1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for lazy computation of value constraint
11 // information.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/LazyValueInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <map>
35 #include <stack>
36 using namespace llvm;
37 using namespace PatternMatch;
38
39 #define DEBUG_TYPE "lazy-value-info"
40
41 char LazyValueInfo::ID = 0;
42 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
43 "Lazy Value Information Analysis", false, true)
44 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
45 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
46 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
47 "Lazy Value Information Analysis", false, true)
48
49 namespace llvm {
createLazyValueInfoPass()50 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
51 }
52
53
54 //===----------------------------------------------------------------------===//
55 // LVILatticeVal
56 //===----------------------------------------------------------------------===//
57
58 /// This is the information tracked by LazyValueInfo for each value.
59 ///
60 /// FIXME: This is basically just for bringup, this can be made a lot more rich
61 /// in the future.
62 ///
63 namespace {
64 class LVILatticeVal {
65 enum LatticeValueTy {
66 /// This Value has no known value yet.
67 undefined,
68
69 /// This Value has a specific constant value.
70 constant,
71
72 /// This Value is known to not have the specified value.
73 notconstant,
74
75 /// The Value falls within this range.
76 constantrange,
77
78 /// This value is not known to be constant, and we know that it has a value.
79 overdefined
80 };
81
82 /// Val: This stores the current lattice value along with the Constant* for
83 /// the constant if this is a 'constant' or 'notconstant' value.
84 LatticeValueTy Tag;
85 Constant *Val;
86 ConstantRange Range;
87
88 public:
LVILatticeVal()89 LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
90
get(Constant * C)91 static LVILatticeVal get(Constant *C) {
92 LVILatticeVal Res;
93 if (!isa<UndefValue>(C))
94 Res.markConstant(C);
95 return Res;
96 }
getNot(Constant * C)97 static LVILatticeVal getNot(Constant *C) {
98 LVILatticeVal Res;
99 if (!isa<UndefValue>(C))
100 Res.markNotConstant(C);
101 return Res;
102 }
getRange(ConstantRange CR)103 static LVILatticeVal getRange(ConstantRange CR) {
104 LVILatticeVal Res;
105 Res.markConstantRange(CR);
106 return Res;
107 }
getOverdefined()108 static LVILatticeVal getOverdefined() {
109 LVILatticeVal Res;
110 Res.markOverdefined();
111 return Res;
112 }
113
isUndefined() const114 bool isUndefined() const { return Tag == undefined; }
isConstant() const115 bool isConstant() const { return Tag == constant; }
isNotConstant() const116 bool isNotConstant() const { return Tag == notconstant; }
isConstantRange() const117 bool isConstantRange() const { return Tag == constantrange; }
isOverdefined() const118 bool isOverdefined() const { return Tag == overdefined; }
119
getConstant() const120 Constant *getConstant() const {
121 assert(isConstant() && "Cannot get the constant of a non-constant!");
122 return Val;
123 }
124
getNotConstant() const125 Constant *getNotConstant() const {
126 assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
127 return Val;
128 }
129
getConstantRange() const130 ConstantRange getConstantRange() const {
131 assert(isConstantRange() &&
132 "Cannot get the constant-range of a non-constant-range!");
133 return Range;
134 }
135
136 /// Return true if this is a change in status.
markOverdefined()137 bool markOverdefined() {
138 if (isOverdefined())
139 return false;
140 Tag = overdefined;
141 return true;
142 }
143
144 /// Return true if this is a change in status.
markConstant(Constant * V)145 bool markConstant(Constant *V) {
146 assert(V && "Marking constant with NULL");
147 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
148 return markConstantRange(ConstantRange(CI->getValue()));
149 if (isa<UndefValue>(V))
150 return false;
151
152 assert((!isConstant() || getConstant() == V) &&
153 "Marking constant with different value");
154 assert(isUndefined());
155 Tag = constant;
156 Val = V;
157 return true;
158 }
159
160 /// Return true if this is a change in status.
markNotConstant(Constant * V)161 bool markNotConstant(Constant *V) {
162 assert(V && "Marking constant with NULL");
163 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
164 return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
165 if (isa<UndefValue>(V))
166 return false;
167
168 assert((!isConstant() || getConstant() != V) &&
169 "Marking constant !constant with same value");
170 assert((!isNotConstant() || getNotConstant() == V) &&
171 "Marking !constant with different value");
172 assert(isUndefined() || isConstant());
173 Tag = notconstant;
174 Val = V;
175 return true;
176 }
177
178 /// Return true if this is a change in status.
markConstantRange(const ConstantRange NewR)179 bool markConstantRange(const ConstantRange NewR) {
180 if (isConstantRange()) {
181 if (NewR.isEmptySet())
182 return markOverdefined();
183
184 bool changed = Range != NewR;
185 Range = NewR;
186 return changed;
187 }
188
189 assert(isUndefined());
190 if (NewR.isEmptySet())
191 return markOverdefined();
192
193 Tag = constantrange;
194 Range = NewR;
195 return true;
196 }
197
198 /// Merge the specified lattice value into this one, updating this
199 /// one and returning true if anything changed.
mergeIn(const LVILatticeVal & RHS,const DataLayout & DL)200 bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) {
201 if (RHS.isUndefined() || isOverdefined()) return false;
202 if (RHS.isOverdefined()) return markOverdefined();
203
204 if (isUndefined()) {
205 Tag = RHS.Tag;
206 Val = RHS.Val;
207 Range = RHS.Range;
208 return true;
209 }
210
211 if (isConstant()) {
212 if (RHS.isConstant()) {
213 if (Val == RHS.Val)
214 return false;
215 return markOverdefined();
216 }
217
218 if (RHS.isNotConstant()) {
219 if (Val == RHS.Val)
220 return markOverdefined();
221
222 // Unless we can prove that the two Constants are different, we must
223 // move to overdefined.
224 if (ConstantInt *Res =
225 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
226 CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL)))
227 if (Res->isOne())
228 return markNotConstant(RHS.getNotConstant());
229
230 return markOverdefined();
231 }
232
233 // RHS is a ConstantRange, LHS is a non-integer Constant.
234
235 // FIXME: consider the case where RHS is a range [1, 0) and LHS is
236 // a function. The correct result is to pick up RHS.
237
238 return markOverdefined();
239 }
240
241 if (isNotConstant()) {
242 if (RHS.isConstant()) {
243 if (Val == RHS.Val)
244 return markOverdefined();
245
246 // Unless we can prove that the two Constants are different, we must
247 // move to overdefined.
248 if (ConstantInt *Res =
249 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
250 CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL)))
251 if (Res->isOne())
252 return false;
253
254 return markOverdefined();
255 }
256
257 if (RHS.isNotConstant()) {
258 if (Val == RHS.Val)
259 return false;
260 return markOverdefined();
261 }
262
263 return markOverdefined();
264 }
265
266 assert(isConstantRange() && "New LVILattice type?");
267 if (!RHS.isConstantRange())
268 return markOverdefined();
269
270 ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
271 if (NewR.isFullSet())
272 return markOverdefined();
273 return markConstantRange(NewR);
274 }
275 };
276
277 } // end anonymous namespace.
278
279 namespace llvm {
280 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
281 LLVM_ATTRIBUTE_USED;
operator <<(raw_ostream & OS,const LVILatticeVal & Val)282 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
283 if (Val.isUndefined())
284 return OS << "undefined";
285 if (Val.isOverdefined())
286 return OS << "overdefined";
287
288 if (Val.isNotConstant())
289 return OS << "notconstant<" << *Val.getNotConstant() << '>';
290 else if (Val.isConstantRange())
291 return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
292 << Val.getConstantRange().getUpper() << '>';
293 return OS << "constant<" << *Val.getConstant() << '>';
294 }
295 }
296
297 //===----------------------------------------------------------------------===//
298 // LazyValueInfoCache Decl
299 //===----------------------------------------------------------------------===//
300
301 namespace {
302 /// A callback value handle updates the cache when values are erased.
303 class LazyValueInfoCache;
304 struct LVIValueHandle final : public CallbackVH {
305 LazyValueInfoCache *Parent;
306
LVIValueHandle__anon33ceafee0211::LVIValueHandle307 LVIValueHandle(Value *V, LazyValueInfoCache *P)
308 : CallbackVH(V), Parent(P) { }
309
310 void deleted() override;
allUsesReplacedWith__anon33ceafee0211::LVIValueHandle311 void allUsesReplacedWith(Value *V) override {
312 deleted();
313 }
314 };
315 }
316
317 namespace {
318 /// This is the cache kept by LazyValueInfo which
319 /// maintains information about queries across the clients' queries.
320 class LazyValueInfoCache {
321 /// This is all of the cached block information for exactly one Value*.
322 /// The entries are sorted by the BasicBlock* of the
323 /// entries, allowing us to do a lookup with a binary search.
324 /// Over-defined lattice values are recorded in OverDefinedCache to reduce
325 /// memory overhead.
326 typedef SmallDenseMap<AssertingVH<BasicBlock>, LVILatticeVal, 4>
327 ValueCacheEntryTy;
328
329 /// This is all of the cached information for all values,
330 /// mapped from Value* to key information.
331 std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
332
333 /// This tracks, on a per-block basis, the set of values that are
334 /// over-defined at the end of that block.
335 typedef DenseMap<AssertingVH<BasicBlock>, SmallPtrSet<Value *, 4>>
336 OverDefinedCacheTy;
337 OverDefinedCacheTy OverDefinedCache;
338
339 /// Keep track of all blocks that we have ever seen, so we
340 /// don't spend time removing unused blocks from our caches.
341 DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
342
343 /// This stack holds the state of the value solver during a query.
344 /// It basically emulates the callstack of the naive
345 /// recursive value lookup process.
346 std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
347
348 /// Keeps track of which block-value pairs are in BlockValueStack.
349 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
350
351 /// Push BV onto BlockValueStack unless it's already in there.
352 /// Returns true on success.
pushBlockValue(const std::pair<BasicBlock *,Value * > & BV)353 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
354 if (!BlockValueSet.insert(BV).second)
355 return false; // It's already in the stack.
356
357 BlockValueStack.push(BV);
358 return true;
359 }
360
361 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
362 const DataLayout &DL; ///< A mandatory DataLayout
363 DominatorTree *DT; ///< An optional DT pointer.
364
365 friend struct LVIValueHandle;
366
insertResult(Value * Val,BasicBlock * BB,const LVILatticeVal & Result)367 void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
368 SeenBlocks.insert(BB);
369
370 // Insert over-defined values into their own cache to reduce memory
371 // overhead.
372 if (Result.isOverdefined())
373 OverDefinedCache[BB].insert(Val);
374 else
375 lookup(Val)[BB] = Result;
376 }
377
378 LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
379 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
380 LVILatticeVal &Result,
381 Instruction *CxtI = nullptr);
382 bool hasBlockValue(Value *Val, BasicBlock *BB);
383
384 // These methods process one work item and may add more. A false value
385 // returned means that the work item was not completely processed and must
386 // be revisited after going through the new items.
387 bool solveBlockValue(Value *Val, BasicBlock *BB);
388 bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
389 Value *Val, BasicBlock *BB);
390 bool solveBlockValuePHINode(LVILatticeVal &BBLV,
391 PHINode *PN, BasicBlock *BB);
392 bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
393 Instruction *BBI, BasicBlock *BB);
394 void mergeAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV,
395 Instruction *BBI);
396
397 void solve();
398
lookup(Value * V)399 ValueCacheEntryTy &lookup(Value *V) {
400 return ValueCache[LVIValueHandle(V, this)];
401 }
402
isOverdefined(Value * V,BasicBlock * BB) const403 bool isOverdefined(Value *V, BasicBlock *BB) const {
404 auto ODI = OverDefinedCache.find(BB);
405
406 if (ODI == OverDefinedCache.end())
407 return false;
408
409 return ODI->second.count(V);
410 }
411
hasCachedValueInfo(Value * V,BasicBlock * BB)412 bool hasCachedValueInfo(Value *V, BasicBlock *BB) {
413 if (isOverdefined(V, BB))
414 return true;
415
416 LVIValueHandle ValHandle(V, this);
417 auto I = ValueCache.find(ValHandle);
418 if (I == ValueCache.end())
419 return false;
420
421 return I->second.count(BB);
422 }
423
getCachedValueInfo(Value * V,BasicBlock * BB)424 LVILatticeVal getCachedValueInfo(Value *V, BasicBlock *BB) {
425 if (isOverdefined(V, BB))
426 return LVILatticeVal::getOverdefined();
427
428 return lookup(V)[BB];
429 }
430
431 public:
432 /// This is the query interface to determine the lattice
433 /// value for the specified Value* at the end of the specified block.
434 LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
435 Instruction *CxtI = nullptr);
436
437 /// This is the query interface to determine the lattice
438 /// value for the specified Value* at the specified instruction (generally
439 /// from an assume intrinsic).
440 LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
441
442 /// This is the query interface to determine the lattice
443 /// value for the specified Value* that is true on the specified edge.
444 LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
445 Instruction *CxtI = nullptr);
446
447 /// This is the update interface to inform the cache that an edge from
448 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
449 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
450
451 /// This is part of the update interface to inform the cache
452 /// that a block has been deleted.
453 void eraseBlock(BasicBlock *BB);
454
455 /// clear - Empty the cache.
clear()456 void clear() {
457 SeenBlocks.clear();
458 ValueCache.clear();
459 OverDefinedCache.clear();
460 }
461
LazyValueInfoCache(AssumptionCache * AC,const DataLayout & DL,DominatorTree * DT=nullptr)462 LazyValueInfoCache(AssumptionCache *AC, const DataLayout &DL,
463 DominatorTree *DT = nullptr)
464 : AC(AC), DL(DL), DT(DT) {}
465 };
466 } // end anonymous namespace
467
deleted()468 void LVIValueHandle::deleted() {
469 SmallVector<AssertingVH<BasicBlock>, 4> ToErase;
470 for (auto &I : Parent->OverDefinedCache) {
471 SmallPtrSetImpl<Value *> &ValueSet = I.second;
472 if (ValueSet.count(getValPtr()))
473 ValueSet.erase(getValPtr());
474 if (ValueSet.empty())
475 ToErase.push_back(I.first);
476 }
477 for (auto &BB : ToErase)
478 Parent->OverDefinedCache.erase(BB);
479
480 // This erasure deallocates *this, so it MUST happen after we're done
481 // using any and all members of *this.
482 Parent->ValueCache.erase(*this);
483 }
484
eraseBlock(BasicBlock * BB)485 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
486 // Shortcut if we have never seen this block.
487 DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
488 if (I == SeenBlocks.end())
489 return;
490 SeenBlocks.erase(I);
491
492 auto ODI = OverDefinedCache.find(BB);
493 if (ODI != OverDefinedCache.end())
494 OverDefinedCache.erase(ODI);
495
496 for (auto I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
497 I->second.erase(BB);
498 }
499
solve()500 void LazyValueInfoCache::solve() {
501 while (!BlockValueStack.empty()) {
502 std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
503 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
504
505 if (solveBlockValue(e.second, e.first)) {
506 // The work item was completely processed.
507 assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
508 assert(hasCachedValueInfo(e.second, e.first) &&
509 "Result should be in cache!");
510
511 BlockValueStack.pop();
512 BlockValueSet.erase(e);
513 } else {
514 // More work needs to be done before revisiting.
515 assert(BlockValueStack.top() != e && "Stack should have been pushed!");
516 }
517 }
518 }
519
hasBlockValue(Value * Val,BasicBlock * BB)520 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
521 // If already a constant, there is nothing to compute.
522 if (isa<Constant>(Val))
523 return true;
524
525 return hasCachedValueInfo(Val, BB);
526 }
527
getBlockValue(Value * Val,BasicBlock * BB)528 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
529 // If already a constant, there is nothing to compute.
530 if (Constant *VC = dyn_cast<Constant>(Val))
531 return LVILatticeVal::get(VC);
532
533 SeenBlocks.insert(BB);
534 return getCachedValueInfo(Val, BB);
535 }
536
getFromRangeMetadata(Instruction * BBI)537 static LVILatticeVal getFromRangeMetadata(Instruction *BBI) {
538 switch (BBI->getOpcode()) {
539 default: break;
540 case Instruction::Load:
541 case Instruction::Call:
542 case Instruction::Invoke:
543 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
544 if (isa<IntegerType>(BBI->getType())) {
545 ConstantRange Result = getConstantRangeFromMetadata(*Ranges);
546 return LVILatticeVal::getRange(Result);
547 }
548 break;
549 };
550 // Nothing known - Note that we do not want overdefined here. We may know
551 // something else about the value and not having range metadata shouldn't
552 // cause us to throw away those facts.
553 return LVILatticeVal();
554 }
555
solveBlockValue(Value * Val,BasicBlock * BB)556 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
557 if (isa<Constant>(Val))
558 return true;
559
560 if (hasCachedValueInfo(Val, BB)) {
561 // If we have a cached value, use that.
562 DEBUG(dbgs() << " reuse BB '" << BB->getName()
563 << "' val=" << getCachedValueInfo(Val, BB) << '\n');
564
565 // Since we're reusing a cached value, we don't need to update the
566 // OverDefinedCache. The cache will have been properly updated whenever the
567 // cached value was inserted.
568 return true;
569 }
570
571 // Hold off inserting this value into the Cache in case we have to return
572 // false and come back later.
573 LVILatticeVal Res;
574
575 Instruction *BBI = dyn_cast<Instruction>(Val);
576 if (!BBI || BBI->getParent() != BB) {
577 if (!solveBlockValueNonLocal(Res, Val, BB))
578 return false;
579 insertResult(Val, BB, Res);
580 return true;
581 }
582
583 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
584 if (!solveBlockValuePHINode(Res, PN, BB))
585 return false;
586 insertResult(Val, BB, Res);
587 return true;
588 }
589
590 // If this value is a nonnull pointer, record it's range and bailout.
591 PointerType *PT = dyn_cast<PointerType>(BBI->getType());
592 if (PT && isKnownNonNull(BBI)) {
593 Res = LVILatticeVal::getNot(ConstantPointerNull::get(PT));
594 insertResult(Val, BB, Res);
595 return true;
596 }
597
598 // If this is an instruction which supports range metadata, return the
599 // implied range. TODO: This should be an intersection, not a union.
600 Res.mergeIn(getFromRangeMetadata(BBI), DL);
601
602 // We can only analyze the definitions of certain classes of instructions
603 // (integral binops and casts at the moment), so bail if this isn't one.
604 LVILatticeVal Result;
605 if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
606 !BBI->getType()->isIntegerTy()) {
607 DEBUG(dbgs() << " compute BB '" << BB->getName()
608 << "' - overdefined because inst def found.\n");
609 Res.markOverdefined();
610 insertResult(Val, BB, Res);
611 return true;
612 }
613
614 // FIXME: We're currently limited to binops with a constant RHS. This should
615 // be improved.
616 BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
617 if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
618 DEBUG(dbgs() << " compute BB '" << BB->getName()
619 << "' - overdefined because inst def found.\n");
620
621 Res.markOverdefined();
622 insertResult(Val, BB, Res);
623 return true;
624 }
625
626 if (!solveBlockValueConstantRange(Res, BBI, BB))
627 return false;
628 insertResult(Val, BB, Res);
629 return true;
630 }
631
InstructionDereferencesPointer(Instruction * I,Value * Ptr)632 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
633 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
634 return L->getPointerAddressSpace() == 0 &&
635 GetUnderlyingObject(L->getPointerOperand(),
636 L->getModule()->getDataLayout()) == Ptr;
637 }
638 if (StoreInst *S = dyn_cast<StoreInst>(I)) {
639 return S->getPointerAddressSpace() == 0 &&
640 GetUnderlyingObject(S->getPointerOperand(),
641 S->getModule()->getDataLayout()) == Ptr;
642 }
643 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
644 if (MI->isVolatile()) return false;
645
646 // FIXME: check whether it has a valuerange that excludes zero?
647 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
648 if (!Len || Len->isZero()) return false;
649
650 if (MI->getDestAddressSpace() == 0)
651 if (GetUnderlyingObject(MI->getRawDest(),
652 MI->getModule()->getDataLayout()) == Ptr)
653 return true;
654 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
655 if (MTI->getSourceAddressSpace() == 0)
656 if (GetUnderlyingObject(MTI->getRawSource(),
657 MTI->getModule()->getDataLayout()) == Ptr)
658 return true;
659 }
660 return false;
661 }
662
solveBlockValueNonLocal(LVILatticeVal & BBLV,Value * Val,BasicBlock * BB)663 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
664 Value *Val, BasicBlock *BB) {
665 LVILatticeVal Result; // Start Undefined.
666
667 // If this is a pointer, and there's a load from that pointer in this BB,
668 // then we know that the pointer can't be NULL.
669 bool NotNull = false;
670 if (Val->getType()->isPointerTy()) {
671 if (isKnownNonNull(Val)) {
672 NotNull = true;
673 } else {
674 const DataLayout &DL = BB->getModule()->getDataLayout();
675 Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
676 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
677 // inside InstructionDereferencesPointer either.
678 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) {
679 for (Instruction &I : *BB) {
680 if (InstructionDereferencesPointer(&I, UnderlyingVal)) {
681 NotNull = true;
682 break;
683 }
684 }
685 }
686 }
687 }
688
689 // If this is the entry block, we must be asking about an argument. The
690 // value is overdefined.
691 if (BB == &BB->getParent()->getEntryBlock()) {
692 assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
693 if (NotNull) {
694 PointerType *PTy = cast<PointerType>(Val->getType());
695 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
696 } else {
697 Result.markOverdefined();
698 }
699 BBLV = Result;
700 return true;
701 }
702
703 // Loop over all of our predecessors, merging what we know from them into
704 // result.
705 bool EdgesMissing = false;
706 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
707 LVILatticeVal EdgeResult;
708 EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
709 if (EdgesMissing)
710 continue;
711
712 Result.mergeIn(EdgeResult, DL);
713
714 // If we hit overdefined, exit early. The BlockVals entry is already set
715 // to overdefined.
716 if (Result.isOverdefined()) {
717 DEBUG(dbgs() << " compute BB '" << BB->getName()
718 << "' - overdefined because of pred.\n");
719 // If we previously determined that this is a pointer that can't be null
720 // then return that rather than giving up entirely.
721 if (NotNull) {
722 PointerType *PTy = cast<PointerType>(Val->getType());
723 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
724 }
725
726 BBLV = Result;
727 return true;
728 }
729 }
730 if (EdgesMissing)
731 return false;
732
733 // Return the merged value, which is more precise than 'overdefined'.
734 assert(!Result.isOverdefined());
735 BBLV = Result;
736 return true;
737 }
738
solveBlockValuePHINode(LVILatticeVal & BBLV,PHINode * PN,BasicBlock * BB)739 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
740 PHINode *PN, BasicBlock *BB) {
741 LVILatticeVal Result; // Start Undefined.
742
743 // Loop over all of our predecessors, merging what we know from them into
744 // result.
745 bool EdgesMissing = false;
746 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
747 BasicBlock *PhiBB = PN->getIncomingBlock(i);
748 Value *PhiVal = PN->getIncomingValue(i);
749 LVILatticeVal EdgeResult;
750 // Note that we can provide PN as the context value to getEdgeValue, even
751 // though the results will be cached, because PN is the value being used as
752 // the cache key in the caller.
753 EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
754 if (EdgesMissing)
755 continue;
756
757 Result.mergeIn(EdgeResult, DL);
758
759 // If we hit overdefined, exit early. The BlockVals entry is already set
760 // to overdefined.
761 if (Result.isOverdefined()) {
762 DEBUG(dbgs() << " compute BB '" << BB->getName()
763 << "' - overdefined because of pred.\n");
764
765 BBLV = Result;
766 return true;
767 }
768 }
769 if (EdgesMissing)
770 return false;
771
772 // Return the merged value, which is more precise than 'overdefined'.
773 assert(!Result.isOverdefined() && "Possible PHI in entry block?");
774 BBLV = Result;
775 return true;
776 }
777
778 static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
779 LVILatticeVal &Result,
780 bool isTrueDest = true);
781
782 // If we can determine a constant range for the value Val in the context
783 // provided by the instruction BBI, then merge it into BBLV. If we did find a
784 // constant range, return true.
mergeAssumeBlockValueConstantRange(Value * Val,LVILatticeVal & BBLV,Instruction * BBI)785 void LazyValueInfoCache::mergeAssumeBlockValueConstantRange(Value *Val,
786 LVILatticeVal &BBLV,
787 Instruction *BBI) {
788 BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
789 if (!BBI)
790 return;
791
792 for (auto &AssumeVH : AC->assumptions()) {
793 if (!AssumeVH)
794 continue;
795 auto *I = cast<CallInst>(AssumeVH);
796 if (!isValidAssumeForContext(I, BBI, DT))
797 continue;
798
799 Value *C = I->getArgOperand(0);
800 if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) {
801 LVILatticeVal Result;
802 if (getValueFromFromCondition(Val, ICI, Result)) {
803 if (BBLV.isOverdefined())
804 BBLV = Result;
805 else
806 BBLV.mergeIn(Result, DL);
807 }
808 }
809 }
810 }
811
solveBlockValueConstantRange(LVILatticeVal & BBLV,Instruction * BBI,BasicBlock * BB)812 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
813 Instruction *BBI,
814 BasicBlock *BB) {
815 // Figure out the range of the LHS. If that fails, bail.
816 if (!hasBlockValue(BBI->getOperand(0), BB)) {
817 if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
818 return false;
819 BBLV.markOverdefined();
820 return true;
821 }
822
823 LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
824 mergeAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI);
825 if (!LHSVal.isConstantRange()) {
826 BBLV.markOverdefined();
827 return true;
828 }
829
830 ConstantRange LHSRange = LHSVal.getConstantRange();
831 ConstantRange RHSRange(1);
832 IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
833 if (isa<BinaryOperator>(BBI)) {
834 if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
835 RHSRange = ConstantRange(RHS->getValue());
836 } else {
837 BBLV.markOverdefined();
838 return true;
839 }
840 }
841
842 // NOTE: We're currently limited by the set of operations that ConstantRange
843 // can evaluate symbolically. Enhancing that set will allows us to analyze
844 // more definitions.
845 LVILatticeVal Result;
846 switch (BBI->getOpcode()) {
847 case Instruction::Add:
848 Result.markConstantRange(LHSRange.add(RHSRange));
849 break;
850 case Instruction::Sub:
851 Result.markConstantRange(LHSRange.sub(RHSRange));
852 break;
853 case Instruction::Mul:
854 Result.markConstantRange(LHSRange.multiply(RHSRange));
855 break;
856 case Instruction::UDiv:
857 Result.markConstantRange(LHSRange.udiv(RHSRange));
858 break;
859 case Instruction::Shl:
860 Result.markConstantRange(LHSRange.shl(RHSRange));
861 break;
862 case Instruction::LShr:
863 Result.markConstantRange(LHSRange.lshr(RHSRange));
864 break;
865 case Instruction::Trunc:
866 Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
867 break;
868 case Instruction::SExt:
869 Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
870 break;
871 case Instruction::ZExt:
872 Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
873 break;
874 case Instruction::BitCast:
875 Result.markConstantRange(LHSRange);
876 break;
877 case Instruction::And:
878 Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
879 break;
880 case Instruction::Or:
881 Result.markConstantRange(LHSRange.binaryOr(RHSRange));
882 break;
883
884 // Unhandled instructions are overdefined.
885 default:
886 DEBUG(dbgs() << " compute BB '" << BB->getName()
887 << "' - overdefined because inst def found.\n");
888 Result.markOverdefined();
889 break;
890 }
891
892 BBLV = Result;
893 return true;
894 }
895
getValueFromFromCondition(Value * Val,ICmpInst * ICI,LVILatticeVal & Result,bool isTrueDest)896 bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
897 LVILatticeVal &Result, bool isTrueDest) {
898 if (ICI && isa<Constant>(ICI->getOperand(1))) {
899 if (ICI->isEquality() && ICI->getOperand(0) == Val) {
900 // We know that V has the RHS constant if this is a true SETEQ or
901 // false SETNE.
902 if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
903 Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
904 else
905 Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
906 return true;
907 }
908
909 // Recognize the range checking idiom that InstCombine produces.
910 // (X-C1) u< C2 --> [C1, C1+C2)
911 ConstantInt *NegOffset = nullptr;
912 if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
913 match(ICI->getOperand(0), m_Add(m_Specific(Val),
914 m_ConstantInt(NegOffset)));
915
916 ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
917 if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
918 // Calculate the range of values that are allowed by the comparison
919 ConstantRange CmpRange(CI->getValue());
920 ConstantRange TrueValues =
921 ConstantRange::makeAllowedICmpRegion(ICI->getPredicate(), CmpRange);
922
923 if (NegOffset) // Apply the offset from above.
924 TrueValues = TrueValues.subtract(NegOffset->getValue());
925
926 // If we're interested in the false dest, invert the condition.
927 if (!isTrueDest) TrueValues = TrueValues.inverse();
928
929 Result = LVILatticeVal::getRange(TrueValues);
930 return true;
931 }
932 }
933
934 return false;
935 }
936
937 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
938 /// Val is not constrained on the edge.
getEdgeValueLocal(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,LVILatticeVal & Result)939 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
940 BasicBlock *BBTo, LVILatticeVal &Result) {
941 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
942 // know that v != 0.
943 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
944 // If this is a conditional branch and only one successor goes to BBTo, then
945 // we may be able to infer something from the condition.
946 if (BI->isConditional() &&
947 BI->getSuccessor(0) != BI->getSuccessor(1)) {
948 bool isTrueDest = BI->getSuccessor(0) == BBTo;
949 assert(BI->getSuccessor(!isTrueDest) == BBTo &&
950 "BBTo isn't a successor of BBFrom");
951
952 // If V is the condition of the branch itself, then we know exactly what
953 // it is.
954 if (BI->getCondition() == Val) {
955 Result = LVILatticeVal::get(ConstantInt::get(
956 Type::getInt1Ty(Val->getContext()), isTrueDest));
957 return true;
958 }
959
960 // If the condition of the branch is an equality comparison, we may be
961 // able to infer the value.
962 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
963 if (getValueFromFromCondition(Val, ICI, Result, isTrueDest))
964 return true;
965 }
966 }
967
968 // If the edge was formed by a switch on the value, then we may know exactly
969 // what it is.
970 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
971 if (SI->getCondition() != Val)
972 return false;
973
974 bool DefaultCase = SI->getDefaultDest() == BBTo;
975 unsigned BitWidth = Val->getType()->getIntegerBitWidth();
976 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
977
978 for (SwitchInst::CaseIt i : SI->cases()) {
979 ConstantRange EdgeVal(i.getCaseValue()->getValue());
980 if (DefaultCase) {
981 // It is possible that the default destination is the destination of
982 // some cases. There is no need to perform difference for those cases.
983 if (i.getCaseSuccessor() != BBTo)
984 EdgesVals = EdgesVals.difference(EdgeVal);
985 } else if (i.getCaseSuccessor() == BBTo)
986 EdgesVals = EdgesVals.unionWith(EdgeVal);
987 }
988 Result = LVILatticeVal::getRange(EdgesVals);
989 return true;
990 }
991 return false;
992 }
993
994 /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
995 /// the basic block if the edge does not constrain Val.
getEdgeValue(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,LVILatticeVal & Result,Instruction * CxtI)996 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
997 BasicBlock *BBTo, LVILatticeVal &Result,
998 Instruction *CxtI) {
999 // If already a constant, there is nothing to compute.
1000 if (Constant *VC = dyn_cast<Constant>(Val)) {
1001 Result = LVILatticeVal::get(VC);
1002 return true;
1003 }
1004
1005 if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
1006 if (!Result.isConstantRange() ||
1007 Result.getConstantRange().getSingleElement())
1008 return true;
1009
1010 // FIXME: this check should be moved to the beginning of the function when
1011 // LVI better supports recursive values. Even for the single value case, we
1012 // can intersect to detect dead code (an empty range).
1013 if (!hasBlockValue(Val, BBFrom)) {
1014 if (pushBlockValue(std::make_pair(BBFrom, Val)))
1015 return false;
1016 Result.markOverdefined();
1017 return true;
1018 }
1019
1020 // Try to intersect ranges of the BB and the constraint on the edge.
1021 LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
1022 mergeAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator());
1023 // See note on the use of the CxtI with mergeAssumeBlockValueConstantRange,
1024 // and caching, below.
1025 mergeAssumeBlockValueConstantRange(Val, InBlock, CxtI);
1026 if (!InBlock.isConstantRange())
1027 return true;
1028
1029 ConstantRange Range =
1030 Result.getConstantRange().intersectWith(InBlock.getConstantRange());
1031 Result = LVILatticeVal::getRange(Range);
1032 return true;
1033 }
1034
1035 if (!hasBlockValue(Val, BBFrom)) {
1036 if (pushBlockValue(std::make_pair(BBFrom, Val)))
1037 return false;
1038 Result.markOverdefined();
1039 return true;
1040 }
1041
1042 // If we couldn't compute the value on the edge, use the value from the BB.
1043 Result = getBlockValue(Val, BBFrom);
1044 mergeAssumeBlockValueConstantRange(Val, Result, BBFrom->getTerminator());
1045 // We can use the context instruction (generically the ultimate instruction
1046 // the calling pass is trying to simplify) here, even though the result of
1047 // this function is generally cached when called from the solve* functions
1048 // (and that cached result might be used with queries using a different
1049 // context instruction), because when this function is called from the solve*
1050 // functions, the context instruction is not provided. When called from
1051 // LazyValueInfoCache::getValueOnEdge, the context instruction is provided,
1052 // but then the result is not cached.
1053 mergeAssumeBlockValueConstantRange(Val, Result, CxtI);
1054 return true;
1055 }
1056
getValueInBlock(Value * V,BasicBlock * BB,Instruction * CxtI)1057 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB,
1058 Instruction *CxtI) {
1059 DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1060 << BB->getName() << "'\n");
1061
1062 assert(BlockValueStack.empty() && BlockValueSet.empty());
1063 pushBlockValue(std::make_pair(BB, V));
1064
1065 solve();
1066 LVILatticeVal Result = getBlockValue(V, BB);
1067 mergeAssumeBlockValueConstantRange(V, Result, CxtI);
1068
1069 DEBUG(dbgs() << " Result = " << Result << "\n");
1070 return Result;
1071 }
1072
getValueAt(Value * V,Instruction * CxtI)1073 LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) {
1074 DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
1075 << CxtI->getName() << "'\n");
1076
1077 LVILatticeVal Result;
1078 if (auto *I = dyn_cast<Instruction>(V))
1079 Result = getFromRangeMetadata(I);
1080 mergeAssumeBlockValueConstantRange(V, Result, CxtI);
1081
1082 DEBUG(dbgs() << " Result = " << Result << "\n");
1083 return Result;
1084 }
1085
1086 LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1087 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1088 Instruction *CxtI) {
1089 DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1090 << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
1091
1092 LVILatticeVal Result;
1093 if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
1094 solve();
1095 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
1096 (void)WasFastQuery;
1097 assert(WasFastQuery && "More work to do after problem solved?");
1098 }
1099
1100 DEBUG(dbgs() << " Result = " << Result << "\n");
1101 return Result;
1102 }
1103
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1104 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1105 BasicBlock *NewSucc) {
1106 // When an edge in the graph has been threaded, values that we could not
1107 // determine a value for before (i.e. were marked overdefined) may be
1108 // possible to solve now. We do NOT try to proactively update these values.
1109 // Instead, we clear their entries from the cache, and allow lazy updating to
1110 // recompute them when needed.
1111
1112 // The updating process is fairly simple: we need to drop cached info
1113 // for all values that were marked overdefined in OldSucc, and for those same
1114 // values in any successor of OldSucc (except NewSucc) in which they were
1115 // also marked overdefined.
1116 std::vector<BasicBlock*> worklist;
1117 worklist.push_back(OldSucc);
1118
1119 auto I = OverDefinedCache.find(OldSucc);
1120 if (I == OverDefinedCache.end())
1121 return; // Nothing to process here.
1122 SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
1123
1124 // Use a worklist to perform a depth-first search of OldSucc's successors.
1125 // NOTE: We do not need a visited list since any blocks we have already
1126 // visited will have had their overdefined markers cleared already, and we
1127 // thus won't loop to their successors.
1128 while (!worklist.empty()) {
1129 BasicBlock *ToUpdate = worklist.back();
1130 worklist.pop_back();
1131
1132 // Skip blocks only accessible through NewSucc.
1133 if (ToUpdate == NewSucc) continue;
1134
1135 bool changed = false;
1136 for (Value *V : ValsToClear) {
1137 // If a value was marked overdefined in OldSucc, and is here too...
1138 auto OI = OverDefinedCache.find(ToUpdate);
1139 if (OI == OverDefinedCache.end())
1140 continue;
1141 SmallPtrSetImpl<Value *> &ValueSet = OI->second;
1142 if (!ValueSet.count(V))
1143 continue;
1144
1145 ValueSet.erase(V);
1146 if (ValueSet.empty())
1147 OverDefinedCache.erase(OI);
1148
1149 // If we removed anything, then we potentially need to update
1150 // blocks successors too.
1151 changed = true;
1152 }
1153
1154 if (!changed) continue;
1155
1156 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
1157 }
1158 }
1159
1160 //===----------------------------------------------------------------------===//
1161 // LazyValueInfo Impl
1162 //===----------------------------------------------------------------------===//
1163
1164 /// This lazily constructs the LazyValueInfoCache.
getCache(void * & PImpl,AssumptionCache * AC,const DataLayout * DL,DominatorTree * DT=nullptr)1165 static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC,
1166 const DataLayout *DL,
1167 DominatorTree *DT = nullptr) {
1168 if (!PImpl) {
1169 assert(DL && "getCache() called with a null DataLayout");
1170 PImpl = new LazyValueInfoCache(AC, *DL, DT);
1171 }
1172 return *static_cast<LazyValueInfoCache*>(PImpl);
1173 }
1174
runOnFunction(Function & F)1175 bool LazyValueInfo::runOnFunction(Function &F) {
1176 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1177 const DataLayout &DL = F.getParent()->getDataLayout();
1178
1179 DominatorTreeWrapperPass *DTWP =
1180 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1181 DT = DTWP ? &DTWP->getDomTree() : nullptr;
1182
1183 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1184
1185 if (PImpl)
1186 getCache(PImpl, AC, &DL, DT).clear();
1187
1188 // Fully lazy.
1189 return false;
1190 }
1191
getAnalysisUsage(AnalysisUsage & AU) const1192 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
1193 AU.setPreservesAll();
1194 AU.addRequired<AssumptionCacheTracker>();
1195 AU.addRequired<TargetLibraryInfoWrapperPass>();
1196 }
1197
releaseMemory()1198 void LazyValueInfo::releaseMemory() {
1199 // If the cache was allocated, free it.
1200 if (PImpl) {
1201 delete &getCache(PImpl, AC, nullptr);
1202 PImpl = nullptr;
1203 }
1204 }
1205
getConstant(Value * V,BasicBlock * BB,Instruction * CxtI)1206 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
1207 Instruction *CxtI) {
1208 const DataLayout &DL = BB->getModule()->getDataLayout();
1209 LVILatticeVal Result =
1210 getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1211
1212 if (Result.isConstant())
1213 return Result.getConstant();
1214 if (Result.isConstantRange()) {
1215 ConstantRange CR = Result.getConstantRange();
1216 if (const APInt *SingleVal = CR.getSingleElement())
1217 return ConstantInt::get(V->getContext(), *SingleVal);
1218 }
1219 return nullptr;
1220 }
1221
1222 /// Determine whether the specified value is known to be a
1223 /// constant on the specified edge. Return null if not.
getConstantOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1224 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1225 BasicBlock *ToBB,
1226 Instruction *CxtI) {
1227 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1228 LVILatticeVal Result =
1229 getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1230
1231 if (Result.isConstant())
1232 return Result.getConstant();
1233 if (Result.isConstantRange()) {
1234 ConstantRange CR = Result.getConstantRange();
1235 if (const APInt *SingleVal = CR.getSingleElement())
1236 return ConstantInt::get(V->getContext(), *SingleVal);
1237 }
1238 return nullptr;
1239 }
1240
getPredicateResult(unsigned Pred,Constant * C,LVILatticeVal & Result,const DataLayout & DL,TargetLibraryInfo * TLI)1241 static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
1242 LVILatticeVal &Result,
1243 const DataLayout &DL,
1244 TargetLibraryInfo *TLI) {
1245
1246 // If we know the value is a constant, evaluate the conditional.
1247 Constant *Res = nullptr;
1248 if (Result.isConstant()) {
1249 Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
1250 TLI);
1251 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1252 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1253 return LazyValueInfo::Unknown;
1254 }
1255
1256 if (Result.isConstantRange()) {
1257 ConstantInt *CI = dyn_cast<ConstantInt>(C);
1258 if (!CI) return LazyValueInfo::Unknown;
1259
1260 ConstantRange CR = Result.getConstantRange();
1261 if (Pred == ICmpInst::ICMP_EQ) {
1262 if (!CR.contains(CI->getValue()))
1263 return LazyValueInfo::False;
1264
1265 if (CR.isSingleElement() && CR.contains(CI->getValue()))
1266 return LazyValueInfo::True;
1267 } else if (Pred == ICmpInst::ICMP_NE) {
1268 if (!CR.contains(CI->getValue()))
1269 return LazyValueInfo::True;
1270
1271 if (CR.isSingleElement() && CR.contains(CI->getValue()))
1272 return LazyValueInfo::False;
1273 }
1274
1275 // Handle more complex predicates.
1276 ConstantRange TrueValues =
1277 ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
1278 if (TrueValues.contains(CR))
1279 return LazyValueInfo::True;
1280 if (TrueValues.inverse().contains(CR))
1281 return LazyValueInfo::False;
1282 return LazyValueInfo::Unknown;
1283 }
1284
1285 if (Result.isNotConstant()) {
1286 // If this is an equality comparison, we can try to fold it knowing that
1287 // "V != C1".
1288 if (Pred == ICmpInst::ICMP_EQ) {
1289 // !C1 == C -> false iff C1 == C.
1290 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1291 Result.getNotConstant(), C, DL,
1292 TLI);
1293 if (Res->isNullValue())
1294 return LazyValueInfo::False;
1295 } else if (Pred == ICmpInst::ICMP_NE) {
1296 // !C1 != C -> true iff C1 == C.
1297 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1298 Result.getNotConstant(), C, DL,
1299 TLI);
1300 if (Res->isNullValue())
1301 return LazyValueInfo::True;
1302 }
1303 return LazyValueInfo::Unknown;
1304 }
1305
1306 return LazyValueInfo::Unknown;
1307 }
1308
1309 /// Determine whether the specified value comparison with a constant is known to
1310 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1311 LazyValueInfo::Tristate
getPredicateOnEdge(unsigned Pred,Value * V,Constant * C,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1312 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1313 BasicBlock *FromBB, BasicBlock *ToBB,
1314 Instruction *CxtI) {
1315 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1316 LVILatticeVal Result =
1317 getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1318
1319 return getPredicateResult(Pred, C, Result, DL, TLI);
1320 }
1321
1322 LazyValueInfo::Tristate
getPredicateAt(unsigned Pred,Value * V,Constant * C,Instruction * CxtI)1323 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1324 Instruction *CxtI) {
1325 const DataLayout &DL = CxtI->getModule()->getDataLayout();
1326 LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
1327 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1328 if (Ret != Unknown)
1329 return Ret;
1330
1331 // Note: The following bit of code is somewhat distinct from the rest of LVI;
1332 // LVI as a whole tries to compute a lattice value which is conservatively
1333 // correct at a given location. In this case, we have a predicate which we
1334 // weren't able to prove about the merged result, and we're pushing that
1335 // predicate back along each incoming edge to see if we can prove it
1336 // separately for each input. As a motivating example, consider:
1337 // bb1:
1338 // %v1 = ... ; constantrange<1, 5>
1339 // br label %merge
1340 // bb2:
1341 // %v2 = ... ; constantrange<10, 20>
1342 // br label %merge
1343 // merge:
1344 // %phi = phi [%v1, %v2] ; constantrange<1,20>
1345 // %pred = icmp eq i32 %phi, 8
1346 // We can't tell from the lattice value for '%phi' that '%pred' is false
1347 // along each path, but by checking the predicate over each input separately,
1348 // we can.
1349 // We limit the search to one step backwards from the current BB and value.
1350 // We could consider extending this to search further backwards through the
1351 // CFG and/or value graph, but there are non-obvious compile time vs quality
1352 // tradeoffs.
1353 if (CxtI) {
1354 BasicBlock *BB = CxtI->getParent();
1355
1356 // Function entry or an unreachable block. Bail to avoid confusing
1357 // analysis below.
1358 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1359 if (PI == PE)
1360 return Unknown;
1361
1362 // If V is a PHI node in the same block as the context, we need to ask
1363 // questions about the predicate as applied to the incoming value along
1364 // each edge. This is useful for eliminating cases where the predicate is
1365 // known along all incoming edges.
1366 if (auto *PHI = dyn_cast<PHINode>(V))
1367 if (PHI->getParent() == BB) {
1368 Tristate Baseline = Unknown;
1369 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1370 Value *Incoming = PHI->getIncomingValue(i);
1371 BasicBlock *PredBB = PHI->getIncomingBlock(i);
1372 // Note that PredBB may be BB itself.
1373 Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
1374 CxtI);
1375
1376 // Keep going as long as we've seen a consistent known result for
1377 // all inputs.
1378 Baseline = (i == 0) ? Result /* First iteration */
1379 : (Baseline == Result ? Baseline : Unknown); /* All others */
1380 if (Baseline == Unknown)
1381 break;
1382 }
1383 if (Baseline != Unknown)
1384 return Baseline;
1385 }
1386
1387 // For a comparison where the V is outside this block, it's possible
1388 // that we've branched on it before. Look to see if the value is known
1389 // on all incoming edges.
1390 if (!isa<Instruction>(V) ||
1391 cast<Instruction>(V)->getParent() != BB) {
1392 // For predecessor edge, determine if the comparison is true or false
1393 // on that edge. If they're all true or all false, we can conclude
1394 // the value of the comparison in this block.
1395 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1396 if (Baseline != Unknown) {
1397 // Check that all remaining incoming values match the first one.
1398 while (++PI != PE) {
1399 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1400 if (Ret != Baseline) break;
1401 }
1402 // If we terminated early, then one of the values didn't match.
1403 if (PI == PE) {
1404 return Baseline;
1405 }
1406 }
1407 }
1408 }
1409 return Unknown;
1410 }
1411
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1412 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1413 BasicBlock *NewSucc) {
1414 if (PImpl) {
1415 const DataLayout &DL = PredBB->getModule()->getDataLayout();
1416 getCache(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
1417 }
1418 }
1419
eraseBlock(BasicBlock * BB)1420 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1421 if (PImpl) {
1422 const DataLayout &DL = BB->getModule()->getDataLayout();
1423 getCache(PImpl, AC, &DL, DT).eraseBlock(BB);
1424 }
1425 }
1426