoop) {
1235 const SCEV *ExitMainLoopAtSCEV = nullptr;
1236
1237 if (Increasing)
1238 ExitMainLoopAtSCEV = *SR.HighLimit;
1239 else {
1240 if (CanBeSMin(SE, *SR.LowLimit)) {
1241 DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1242 << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit)
1243 << "\n");
1244 return false;
1245 }
1246 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1247 }
1248
1249 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1250 ExitMainLoopAt->setName("exit.mainloop.at");
1251 }
1252
1253 // We clone these ahead of time so that we don't have to deal with changing
1254 // and temporarily invalid IR as we transform the loops.
1255 if (NeedsPreLoop)
1256 cloneLoop(PreLoop, "preloop");
1257 if (NeedsPostLoop)
1258 cloneLoop(PostLoop, "postloop");
1259
1260 RewrittenRangeInfo PreLoopRRI;
1261
1262 if (NeedsPreLoop) {
1263 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1264 PreLoop.Structure.Header);
1265
1266 MainLoopPreheader =
1267 createPreheader(MainLoopStructure, Preheader, "mainloop");
1268 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1269 ExitPreLoopAt, MainLoopPreheader);
1270 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1271 PreLoopRRI);
1272 }
1273
1274 BasicBlock *PostLoopPreheader = nullptr;
1275 RewrittenRangeInfo PostLoopRRI;
1276
1277 if (NeedsPostLoop) {
1278 PostLoopPreheader =
1279 createPreheader(PostLoop.Structure, Preheader, "postloop");
1280 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1281 ExitMainLoopAt, PostLoopPreheader);
1282 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1283 PostLoopRRI);
1284 }
1285
1286 BasicBlock *NewMainLoopPreheader =
1287 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1288 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
1289 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
1290 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1291
1292 // Some of the above may be nullptr, filter them out before passing to
1293 // addToParentLoopIfNeeded.
1294 auto NewBlocksEnd =
1295 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1296
1297 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1298 addToParentLoopIfNeeded(PreLoop.Blocks);
1299 addToParentLoopIfNeeded(PostLoop.Blocks);
1300
1301 return true;
1302 }
1303
1304 /// Computes and returns a range of values for the induction variable (IndVar)
1305 /// in which the range check can be safely elided. If it cannot compute such a
1306 /// range, returns None.
1307 Optional<InductiveRangeCheck::Range>
computeSafeIterationSpace(ScalarEvolution & SE,const SCEVAddRecExpr * IndVar,IRBuilder<> &) const1308 InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
1309 const SCEVAddRecExpr *IndVar,
1310 IRBuilder<> &) const {
1311 // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1312 // variable, that may or may not exist as a real llvm::Value in the loop) and
1313 // this inductive range check is a range check on the "C + D * I" ("C" is
1314 // getOffset() and "D" is getScale()). We rewrite the value being range
1315 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1316 // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
1317 // can be generalized as needed.
1318 //
1319 // The actual inequalities we solve are of the form
1320 //
1321 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
1322 //
1323 // The inequality is satisfied by -M <= IndVar < (L - M) [^1]. All additions
1324 // and subtractions are twos-complement wrapping and comparisons are signed.
1325 //
1326 // Proof:
1327 //
1328 // If there exists IndVar such that -M <= IndVar < (L - M) then it follows
1329 // that -M <= (-M + L) [== Eq. 1]. Since L >= 0, if (-M + L) sign-overflows
1330 // then (-M + L) < (-M). Hence by [Eq. 1], (-M + L) could not have
1331 // overflown.
1332 //
1333 // This means IndVar = t + (-M) for t in [0, L). Hence (IndVar + M) = t.
1334 // Hence 0 <= (IndVar + M) < L
1335
1336 // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
1337 // 127, IndVar = 126 and L = -2 in an i8 world.
1338
1339 if (!IndVar->isAffine())
1340 return None;
1341
1342 const SCEV *A = IndVar->getStart();
1343 const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
1344 if (!B)
1345 return None;
1346
1347 const SCEV *C = getOffset();
1348 const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
1349 if (D != B)
1350 return None;
1351
1352 ConstantInt *ConstD = D->getValue();
1353 if (!(ConstD->isMinusOne() || ConstD->isOne()))
1354 return None;
1355
1356 const SCEV *M = SE.getMinusSCEV(C, A);
1357
1358 const SCEV *Begin = SE.getNegativeSCEV(M);
1359 const SCEV *UpperLimit = nullptr;
1360
1361 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
1362 // We can potentially do much better here.
1363 if (Value *V = getLength()) {
1364 UpperLimit = SE.getSCEV(V);
1365 } else {
1366 assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
1367 unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
1368 UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1369 }
1370
1371 const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
1372 return InductiveRangeCheck::Range(Begin, End);
1373 }
1374
1375 static Optional<InductiveRangeCheck::Range>
IntersectRange(ScalarEvolution & SE,const Optional<InductiveRangeCheck::Range> & R1,const InductiveRangeCheck::Range & R2,IRBuilder<> & B)1376 IntersectRange(ScalarEvolution &SE,
1377 const Optional<InductiveRangeCheck::Range> &R1,
1378 const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
1379 if (!R1.hasValue())
1380 return R2;
1381 auto &R1Value = R1.getValue();
1382
1383 // TODO: we could widen the smaller range and have this work; but for now we
1384 // bail out to keep things simple.
1385 if (R1Value.getType() != R2.getType())
1386 return None;
1387
1388 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1389 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1390
1391 return InductiveRangeCheck::Range(NewBegin, NewEnd);
1392 }
1393
runOnLoop(Loop * L,LPPassManager & LPM)1394 bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
1395 if (L->getBlocks().size() >= LoopSizeCutoff) {
1396 DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
1397 return false;
1398 }
1399
1400 BasicBlock *Preheader = L->getLoopPreheader();
1401 if (!Preheader) {
1402 DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1403 return false;
1404 }
1405
1406 LLVMContext &Context = Preheader->getContext();
1407 InductiveRangeCheck::AllocatorTy IRCAlloc;
1408 SmallVector<InductiveRangeCheck *, 16> RangeChecks;
1409 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1410 BranchProbabilityInfo &BPI =
1411 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1412
1413 for (auto BBI : L->getBlocks())
1414 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1415 if (InductiveRangeCheck *IRC =
1416 InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI))
1417 RangeChecks.push_back(IRC);
1418
1419 if (RangeChecks.empty())
1420 return false;
1421
1422 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1423 OS << "irce: looking at loop "; L->print(OS);
1424 OS << "irce: loop has " << RangeChecks.size()
1425 << " inductive range checks: \n";
1426 for (InductiveRangeCheck *IRC : RangeChecks)
1427 IRC->print(OS);
1428 };
1429
1430 DEBUG(PrintRecognizedRangeChecks(dbgs()));
1431
1432 if (PrintRangeChecks)
1433 PrintRecognizedRangeChecks(errs());
1434
1435 const char *FailureReason = nullptr;
1436 Optional<LoopStructure> MaybeLoopStructure =
1437 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1438 if (!MaybeLoopStructure.hasValue()) {
1439 DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
1440 << "\n";);
1441 return false;
1442 }
1443 LoopStructure LS = MaybeLoopStructure.getValue();
1444 bool Increasing = LS.IndVarIncreasing;
1445 const SCEV *MinusOne =
1446 SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
1447 const SCEVAddRecExpr *IndVar =
1448 cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
1449
1450 Optional<InductiveRangeCheck::Range> SafeIterRange;
1451 Instruction *ExprInsertPt = Preheader->getTerminator();
1452
1453 SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
1454
1455 IRBuilder<> B(ExprInsertPt);
1456 for (InductiveRangeCheck *IRC : RangeChecks) {
1457 auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B);
1458 if (Result.hasValue()) {
1459 auto MaybeSafeIterRange =
1460 IntersectRange(SE, SafeIterRange, Result.getValue(), B);
1461 if (MaybeSafeIterRange.hasValue()) {
1462 RangeChecksToEliminate.push_back(IRC);
1463 SafeIterRange = MaybeSafeIterRange.getValue();
1464 }
1465 }
1466 }
1467
1468 if (!SafeIterRange.hasValue())
1469 return false;
1470
1471 LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
1472 SE, SafeIterRange.getValue());
1473 bool Changed = LC.run();
1474
1475 if (Changed) {
1476 auto PrintConstrainedLoopInfo = [L]() {
1477 dbgs() << "irce: in function ";
1478 dbgs() << L->getHeader()->getParent()->getName() << ": ";
1479 dbgs() << "constrained ";
1480 L->print(dbgs());
1481 };
1482
1483 DEBUG(PrintConstrainedLoopInfo());
1484
1485 if (PrintChangedLoops)
1486 PrintConstrainedLoopInfo();
1487
1488 // Optimize away the now-redundant range checks.
1489
1490 for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
1491 ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
1492 ? ConstantInt::getTrue(Context)
1493 : ConstantInt::getFalse(Context);
1494 IRC->getBranch()->setCondition(FoldedRangeCheck);
1495 }
1496 }
1497
1498 return Changed;
1499 }
1500
createInductiveRangeCheckEliminationPass()1501 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1502 return new InductiveRangeCheckElimination;
1503 }
1504